
M A Y 1 9 9 1

WRL
Research Report 91/6

Don’t Fidget
with Widgets,
Draw!

Joel F. Bartlett

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Don’t Fidget
with Widgets,

Draw!

Joel F. Bartlett

May, 1991

Copyright 1991, Digital Equipment Corporation

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

In their quest to produce tools for the production of uniform graphical user in-
terfaces, almost all designers of toolkits for the X window system have over-
looked an important capability. The best way to improve many programs is not to
replace text interfaces based on command line flags with graphical buttons, but to
provide programs with a simple way to draw pictures. This report describes a
graphics server, ezd, that sits between an application program and the X server
and allows both existing and new programs easy access to structured graphics.
Programs may draw, edit, and sense user events in terms of application-defined
graphical objects. When run on workstations with 10 MIPS or faster processors,
interactive response is excellent, indicating that ezd’s simple structured graphics
drawing model can be widely applied. The enthusiastic response of ezd’s initial
users and the variety of uses to which they have put it to suggest that there is a
tremendous pent-up urge to draw with programs and that ezd has lowered the bar-
riers to doing so.

i

1. Introduction

Even though researchers at Digital Equipment Corporation’s Western Research Laboratory
have been running the X window system [20] for more than five years, most programs make no
use of graphics. While libraries and interface generators [10] have provided many interactive
programs with uniform, configurable, sophisticated graphical interfaces, they have not provided
programs with a way to draw. The graphical needs of many programs would be poorly served by
replacing their command line arguments with a graphical equivalent. Instead, these programs
would be improved by providing them with a simple way to make 2-D drawings.

A typical candidate for easy-to-use 2-D graphics is a printed circuit board router, which takes
the physical location of components and a netlist describing their logical connections, and
produces a wirelist showing the actual location of wires. The methods used by the grr router [8],
are illustrated in the technical report by hand constructed drawings like:

If similar drawings could have been automatically made during the construction of the router,
they would have greatly simplified debugging and improved the designer’s understanding of the
routing heuristics. However, the designer saw adding graphical output as being too time consum-
ing. Only after the router was completed were graphics added to demonstrate the router’s perfor-
mance.

Barriers to using graphics must be lowered to encourage programs to use them. Separating
creation of drawings from rendering them on a display is one way to hide complexity from the

1

DON’T FIDGET WITH WIDGETS, DRAW!

1programmer. Interactive drawing programs like MacDraw and idraw [23] do this by providing
users with a high-level, structured drawing model. With a few simple selection operations using
the mouse, users create many kinds of device-independent graphic objects. Multiple colors,
fonts, line widths, and stipples are available at the drop of a menu. As users are dealing with
graphical objects instead of pixels, objects may be freely overlapped, moved, and edited; the
drawing program taking full responsibility for correctly rendering them on the display.

Application programs can be offered these capabilities by providing a graphics server that
replaces the drawing program’s graphical user interface with a process-to-process protocol. This
server can be extended beyond the capabilities offered by a drawing program by allowing
graphical objects to react to the workstation’s mouse and keyboard. For example, a network
management system could draw a picture showing the host machines and their physical connec-
tions. By clicking the mouse on the appropriate graphic, one could get detailed status infor-
mation about a host system or communication line. One can also use these capabilities to build
conventional-looking user interface objects such as push buttons or sliders.

This report describes such a graphics tool, ezd, and reports WRL’s experience with it. The
challenge in constructing ezd was to make it simple enough to be readily used, yet with enough
graphics capabilities and performance to be useful in a variety of applications.

2. Overview of ezd

Simple graphics should be simple. The same afternoon that one first encounters ezd, one
should be able to take an existing program and produce meaningful graphics. Ezd makes this
possible by providing a simple drawing model and application interface, and hiding all details of
display management.

2.1. High Level Drawing Primitives

Ezd provides the application programmer with a powerful, device independent, high level
drawing model. An ezd drawing is an ordered list of graphical objects. Drawings are displayed
by mapping them onto windows. An object’s x,y position and size are specified using the
application’s coordinate system. When drawings are displayed, the objects are drawn in the order
that they were added to the drawing using the painter’s algorithm [16]: objects are opaque and
later-defined objects can obscure earlier-defined objects. Objects may be given symbolic names.
The first time a named object is defined establishes the object’s position in the list of objects
making up the drawing. A named object is changed by simply redefining it.

When a drawing is mapped onto a window, ezd transforms the application’s coordinate system
to X’s coordinate system and displays the graphical objects in the drawing. Operations such as
panning and zooming are done by changing the mapping of the drawing onto the window. Mul-
tiple drawings can be displayed in a window, and multiple windows can display a drawing.

1MacDraw, a trademark of Claris Corporation, is a drawing program for Apple Macintosh computers.

2

DON’T FIDGET WITH WIDGETS, DRAW!

A drawing is made interactive by making objects in it sensitive to events like mouse motion,
button clicks or keystrokes. The application controls whether the events are logged to the ap-
plication or handled within ezd by programs written in ezd’s extension language, Scheme [1, 18].

2.2. Loosely Coupled to the Application Program

A simple drawing model is not enough. The graphics system should not restrict the
application’s choice of programming language nor dictate control flow.

Like the X window system, an application interacts with ezd by sending requests to a server
process. Unlike X, the application does not do this by calls to a language specific low-level
library, but directly issues text-based client-server requests. Since virtually any language can
send text commands, ezd does not dictate a choice of programming language.

Client programs constructed using conventional X tools must respond to a number of events
generated by the X server. When a window is initially created and then made visible, a program
may not draw in it until it receives an expose event from the server. At any time, the user may
cover and reexpose part of the window. The X server will then prompt the associated program
with an expose event, signaling the need to redraw the damaged portion of the window. Failure
to do this correctly or in a timely manner will be painfully obvious to the user.

Ezd eliminates the need for the application to execute in an event-driven manner by executing
as a separate process and filtering all X server events. The only events sent to the application are
ones that the application has expressed an interest in. While interactive applications must still be
responsive to the user, many useful graphics can be displayed without handling any events.

2.3. Automatically Rendered to the Display

Once a drawing is mapped onto a window, the application program need not further concern
itself with the window as ezd takes full responsibility for displaying the contents of the window.
When a drawing is changed by the application, all views of it are automatically updated. Display
updates are deferred until a natural break in the application command stream. The changed por-
tions of each window are then determined, rendered to an off screen buffer, and copied onto the
display. Simple animation is implicit in this display handling method as multiple changes to a
drawing are reflected as one smooth, flicker-free change to the window(s) displaying it.

3. An Interactive Clock Face

The example of a clock face described in this section demonstrates how ezd’s drawing and
control ideas combine to produce interactive graphics. The application displays a window con-
taining a clock face. Dragging either of the hands using mouse button 1 sets the time. Clicking
mouse button 3 on the clock face terminates the program. The phrase "time drifts by" is not
written on the face of the clock. Instead, it floats in space above the minute hand and below the
hour hand.

3

DON’T FIDGET WITH WIDGETS, DRAW!

time

drifts

by

This section describes a C implementation of this program. The commentary focuses on the
2program’s control structure and the ezd commands used to create the clock face .

3The first phase of the program creates a separate ezd process with a pipe [13] named out for
requests to the ezd server, and a pipe named in for event notifications from the ezd server.

The second phase of the program issues commands to ezd to define the clock face and recog-
nize user mouse actions on it. The first commands issued create a window named
clock-window and a drawing named clock, and map the drawing onto the window.

(window clock-window 200 200 fixed-size)
(set-drawing clock)
(overlay clock-window clock)
(origin clock-window clock 100 100)
(scale clock-window clock 1 -1 1)

The origin command sets the origin of the drawing in the center of the window. The scale
command changes the default X coordinate system (positive Y goes down) to one in which posi-
tive Y goes up and declares that one unit in the drawing is one pixel on the screen.

The next group of commands define the objects making up the clock face. As later-defined
objects can overlap earlier-defined objects, objects are defined from back to front.

(object back (fill-arc -100 -100 200 200 0 360 gray95)
(arc -100 -100 200 200 0 360 gray85))

(object minute)
(text -60 -60 120 120 left up "time" grey60 "times_italic24")
(text -60 -60 120 120 right center "drifts" grey60 "times_italic24")
(text -60 -60 120 120 left down "by" grey60 "times_italic24")
(object hour)
(fill-arc -5 -5 10 10 0 360 black)
(object cover)

2Readers interested in the details of the implementation should consult the appendices, which contain complete
source for C and Scheme implementations.

3A pipe is a mechanism for interprocess communication.

4

DON’T FIDGET WITH WIDGETS, DRAW!

The first object defined is the background of the clock. It consists of a filled circle edged in a
slightly darker gray and is given the name back. Each drawing command specifies the x,y
position and size of the object it defines in terms of the application’s coordinate system. Next,
the minute hand is defined as a null graphical object. Although the command causes nothing to
be displayed, it does establish the order of the object named minute in the list of objects in the
drawing. Following this come the text commands that display the string "time drifts by". Text
is positioned by specifying a position, a rectangle, and two keywords indicating left-right posi-
tion and up-down position within the rectangle. Finally, the hour hand’s order in the drawing is
established, the hands’ drive shaft is defined, and the null object cover is defined.

The hands are defined by calls to the following procedure, where out is the pipe to the ezd
server.

void draw_hand(name, length, angle)
char *name;
int length;
double angle;

{
fprintf(out,

"(object %s (fill-polygon 0 0 %f %f %f %f %f %f))",
name,
25*cos(angle+.25), 25*sin(angle+.25),
length*cos(angle), length*sin(angle),
25*cos(angle-.25), 25*sin(angle-.25));

}

Each time a named object is defined, the new graphical object replaces the previous one. Just as
with an interactive drawing package, other objects are automatically redisplayed when an object
is moved or deleted.

Time is set by dragging either of the hands with the mouse. A drag operation is started by
depressing mouse button 1 with the mouse on either of the hands. The hands are made mouse-
sensitive by issuing the when commands:

(when minute button1down
(begin (log-event),

(ezd ’(object cover
(fill-rectangle -100 -100 200 200 clear)))))

(when hour button1down
(begin (log-event)

(ezd ’(object cover
(fill-rectangle -100 -100 200 200 clear)))))

Each command is of the form (when object event action). Object is the name of an object in the
drawing, event is the type of event, and action is a Scheme expression to evaluate. The event
action is a sequence of two procedure calls. The first, (log-event), causes an event record to
be written on ezd’s default output file that can be read on the program’s pipe in. The second
redefines the object cover as a clear filled rectangle that covers the entire window.

The drag operation is continued by the user moving the mouse over the window with button 1
held down. Defining cover over all other objects in the drawing and making it sensitive to
mouse motion by the command:

(when cover motion (log-event))

assures that it will track all mouse motion in the window until the button is released. Mouse
motion is always reported to the top-most object in the drawing that contains the mouse. If

5

DON’T FIDGET WITH WIDGETS, DRAW!

cover were not defined, then mouse motion would be seen as occurring in either hand or in the
background during the drag. While the application could make those objects sensitive to mouse
motion, it is often easier to observe mouse motion by using a clear object as is done here.

The drag completes when the user release mouse button 1. The next two when commands:
(when cover button1up (ezd ’(object cover)))
(when cover enter (if (not *mouse-button1*) (ezd ’(object cover))))

detect the completion of the drag and are explained with the third phase of the program.

Once these commands have been sent to the ezd server, the program starts its third phase,
event monitoring. This is done by reading text messages from in, the pipe from ezd. Note that
the only events reported by ezd are those that the application has explicitly asked for.

To illustrate the interaction between the application and ezd, the actions taken when a user sets
the time are explained. When the user presses mouse button 1 down on one of the hands, ezd
logs the event to the application and redefines the object cover. The application detects this
event by reading the text:

(BUTTON1DOWN CLOCK-WINDOW CLOCK HOUR 2 34 102 66)

from the pipe from ezd.

As cover is now the top object on the drawing, mouse motion events are reported to it.
Ezd’s log-event procedure sends events to the application as strings of the form:

(MOTION CLOCK-WINDOW CLOCK COVER 4 34 104 66)

Using the hand from the button-1-down event, and the mouse position from subsequent motion
events, the application redefines both hands to reflect the new time. This process continues as
the user drags the mouse until button 1 comes up.

Cover is sensitive to enter events as the application wishes to allow the drag to continue if
the mouse leaves the window and then reenters with mouse button 1 down. When button 1
comes up, the drag is complete and cover is redefined as a null object. Note that neither the
button up nor the enter event are logged to the application.

Two additional when commands issued during the second phase of the program allow genera-
4tion of PostScript [2] output and terminate the program:

(when back button2down (postscript clock-window "clock.psf"))
(when back button3down (log-event))

The illustration for this section was created by moving the hands into an appealing position and
then pressing mouse button 2 to make a PostScript rendering of the contents of the window.

Running this application displays ezd’s ability to do animation. As the mouse is dragged, the
application simply redefines the hands in their new positions and they appear to move smoothly.

4PostScript is a trademark of Adobe Systems Incorporated.

6

DON’T FIDGET WITH WIDGETS, DRAW!

4. Ezd Details

This section examines ezd’s concepts in more detail, and compares ezd to other X-based tools.
Many X applications use Xt [3], a toolkit built on top of Xlib, X’s low-level C library. In con-
junction with the toolkit, one uses a library of widgets such as Motif [17]. A widget is a
predefined component of a user interface that typically consists of both a graphical "look" and an
interactive "feel", e.g. a push button or pop-up menu. An alternative to the X toolkit is
InterViews [14], a C++ user interface library. Finally, other window systems such as NeWS [9]
have been based on the page description language PostScript.

4.1. Drawing Primitives

Ezd provides a simple, powerful drawing model: graphic objects are ordered into drawings,
and drawings are displayed by mapping them onto windows.

Graphic objects are created using commands that create lines, rectangles, polygons, arcs, and
text in arbitrary colors, stipples, and fonts. The x,y position, size, and line width of each object
is specified in a device-independent coordinate system using either integer or floating point num-
bers.

(line 10 10 100 100 5 red)
(fill-polygon .2 .2 10.7 20.6 20 0 magenta)

Zero or more of these drawing primitives can be grouped together to form a named object.
(object a)
(object quit (fill-rectangle 10 10 50 30 yellow)

(rectangle 10 10 50 30)
(text 10 10 50 30 center center "OK"))

The order in which objects are defined is important as later defined objects may obscure ear-
lier defined objects. When a named object is first defined, its position in the drawing order is
established. Drawings may be edited by simply redefining the object. When the object is
redefined, its position in the drawing order is retained. For example, a program could redefine
the object quit with a wider rectangle around it by:

(object quit (fill-rectangle 10 10 50 30 yellow)
(rectangle 10 10 50 30 4)
(text 10 10 50 30 center center "OK"))

Objects can be hidden from view by defining them as a null object with no graphics commands.
A program could hide the quit object by issuing the command:

(object quit)

Finally, an object’s position in the drawing order can be changed. Objects may be brought to the
top of a drawing, sunk to the bottom, or placed above or below another object in the drawing.

In order to display an ezd drawing, the application first creates a window. Window size and
5position are specified in either points or pixels (the default). For example, the following com-

mand creates a window named my-window that is 400 points on a side and may not be resized:
(window my-window 400 400 fixed-size points)

A drawing is then mapped onto the window by a command like:

5A point is a unit used in the printing industry equal to 1/72 of an inch.

7

DON’T FIDGET WITH WIDGETS, DRAW!

(overlay my-window a-drawing)

Explicit commands are not required to make windows appear or disappear. Instead, this occurs
as a side effect of mapping or unmapping drawings on them. The simple notion of mapping a
drawing onto a window provides many graphical effects.

The contents of a window can be zoomed or panned by changing the translation of the
drawing’s device-independent coordinate system. When a drawing is mapped onto a window,
the drawing’s coordinate system is transformed using the following functions, where scale_x,
scale_y, and scale_line_width are initially equal to one:

X_x = drawing_x * scale_x + origin_x
X_y = drawing_y * scale_y + origin_y
X_line_width = drawing_line_width * scale_line_width

The result is a one-to-one translation between the drawing coordinate system and X’s. To
change the mapping, the application issues scale and origin commands. For example, the
following commands place the drawing’s origin in the center of the window and make one unit
of the drawing equal to 100 pixels:

(origin my-window a-drawing 200 200)
(scale my-window a-drawing 100 100 1)

Device-independent origin and scale factors may also be specified in terms of points.

Mapping a drawing onto multiple windows provides multiple views of a drawing. Each view
may be independently zoomed or panned. As changes are made to a drawing, they are visible in
all of the windows that show that portion of the drawing. Multiple drawings may in turn be
mapped onto a window. For example, when constructing a viewer for a VLSI chip, one might
put each layer of the chip in a separate drawing. Layers can be selectively added or deleted from
a window by simply mapping or unmapping the appropriate drawing.

Window borders provide a natural "view finder" for producing a PostScript rendering of the
contents of a window. Once the drawings’ mappings and the window size have been adjusted, a
command like:

(postscript my-window "my-window.psf")

is issued to produce a PostScript file that can be printed or included in another document such as
this report. Even though the graphics primitives are similar to X’s, they are device-independent
and are easily translated to PostScript. This results in an image that has more resolution than a
pixel-based screen dump.

By hiding the mechanism for translating application drawings to images in windows, ezd is
able to translate a simple drawing model into a high quality display. Applications generally do
not concern themselves with when the display is updated. Changes to drawings are typically
buffered until a natural pause in the application when it stops issuing commands. As a result, the
incremental nature of the changes made by the application is not visible.

In order to minimize the amount of a window that must be redrawn, ezd tracks changes to
drawings and updates just the portions damaged by the changes. This keeps update costs propor-
tional to the number of changes, not the total size of the drawing. When a drawing is panned,
ezd attempts to minimize redrawing by moving portions of the drawing currently displayed in
the window.

8

DON’T FIDGET WITH WIDGETS, DRAW!

Finally, to eliminate the flicker that can occur when a portion of the window is cleared and
then redrawn, updates are typically rendered to an off-screen buffer and then copied to the win-
dow. The result of these display management optimizations are the smooth, atomic screen up-
dates required for animation, without any effort by the application programmer. Many of these
effects could be implemented more efficiently by programming directly with Xlib. However,
there is sufficient power in today’s 10 MIPS or faster workstations for ezd’s structured graphics
to have good visual performance.

A major difference between ezd and other X-based toolkits is that the latter provide little sup-
port for any form of structured graphics. An exception to this is the C++ toolkit, InterViews. It
provides a class of structured graphics objects with behavior similar to those found in ezd and
supports a more general graphics capability by allowing objects to be defined by splines.
However, it does not have ezd’s simplicity as it does not define all objects using structured
graphics. While application-defined objects may be defined using structured graphics, user in-
terface interactors such as push buttons are not.

By far the richest graphics primitives are those found in PostScript-based systems such as
NeWS [9]. They allow arbitrary scaling and rotation of all graphics, including text. However,
such systems do not directly support structured graphics.

4.2. Graphics Server

Ezd is visible to an application program as a structured graphics server using a simple text-
based protocol. Unlike most X-based toolkits including Xt and InterViews, ezd issues no event
requests that must be handled by the application program, and thus imposes no requirements on
the application’s control flow. Ezd only notifies the application program when an event occurs
in which the application has explicitly designated interest.

When building an interactive program, this may have little effect on the program’s design. For
example, the clock face program in Section 3 requires an event loop. However, the event han-
dling code is simpler than would be required for most other X-based implementations as there
are fewer events to handle and the static portions of the drawing never need to be redrawn.
Eliminating mandatory event monitoring allows any program that can print text to produce
graphics as well.

The protocol for communication between ezd and the application was chosen with an eye
toward minimizing restrictions on the application programming language. Commands are text
strings, where each command is an open parenthesis, a command name, the command’s ar-
guments separated by spaces, followed by a close parenthesis. Since ezd’s drawing model is
much simpler than that used by PostScript, ezd has no notion of a current graphics state holding
color, font, line, and clipping information. Instead, all information required to draw each object
is found in its command. While this makes command sequences a little bulkier than they might
be, it simplifies the language and makes debugging easier.

A final advantage of a text-based protocol (shared with PostScript-based systems) is that it is
possible to write simple, script-based applications. For example, a video monitor calibration tool
shown in Figure 1 was written in the form of a 111-line shell script. It displays a window of
instructions and a window containing test patterns. Once the monitor has been adjusted, a mouse
click terminates the application.

9

DON’T FIDGET WITH WIDGETS, DRAW!

#! /bin/csh -f
ezd -p <<END
(window vr297help 20 5 400 400 "VR297 Adjustment Instructions")
(set-drawing help)
(overlay vr297help help)
(text 10 30 "Turn contrast control to maximum position. Set H-STAT")

.

.

.
(rectangle 475 375 80 80 blk)
(text 475 375 80 80 center center "R G B" blk "9x15")
(object clear (fill-rectangle 0 0 1000 1000 clear))
(click clear 1 (ezd ’(quit)))
END

Figure 1: Color monitor calibration tool

The disadvantage of structuring ezd as a text-based server between the application and the X
server is the additional processor costs for interprocess communication and process dispatching
and additional memory required for the ezd process. Message and process dispatch costs are not
significantly more expensive than with Xt as the bulk of the message traffic is between ezd and
the X server. Where additional message latency costs occur is in the few requests that require a
round trip between the X server and the application via ezd. These requests can be minimized by
adding application-specific code to ezd, and 10 MIPS workstations have sufficient power to
provide good performance for requests that must make this round trip.

The major cost for using ezd is the memory used by each ezd process’ heap. Running a
simple ezd script on a DECstation 3100, a workstation that uses a MIPS R2000 processor [12],
takes 1 MB of data space; similar to that used by idraw to draw the same graphics. Even as
drawing complexity increases, most applications fit in a 4MB heap. Some of this cost is due to
ezd’s use of a generational compacting garbage collector, but some of it is inherent in ezd’s
support of a structured drawing model.

4.3. Interaction Model

Drawn objects are turned into user interface interactors by making them sensitive to mouse
and keyboard events. The events reported by ezd are similar to those returned by X, with one key
difference: X events are associated with windows, whereas ezd events are associated with
application-defined graphical objects.

As the mouse is moved across a window, ezd continuously translates the mouse position on
the display to a position in an object in a drawing. This translation is done by finding the top-
most object in the topmost drawing mapped into the window that contains the mouse. When an
object needs to detect the mouse entering it, exiting it, or moving within it, the application issues
one or more when commands:

(when object enter action)
(when object motion action)
(when object exit action)

where object is either the name of an object, or * indicating all objects in the drawing without an
explicitly-defined handler for this event. When the event occurs in an object with an event hand-
ler, the action is taken. It is either a Scheme expression to be evaluated or a Scheme procedure
to be called.

10

DON’T FIDGET WITH WIDGETS, DRAW!

When a mouse button or keyboard key is pressed or released, the event is reported to the
object currently containing the mouse. For example, the commands:

(when ok-button button1down (log-event))
(when ok-button button1up (log-event))
(when ok-button keyrelease (log-event))

make the object ok-button sensitive to mouse button 1 and keystrokes. The event action,
(log-event), forwards the event notification to the application program.

The ezd event model does not support X’s notion of a "pointer grab." That is, when a mouse
button is pushed, the ezd object containing the mouse does not automatically track the mouse
until the button is released. Instead, irrespective of the state of the mouse buttons, all events are
always reported to the topmost object that contains the mouse. This mechanism is an adequate
replacement for pointer grabs as the mouse position is translated to an object in a drawing using
the current definition of the drawing, not the pixels on the display. When an event handler run-
ning in the ezd server makes a change to a drawing, the change is immediately reflected in the
drawing. Changes to the area of a drawing under the mouse immediately generate any needed
object exit and enter events before ezd processes further X events.

One application of this property is tracking mouse motion for dragging objects. In the ex-
ample in Section 3, pressing mouse button 1 generates an X event. The event handler logs it to
the application and redefines the object cover as a clear rectangle over the entire window. As
far as ezd is concerned, this caused the mouse to move from the hand to cover. As long as the
mouse button is held down, cover remains in place and accepts mouse motion events. Redefin-
ing the hands in their new positions does not affect cover as the hands are under it. When
button 1 comes up, the event action redefines cover as a null object, moving the mouse to some
other object.

Another example where a pointer grab is required with X is when an application wishes to
draw an object under the mouse when a mouse button is pressed. With ezd, irrespective of the
speed that the mouse is moved after the button is pressed, the application sees the mouse entering
the object. While the application programmer has a simple event model, the user is allowed to
"mouse-ahead."

Ezd does not provide the event translation mechanism found in the X toolkit and its associated
6widget sets. These tools allow the easy definition of keyboard shortcuts and multiple event se-

quences such as double mouse clicks, and are oriented towards the construction of predefined,
uniform user interfaces. While event handling in such precompiled interfaces may take a more
global view and be more efficient than that done by ezd, such systems do not have its simplicity
and flexibility.

Ezd objects can communicate with each other via the event mechanism. The application or an
object’s event handler may send a get-attributes event to get information from an object, or a
set-attributes event to set information in an object. This message-passing capability allows user
interface interactors to be adapted to new tasks. For example, a check-button is a button that is

6A keyboard shortcut is a keyboard sequence that has the same effect as some other event sequence such as a
mouse action on a menu entry.

11

DON’T FIDGET WITH WIDGETS, DRAW!

clicked with the mouse to set it, and clicked again to clear it. Often a group of these buttons is
arranged in a radio button set, where exactly one of them can be set at any one time (see Figure 6
in Section 5.3). When a member of a radio button set is set, it tells the other members of the
radio button set to clear themselves via the event mechanism. Interface objects like this are
usually constructed by programming them in ezd’s extension language, rather than in the ap-
plication.

4.4. Extension Language

Intertwined with event handling is ezd’s extension language, Scheme. When an event is
reported to an object, the event handler (a Scheme procedure or expression) is evaluated. The
simplest event handler, used in the example in Section 3, is the expression (log-event).
When it is evaluated, it sends a text message containing the event type, window, drawing and
object names, and the mouse coordinates to the application program via a pipe.

If the user is willing to learn Scheme, many events can be handled in the server without any
interaction with the application. This results in a faster response to the event, and may result in
simpler control structures in the application. For example, an application may want the origin of
a drawing to always be centered in the window displaying it. When the window is resized, the
origin can be moved with the following command:

(when * resize
(ezd ‘(origin ,*user-event-window* ,*user-event-drawing*

,(quotient (list-ref *user-event-misc* 2) 2)
,(quotient (list-ref *user-event-misc* 3) 2))))

The values of the variables *user-event-window* and *user-event-drawing* are
the name of the window and the name of the drawing where the event occurred. The value of
user-event-misc is dependent upon the type of event. In this case, it is a list of four
items: the old window width, the old window height, the new window width, and the new win-
dow height. The procedure ezd takes as its arguments one or more lists that are ezd commands,
then executes the commands.

More sophisticated extensions can be done by adding new Scheme procedures to ezd. The
example in Figure 2 shows the Scheme code required to implement round push buttons. When
the mouse is inside a button, the button’s border thickens. When mouse button 1 is depressed
inside the button, the button colors reverse, and when the mouse button comes up the button
action is executed. When the procedure make-round-button is executed, it defines the but-
ton object in its normal state and installs four event handlers that implement this behavior.

The key to the compact nature of this program is Scheme’s lexically-scoped first-class
procedures. The action for each event is a Scheme procedure that automatically captures its en-
vironment when it is created. Variables such as bold and highlight that are private to each
button are retained and shared between the button’s event handlers without any explicit actions
by the programmer. Contrast this with C, where one would have to explicitly define a structure
containing the state of the button and pass it as an argument to all event action procedures.

12

DON’T FIDGET WITH WIDGETS, DRAW!

(define (MAKE-ROUND-BUTTON button-name x y action)

(define TEXT-COLOR ’black)
(define KEY-COLOR ’white)
(define DIAMETER 80)
(define FONT "8x13")

(define BOLD #f)
(define HIGHLIGHT #f)

(define (ENTER) (if (not *mouse-button1*) (draw-button #t #f)))

(define (EXIT) (draw-button #f #f))

(define (BUTTON-DOWN) (draw-button #t #t))

(define (BUTTON-UP)
(if highlight

(if (procedure? action) (action) (eval action)))
(draw-button #t #f))

(define (DRAW-BUTTON b h)
(set! bold b)
(set! highlight h)
(ezd ‘(object ,button-name

(fill-arc ,x ,y ,diameter ,diameter 0 360
,(if h text-color key-color))

(arc ,x ,y ,diameter ,diameter 0 360
,(if b 3 0))

(text ,x ,y ,diameter ,diameter
center center
,(symbol->string button-name)
,(if h key-color text-color) ,font))))

(draw-button #f #f)
(ezd ‘(when ,button-name enter ,enter))
(ezd ‘(when ,button-name exit ,exit))
(ezd ‘(when ,button-name button1down ,button-down))
(ezd ‘(when ,button-name button1up ,button-up)))

Figure 2: Scheme procedure to implement round buttons

The round button code, found in the file round.sc, is tested by running ezd as an interactive
Scheme system:

csh 149 >ezd -i
Scheme->C -- 28sep90jfb -- Copyright 1989 Digital Equipment...
> (load "round.sc")
MAKE-ROUND-BUTTON
"round.sc"
> (make-round-button ’button1 10 10 ’(log-event))
#F
> (make-round-button ’button2 110 10 ’(log-event))
#F
> (make-round-button ’button3 220 10 ’(log-event))
#F
>

13

DON’T FIDGET WITH WIDGETS, DRAW!

This session produces a window containing three buttons. When the mouse is in button1,
the drawing looks like:

BUTTON1 BUTTON2 BUTTON3

Clicking each button results in the following messages:
(BUTTON1UP EZD EZD BUTTON1 64 67 64 67)
(BUTTON1UP EZD EZD BUTTON2 165 59 165 59)
(BUTTON1UP EZD EZD BUTTON3 231 61 231 61)

Once tested, the same buttons can be built with the following ezd commands:
(include "round.sc")
(scheme (make-round-button ’button1 10 10 ’(log-event))

(make-round-button ’button2 110 10 ’(log-event))
(make-round-button ’button3 220 10 ’(log-event)))

where the scheme command allows a sequence of Scheme expressions to be embedded in the
ezd command stream. The user could go one step further and add a round-button command
to ezd. This is done by adding a call to define-ezd-command to the round.sc file with the
following arguments: a pattern to parse the command, a string showing the correct form of the
command, and the procedure that implements the command.

(define-ezd-command
‘(round-button ,symbol? ,number? ,number?)
"(round-button button-name x y)"
make-round-button)

This allows an ezd application to build the same buttons with the commands:
(include "round.sc")
(round-button button1 10 10)
(round-button button2 110 10)
(round-button button3 220 10)

Other graphics systems have found that Lisp dialects make excellent graphics extension lan-
guages. Scheme is used by SCIX [11], an object oriented interface to the X window system
protocol, and by a shell for GL [5]. WINTERP [15], an interactive environment for prototyping
with the OSF/MOTIF Toolkit, uses a subset of Common Lisp.

Another system that has made extensive use of a server embedded language is NeWS. There,
both the embedded language and the command language is PostScript. As it does not have
Scheme’s lexically closed procedures or continuations, light-weight processes were added to
NeWS’s PostScript implementation. Two advantages that ezd has over PostScript-based systems
are that large extensions to ezd may be written in Scheme and compiled and linked into ezd, and
that Scheme was intended for human consumption.

14

DON’T FIDGET WITH WIDGETS, DRAW!

5. Applications of ezd

The true test of any graphics system is not the elegance (or lack thereof) of its drawing model
or implementation, but the applications that users are able to construct with it and their ease of
construction. This section describes four applications representative of work done at WRL.
They demonstrate that ezd has been easy to use and can be used for real problems.

5.1. Heap Memory Map for Garbage-Collected C++

A generational garbage collector for C++ [4] is able to do significant heap compaction in spite
of the fact that the roots are ambiguous. An excellent way to demonstrate the collector’s perfor-
mance is to display a map of the heap as the program runs. Each 512-byte page of the garbage-
collected heap is represented by a small rectangle whose color denotes the state of the page: free,
a member of the stable set, or recently allocated to the current generation. As each page is
allocated, the associated rectangle is defined. During garbage collection, retained data is com-
pacted by copying it from recently allocated pages to newly allocated pages in the stable set. At
the end of garbage collection all pages not in the stable set are marked free.

Free space Recently Allocated Stable set Starting Garbage Collection

In order to provide a heap map for arbitrary C++ programs, it is important that the map’s
presence not affect the control flow of the program. Ezd supports this because it is a graphics
server rather than a graphics library. The C++ program never receives a request from ezd as ezd
handles all X events and user interaction. Even though the user may stop the display and step it
through a garbage collection via a pop-up menu, the only effect on the C++ program is that it
may block if it fills the pipe to ezd.

To avoid time-consuming redraws, such as marking previously allocated pages free, X ap-
plications sometimes allocate a private color cell in the display’s color map. Changing the RGB
value of the color cell changes the color of all pixels displayed in the color. Ezd provides this
capability via the notion of a variable color; a color whose RGB value can be changed by the
application at any time.

The C++ garbage collector allocates four variable colors. At any time, the one representing
the current generation is set to the color representing recently allocated space. The other three
represent the three previous generations and are set to the color representing free space. Upon
completion of garbage collection, the collector sets the color for the just collected generation to

15

DON’T FIDGET WITH WIDGETS, DRAW!

the free color. At this point, nothing on the screen is displayed using the next color in the set of
four, so it is set to the recently allocated color and pages are defined using it as they are al-
located.

This application is typical of the type of "quick and dirty" drawing that one can produce with
ezd: take an existing program and quickly modify it to draw a picture about some aspect of its
computation. In this case, the heap map was implemented in part of an afternoon using less than
100 lines of C++.

5.2. High Density Data Representation

While ezd was designed to be a program-driven drawing system for displays, its ability to
generate PostScript images makes it valuable for document graphics as well. David Wall ex-
amined how well estimated and real program execution profiles predict program behavior [24].
He compared five types of profiles produced by eleven different methods against the actual
profiles for multiple runs of eleven programs. In order to reduce this volume of information to
something from which he and his readers could draw conclusions, he devised a graphical nota-

7tion (shown in Figure 3) consisting of arrays of pie charts . Each row of the graph represents the
results for one method of estimating profiles and each column shows how well the top "n" items
of the real and estimated profiles matched. The fraction of the circle that is filled in indicates
how well the estimated profile matched the actual profile, i.e. the blacker the pie, the better the
match.

call profile

1 2 4 8 16 32 64 128

globals profile
random
loop-only(3)
loop-only(10)
leaf-loop(3,2)
leaf-loop(10,2)
leaf-loop(3,10)
call-loop(3)
call-loop(10)
call+1-loop(3)
call+1-loop(10)
other runs

1 2 4 8 16 32 64 128

Figure 3: Program execution profile estimates

In order to easily produce the 2,508 pie-charts found in his paper, Wall created a little lan-

7For other elegant examples of this technique of using "small multiples," the reader should consult [21] and [22].

16

DON’T FIDGET WITH WIDGETS, DRAW!

8guage to specify them . The compiler is a several-hundred-line Modula-2 program that converts
a chart specification like that found in Figure 4 to into the ezd command file in Figure 5 which
was used to produce Figure 3.

call profile
_ 0.38 0.32 0.21 0.77 3.70 6.85 12.75 17.87
_ 0.87 1.30 1.47 2.65 7.51 10.68 13.59 22.26
_ 0.87 1.30 1.47 2.65 7.51 10.68 13.59 22.26
_ 2.15 5.81 7.07 5.85 5.38 6.49 7.54 19.55
_ 1.90 2.48 4.51 4.34 4.29 7.21 9.40 17.15
_ 2.45 5.49 4.74 3.97 4.35 7.45 14.08 20.72
_ 2.12 4.57 9.80 9.44 11.55 16.05 21.49 31.45
_ 1.79 2.38 7.12 6.04 6.58 12.33 15.52 25.96
_ 2.12 4.57 8.33 8.17 11.25 16.11 19.45 31.66
_ 1.79 2.38 4.90 5.95 6.58 12.48 14.87 26.18
_ 67.62 65.41 68.44 69.30 75.35 77.83 80.91 84.32

_1.8 "1 _2.8 "2 _3.75 "4 _4.7 "8 _5.6 "16 _6.6 "32 _7.6 "64 _8.6 "128
@newcol 11
globals profile
_ 0.86 4.02 19.72 24.26 33.50 41.51 55.69 66.15 random
_ 21.71 25.91 31.56 40.01 60.97 73.92 85.52 93.52 loop-only(3)
_ 29.54 30.56 28.04 37.03 57.11 72.36 81.58 91.36 loop-only(10)
_ 12.68 13.01 29.42 38.68 45.39 60.52 67.83 78.31 leaf-loop(3,2)
_ 8.03 14.85 21.56 41.23 48.18 62.51 72.09 80.91 leaf-loop(10,2)
_ 15.85 14.38 17.37 31.07 42.27 61.00 64.48 77.92 leaf-loop(3,10)
_ 30.57 36.75 38.11 44.44 62.46 85.82 89.89 94.07 call-loop(3)
_ 32.67 25.52 36.65 47.78 61.31 82.12 89.35 93.81 call-loop(10)
_ 31.10 36.96 39.85 44.50 67.55 84.75 89.89 93.62 call+1-loop(3)
_ 32.67 31.36 36.85 45.84 57.81 81.02 88.42 93.81 call+1-loop(10)
_ 78.61 78.80 81.25 88.25 93.15 95.97 97.99 98.39 other runs

_1.8 "1 _2.8 "2 _3.75 "4 _4.7 "8 _5.6 "16 _6.6 "32 _7.6 "64 _8.6 "128
@newpage W.psf

Figure 4: Little language for pie charts

(window pies 600 50 600 720)
(set-drawing pies)
(overlay pies pies)
(clear)
(text 30 20 "call profile" black "6x12")
(arc 40 36 12 12 270 360 black)
(pie-arc 40 36 12 12 270 1.4 black)
(arc 60 36 12 12 270 360 black)
(pie-arc 60 36 12 12 270 1.2 black)
(arc 80 36 12 12 270 360 black)

.

.

.
(pie-arc 80 36 12 12 270 0.8 black)
(text 342 228 "32" black "6x12")
(text 362 228 "64" black "6x12")
(text 382 228 "128" black "6x12")
(postscript pies "W.psf")

Figure 5: Ezd for pie charts

8More examples and a discussion of the virtues of little languages for specifying documentation graphics are
found in [6].

17

DON’T FIDGET WITH WIDGETS, DRAW!

N & Central California

DISC ZONE WARN EXTEND HELP QUIT

CLOUDY AND BREEZY. SNOW LEVEL AS LOW AS 1000 TO 2000 FEET. HIGHS IN
THE 50S AND LOWER 60S. NORTHWEST WIND 15 TO 25 MPH WITH OCCASIONAL
HIGHER GUSTS ALONG THE COAST AND IN THE HILLS THIS MORNING.
.TONIGHT...CLEAR...LOWS IN THE MID 30S TO MID 40S. NORTHWEST EVENING
WIND 15 TO 25 MPH DECREASING DURING THE NIGHT.
.SATURDAY...INCREASING CLOUDINESS. HIGHS IN THE MID 50S TO LOW 60S.

$$

CAZ003-151700-
CENTRAL COAST - MONTEREY TO PT CONCEPTION
3 AM PST FRI MAR 15 1991 ...DO NOT USE AFTER 9.30 AM FRIDAY

.TODAY...SCATTERED SHOWERS AND A SLIGHT CHANCE OF THUNDERSTORMS WITH
SMALL HAIL THIS MORNING. SHOWERS TAPERING OFF DURING THE AFTERNOON.
HIGHS IN THE 50S AND LOWER 60S. NORTHWEST WIND 15 TO 30 MPH WITH
OCCASIONAL HIGHER GUSTS NEAR THE OCEAN.

$$

CAZ002-151700-
SAN FRANCISCO BAY REGION ...UPDATE...
6.15 AM PST FRI MAR 15 1991 ...DO NOT USE AFTER 9.30 AM FRIDAY

.TODAY...WIDELY SCATTERED EARLY MORNING SHOWERS...OTHERWISE PARTLY

Figure 6: 48 states’ weather forecasts

18

DON’T FIDGET WITH WIDGETS, DRAW!

5.3. Weather Forecasts

National Weather Service forecasts for the United States are sometimes available for network
access. The ezd application shown in Figure 6 was constructed to fetch such forecasts for the
contiguous 48 states. The mouse-sensitive diamonds on the map identify cities that issue
forecasts. When the mouse is positioned over a diamond, text describing the region covered by
the forecast is displayed. When the mouse is clicked on a diamond, the forecast is obtained via
the network and displayed in the text area at the bottom of the window. The text is scrolled
using the scroll bar on the left of the text. The mouse can be used to select areas of text for
copying into other X applications. The radio buttons DISC, ZONE, WARN, and EXTEND select
the type of forecast, the HELP push button replaces the forecast text with help text, and the QUIT
push button terminates the application.

Every graphical element of this application, a 300 line Scheme program running entirely in the
ezd server, is constructed using ezd. The text area, slider, check buttons, and push buttons are
drawn with a library of interactors that use the basic ezd drawing capabilities. A simple ezd-
based drawing tool was used to collect the 133 line segments and 50 city locations defining the
the map by tracing a newspaper weather map (copied onto a transparency and taped over the
display) and then positioning the cities on it.

The application graphics are automatically positioned based upon the size of the window.
This is done by grouping the graphics into three drawings: one containing the map, one contain-
ing the buttons, and one containing the text area and slider. When the window is initially created
or resized, the drawings are overlayed onto the window by centering the map at the top of the
window, attaching the buttons to the right side of the window, and using the rest of the window
below the buttons for the text area. Even though ezd does no automatic window layout, explicit
layout requires only 5 ezd commands, generated by a 22 line Scheme procedure.

5.4. BIPS Router

For the last two years, the majority of researchers at WRL have been working on BIPS, a
custom bipolar processor with arithmetic unit, floating point unit, address translation buffers,
memory management unit, and first level cache all on one die. The CAD tools being constructed
for this project allow schematics and hints about layout to be automatically converted to a chip.
As can be expected, automatically routing the chip is a difficult problem. Early on in the project,
Jeremy Dion and Louis Monier reached the limits of their patience with debugging using con-
ventional tools and chose to try graphics to observe the router in action. Their initial efforts took
less than a day to implement and produced pictures similar to that show in Figure 7, which con-
tains over 2000 graphical objects.

The chip is represented in ezd in a natural way: each layer of the chip is a drawing. The
drawings are then overlayed into the window in the same order they appear in the chip. As wires
are allocated, the area is defined in the appropriate drawing. When wires are ripped up, the
objects representing them are redefined as null objects and ezd takes care of correcting the dis-
play. The control panel on the right of the drawing allows debugging options to be selected and
the router to be stepped. Since ezd runs as a separate process, the graphics window remains
intact even when the router is stopped at a breakpoint.

19

DON’T FIDGET WITH WIDGETS, DRAW!

QUIT

NEXT-CELL

NEXT-CONNECTION

NEXT-SEGMENT

VIEW-ALL

M2-GRID

M3-GRID

GRID-AXIS

REDISPLAY

RETRIEVES

INSERTS

PS

Figure 7: BIPS router

Ezd graphics have proven to be an essential part of the router development. The implementers
of the router estimate that about one-half their debug time is spent watching the router in action
to gain insight in both the problem and how their heuristics attempt to solve it. When changes to
the router are made, regression tests are run over a special set of small, difficult test cases. Any
tests that fail are visually examined to understand why they failed.

6. Ezd’s Limits

Ezd’s success, demonstrated in the previous section, must be balanced by a couple of cautions.
First, structured graphics is not the solution to every simple graphics problem. An early user who
found it lacking wanted to draw tens of thousands of points and line segments on a persistent
display. The application never needed to erase or interact with any object. Structured graphics
via a server were simply too slow and the user ended up with a solution based on Xlib.

20

DON’T FIDGET WITH WIDGETS, DRAW!

Second, it is important to differentiate ezd from user interface toolkits designed for X. While it
is easy to learn and straightforward to develop many classes of applications, there are also many
that it is unsuited for. For example, ezd completely ignores two things considered critical in
most toolkits: automatic window layout and customization.

While most graphical user interface tools illustrate their function by showing how well they
can arrange and support push-buttons, ezd’s strengths are in drawing and can be illustrated by its
four line solution to the following problem. Draw three overlapping circles; when mouse button
1 is clicked on a circle, raise it to the top of the drawing.

(object red (fill-arc 0 0 60 60 0 360 red))
(object green (fill-arc 30 0 60 60 0 360 green))
(object blue (fill-arc 15 30 60 60 0 360 blue))
(click * 1 (ezd ‘(float ,*user-event-object*)))

7. The Return of Interactive Structured Graphics

Given WRL’s positive experience with ezd, it is natural to ask: why haven’t others provided
simple access to a structured graphics server? The record suggests that they have, but there were
problems. In the early 80’s, there were attempts to build graphical interface systems using GKS
[10]. Two things probably contributed to their demise. First, there were both functional and
performance limitations to making systems using structured graphics interactive. The graphics
systems were focused towards high-quality output, rather than toward rapid display and handling
user interaction. Second, while these systems thought in terms of a single application window,
systems done at Xerox PARC encouraged people to think in terms of multiple interactive win-
dows sharing the screen.

For low-performance machines and simple interactive objects like buttons, a policy of dif-
ferentiating between structured graphics and interactive interface objects makes sense. As com-
puters get faster and interactive objects more ornate, there is less reason to draw interactive inter-
face objects not using structured graphics. For example, Xerox PARC’s "Embedded Buttons"
architecture hints at what is possible when text and graphics editors can be used to construct user
interfaces [7]. Work at Stanford on Unidraw [23] has been toward building a framework for
constructing application specific graphical editors.

Interactive structured graphics will become more common as systems such as PEX [19], the
PHIGS/PHIGS+ extension to X, that embed structured graphics within a base window system,
become more common.

8. Conclusion

The examples in Section 5 offer evidence that the ezd approach to program graphics can be
scaled beyond toy problems. The weather tool in section 5.3 contains an interactive map and
some very conventional user interface interactors constructed with ezd. The push buttons and
radio buttons provide immediate response and appear similar to those provided by the X toolkit
and X widget sets. When the slider is dragged, it moves smoothly and the text smoothly scrolls
at an acceptable speed. The BIPS router described in section 5.4 is able to display portions of a
chip being routed using drawings consisting of thousands of graphical elements. While one

21

DON’T FIDGET WITH WIDGETS, DRAW!

would not confuse the speed and detail of the circuit drawing with one produced by a "real"
VLSI CAD tool, its speed is adequate and the information presented by it has proven to be in-
valuable to the construction of the router.

By executing within a distributed window system, ezd does not have to solve all graphics
problems. The processor performance is available in today’s 10 MIPS or faster workstations to
get good interactive graphics performance from a structured drawing model. Ezd has success-
fully taken advantage of these resources to offer application programs a simple but visually satis-
fying way to draw.

9. Acknowledgements

Joel McCormack and John Ousterhout were essential sources of graphics and X lore and
provided me with a valuable sounding board during the design and implementation of ezd. Dis-
cussions with them and critical comments by them made valuable contributions to ezd and to this
report. Anita Borg, Patrick Boyle, Francois Bourdoncle, Jeremy Dion, Alan Eustace, Jim Gettys,
Ramsey Haddad, Dan Halbert, Bert Halstead, Jean-Claude Herve, Solange Karsenty, Bob
McNamara, Jeff Mogul, Louis Monier, Mike Nelson, Alan Skea, Richard Swan, David Wall,
Chris Weikart and May Yip were early users and/or critics of ezd and its predecessor ezx.
Wendy Bartlett, Anita Borg, Mary Jo Doherty, Scott McFarling, Jeff Mogul, and David Wall
critiqued drafts of this report. I thank them, and other unsung ezd users within Digital, for their
keen interest in simple-to-use graphics and their critical comments which have greatly con-
tributed to the success of ezd.

22

DON’T FIDGET WITH WIDGETS, DRAW!

I. Clock Face Example Implemented in C
/* A Clock face. Drag either of the hands with mouse button 1 to set the

value. The clock face is drawn with its center at 0,0 in a cartesian
(Y goes up) coordinate system. Click button 3 on the background to quit.
To run:

csh >cc -o clock clock.c -lm
csh >clock

*/

#include <stdio.h>
#include <math.h>
#include <string.h>

/* start_ezd process connects the read side to the "toezd" pipe to stdin and
the write side of the "fromezd" pipe to stdout, and then exec’s ezd.

*/

int toezd[2], /* Used to send commands to ezd */
fromezd[2]; /* Used by ezd to report events */

FILE *out, /* ezd commands are written on this stream */
in; / ezd events are read from this stream */

void start_ezdprocess()
{

pipe(toezd);
pipe(fromezd);
if (fork() == 0) {

/* Child process */
close(0); /* Move stdin */
dup(toezd[0]);
close(toezd[0]);
close(toezd[1]);
close(1); /* Move stdout */
dup(fromezd[1]);
close(fromezd[0]);
close(fromezd[1]);
execlp("ezd", "ezd", 0); /* Start ezd & transfer control */
exit(1); /* Error exit */

}
/* Parent process */
close(toezd[0]);
out = fdopen(toezd[1], "w");
close(fromezd[1]);
in = fdopen(fromezd[0], "r");

}

/* Move an angle value specified in radians into the 0-2PI range. */

double zero_2pi(x)
double x;

{
if (x < 0) return x+M_PI*2;
return x;

}

23

DON’T FIDGET WITH WIDGETS, DRAW!

/* Convert time in minutes to an angle in radians in the range 0-2pi. */

double minute_angle(minute)
int minute;

{
return zero_2pi(M_PI_2 - (minute/30.0)*M_PI);

}

/* Convert an angle in radians into a time in minutes */

int angle_minute(a)
double a;

{
return (15 - (int)((a*30)/M_PI)) % 60;

}

/* Convert an x,y position in the drawing to an angle in radians. */

double xy_angle(x, y)
int x, y;

{
return zero_2pi(atan2((double)y, (double)x));

}

/* Draws a hand on the clock face. */

void draw_hand(name, length, minute)
char *name;
int length, minute;

{
double angle = minute_angle(minute);

fprintf(out,
"(object %s (fill-polygon 0 0 %f %f %f %f %f %f))",

name,
25*cos(angle+.25), 25*sin(angle+.25),
length*cos(angle), length*sin(angle),
25*cos(angle-.25), 25*sin(angle-.25));

}

/* Draws both hands on the clock face. */

void draw_hands(time)
int time;

{
draw_hand("minute", 85, time % 60);
draw_hand("hour", 55, (time / 12) % 60);

}

/* Collect events here. */

void handle_events()
{

int quit = 0, /* Set when button 3 is pressed. */
time = 23, /* Initial time. */
mark_minute, /* 0: moving hour hand,

1: moving minute hand */

24

DON’T FIDGET WITH WIDGETS, DRAW!

delta_t, /* Change in time in minutes. */
x, /* X coordinate in drawing. */
y, /* Y coordinate in drawing. */
ignore; /* Dummy variable for sscanf. */

char event[1000]; /* Event buffer */
double mark_angle, /* Angle of last mouse position. */

new_angle, /* Angle of current mouse position. */
delta_angle; /* Change in angle. */

draw_hands(time);
while (quit == 0) {

fflush(out);
if (fgets(event, 1000, in) == NULL) abort();
if (sscanf(event,

"(BUTTON1DOWN CLOCK-WINDOW CLOCK MINUTE %d %d %d %d)",
&x, &y, &ignore, &ignore) == 4) {

/* Start moving the minute hand. */
mark_minute = 1;
mark_angle = minute_angle(time % 60);

} else if (sscanf(event,
"(BUTTON1DOWN CLOCK-WINDOW CLOCK HOUR %d %d %d %d)",

&x, &y, &ignore, &ignore) == 4) {
/* Start moving the hour hand */
mark_minute = 0;
mark_angle = minute_angle((time/12)%60);

} else if (sscanf(event,
"(MOTION CLOCK-WINDOW CLOCK COVER %d %d %d %d)",

&x, &y, &ignore, &ignore) == 4) {
/* Move the hands */
new_angle = xy_angle(x, y);
delta_angle = mark_angle-new_angle;
if (delta_angle < -M_PI) delta_angle = delta_angle+M_PI*2;
if (delta_angle > M_PI) delta_angle = delta_angle-M_PI*2;
delta_t = delta_angle*(30/M_PI)*((mark_minute) ? 1 : 12);
if (delta_t != 0) {

time = (time+delta_t) % 720;
mark_angle = minute_angle(((mark_minute) ? time : time/12) %

60);
draw_hands(time);

}
} else if (sscanf(event,

"(BUTTON3DOWN CLOCK-WINDOW CLOCK BACK %d %d %d %d)",
&ignore, &ignore, &ignore, &ignore) == 4) {

/* Quit */
quit = 1;

} else {
/* Unexpected event, so log it on stderr. */
fprintf(stderr, "%s", event);

}
}

}

25

DON’T FIDGET WITH WIDGETS, DRAW!

/* Initial command stream. */

char* ezd_commands[] = {
"(window clock-window 200 200 fixed-size)",
"(set-drawing clock)",
"(overlay clock-window clock)",
"(origin clock-window clock 100 100)",
"(scale clock-window clock 1 -1 1)",
"(object back (fill-arc -100 -100 200 200 0 360 gray95)",
" (arc -100 -100 200 200 0 360 gray85))",
"(object minute)",
"(text -60 -60 120 120 left up \"time\" grey60 \"times_italic24\")",
"(text -60 -60 120 120 right center \"drifts\" grey60",
" \"times_italic24\")",
"(text -60 -60 120 120 left down \"by\" grey60 \"times_italic24\")",
"(object hour)",
"(object cover)",
"(fill-arc -5 -5 10 10 0 360 black)",
"(when back button2down",
" (ezd ’(postscript clock-window \"clock.psf\")))",
"(when back button3down (log-event))",
"(when minute button1down (begin (log-event)",
" (ezd ’(object cover",
" (fill-rectangle -100 -100 200 200 clear)))))",
"(when hour button1down (begin (log-event)",
" (ezd ’(object cover",
" (fill-rectangle -100 -100 200 200 clear)))))",
"(when cover enter",
" (if (not *mouse-button1*) (ezd ’(object cover))))",
"(when cover button1up (ezd ’(object cover)))",
"(when cover motion (log-event))",
NULL };

main()
{

int i; /* Loop index. */

/* Start ezd. */
start_ezdprocess();
/* Issue initial ezd commands. */
for (i = 0; ezd_commands[i] != NULL; i++)

fprintf(out, ezd_commands[i]);
/* Handle ezd events. */
handle_events();
exit(0);

}

26

DON’T FIDGET WITH WIDGETS, DRAW!

II. Clock Face Example Implemented in Scheme
;;; A Clock face. Drag either of the hands with mouse button 1 to set the
;;; value. The clock face is drawn with its center at 0,0 in a cartesian
;;; (Y goes up) coordinate system. Click button 3 on the background to quit.
;;; To run:
;;;
;;; csh >ezd -i
;;; Scheme->C -- 28sep90jfb -- Copyright 1989 Digital Equipment ...
;;; > (load "clock.sc")
;;; CLOCK
;;; "clock.sc"
;;; > (clock 45)
;;; #F
;;; > > ^D
;;; csh >

(define (CLOCK time)

(define PI 3.14159)
(define PI*2 (* 3.14159 2))
(define PI/2 (/ 3.14159 2))

(define (ZERO-2PI x) (if (< x 0) (+ x pi*2) x))

(define (MINUTE->ANGLE minute) (zero-2pi (- pi/2 (* (/ minute 30) pi))))

(define (ANGLE->MINUTE angle) (modulo (- 15 (/ (* 30 angle) pi)) 60))

(define (XY->ANGLE x y) (zero-2pi (atan y x)))

(define (DRAW-HAND name length minute)
(let ((angle (minute->angle minute)))

(ezd ‘(object ,name
(fill-polygon 0 0

,(* 25 (cos (+ angle .25)))
,(* 25 (sin (+ angle .25)))
,(* length (cos angle))
,(* length (sin angle))
,(* 25 (cos (- angle .25)))
,(* 25 (sin (- angle .25))))))))

(define (DRAW-HANDS)
(draw-hand ’minute 95 (remainder time 60))
(draw-hand ’hour 65 (remainder (/ time 12) 60)))

(define MARK-HAND #f)
(define MARK-ANGLE #f)

(define (MARK)
(set! mark-hand *user-event-object*)
(set! mark-angle (minute->angle

(remainder (if (eq? mark-hand ’hour)
(/ time 12)
time)

60)))
(ezd ’(object cover (fill-rectangle -100 -100 200 200 clear))))

27

DON’T FIDGET WITH WIDGETS, DRAW!

(define (COVER-ENTER) (if (not *mouse-button1*) (ezd ’(object cover))))

(define (COVER-BUTTON1UP) (ezd ’(object cover)))

(define (COVER-MOTION)
(let* ((new-angle (xy->angle *user-event-x* *user-event-y*))

(delta-angle (cond ((< (- mark-angle new-angle) (- pi))
(+ (- mark-angle new-angle) pi*2))
((> (- mark-angle new-angle) pi)
(- (- mark-angle new-angle) pi*2))
(else (- mark-angle new-angle))))

(delta-t (inexact->exact
(* delta-angle (/ 30 pi)

(if (eq? mark-hand ’hour) 12 1)))))
(unless (zero? delta-t)

(set! time (modulo (+ time delta-t) 720))
(if (eq? mark-hand ’hour)

(set! mark-angle (minute->angle (/ time 12)))
(set! mark-angle (minute->angle

(remainder time 60))))
(draw-hands))))

(ezd ’(window clock-window 200 200 fixed-size)
’(set-drawing clock)
’(overlay clock-window clock)
’(origin clock-window clock 100 100)
’(scale clock-window clock 1 -1 1)
’(object back (fill-arc -100 -100 200 200 0 360 gray95)

(arc -100 -100 200 200 0 360 gray85))
’(object minute)
’(text -60 -60 120 120 left up "time" grey60 "times_italic24")
’(text -60 -60 120 120 right center "drifts" grey60

"times_italic24")
’(text -60 -60 120 120 left down "by" grey60 "times_italic24")
’(object hour)
’(fill-arc -5 -5 10 10 0 360 black)
’(object cover)
’(when back button2down (ezd ’(postscript clock-window "clock.psf")))
’(when back button3down (ezd ’(quit)))
‘(when minute button1down ,mark)
‘(when hour button1down ,mark)
‘(when cover enter ,cover-enter)
‘(when cover button1up ,cover-button1up)
‘(when cover motion ,cover-motion))

(draw-hands))

28

DON’T FIDGET WITH WIDGETS, DRAW!

References
[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpreta-
tion of Computer Programs. The MIT Press, 1985.

[2] Adobe Systems Incorporated. Postscript Language Reference Manual - 2nd edition.
Addison-Wesley Publishing Company, Inc., 1990.

[3] Paul J. Asente and Ralph R. Swick. X Window System Toolkit. Digital Press, 1990.

[4] Joel F. Bartlett. Mostly-Copying Garbage Collection Picks Up Generations and C++.
Technical Note TN-12, Digital Equipment Corporation Western Research Laboratory, October,
1989.

[5] Brian Beckman. A Scheme for Little Languages in Interactive Graphics.
Software-Practice and Experience 21(2):187-207, February, 1990.

[6] Jon Bentley. More Programming Pearls. Addison-Wesley Publishing Company, Inc.,
1988.

[7] Eric A. Bier and Aaron Goodisman. Documents as User Interfaces. In EP90, Proceed-
ings of the International Conference on Electronic Publishing, Document Manipulation, and
Typography, pages 249-262. Cambridge University Press, 1990.

[8] Jeremy Dion. Fast Printed Circuit Board Routing. Research Report 88/1, Digital Equip-
ment Corporation Western Research Laboratory, March, 1988.

[9] James Gosling, David S. H. Rosenthal, Michelle J. Arden. The NeWS book: an intro-
duction to the Networked Extensible Window System. Springer-Verlag, 1989.

[10] H. Rex Hartson and Deborah Hix. Human-Computer Interface Development: Concepts
and Systems for Its Management. ACM Computing Surveys 21(1):5-92, March, 1989.

[11] Hakan Huss and Johan Ihren. SCIX A Scheme Interface to the X Window System.
Royal Institute of Technology, Stockholm, March 1990, available from huss@nada.kth.se or
johani@nada.kth.se.

[12] Gerry Kane. MIPS R2000 RISC Architecture. Prentice Hall, Inc., 1987.

[13] Brian W. Kernighan, Rob Pike. The UNIX Programming Environment. Prentice-Hall,
Inc., 1984.

[14] Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing User Interfaces with
Interviews. IEEE Computer 22(2):8-22, February, 1989.

[15] Niels P. Mayer. The WINTERP Widget INTERpreter - A Lisp Prototyping and Exten-
sion Environment for OSF/Motif-based Applications and User-Interfaces. LISP Pointers
4(1):45-60, July-March, 1990.

[16] William M. Newman, Robert F. Sproull. Principles of Interactive Computer Graphics,
Second Edition. McGraw-Hill Book Company, 1979.

[17] Open Systems Foundation. OSF/Motif Series (5 Volumes): Motif Style Guide;
Programmer’s Guide; Programmer’s Reference; User’s Guide; Application Environment
Specification; User Environment Volume. Prentice-Hall, 1990.

29

DON’T FIDGET WITH WIDGETS, DRAW!

3[18] Jonathan Rees, William Clinger (Editors). Revised Report on the Algorithmic Lan-
guage Scheme. SIGPLAN Notices 21(12):37-79, December, 1986.

[19] Randi J. Rost, Jeffrey D. Friedberg, Peter L. Nishimoto. PEX: A Network-transparent
Three-dimensional Graphics System. IEEE Computer Graphics and Applications Magazine
9(4), July, 1989.

[20] Robert W. Scheifler and James Gettys with Jim Flowers, Ron Newman, and David
Rosenthal. X Window System. Digital Press, 1990.

[21] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.

[22] Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

[23] John M. Vlissides and Mark A. Linton. Unidraw: A Framework for Building Domain-
Specific Graphical Editors. Technical Report CSL-TR-89-380, Stanford University, July, 1989.

[24] David W. Wall. Predicting Program Behavior Using Real or Estimated Profiles. To ap-
pear at the SIGPLAN ’91 Conference on Programming Language Design and Implementation
(June 1991).

30

DON’T FIDGET WITH WIDGETS, DRAW!

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

31

DON’T FIDGET WITH WIDGETS, DRAW!

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

Jeffrey Y.F. Tang and J. Leon Yang.‘‘Spritely NFS: Implementation and Performance of
WRL Research Report 90/1, January 1990.Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

Tracy Larrabee.‘‘Available Instruction-Level Parallelism for Super-
WRL Research Report 90/2, February 1990.scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.
‘‘Two Papers on Test Pattern Generation.’’WRL Research Report 89/7, July 1989.
Tracy Larrabee.

WRL Research Report 90/3, March 1990.‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’
‘‘Virtual Memory vs. The File System.’’Norman P. Jouppi, Jonathan Bertoni, and David
Michael N. Nelson.W. Wall.
WRL Research Report 90/4, March 1990.WRL Research Report 89/8, July 1989.

‘‘Efficient Use of Workstations for Passive Monitor-‘‘Architectural and Organizational Tradeoffs in the
ing of Local Area Networks.’’Design of the MultiTitan CPU.’’

Jeffrey C. Mogul.Norman P. Jouppi.
WRL Research Report 90/5, July 1990.WRL Research Report 89/9, July 1989.

‘‘A One-Dimensional Thermal Model for the VAX‘‘Integration and Packaging Plateaus of Processor
9000 Multi Chip Units.’’Performance.’’

John S. Fitch.Norman P. Jouppi.
WRL Research Report 90/6, July 1990.WRL Research Report 89/10, July 1989.

‘‘1990 DECWRL/Livermore Magic Release.’’‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,sor with High Ratio of Sustained to Peak Perfor-

Don Stark, Gordon T. Hamachi.mance.’’
WRL Research Report 90/7, September 1990.Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.
‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’‘‘The Distribution of Instruction-Level and Machine
Wade R. McGillis, John S. Fitch, WilliamParallelism and Its Effect on Performance.’’

R. Hamburgen, Van P. Carey.Norman P. Jouppi.
WRL Research Report 90/9, December 1990.WRL Research Report 89/13, July 1989.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-‘‘Long Address Traces from RISC Machines:
fers.’’Generation and Analysis.’’

Joel McCormack.Anita Borg, R.E.Kessler, Georgia Lazana, and David
WRL Research Report 91/1, February 1991.W. Wall.

WRL Research Report 89/14, September 1989.

32

DON’T FIDGET WITH WIDGETS, DRAW!

‘‘Analysis of Power Supply Networks in VLSI Cir-

cuits.’’

Don Stark.

WRL Research Report 91/3, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’

Joel Bartlett.

WRL Research Report 91/6, May 1991.

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘The Effect of Context Switches on Cache Perfor-

Brian K. Reid and Christopher A. Kent. mance.’’

WRL Technical Note TN-4, September 1988. Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.
‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’ ‘‘MTOOL: A Method For Detecting Memory Bot-

Christopher A. Kent. tlenecks.’’

WRL Technical Note TN-7, November 1988. Aaron Goldberg and John Hennessy.

WRL Technical Note TN-17, December 1990.
‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ ‘‘Predicting Program Behavior Using Real or Es-

Joel McCormack. timated Profiles.’’

WRL Technical Note TN-9, September 1989. David W. Wall.

WRL Technical Note TN-18, December 1990.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’
Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘Limits of Instruction-Level Parallelism.’’
David W. Wall.

WRL Technical Note TN-15, December 1990.

33

DON’T FIDGET WITH WIDGETS, DRAW!

ii

DON’T FIDGET WITH WIDGETS, DRAW!

Table of Contents
1. Introduction 1
2. Overview of ezd 2

2.1. High Level Drawing Primitives 2
2.2. Loosely Coupled to the Application Program 3
2.3. Automatically Rendered to the Display 3

3. An Interactive Clock Face 3
4. Ezd Details 7

4.1. Drawing Primitives 7
4.2. Graphics Server 9
4.3. Interaction Model 10
4.4. Extension Language 12

5. Applications of ezd 15
5.1. Heap Memory Map for Garbage-Collected C++ 15
5.2. High Density Data Representation 16
5.3. Weather Forecasts 19
5.4. BIPS Router 19

6. Ezd’s Limits 20
7. The Return of Interactive Structured Graphics 21
8. Conclusion 21
9. Acknowledgements 22
I. Clock Face Example Implemented in C 23
II. Clock Face Example Implemented in Scheme 27
References 29

iii

