
September 1 9 9 0

WRL
Research Report 90/7

1990 DECWRL/
Livermore Magic
Release

Robert N. Mayo, Michael H. Arnold, Walter S. Scott,
Don Stark, Gordon T. Hamachi

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

1990 DECWRL/Livermore Magic Release

Robert N. Mayo, Michael H. Arnold, Walter S. Scott,
Don Stark, Gordon T. Hamachi

September, 1990

Prepared with the assistance of:

Digital Equipment Corporation
Western Research Laboratory

Palo Alto, California

Lawrence Livermore National Labs
"O" Division

Livermore, California

Stanford University
Center for Integrated Systems

Palo Alto, California

University of California
Department of EECS
Berkeley, California

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Copyright (C) 1985, 1989, 1990 Regents of the University of California,
Lawrence Livermore National Labs, Stanford University, and Digital

Equipment Corporation. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all

copies. The copyright holders make no representations about the
suitability of this software for any purpose. It is provided "as is"

without express or implied warranty. Export of this software outside
of the United States of America may require an export license.

Table of Contents

CHAPTER 1 Overview
CHAPTER 2 Manual Pages - Section 1 (Programs)
CHAPTER 3 Manual Pages - Section 3 (Libraries)
CHAPTER 4 Manual Pages - Section 5 (File Formats)
CHAPTER 5 Manual Pages - Section 8 (System Maintenance)
CHAPTER 6 Tutorials

6.1 Magic Tutorial #1: Getting Started

6.2 Magic Tutorial #2: Basic Painting and Selection

6.3 Magic Tutorial #3: Advanced Painting (Wiring and Plowing)

6.4 Magic Tutorial #4: Cell Heirarchies

6.5 Magic Tutorial #5: Multiple Windows

6.6 Magic Tutorial #6: Design-Rule Checking

6.7 Magic Tutorial #7: Netlists and Routing

6.8 Magic Tutorial #8: Circuit Extraction

6.9 Magic Tutorial #9: Format Conversion for CIF and Calma

6.10 Magic Tutorial #10: The Interactive Router

6.11 Magic Tutorial #11: Using RSIM with Magic

CHAPTER 7 Maintainer’s Manuals
7.1 Magic Maintainer’s Manual #1: Hints for System Maintainers

7.1 Magic Maintainer’s Manual #2: The Technology File

7.1 Magic Maintainer’s Manual #3: The Display Style and Glyph Files

7.1 Magic Maintainer’s Manual #4: Using Magic under X Windows

CHAPTER 8 Technology Manuals
8.1 Magic Technology Manual #1: NMOS

8.1 Magic Technology Manual #2: SCMOS

APPENDIX A Other Reports In This Series

Overview of the DECWRL/Livermore Magic Release

This document corresponds to Magic version 6.

1. Introduction

This version of Magic, version 6, gathers together work done by numerous people at
several institutions since Magic version 4 was released from Berkeley on the 1986 VLSI
tools tape. This is a release of Magic and IRSIM only. You’ll probably want to obtain
other tools by ordering the 1986 VLSI Tools Tape from Berkeley.

This release has been prepared with the assistance of several groups. Much of the
new software came from Walter Scott’s group at the Lawrence Livermore National Labs
(LLNL). LLNL also provided partial funding to help prepare the release. Digital Equip-
ment Corporation’s Western Research Lab (DECWRL) helped out by providing com-
puter equipment, a place to work, and the services of one of us (Robert Mayo). Don
Stark, Michael Arnold, and Gordon Hamachi also worked on the release at DECWRL.
Stanford donated significant pieces of new code, including a simulation system called
IRSIM. Other individuals and institutions have also contributed code and assistance in
ways too numerous to detail here.

New features in Magic Version 6 include:

New and Improved Routing -Michael Arnold and Walter Scott of LLNL

Three major routing improvements have been made in this version of
Magic. There is a new, improved, global router courtesy of Walter Scott (of
LLNL). Walter Scott has also added a gate array router. See the "garoute"
command in the manual page for details. Michael Arnold (of LLNL) has writ-
ten an interactive maze router that allows the user to specify hints to control
the routing. See the documentation for the "iroute" command.

Extractor Enhancements -Don Stark of Stanford and Walter Scott of LLNL

The new "extresis" command, developed by Don Stark, provides substan-
tially better resistance extraction. Magic’s normal extraction ("extract") lumps
resistances on a node into a single value. In branching networks, this approxi-
mation is often not acceptable. Resis was written to solve this problem.
Walter Scott added accurate path length extraction, an important feature when
dealing with high speed circuits, such as ECL.

New contact structure -Walter Scott and Michael Arnold of LLNL and Don Stark of
Stanford

- 1 -

Overview of DECWRL/Livermore Magic September 19, 1990

Multilayer contacts are handled better. In the previous version of Magic,
there needed to be a separate contact type for each possible combination of
contact layers over a given point. This caused a combinatorial explosion of
tile types for multi-layer technologies with stacked contacts. Under the new
scheme, there are only a couple of tile types for each layer: one that connects
up, one that connects down, and one that connects in both directions.

Simulator Interface to IRSIM -Stanford

A simulator interface is provided courtesy of Stanford. See the commands
"startrsim", "simcmd", and "rsim". The irsim simulator, Stanford’s much
improved rewrite of esim, is included in this distribution. Credit goes to Mike
Chow, Arturo Salz, and Mark Horowitz.

New device/machine Support -Various

X11 is fully supported in this release, and is the preferred interface.
Older drivers for graphics terminals and X10 are also included, but X11 is the
preferred interface (meaning it is better supported and you’ll have lots of com-
pany). Magic’s X11 driver has a long history, starting with an X10 driver by
Doug Pan at Stanford. Brown University, the University of Southern Califor-
nia, the University of Washington, and Lawrence Livermore National Labs all
prepared improved versions, some of them for X11. Don Stark of Stanford
took on the task of pulling these together and producing the X11 driver in this
release.

Magic runs on a number of workstations, such as the DECstation 3100
and Sun’s SPARC processors. Partial Unix System V support is provided, via
the compilation flags mentioned below. The system also runs on the MacII.
Don Stark gets credit for the System V mods and support for HP machines,
while Mike Chow helped get it running on the MacII.

To assist people with small machines (such as the Mac II), Magic can
now be compiled without some of its fancy features. Compilation flags are
provided, as indicated below, to eliminate things like routing, plotting, or
calma output. This is courtesy of Don Stark.

Reorganization of Magic Source Directory

Magic, as previously distributed, was set up with the assumption that lots
of people would be changing the code at the same time. As a result, the
makefiles did all sorts of paranoid things like making extra copies of the source
code whenever a module was re-installed.

Since Magic is more stable now, this copying is no longer needed.
Instead, each makefile invokes the script../:instclean after installing a module.
This script, by default, doesn’t copy the source code but does leave the .o files
around. This cuts down on the disk space needed by a factor of two. You can
change the script if you want the copying, or if you want to delete unused .o
files to save even more disk space.

Lots of bug fixes -Various

Lots of bugs have been fixed in this release. We’d like to thank every-
body that has reported bugs in the past. If you find a new bug, please report it

- 2 -

Overview of DECWRL/Livermore Magic September 19, 1990

as mentioned below.

2. Distribution Information

This version of Magic is available via FTP. Contact "magic@decwrl.dec.com" for infor-
mation.

For a handling fee, this version of Magic may be obtained on magnetic tape from:

EECS/ERL Industrial Liaison Program
479 Cory Hall

University of California at Berkeley
Berkeley, CA 94720

3. Bug Reports

Maintenance of Magic is a volunteer effort. Please send descriptions of bugs via
InterNet e-mail to "magic@decwrl.dec.com" or via Uucp e-mail to "decwrl!magic". If
you develop a fix for the problem, please send that too!

4. Changes for Magic maintainers

Previous releases of Magic expected to find their system files in the home directory
of the usercad. The default behavior of version 6 is no different, but it is possible to put
the files in another directory by setting theCAD_HOME shell environment variable. If
this variable is set, magic will use that location instead of the∼ cad it finds in the pass-
word file.

4.1. INSTALLING MAGIC

The distribution tape contains a version of Magic ready to run on Digital’s line of
Ultrix RISC workstations, such as the DECstation 3100. For other machines, read ahead.
In any event, all users should set their shell environment variable CAD_HOME to point
to the place where the tape is loaded, unless that place is∼ cad, in which case things will
default correctly.

Before installing Magic, you should set your shell environment variable
CAD_HOME to point to the place where you loaded the tape. If you "cd" to the magic
source directory (${CAD_HOME}/src/magic) you will find a makefile. A "make
config" will run a configuration script that asks questions about your configuration and
sets up magic to be compiled for your local environment.

After running a "make config", you can run a "make force" to force a complete
recompilation of magic. A "make install" will then copy the binaries to the
${CAD_HOME}/bin area, as well as install things in ${CAD_HOME}/lib and
${CAD_HOME}/man.

Included in this documentation is a set of Magic maintainer’s manuals. These
should be read by anybody interested in modifying Magic or by anybody that is having
difficulty installing it on their system.

- 3 -

Overview of DECWRL/Livermore Magic September 19, 1990

4.2. Technology file changes

Users of Magic 4 should have little trouble switching to Magic 6.

A new section, themzrouter section needs to be added to your technology files.
See the mzrouter section of the tutorialMagic Maintainer’s Manual #2: The Technology
File for details.

Display styles must be defined in the.tech file for the mzrouter hint layers magnet,
fence and rotate. We suggest copying this information from the styles section of the
scmos technology file on the distribution tape. You’ll also need to include these display
styles in your.dstyle file.

5. Beta-test Sites

We’d like to thank the beta-test sites that tried out this version of Magic, reported
bugs and fixes in a timely manner, and ported the code to new machines:

Mike Chow, Apple Computer
Arun Rao, Arizona State University
Richard Hughey, Brown University
Rick Carley, Carnegie-Mellon University
Hank Walker, Carnegie-Mellon University
Christos Zoulas, Cornell University
Andreas Andreou, John Hopkins University
George Entenman, The Microelectronics Center of North Carolina
Shih-Lien Lu, The MOSIS Service
Jen-I Pi, The MOSIS Service
Guntram Wolski, Silicon Engineering, Inc.
Don Stark, Stanford University
Gregory Frazier, University of California at Los Angeles
Yuval Tamir, University of California at Los Angeles
Steven Parkes, University of Illinois
Larry McMurchie, University of Washington
Tim Heldt, Washington State University
David Lee, Xerox Palo Alto Research Center

Martin Harriman of Silicon Engineering wrote a "select less" command for Magic during
the beta-test phase. "Select less" has been a much-requested feature.

In addition to the persons named above, there were many other beta-test users of
Magic at these and other sites -- too many to list here. We appreciate their help. We also
acknowledge the help of the pre-release sites, who tested a version that included most of
the fixes from the beta-test phase.

- 4 -

-

EXT2DLYS (1) CAD Tool User’s Manual EXT2DLYS (1)

NAME
ext2dlys− create a SCALD wire-delays file from a tree of .ext files

SYNOPSIS
ext2dlys [−−d psPerPf] [−−l psPerCentimicron] [−−m minmult maxmult] [−−o outfile] [−−t capscale] [
−−D drivefile] [−−I iload] [−−L netfile] [−−M scaldmapfile] [−−O oload] [extcheck-options] file

DESCRIPTION
Ext2dlys is used to produce a SCALD wire-delays file (indlys (5) format) on standard output, to be used in
simulation and timing verification. It computes the wire delay information from capacitance in the circuit
extracted from a layout bymagic (1).

The filenamefile given toext2dlys is the name of the root.ext file of the extracted circuit, and also of the
.net file. The .ext files, in ext (5) format, contain the capacitance to substrate for each electrical node,
specify the connectivity of the circuit, and also give distance information. The.net file, in net (5) format,
lists the nets and terminals in the circuit that will be present in the.dlys file. All terminals in the.net file
are by default considered to be inputs (receivers) unless explicitly identified as drivers in thedrivefile given
with the−−D option; see the description below. In addition to identifying the terminals of interest, the.net
file gives the signal name associated with each net as a comment line immediately prior to the list of termi-
nals in the net.

The remaining arguments toext2dlys tell how this capacitance and distance information is to be converted
into delay, as well as specifying the use of alternate files:

−−d psPerPf
Used to turn capacitance into delay; one picofarad is equal topsPerPf picoseconds of delay. The
default value is100.0, or roughly what one would expect if using 100 ohm drivers. The value of
psPerPf is used only for drivers whose effective on resistance hasn’t been given explicitly in the
drivefile specified with the−−D flag (see below).

−−l psPerCentimicron
Used to turn distance into delay; one centimicron of distance is equal topsPerCentimicron
picoseconds of delay.

−−m minmult maxmult
Multipliers to convert estimated delays into best-case (minmult) and worst-case (maxmult). Both
are1.0 by default.

−−o outfile
Write the output tooutfile (note that no suffix is implied) instead of to the standard output.

−−t capscale
Gives a scale factor by which units of capacitance in the.sim file will be multiplied in order to
give femtofarads.Capscale may be a real number; its default value is1.0.

−−D drivefile
Also used to turn capacitance into delay, but on a per-net basis. Each line of the filedrivefile con-
sists of a hierarchical pin name (of an output driver) and its associated ‘‘drive factor’’ (equivalent
to delay in the−−d flag above), namely the number of picoseconds per picofarad for the net driven
by that output pin. Nets driven by a pin listed not in this file use the default delay specified by−−d
above. If this file isn’t given, we don’t know for certain which pins are the drivers in each net, so
we arbitrarily pick one pin per net and assume it is the driver.

−−I iload In addition to the capacitance reported in the.sim file for each net, add an additionaliload
attofarads of capacitance for each input on a given net to the total capacitance for that net. (Inputs
are counted only if they appear in the.net file.) The default value ofiload is 0.0, since it varies so
much from one technology to the next. This option is provided to account for extra transistor
capacitance not computed by the extractor, such as when the technology of the circuit being
extracted is non-MOS (e.g, bipolar).

1990 DECWRL/Livermore Magic 1

-

EXT2DLYS (1) CAD Tool User’s Manual EXT2DLYS (1)

−−L netfile
Instead of usingfile.net as the netlist file, usenetfile.net instead.

−−M scaldmap
If specified, thenscaldmap is read (note no suffix implied) to obtain a translation between Magic
terminal names and SCALD pin names. Each line inscaldmap contains a Magic name followed
by a SCALD name. The Magic name is terminated by the first blank; the SCALD name continues
from the next non-blank character to the end of the line, possibly including embedded blanks.
When writing the output file, the corresponding SCALD name is used instead of the Magic name
for each pin in a net. Seedlys (5) for more details of the output file format.

−−O oload
In addition to the capacitance reported in the.sim file for each net, add an additionaloload
attofarads of capacitance for each output on a given net to the total capacitance for that net. The
default value ofoload is 0.0. If only −−I and not−−O is specified,ext2dlys treats this as though both
−−I and−−O had been specified with the same values; inputs and outputs are not distinguished.

In addition, all of the options ofextcheck (1) are accepted.

SEE ALSO
extcheck (1), ext2sim (1), ext2spice (1), magic (1), dlys (5), ext (5)

AUTHOR
Walter Scott

1990 DECWRL/Livermore Magic 2

-

EXT2SIM (1) CAD Tool User’s Manual EXT2SIM (1)

NAME
ext2sim− convert hierarchicalext (5) extracted-circuit files to flatsim (5) files

SYNOPSIS
ext2sim [−−a aliasfile] [−−l labelsfile] [−−o simfile] [−−A] [−−B] [−−F] [−−L] [−−t] [extcheck-options] [
-y num] [-f mit|lbl|su] [-J hier|flat] [-j device:sdRclass[/subRclass]/defaultSubstrate] root

DESCRIPTION
Ext2sim will convert an extracted circuit from the hierarchicalext (5) representation produced by Magic to
the flatsim (5) representation required by many simulation tools. The root of the tree to be extracted is the
file root.ext; it and all the filesit references arerecursively flattened. The result is a single, flat representa-
tion of the circuit that is written to the fileroot.sim, a list of node aliases written to the fileroot.al, and a list
of the locations of all nodenames in CIF format, suitable for plotting, to the fileroot.nodes. The file
root.sim is suitable for use with programs such ascrystal (1), esim (1), orsim2spice (1).

The following options are recognized:

−−a aliasfile Instead of leaving node aliases in the fileroot.al, leave it inaliasfile.

−−l labelfile Instead of leaving a CIF file with the locations of all node names in the fileroot.nodes,
leave it inlabelfile.

−−o outfile Instead of leaving output in the fileroot.sim, leave it inoutfile.

−−A Don’t produce the aliases file.

−−B Don’t output transistor or node attributes in the.sim file. This option will also disable the
output of information such as the area and perimeter of source and drain diffusion and
the fet substrate. For compatibitlity reasons the latest version of ext2sim outputs this
information as node attibutes. This option is necessary when preparing input for pro-
grams that don’t know about attributes, such assim2spice (1) (which is actually made
obsolete byext2spice (1), anyway), orrsim (1).

−−F Don’t output nodes that aren’t connected to fets (floating nodes).

−−L Don’t produce the label file.

−−tchar Trim characters from node names when writing the output file.Char should be either "#"
or "!". The option may be used twice if both characters are desired.

−−f MIT|LBL|SU Select the output format. MIT is the traditionalsim(5) format. LBL is a variant of it
understood bygemini(1) which includes the substrate connection as a fourth terminal
before length and width. SU is the internal Stanford format which is described also in
sim(5) and includes areas and perimeters of fet sources, drains and substrates.

−−y num Select the precision for outputing capacitors. The default is 1 which means that the capa-
citors will be printed to a precision of .1 fF.

−−J hier|flat Select the source/drain area and perimeter extraction algorithm. Ifhier is selected then
the areas and perimeters are extractedonly within each subcell. For each fet in a subcell
the area and perimeter of its source and drain within this subcell are output. If two or
more fets share a source/drain node then the total area and perimeter will be output in
only one of them and the other will have 0. Ifflat is selected the same rules apply only
that the scope of search for area and perimeter is the whole netlist. In generalflat (which
is the default) will give accurate results (it will take into account shared sources/drains)
but hier is provided for backwards compatibility with version 6.4.5. On top of this selec-
tion you can individually control how a terminal of a specific fet will be extracted if you
put a source/drain attribute.ext:aph makes the extraction for that specific terminal
hierarchical andext:apf makes the extraction flat (see the magic tutorial about attaching
attribute labels). Additionaly to ease extraction of bipolar transistors the gate attribute

1990 DECWRL/Livermore Magic 1

-

EXT2SIM (1) CAD Tool User’s Manual EXT2SIM (1)

ext:aps forces the output of the substrate area and perimeter for a specific fet (in flat
mode only).

−−j device:sdRclass[/subRclass]/defaultSubstrate
Gives ext2sim information about the source/drain resistance class of the fet typedevice.
Makesdevice to havesdRclass source drain resistance class,subRclass substrate (well)
resistance class and the node nameddefaultSubstrate as its default substrate. The
defaults are nfet:0/Gnd and pfet:1/6/Vdd which correspond to the MOSIS technology file
but things might vary in your site. Ask your local cad administrator.

The way the extraction of node area and perimeter works in magic the total area and perimeter of the
source/drain junction is summed up on a single node. That is why all the junction areas and perimeters are
summed up on a single node (this should not affect simulation results however).

Special care must be taken when the substrate of a fet is tied to a node other than the default substrate (eg
in a bootstraping charge pump). To get the correct substrate info in these cases the fet(s) with separate
wells should be in their own separate subcell with ext:aph attributes attached to their sensitive terminals
(also all the transistors which share sensistive terminals with these should be in another subcell with the
same attributes).

In addition, all of the options ofextcheck (1) are accepted.

SCALING AND UNITS
If all of the .ext files in the tree read byext2sim have the same geometrical scale (specified in thescale line
in each.ext file), this scale is reflected through to the output, resulting in substantially smaller.sim files.
Otherwise, the geometrical unit in the output.sim file is a centimicron.

Resistance and capacitance are always output in ohms and femptofarads, respectively.

SEE ALSO
extcheck (1), ext2dlys (1), ext2spice (1), magic (1), rsim (1), ext (5), sim (5)

AUTHOR
Walter Scott additions/fixes by Stefanos Sidiropoulos.

BUGS
Transistor gate capacitance is typically not included in node capacitances, as most analysis tools compute
the gate capacitance directly from the gate area. The-c flag therefore provides a limit only on non-gate
capacitance. The areas and perimeters of fet sources and drains work only with the simple extraction
algorith and not with the extresis flow. So you have to model them as linear capacitors (create a special
extraction style) if you want to extract parasitic resistances with extresis.

1990 DECWRL/Livermore Magic 2

-

EXT2SPICE (1) CAD Tool User’s Manual EXT2SPICE (1)

NAME
ext2spice− convert hierarchicalext (5) extracted-circuit files to flatspice files

SYNOPSIS
ext2spice [−−B] [extcheck-options] [-M|m] [-y num] [-f hspice|spice3|spice2] [-J hier|flat] [-j
device:sdRclass[/subRclass]/defaultSubstrate] root

DESCRIPTION
Ext2spice will convert an extracted circuit from the hierarchicalext (5) representation produced by Magic
to a flat spice file which can be accepted by spice2, spice3, hspice and other simulation tools. The root of
the tree to be extracted is the fileroot.ext; it and all the filesit references arerecursively flattened. The
result is a single, flat representation of the circuit that is written to the fileroot.spice .

The following options are recognized:

−−o outfile Instead of leaving output in the fileroot.spice, leave it inoutfile.

−−B Don’t output transistor or node attributes in the spice file. Usually the attributes of a
node or a device are output as special comments **fetattr and **nodeatrr which can be
processed further to create things such a initial conditions etc.

−−F Don’t output nodes that aren’t connected to fets (floating nodes). Normally capacitance
from these nodes is output with the comment **FLOATING attached on the same line.

−−tchar Trim characters from node names when writing the output file.Char should be either "#"
or "!". The option may be used twice if both characters are desired. Trimming "#" and
"!" is enabled by default when the format is hspice.

-M|m Merge parallel fets.-m means conservative merging of fets that have equal widths only
(usefull with hspice format multiplier if delta W effects need to be taken care of). -M
means aggresive merging: the fets are merged if they have the same terminals and the
same length.

−−y num Select the precision for outputing capacitors. The default is 1 which means that the capa-
citors will be printed to a precision of .1 fF.

−−f hspice|spice2|spice3
Select the output format. Spice3 is the the format understood by the latest version of
berkeley spice. Node names have the same names as they would in asim(5) file and no
special constructs are used. Spice2 is the format understood by the older version of spice
(which usually has betterconvergence). Node namesare numbers and a dictionary of
number and corresponding node is output in the end. HSPICE is a format understood by
meta-software’s hspice and other commercial tools. In this format node names cannot be
longer than 15 characters long (blame the fortran code): so if a hierarchical node name is
longer it is truncated to something like x1234/name where x1234 is an alias of the normal
node hierarchical prefix and name its hierarchical postfix (a dictionary mapping prefixes
to real hierarchical paths is output at the end of the spice file). If the node name is still
longer than 15 characters long (again blame the fortran code) it is translated to something
like z@1234 and the equivalent name is output as a comment. In addition since hspice
supports scaling and multipliers so the output dimensions are in lambdas and if parallel
fets are merged the hspice constructM is used.

−−J hier|flat Select the source/drain area and perimeter extraction algorithm. Ifhier is selected then
the areas and perimeters are extractedonly within each subcell. For each fet in a subcell
the area and perimeter of its source and drain within this subcell are output. If two or
more fets share a source/drain node then the total area and perimeter will be output in
only one of them and the other will have 0. Ifflat is selected the same rules apply only
that the scope of search for area and perimeter is the whole netlist. In generalflat (which

1990 DECWRL/Livermore Magic 1

-

EXT2SPICE (1) CAD Tool User’s Manual EXT2SPICE (1)

is the default) will give accurate results (it will take into account shared sources/drains)
but hier is provided for backwards compatibility with version 6.4.5. On top of this selec-
tion you can individually control how a terminal of a specific fet will be extracted if you
put a source/drain attribute.ext:aph makes the extraction for that specific terminal
hierarchical andext:apf makes the extraction flat (see the magic tutorial about attaching
attribute labels). Additionaly to ease extraction of bipolar transistors the gate attribute
ext:aps forces the output of the substrate area and perimeter for a specific fet (in flat
mode only).

−−j device:sdRclass[/subRclass]/defaultSubstrate
Gives ext2sim information about the source/drain resistance class of the fet typedevice.
Makesdevice to havesdRclass source drain resistance class,subRclass substrate (well)
resistance class and the node nameddefaultSubstrate as its default substrate. The
defaults are nfet:0/Gnd and pfet:1/6/Vdd which correspond to the MOSIS technology file
but things might vary in your site. Ask your local cad administrator.

The way the extraction of node area and perimeter works in magic the total area and perimeter of the
source/drain junction is summed up on a single node. That is why all the junction areas and perimeters are
summed up on a single node (this should not affect simulation results however).

Special care must be taken when the substrate of a fet is tied to a node other than the default substrate (eg
in a bootstraping charge pump). To get the correct substrate info in these cases the fet(s) with separate
wells should be in their own separate subcell with ext:aph attributes attached to their sensitive terminals
(also all the transistors which share sensistive terminals with these should be in another subcell with the
same attributes).

In addition, all of the options ofextcheck (1) are accepted.

The awk filter spice2sim is provided with the current distribution for debugging purposes.

SEE ALSO
extcheck (1), ext2spice (1), magic (1), rsim (1), ext (5), sim (5)

AUTHOR
Stefanos Sidiropoulos.

BUGS
The areas and perimeters of fet sources and drains work only with the simple extraction algorith and not
with the extresis flow. So you have to model them as linear capacitors (create a special extraction style) if
you want to extract parasitic resistances with extresis.

1990 DECWRL/Livermore Magic 2

-

EXTCHECK (1) CAD Tool User’s Manual EXTCHECK (1)

NAME
extcheck− check hierarchicalext (5) files for global node connectivity and summarize number of fets,
nodes, etc.

SYNOPSIS
extcheck [−−c cthresh] [−−p path] [−−r rthresh] [−−s sym=value] [−−C] [−−R] [−−S symfile] [−−T tech]
root

DESCRIPTION
Extcheck will read an extracted circuit in the hierarchicalext (5) representation produced by Magic, check
to ensure that all global nodes (those to which a label ending in an exclamantion point is attached) are fully
connected in the layout, and then print a count of the number of various items (nodes, fets, etc) encountered
while flattening the circuit. The root of the tree to be processed is the fileroot.ext; it and all the files it
references arerecursively flattened.

The following options are recognized:

−−c cthresh
Set the capacitance threshold tocthresh femtofarads.Extcheck will count the number of explicit
internodal capacitors greater thancthresh, the number of nodes whose capacitance is greater than
cthresh, as well as the total number of nodes. (Other programs such asext2sim (1) use this option
as a threshold value below which a capacitor will not be output). The default value forcthresh is
10 femtofarads.

−−p path Normally, the path to search for.ext files is determined by looking forpath commands in first
∼ cad/lib/magic/sys/.magic, then∼ /.magic, then .magic in the current directory. If−−p is specified,
the colon-separated list of directories specified bypath is used instead. Each of these directories
is searched in turn for the.ext files in a design.

−−r rthresh
Set the resistance threshold torthresh ohms. Similar in function to−−c, but for resistances. The
default value forrthresh is 10 ohms.

−−s sym=value
It’s possible to use special attributes attached to transistor gates to control the length and width of
transistors explicitly, rather than allowing them to be determined by the extractor. These attri-
butes are of the formext:w=widthˆ or ext:l=lengthˆ, wherewidth or length can either be numeric,
or textual. (The trailing ‘‘̂’’ indicates that these are transistor gate attributes). If textual, they are
treated as symbols which can be assigned a numeric value at the timeext2sim is run. The−−s flag
is used to assign numeric values to symbols. If a textual symbol appears in one of the above attri-
butes, but isn’t given a numeric value via−−s (or −−S below), then it is ignored; otherwise, the
transistor’s length or width is set to the numeric value defined for that symbol.(This option is not
currently used by extcheck, but it is common to ext2sim (1) and other tools that are written using
the extflat (3) library)

−−C Set the capacitance threshold to infinity. Because this avoids any internodal capacitance process-
ing, all tools will run faster when this flag is given.

−−R Set the resistance threshold to infinity.

−−S symfile
Each line in the filesymfile is of the formsym=value, just like the argument to the−−s flag above;
the lines are interpreted in the same fashion.(This option is not currently used by extcheck, but it
is common to ext2sim et. al.)

−−T tech Set the technology in the output.sim file to tech. This overrides any technology specified in the
root .ext file.

1990 DECWRL/Livermore Magic 1

-

EXTCHECK (1) CAD Tool User’s Manual EXTCHECK (1)

SEE ALSO
ext2dlys (1), ext2sim (1), ext2spice (1), magic (1), rsim (1), sim2spice (1), ext (5), sim (5)

AUTHOR
Walter Scott

BUGS
The −−s mechanism is incomplete; it should allow quantities other than transistor lengths and widths to be
specified.

1990 DECWRL/Livermore Magic 2

-

FSLEEPER (1) CAD Tool User’s Manual FSLEEPER (1)

NAME
fsleeper− run sleeper remotely

SYNOPSIS
fsleeper [−−t tty] [−−l user] [remotemachine]

DESCRIPTION
Fsleeper is used if you wish to run a program such asmagic (1) on a different machine (remotemachine)
than the one to which a graphics terminal is attached, and the local graphics terminal has no login process.

Normally, fsleeper will start a remote sleeper on the companion graphics terminal for your terminal. This
graphics terminal is found by looking in the file∼ cad/lib/displays, as described indisplays (5). If a dif-
ferent graphics terminal is desired, it may be specified by the-t flag. Note that this is the terminal on the
local machine, not the remote machine. (The remote terminal will be printed bysleeper (1) when it starts
up on the remote machine).

Also, normallyfsleeper will attempt to log in as the usersleeper on the remote machine. If a different user
name is desired, it may be specified with the-l flag. This user name must exist onremotemachine.

FILES
∼ cad/lib/displays

SEE ALSO
magic(1), rsleeper(1), sleeper(1), displays(5)

AUTHOR
Walter Scott

BUGS
If no remotemachine is specified, it defaults toucbkim. This is fine for Berkeley, but useless elsewhere.

1990 DECWRL/Livermore Magic 1

-

GRSUNPROG (1) CAD Tool User’s Manual GRSUNPROG (1)

NAME
grSunProg− internal process for Magic’s Sun 120 display driver

SYNOPSIS
grSunProg colorWindowName textWindowName notifyPID requestFD pointFD buttonFD

DESCRIPTION
GrSunProg is an internal program used by Magic when using the Sun 120 workstation’s display. This
manual page is intended only for Magic maintainers.

GrSunProg collects button pushes from the color window and sends them over a pipe to Magic. The pro-
gram also responds to requests from Magic for the mouse position. In addition, this program tells Suntools
to forward characters typed in the color window directly to Magic’s text window.

ARGUMENTS
All six arguments are required:

colorWindowName
This is the name of the color window that magic is running under (such as/dev/win3).
Magic normally opens up the color monitor with a single, large, window on it.

textWindowName
This is the name of the text window that contains Magic’s command log. Keyboard
events are forwarded to this window.

notifyPID
If this processID is not 0, then SIGIO signals are sent to this process when there is data
for it.

requestFD pointFD buttonFD
These are the file descriptors that grSunProg should use in its interface (see below).
They are small integers printed as strings.

INTERFACE
Button pushes are sent out over file descriptorbuttonFD. A button push is encoded as two characters fol-
lowed by two integers giving the location of the button push. The first character is either ’L’, ’M’, or ’R’
depending on the button pushed: Left, Middle, or Right. The next character is either ’D’ or ’U’ depending
on the action: Up or Down. The two numbers are the X and Y coordinates of the button push. This string is
followed by a newline. Example:LD 123 342 means that the left button was pushed down at location
(123, 342).

GrSunProg sometimes receives a character from Magic over file descriptorrequestFD. If this character is
an EOF, then the program terminates. If this character is an ’A’, then grSunProg responds with a ’P’ and
the current mouse coordinates over file descriptorpointFD. This string is followed by a newline. Example:
P 101 23 means that the mouse is currently at location (101, 23).

SEE ALSO
magic(1) grsunprog2(1)

AUTHOR
Robert N. Mayo

1990 DECWRL/Livermore Magic 1

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

NAME
magic− VLSI layout editor

SYNOPSIS
magic [−−T technology] [−−d device_type] [−−g graphics_port] [−−m monitor_type] [−−i tablet_port] [
−−D] [−−F object_file save_file] [file]

DESCRIPTION
Magic is an interactive editor for VLSI layouts that runs under 4.3 BSD Unix, as well as derivatives such
as Digital’s Ultrix and Sun’s SunOS. This man page isa referencemanual; if you are a first-time user, you
should use the Magic tutorials in ‘‘The 1989 Livermore/DEC-WRL Magic Release’’ to get acquainted with
the system.

Magic runs in two different configurations. For workstations with an integrated color display, one window
of the screen is used to display text (commands and Magic’s responses) and other windows are used for
displaying layouts in color. In older systems using serial-line terminals, Magic uses two terminals: one for
text and a separate color display for displaying layouts. In these systems you should run Magic from the
text display.

Normally, Magic is run under a window system suchas X11 (preferred)or Sun Tools. The command line
switch "-d" can be used to tell Magic which kind of window system you are running, although Magic is
pretty good at guessing. When using serial-line terminals, the "-d", "-g", and "-i" switches can be used, and
the file ∼ cad/lib/displays should be created by the system administrator (see DISPLAYS(5) manual page).

Here are the options accepted by Magic:

−−T The next argument is the name of a technology. The tile types, display information, and design
rules for this technology are read by Magic from a technology file when it starts up. The technol-
ogy defaults to ‘‘scmos’’.

−−d The next argument is the type of workstation or graphics display being used. Magic supports
these types:

NULL A null device for running Magic without using a graphics display.

X11 X-windows, version 11 release 3. The is the preferred interface. Magic acts as a client to
the X window server and interfaces to all graphics terminals supported by the X server.
The window manager must be configured to pass mouse buttons, without interpretation,
to clients. It is recommended that the meta key be used with mouse buttons to communi-
cate requests to the window manager. Standard window manager commands manipulate
Magic windows.

Addition information on Magic’s X11 driver, including options for .Xdefaults files, may
be found in ‘‘Magic Maintainer’s Manual #4: Using Magic Under X Windows’’.

X10 An X driver for X version 10. Currently not used much, and being phased out.

XWIND
Simply another name for either the X11 driver or the X10 driver. This is normally set to
refer to whichever driver is more popular at a given site. This is here mostly for back-
ward compatibility reasons.

The following drivers are used on Suns when X is not available.

SUN60 A Sun Microsystems workstation model Sun3/60C. (May work for Sun4/60C, also.)
The Sun60 display is the same as a Sun110 display, as far as Magic is concerned.

SUN110
A Sun Microsystems workstation, model Sun3/110C (color display). You must be run-
ning Suntools. This is virtually identical to the SUN160 display type below. May also
work for Sun4/110C.

1990 DECWRL/Livermore Magic 1

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

SUN160
A Sun 160 workstation with a single screen that has 8 bit-planes of color. You must be
running Suntools in order for Magic to run with this option. Also, you can not resize or
redisplay Magic windows while Magic is collecting a command (since Magic is only one
process). Because Sun’s window package doesn’t do interrupt processing, you can’t
interrupt Magic unless you point to its text window.

SUNBW
A black & white Sun workstation. Because this system only has one bit-plane, Magic
does extra redisplay whenever it erases the box or highlight areas. Also, it is hard to see
all the layers since they are drawn as stippled areas instead of colored areas. You must
be running Suntools in order for Magic to run with this option, and the caveats for the
SUN160 version also apply to this version.

The following drivers are available, but are seldom used and thus may be in disrepair.

UCB512
An old AED512 with the Berkeley microcode ROMs and an attached bitpad (Summa-
Graphics Bitpad One). The ROMs are available from AED.

UCB512N
A new "Colorware" AED512 with the Berkeley microcode ROMs and an attached bitpad
(SummaGraphics Bitpad One). The ROMs are available from AED. We do not recom-
mend the GTCO bitpad, since we have heard that their Summagraphics emulation mode
can’t handle up/down button encoding nor double button pushes.

AED767
An AED767 with a SummaGraphics Mouse. Because of missing features in this device,
programmable cursors and Bit-Blt do not work. Many thanks to Norm Jouppi and
DECWRL for porting Magic to this device.

UCB1024
An AED1024 with a SummaGraphics Mouse and AED’s Magic microcode ROMs that
implement the same operations as the UCB512 ROMs. Thanks to LSI Logic for this
port.

AED1024
An AED1024 with a SummaGraphics Mouse and rev. D roms. Because of missing
features in this device, programmable cursors do not work. Many thanks to Peng Ang
and LSI Logic Corp. for porting Magic to this device.

other AEDs
Other AEDs can be handled by modifying Magic’s file grAed1.c. There are just too
many combinations of options for AEDs for us to be able to supply drivers for all of
them.

SUN120
A Sun Microsystems workstation, model Sun2/120 with the SunColor option
(/dev/cgone0) and the Sun optical mouse. Also works on some old Sun1s with the ‘Sun2
brain transplant’. You must be running Suntools on the black and white display.

If no device is specified, Magic tries to guess which driver is appropriate (by checking the environment
variables and by poking around in /dev). Types listed in∼ cad/lib/displays override the default type.

−−g The next argument is the name of the device to use for communication with the graphics display.
This is usually of the form/dev/ttyxx (for displays connected by RS232 lines, such as the AED
family) or for some workstations, the name of the frame buffer device.

−−m The next argument is used to select the right color map for the monitor’s phosphors. ‘‘Std’’ works
well for most monitors. This option is seldom used anymore, now that monitors are manufactured

1990 DECWRL/Livermore Magic 2

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

with more consistent phosphors.

−−i The next argument is the name of the port to use for input from the tablet. This defaults to what-
ever port is being used for the graphics output, and thus only needs to be specified under unusual
circumstances. Only used for serial-line graphics terminals, not workstations.

−−D (System maintainers only). Run Magic in ‘‘debug’’ mode. This is intended for use with
debuggers such asdbx (1) which would otherwise catch theSIGIO signal that is sent to Magic on
each keystroke. When running Magic in debug mode, keystrokes and mouse clicks won’t inter-
rupt the background design-rule checker, so it’s generally best to run with design-rule checking
disabled (:drc off). When -D is set, crashes do not generate mail to the system maintainer and
coredumps are not created.

−−F (This switch only works on VAXes, and hasn’t been tested recently.) The next two arguments are
filenames. The first,object_file , is the name of the file that was executed to run this version of
Magic. The second,save_file , is the name of a new file. After performing all initializations (read-
ing in the technology file, loading the style information and colormap, etc), an executable image
of Magic is stored insave_file . This executable image may then be run as a normal Magic, except
that it starts up much more quickly. The symbol table fromobject_file is copied tosave_file so the
new version can be debugged.

When Magic starts up it looks for a command file in∼ cad/lib/magic/sys/.magic and processes it if it exists.
Then Magic looks for a file with the name ‘‘.magic’’ in the home directory and processes it if it exists.
Finally, Magic looks for a .magic file in the current directory and reads it as a command file if it exists.
The .magic file format is described under thesource command.

COMMANDS -- GENERAL INFORMATION
Magics uses three sorts of commands. Pressing a mouse button is one sort of command. You can also
enter commands by typing a: or ; character followed by the text of the command. Multiple commands
may be specified on one line by separating them with semicolons. The third command form consists of
single-letter abbreviations called ‘‘macros’’; macros are invoked by pressing single keys without typing a:
first. Certain macros are predefined in the systemwide∼ cad/lib/magic/sys/.magic file, but you can override
them and add your own macros using themacro command (described below under COMMANDS FOR
ALL WINDOWS).

Most commands deal with the window underneath the cursor, so if a command doesn’t do what you expect
make sure that you are pointing to the correct place on the screen. There are several different kinds of win-
dows in Magic (layout, color, and netlist); each window has a different command set, described in a
separate section below.

MOUSE BUTTONS FOR LAYOUT WINDOWS
Magic uses a three button mouse. The buttons are interpreted in a way that depends on the current tool, as
indicated by the shape of the cursor (see thetool command). The various tools are described below. The
initial tool is box. These interpretations apply only when mouse buttons are pressed in the interior of a lay-
out window.

Box Tool
This is the default tool, and is indicated by a crosshair cursor. It is used to position the box and to
paint and erase:

left This button is used to move the box by one of its corners. Normally, this button picks up
the box by its lower-left corner. To pick the box up by a different corner, click the right
button while the left button is down. This switches the pick-up point to the corner
nearest the cursor. When the button is released, the box is moved to position the corner
at the cursor location. If the box has been set to snap to the window’s grid (see the:snap
command), then the box corner is left aligned with the grid that the user has chosen for

1990 DECWRL/Livermore Magic 3

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

the window with the:grid command, even if that grid is not visible.

right Change the size of the box by moving one corner. Normally this button moves the
upper-right corner of the box. To move a different corner, click the left button while the
right button is down. This switches the corner to the one nearest the cursor. When you
release the button, three corners of the box move in order to place the selected corner at
the cursor location (the corner opposite the one you picked up remains fixed). Snapping
to the window’s grid is handled as for the left button.

middle (bottom)
Used to paint or erase. If the crosshair is over paint, then the area of the box is painted
with the layer(s) underneath the crosshair. If the crosshair is over white space, then the
area of the box is erased.

Wiring Tool
The wiring tool, indicated by an arrow cursor, is used to provide an efficient interface to the wir-
ing commands:

left Same as the long commandwire type.

right Same as the long commandwire leg.

middle (bottom)
Same as the long commandwire switch.

Netlist Tool
This tool is used to edit netlists interactively. It is indicated by a thick box cursor.

left Select the net associated with the terminal nearest the cursor.

right Find the terminal nearest the cursor, and toggle it into the current net (if it wasn’t already
in the current net) or out of the current net (if it was previously in the net).

middle (bottom)
Find the terminal nearest the cursor, and join its net with the current net.

Rsim Tool
Used when running the IRSIM simulator under Magic. A pointing hand is used as the cursor.

left Moves the box just like the box tool.

right Moves the box just like the box tool.

middle (bottom)
Displays the Rsim node values of the selected paint.

LONG COMMANDS FOR LAYOUT WINDOWS
These commands work if you are pointing to the interior of a layout window. Commands are invoked by
typing a colon (‘‘:’’) or semi-colon (‘‘;’’), followed by a line containing a command name and zero or
more parameters. In addition, macros may be used to invoke commands with single keystrokes. Useful
default macros are set in the global.magic file (in ∼∼ cad/lib/magic/sys unless theCAD_HOME environ-
ment variable is set). You can list all current macros with themacro command, described under ‘‘LONG
COMMANDS FOR ALL WINDOWS’’. Unique abbreviations are acceptable for all keywords in com-
mands. The commands are:

addpath searchpath
Add more directories to the end of Magic’s cell search path. See the documentation for thepath
command for an explanation of the search path.

array xsize ysize
Make many copies of the selection. There will bexsize instances in the x-direction andysize
instances in the y-direction. Paint and labels are arrayed by copying them. Subcells are not
copied, but instead each instance is turned into an array instance with elements numbered from 0

1990 DECWRL/Livermore Magic 4

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

to xsize-1 in the x-direction, and from 0 toysize-1 in the y-direction. The spacing between ele-
ments of the array is determined by the box x- and y-dimensions.

array xlo ylo xhi yhi
Identical to the form ofarray above, except that the elements of arrayed cells are numbered left-
to-right fromxlo to xhi and bottom-to-top fromylo to yhi. It is legal forxlo to be greater thanxhi,
and also forylo to be greater thanyhi.

box [args]
Used to change the size of the box or to find out its size. There are several sorts of arguments that
may be given to this command:

(No arguments.)
Show the box size and its location in the edit cell, or root cell of its window if the edit
cell isn’t in that window.

direction [distance]
Move the boxdistance units indirection, which may be one ofleft, right, up, or down.
Distance defaults to the width of the box ifdirection is right or left, and to the height of
the box ifdirection is up or down.

width [size]

height [size]
Set the box to the width or height indicated. Ifsize is not specified the width or height is
reported.

x1 y1 x2 y2
Move the box to the coordinates specified (these are in edit cell coordinates if the edit
cell is in the window under the cursor; otherwise these are in the root coordinates of the
window). x1 andy1 are the coordinates of the lower left corner of the box, whilex2 and
y2 are the upper right corner. The coordinates must all be integers.

calma [option] [args]
This command is used to read and write files in Calma GDS II Stream format (version 3.0,
corresponding to GDS II Release 5.1). This format is like CIF, in that it describes physical mask
layers instead of Magic layers. In fact,the technology file specifies a correspondence between
CIF and Calma layers. The current CIF output style (seecif ostyle) controls how Calma stream
layers are generated from Magic layers. If no arguments are given, thecalma command generates
a Calma stream file for the layout in the window beneath the cursor infile.strm, wherefile is the
name of the root cell. This stream file describes the entire cell hierarchy in the window. The
name of the library is the same as the name of the root cell.Option and args may be used to
invoke one of several additional operations:

calma flatten
Ordinarily, Magic arrays are output using the Calma ARRAY construct. After acalma
flatten command, though, arrays will be output instead as a collection of individual cell
uses, as occurs when writing CIF.

calma help
Print a short synopsis of all of thecalma command options.

calma labels
Output labels whenever writing a Calma output file.

calma lower
Allow both upper and lower case to be output for label text. This is the default behavior;
calma nolower causes lower case to be converted to upper case on output.

calma noflatten

1990 DECWRL/Livermore Magic 5

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Undoes the effect of a prior:calma flatten command, re-enabling the output of Magic
arrays using the Calma ARRAY construct.

calma nolabels
Don’t output labels when writing a Calma output file.

calma nolower
Convert lower to upper case when outputting labels.

calma read file
The file file.strm is read in Calma format and converted to a collection of Magic cells.
The current CIF input style determines how the Calma layers are converted to Magic
layers. The new cells are marked for design-rule checking. Calma format doesn’t iden-
tify the root of the collection of cells read in, so none of the cells read will appear on the
display; useload to make them visible. If the Calma file had been produced by Magic,
then the name of the root cell is the same as the library name printed by the:calma read
command.

calma write fileName
Writes a stream file just as if no arguments had been entered, except that the output is
written intofileName.strm instead of using the root cell name for the file name.

channels
This command will run just the channel decomposition part of the Magic router, deriving channels
for the area under the box. The channels will be displayed as outlined feedback areas over the edit
cell.

cif [option] [args]
Read or write files in Caltech Intermediate Form (CIF). If no arguments are given, this command
generates a CIF file for the window beneath the cursor infile.cif, wherefile is the name of the root
cell. The CIF file describes the entire cell hierarchy in the window.Option andargs may be used
to invoke one of several additional CIF operations:

cif arealabels [yes | no]
Enables/disables the cif area-label extension. If enabled, area labels are written via the
95 cif extension. If disabled, labels are collapsed to points when writing cif and the94
cif construct is used. Area-labels are disabled by default (many programs don’t under-
stand cif area-labels).

cif help Print a short synopsis of all of the cif command options.

cif istyle [style]
Select the style to be used for CIF input. If nostyle argument is provided, then Magic
prints the names of all CIF input styles defined in the technology file and identifies the
current style. Ifstyle is provided, it is made the current style.

cif ostyle [style]
Select the style to be used for CIF output. If nostyle argument is provided, then Magic
prints the names of all CIF output styles defined in the technology file and identifies the
current style. Ifstyle is provided, it is made the current style.

cif read file
The file file.cif is read in CIF format and converted to a collection of Magic cells. The
current input style determines how the CIF layers are converted to Magic layers. The
new cells are marked for design-rule checking. Any information in the top-level CIF cell
is copied into the edit cell. Note: this command is not undo-able (it would waste too
much space and time to save information for undoing).

cif see layer
In this commandlayer must be the CIF name for a layer in the current output style.

1990 DECWRL/Livermore Magic 6

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Magic will display on the screen all the CIF for that layer that falls under the box, using
stippled feedback areas. It’s a bad idea to look at CIF over a large area, since this com-
mand requires the area under the box to be flattened and therefore is slow.

cif statistics
Prints out statistics gathered by the CIF generator as it operates. This is probably not
useful to anyone except system maintainers.

cif write fileName
Writes out CIF just as if no arguments had been entered, except that the CIF is written
into fileName.cif instead of using the root cell name for the file name. The current output
style controls how CIF layers are generated from Magic layers.

cif flat fileName
Writes out CIF as in thecif write command, but flattens the design first (e.g. creates an
internal version with the cell hierarchy removed). This is useful if one wishes to use the
and-not feature of the CIF output styles, but is having problems with interactions of
overlapping cells.

clockwise [degrees]
Rotate the selection by90, 180 or 270 degrees. After the rotation, the lower-left corner of the
selection’s bounding box will be in the same place as the lower-left corner of the bounding box
before the rotation.Degrees defaults to90. If the box is in the same window as the selection, it is
rotated too. Only material in the edit cell is affected.

copy [direction [amount]]

copy to x y
If no arguments are given, a copy of the selection is picking up at the point lying underneath the
box lower-left corner, and placed so that this point lies at the cursor position. Ifdirection is given,
it must be a Manhattan direction (e.g.north, see the ‘‘DIRECTIONS’’ section below). The copy
of the selection is moved in that direction byamount. If the box is in the same window as the
selection, it is moved too.Amount defaults to1. The second form of the command behaves as
though the cursor were pointing to (x, y) in the edit cell; a copy of the selection is picked up by the
point beneath the lower-left corner of the box and placed so that this point lies at (x, y).

corner direction1 direction2 [layers]
This command is similar tofill, except that it generates L-shaped wires that travel across the box
first in direction1 and then indirection2. For example,corner north east finds all paint under the
bottom edge of the box and extends it up to the top of the box and then across to the right side of
the box, generating neat corners at the top of the box. The box should be at least as tall as it is
wide for this command to work correctly.Direction1 and direction2 must be Manhattan direc-
tions (see the section DIRECTIONS below) and must be orthogonal to each other. Iflayers is
specified then only those layers are used; otherwise all layers are considered.

delete Delete all the information in the current selection that is in the edit cell. When cells are deleted,
only the selected use(s) of the cell is (are) deleted: other uses of the cell remain intact, as does the
disk file containing the cell. Selected material outside the edit cell is not deleted.

drc option [args]
This command is used to interact with the design rule checker.Option andargs (if needed) are
used to invoke adrc command in one of the following ways:

drc catchup
Let the checker process all the areas that need rechecking. This command will not return
until design-rule checking is complete or an interrupt is typed. The checker will run even
if the background checker has been disabled withdrc off.

drc check

1990 DECWRL/Livermore Magic 7

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Mark the area under the box for rechecking in all cells that intersect the box. The
recheck will occur in background after the command completes. This command is not
normally necessary, since Magic automatically remembers which areas need to be
rechecked. It should only be needed if the design rules are changed.

drc count
Print the number of errors in each cell under the box. Cells with no errors are skipped.

drc find [nth]
Place the box over thenth error area in the selected cell or edit cell, and print out infor-
mation about the error just as ifdrc why had been typed. Ifnth isn’t given (or is less
than 1), the command moves to the next error area. Successive invocations ofdrc find
cycle through all the error tiles in the cell. If multiple cells are selected, this command
uses the upper-leftmost one. If no cells are selected, this command uses the edit cell.

drc help
Print a short synopsis of all the drc command options.

drc off Turn off the background checker. From now on, Magic will not recheck design rules
immediately after each command (but it will record the areas that need to be rechecked;
the commanddrc on can be used to restart the checker).

drc on Turn on the background checker. The checker will check whatever modifications have
not already been checked. From now on, the checker will reverify modified areas as they
result from commands. The checker is run in the background, not synchronously with
commands, so it may get temporarily behind if massive changes are made.

drc printrules [file]
Print out the compiled rule set infile, or on the text terminal iffile isn’t given. For system
maintenance only.

drc rulestats
Print out summary statistics about the compiled rule set. This is primarily for use in writ-
ing technology files.

drc statistics
Print out statistics kept by the design-rule checker. For each statistic, two values are
printed: the count since the last timedrc statistics was invoked, and the total count in
this editing session. This command is intended primarily for system maintenance pur-
poses.

drc why
Recheck the area underneath the box and print out the reason for each violation found.
Since this command causes a recheck, the box should normally be placed around a small
area (such as an error area).

dump cellName [child refPointC] [parent refPointP]
Copy the contents of cellcellName into the edit cell so thatrefPointC in the child is positioned at
point refPointP in the edit cell. Thereferencepoints can either be the name of a label, in which
case the lower-left corner of the label’s box is usedas the referencepoint, or as a pair of numbers
giving the (x, y) coordinates of a point explicitly. IfrefPointC is not specified, the lower-left
corner ofcellName cell is used. IfrefPointP is not specified, the lower-left corner of the box tool
is used (the box must be in a window on the edit cell). After this command completes, the new
information is selected.

edit Make the selected cell the edit cell, and edit it in context. The edit cell is normally displayed in
brighter colors than other cells (see thesee command to change this). If more than one cell is
selected, or if the selected cell is an array, the cursor position is used to select one of those cells as
the new edit cell. Generally, Magic commands modify only the current edit cell.

1990 DECWRL/Livermore Magic 8

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

erase [layers]
For the area enclosed by the box, erase all paint inlayers. (See the ‘‘LAYERS’’ section for the
syntax of layer lists). Iflayers is omitted it defaults to*,labels. See your technology manual, or
use thelayers command, to find out about the available layer names.

expand [toggle]
If the keywordtoggle is supplied, all of the selected cells that are unexpanded are expanded, and
all of the selected cells that are expanded are unexpanded. Iftoggle isn’t specified, then all of the
cells underneath the box are expanded recursively until there is nothing but paint under the box.

extract option [args]
Extract a layout, producing one or more hierarchical.ext files that describe the electrical circuit
implemented by the layout. The current extraction style (seeextract style below) determines the
parameters for parasitic resistance, capacitance, etc. that will be used. Theextract command with
no parameters checks timestamps and re-extracts as needed to bring all.ext files up-to-date for the
cell in the window beneath the crosshair, and all cells beneath it. Magic displays any errors
encountered during circuit extraction using stippled feedback areas over the area of the error,
along with a message describing the type of error. Option andargs are used in the following
ways:

extract all
All cells in the window beneath the cursor are re-extracted regardless of whether they
have changed since last being extracted.

extract cell name
Extract only the currently selected cell, placing the output in the filename. If more than
one cell is selected, this command uses the upper-leftmost one.

extract do [option]

extract no option
Enable or disable various options governing how the extractor will work. Use:extract
do with no arguments to print a list of available options and their current settings. When
the adjust option is enabled, the extractor will compute compensating capacitance and
resistance whenever cells overlap or abut; if disabled, the extractor will not compute
these adjustments but will run faster. Ifcapacitance is enabled, node capacitances to
substrate (perimeter and area) are computed; otherwise, all node capacitances are set to
zero. Similarly,resistance governs whether or not node resistances are computed. The
coupling option controls whether coupling capacitances are computed or not; if disabled,
flat extraction is significantly faster than if coupling capacitance computation is enabled.
Finally, thelength option determines whether or not pathlengths in the root cell are com-
puted (seeextract length below).

extract help
Prints a short synopsis of all theextract command options.

extract length [option args]
Provides several options for controlling which point-to-point path lengths are extracted
explicitly. The extractor maintains two internal tables, one ofdrivers, or places where a
signal is generated, and one ofreceivers, or places where a signal is sent. The com-
ponents of each table are hierarchical label names, defined by means of the two com-
mandsextract length driver name1 [name2 ...] and extract length receiver name1
[name2 ...]. If extraction of pathlengths is enabled (‘‘:extract do length’’), then when
the root cell in an extract command is being extracted, the extractor will compute the
shortest and longest path between each driver and each receiver on the same electrical
net, and output it to the.ext file for the root cell. Normally, one should create a file of
these Magic commands for the circuit drivers and receivers of interest, and usesource to

1990 DECWRL/Livermore Magic 9

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

read it in prior to circuit extraction.Extract length clear removes all the entries from
both the driver and receiver tables.

extract parents
Extract the currently selected cell and all of its parents. All of its parents must be loaded
in order for this to work correctly. If more than one cell is selected, this command uses
the upper-leftmost one.

extract showparents
Like extract parents, but only print the cells that would be extracted; don’t actually
extract them.

extract style [style]
Select the style to be used for extraction parameters. If nostyle argument is provided,
then Magic prints the names of all extraction parameter styles defined in the technology
file and identifies the current style. Ifstyle is provided, it is made the current style.

extract unique [#]
For each cell in the window beneath the cursor, check to insure that no label is attached
to more than one node. If the# keyword was not specified, whenever a label is attached
to more than one node, the labels in all but one of the nodes are changed by appending a
numeric suffix to make them unique. If the# keyword is specified, only names that end
in a ‘‘#’’ are made unique; any other duplicate nodenames that don’t end in a ‘‘!’’ are
reported by leaving a warning feedback area. This command is provided for converting
old designs that were intended for extraction with Mextra, which would automatically
append unique suffixes to node names when they appeared more than once.

extract warn [[no] option | [no] all]
The extractor always reports fatal errors. This command controls the types of warnings
that are reported.Option may be one of the following:dup, to warn about two or more
unconnected nodes in the same cell that have the same name,fets, to warn about transis-
tors with fewer than the minimum number of terminals, andlabels, to warn when nodes
are not labeled in the area of cell overlap. In addition,all may be used to refer to all
warnings. If a warning is preceded byno, it is disabled. To disable all warnings, use
‘‘ extract warn no all’’. To see which warning options are in effect, use ‘‘extract
warn’’.

extresist [cell [threshold]]
Postprocessor for improving on the resistance calculation performed by the circuit extractor. To
use this command, you first have to extract the design rooted atcell with :extract cell, and then
flatten the design usingext2sim (1), producing the filescell.sim and cell.nodes. Then run
:extresist cell to produce a file,cell.res.ext, containing differences between the network described
by the.ext files produced the first time around, and a new network that incorporates explicit two-
point resistors where appropriate (see below). This file may be appended tocell.ext, and then
ext2simrun for a second time, to produce a new network with explicit resistors. Thethreshold
parameter is used to control which nodes are turned into resistor networks: any node whose total
resistance exceedsthreshold times the smallest on-resistance of any transistor connected to that
node will be approximated as a resistor network.

feedback option [args]
Examine feedback information that is created by several of the Magic commands to report prob-
lems or highlight certain things for users.Option andargs are used in the following ways:

feedback add text [style]
Used to create a feedback area manually at the location of the box. This is intended as a
way for other programs like Crystal to highlight things on a layout. They can generate a
command file consisting of afeedback clear command, and a sequence ofbox and

1990 DECWRL/Livermore Magic 10

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

feedback add commands.Text is associated with the feedback (it will be printed by
feedback why andfeedback find). Style tells how to display the feedback, and is one of
dotted, medium, outline, pale, andsolid (if unspecified,style defaults topale).

feedback clear
Clears all existing feedback information from the screen.

feedback count
Prints out a count of the current number of feedback areas.

feedback find [nth]
Used to locate a particular feedback area. Ifnth is specified, the box is moved to the
location of thenth feedback area. Ifnth isn’t specified, then the box is moved to the next
sequential feedback area after the last one located withfeedback find. In either event,
the explanation associated with the feedback area is printed.

feedback help
Prints a short synopsis of all thefeedback command options.

feedback save file
This option will save information about all existing feedback areas infile. The informa-
tion is stored as a collection of Magic commands, so that it can be recovered with the
commandsource file.

feedback why
Prints out the explanations associated with all feedback areas underneath the box.

fill direction [layers]
Direction is a Manhattan direction (see the section DIRECTIONS below). The paint visible under
one edge of the box is sampled. Everywhere that the edge touches paint, the paint is extended in
the given direction to the opposite side of the box. For example, ifdirection is north, then paint is
sampled under the bottom edge of the box and extended to the top edge. Iflayers is specified,
then only the given layers are considered; iflayers isn’t specified, then all layers are considered.

findbox [zoom]
Center the view on the box. If the optionalzoom argument is present, zoom into the area
specified by the box. This command will complain if the box is not in the window you are point-
ing to.

flush [cellname]
Cell cellname is reloaded from disk. All changes made to the cell since it was last saved are dis-
carded. Ifcellname is not given, the edit cell is flushed.

garoute option [args]
This command, with nooption or arg, is like theroute command: it generates routing in the edit
cell to make connections specified in the current netlist. (See theroute command for further
information). Unlike theroute command, this command is intended to be used for routing types
of circuits, such as gate-arrays, whose routing channels can be determined in advance, and which
require the ability to river-route across the tops of cells. The channels must have been predefined
usinggaroute channel commands prior to this command being invoked. Unlike theroute com-
mand, where the box indicates the routing area, this command ignores the box entirely. The new
wires are placed in the edit cell. The netlist used is that selected by theroute netlist command, or
the current netlist being edited in anetlist window if no route netlist command has been given.
Options andargs have the following effects:

garoute channel [type]

garoute channel xlo ylo xhi yhi [type]
Define a channel. Ifxlo, ylo, xhi, andyhi are provided, they are interpreted as the coordi-
nates of the lower-left and upper-right of the bounding box for the channel respectively.

1990 DECWRL/Livermore Magic 11

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Otherwise, the coordinates of the box are used. The boundary of each channel is
adjusted inward to lie halfway between routing grid lines if it does not lie there already;
if the channel is adjusted, a warning message is printed. The channel defined is an ordi-
nary routing channel iftype is not specified; such channels are identical to those used by
the router of theroute command. Iftype is given, it must be eitherh or v. The channel
thereby created will be ariver-routing channel inside which only left-to-right routes are
possible (‘‘h’’) or top-to-bottom (‘‘v’’). Unlike a normal channel, a river-routing chan-
nel may contain terminals in its interior.

garoute generate type [file]
Provides a primitive form of channel decomposition for regular structures such as gate-
array or standard-cell layouts. Generates a collection ofgaroute channel commands,
either to the standard output, or tofile if the latter is specified. Thetype parameter must
be eitherh or v. The entire area contained within the box is turned into routing channels.
Each cell inside this area has its bounding box computed for purposes of routing by look-
ing only at those layers considered to be ‘‘obstacles’’ to routing (see ‘‘Tutorial #7: Net-
lists and Routing’’ for details). The bounding box just computed is then extended all the
way to the sides of the area of the box tool, vertically iftype is h or horizontally if type is
v. This extended area is then marked as belonging to a river-routing channel of type
type; adjacent channels of this type are merged into a single channel. After all cells are
processed, the areas not marked as being river-routing channels are output as normal
channels.

garoute help
Print a short synopsis of all thegaroute command options.

garoute nowarn
If a given terminal appears in more than one place inside a cell, the router can leave feed-
back if it is not possible to route to all of the places where the terminal appears. The
garoute nowarn command instructs the router to leave feedback only if it is not possible
to route toany of the locations of a terminal. (This is the default behavior ofgaroute
router).

garoute route [netlist]
Route the edit cell. Ifnetlist is not specified, the netlist used is the same as whengaroute
is given with no options. Ifnetlist is given, then it is used instead.

garoute reset
Clear all channels defined bygaroute channel in preparation for redefining a new set of
channels.

garoute warn
The opposite ofgaroute nowarn, this command instructs the router to leave feedback if
it is not possible to route to all of the places where a terminal appears when a terminal
has more than one location, even if not all of those locations are actually selected for
routing by the global router.

getcell cellName [child refPointC] [parent refPointP]
This command adds a child cell instance to the edit cell. The instance refers to the cellcellName;
it is positioned so thatrefPointC in the child is at pointrefPointP in the editcell. Thereference
points can either be the name of a label, in which case the lower-left corner of the label’s box is
used as thereferencepoint, or as a pair of numbers giving the (x, y) coordinates of a point expli-
citly. If refPointC is not specified, the lower-left corner ofcellName cell is used. IfrefPointP is
not specified, the lower-left corner of the box tool is used (the box must be in a window on the edit
cell). The new subcell is selected. The difference between this command anddump is thatdump
copies the contents of the cell, whilegetcell simply makes areference to theoriginal cell.
Cellname must not be the edit cell or one of its ancestors.

1990 DECWRL/Livermore Magic 12

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

getnode [alias on | alias off]

getnode [abort [str]]
Getnode prints out the node names (used by the extractor) for all selected paint. If aliasing turned
on, getnode prints all the names it finds for a given node. It may not print every name that exists,
however. When turned off, it just prints one name. The abort option allows the user to tell get-
node that it is not important to completely search nodes that have certain names. For example,
getnode abort Vdd will tell getnode not to continue searching the node if it determines that one
of its names is Vdd. Agetnode abort, without a string argument, will erase the list of names pre-
viously created by callinggetnode abort with string arguments. Getnode can be safely aborted at
any time by typing the interrupt character, usually ˆC. SeeTutorial #11: Using IRSIM and RSIM
with Magic for more information on this command.

grid [xSpacing [ySpacing [xOrigin yOrigin]]]

grid off If no arguments are given, a one-unit grid is toggled on or off in the window underneath the cur-
sor. Grid off always turns the grid off, regardless of whether it was on or off previously. If
numerical arguments are given, the arguments determine the grid spacing and origin for the win-
dow under the cursor. In its most general form,grid takes four integer arguments.XOrigin and
yOrigin specify an origin for the grid: horizontal and vertical grid lines will pass through this
point. XSpacing and ySpacing determine the number of units between adjacent grid lines. If
xOrigin and yOrigin are omitted, they default to 0. IfySpacing is also omitted, the xSpacing
value is used for both spacings. Grid parameters will be retained for a window until explicitly
changed by anothergrid command. When the grid is displayed, a solid box is drawn to show the
origin of the edit cell.

identify instance_id
Set the instance identifier of the selected cell use toinstance_id. Instance_id must be unique
among all instance identifiers in the parent of the selected cell. Initially, Magic guarantees
uniqueness of identifiers by giving each cell an initial identifier consisting of the cell definition
name followed by an underscore and a small integer.

iroute subcommand [args]
This command provides an interactive interface to the Magic maze-router. Routing is done one
connection at a time. Three internalhint layers,magnet, fence, and rotate, allow the user to
guide routing graphically. Routes are chosen close to magnets (if possible), routing does not cross
fence boundaries, and rotate areas reverse the preferred routing directions for each layer. The
maze-router seeks to find a lowest-cost path. Parameters specifying costs for horizontal and verti-
cal routing on each layer, cost for jogs and contacts, and cost (per unit area) for distance between
a path and magnets, help determine the nature of the routes. Severalsearch parameters permit
tuning to achieve acceptable routes in as short a time as possible. Routing can always be inter-
rupted withˆC. The iroute subcommands are as follows:

iroute Routes from cursor to inside box.

iroute contact [type] [parameter] [value1] ... [valuen]
An asterisk,*, can be used fortype andparameter. This command is for setting and exa-
mining parameters related to contacts.

iroute help [subcommand]
Summarizes irouter commands. If asubcommand is given, usage information for that
subcommand is printed.

iroute layers [type] [parameter] [value1] ... [valuen]
An asterisk,*, can be used fortype andparameter. This command is for setting and exa-
mining parameters related to route layers.

iroute route [options]
Invokes the router. Options are as follows:

1990 DECWRL/Livermore Magic 13

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

-sLayers layers = layers route may start on
-sCursor = start route at cursor (DEFAULT)
-sLabel name = start route at label of given name
-sPoint x y = start route at given coordinates
-dLayers layers = layers route may end on
-dBox = route to box (DEFAULT)
-dLabel name = route to label of given name
-dRect xbot ybot xtop ytop = route to rectangle of given coordinates
-dSelection = route to selection

iroute saveParameters <filename>
Saves all current irouter parameter settings. The parameters can be restored to these
values with the command ‘‘source filename’’.

iroute search [searchParameter] [value]
Allows parameters controlling the search to be modified. If routing is too slow try
increasingrate. If the router is producing bad results, try reducingrate. Its a good idea
to makewidth at least twice as big asrate.

iroute spacings [route-type] [type] [spacing] ... [typen spacingn]
Default minimum spacings between a route-type placed by the router and other types are
derived from thedrc section of the technology file. The defaults can be overridden by
this command. The special typeSUBCELL is used to specify minimum spacing to
unexpanded subcells.

iroute verbosity [level]
Controls the number of messages printed during routing:

0 = errors and warnings only,
1 = brief,
2 = lots of statistics.

iroute version
Prints irouter version information.

iroute wizard [wizardparameter] [value]
Used to examine and set miscellaneous parameters. Most of these are best left alone by
the unadventurous user.

label string [pos [layer]]
A label with textstring is positioned at the box location. Labels may cover points, lines, or areas,
and are associated with specific layers. Normally the box is collapsed to either a point or to a line
(when labeling terminals on the edges of cells). Normally also, the area under the box is occupied
by a single layer. If nolayer argument is specified, then the label is attached to the layer under the
box, or space if no layer covers the entire area of the box. Iflayer is specified butlayer doesn’t
cover the entire area of the box, the label will be moved to another layer or space. Labels attached
to space will be considered by CIF processing programs to be attached to all layers overlapping
the area of the label.Pos is optional, and specifies where the label text is to be displayed relative
to the box (e.g. ‘‘north’’). If pos isn’t given, Magic will pick a position to ensure that the label
text doesn’t stick out past the edge of the cell.

layers Prints out the names of all the layers defined for the current technology.

load [file]
Load the cell hierarchy rooted atfile.mag into the window underneath the cursor. If nofile is sup-
plied, a new unnamed cell is created. The root cell of the hierarchy is made the edit cell unless
there is already an edit cell in a different window.

move [direction [amount]]

1990 DECWRL/Livermore Magic 14

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

move to x y
If no arguments are given, the selection is picked up by the point underneath the lower-left corner
of the box and moved so that this point lies at the cursor location. Ifdirection is given, it must be
a Manhattan direction (e.g.north). The selection is moved in that direction byamount. If the box
is in the same window as the selection, it is moved too.Amount defaults to 1. Selected material
that is not in the edit cell, is not affected. The second form of the command is as though the cur-
sor were pointing to (x, y) in the edit cell; the selection is picked up by the point beneath the
lower-left corner of the box and moved so that this point lies at (x, y).

paint layers
The area underneath the box is painted inlayers.

path [searchpath]
This command tells Magic where to look for cells.Searchpath contains a list of directories
separated by colons or spaces (if spaces are used, thensearchpath must be surrounded by quotes).
When looking for a cell, Magic will check each directory in the path in order, until the cell is
found. If the cell is not found anywhere in the path, Magic will look in the system library for it. If
thepath command is invoked with no arguments, the current search path is printed.

plot option [args]
Used to generate hardcopy plots direct from Magic.Options andargs are used in the following
ways:

plot gremlin file [layers]
Generate a Gremlin-format description of everything under the box, and write the
description infile. If layers isn’t specified, paint, labels, and unexpanded subcells are all
included in the Gremlin file just as they appear on the screen. Iflayers is specified, then
just the indicated layers are output in the Gremlin file.Layers may include the special
layerslabels andsubcell. The Gremlin file is scaled to have a total size between 256 and
512 units; you should use thewidth and/or height Grn commands to ensure that the
printed version is the size you want. Use themg stipples in Grn. No plot parameters are
used in Gremlin plotting.

plot help
Print a short synopsis of all theplot command options.

plot parameters [name value]
If plot parameters is invoked with no additional arguments, the values for all of the plot
parameters are printed. Ifname andvalue are provided, thenname is the name of a plot
parameter andvalue is a new value for it. Plot parameters are used to control various
aspects of plotting; all of them have‘‘reasonable’’ initialvalues. Most of the parameters
available now are used to control Versatec-style plotting. They are:

cellIdFont
The name of the font to use for cell instance ids in Versatec plots. This must be
a file in Vfont format.

cellNameFont
The name of the font to use for cell names in Versatec plots. This must be a file
in Vfont format.

color If this is set totrue, the :plot versatec command will generate output suitable
for a four-color Versatec plotter, using the styles defined in thecolorversatec
style of theplot section of the technology file. Ifcolor is false (the default),
then:plot versatec generates normal black-and-white plots.

directory
The name of the directory in which to create raster files for the Versatec. The
raster files have names of the formmagicPlotXXXXXX, whereXXXXXX is a

1990 DECWRL/Livermore Magic 15

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

process-specific identifier.

dotsPerInch
Indicates how many dots per inch there are on the Versatec printer. This param-
eter is used only for computing the scale factor for plotting. Must be an integer
greater than zero.

labelFont
The name of the font to use for labels in Versatec plots. This must be a file in
Vfont format.

printer The name of the printer to which to spool Versatec raster files.

showcellnames
If ‘‘true’’ (the default) then the name and instance-identifier of each unexpanded
subcell is displayed inside its bounding box. If this parameter is ‘‘false’’ then
only the bounding box of the cell is displayed.

spoolCommand
The command used to spool Versatec raster files. This must be a text string con-
taining two ‘‘%s’’ formatting fields. The first ‘‘%s’’ will be replaced with the
printer name, and the second one will be replaced with the name of the raster
file.

swathHeight
How many raster lines of Versatec output to generate in memory at one time.
The raster file is generated in swaths in order to keep the memory requirements
reasonable. This parameter determines the size of the swaths. It must be an
integer greater than zero, and should be a multiple of 16 in order to avoid
misalignment of stipple patterns.

width The number of pixels across the Versatec printer. Must be an integer greater
than 0, and must be an even multiple of 32.

plot versatec [size [layers]]
Generate a raster file describing all the the information underneath the box in a format
suitable for printing on Versatec black-and-white or color printers, and spool the file for
printing. See the plot parameters above for information about the parameters that are
used to control Versatec plotting.Size is used to scale the plot: a scalefactor is chosen so
that the area of the box issize inches across on the printed page.Size defaults to the
width of the printer. Layers selects which layers (including labels and subcells) to plot;
it defaults to everything visible on the screen.

plow direction [layers]

plow option [args]
The first form of this command invokes the plowing operation to stretch and/or compact a cell.
Direction is a Manhattan direction.Layers is an optional collection of mask layers, which defaults
to *. One of the edges of the box is treated as a plow and dragged to the opposite edge of the box
(e.g. the left edge is used as the plow whenplow right is invoked). All edges onlayers that lie in
the plow’s path are pushed ahead of it, and they push other edges ahead of them to maintain
design rules, connectivity, and transistor and contact sizes. Subcells are moved in their entirety
without being modified internally. Any mask information overlapping a subcell moved by plow-
ing is also moved by the same amount.Option andargs are used in the following ways:

plow boundary
The box specifies the area that may be modified by plowing. This area is highlighted
with a pale stipple outline. Subsequent plows are not allowed to modify any area outside
that specified by the box; if they do, the distance the plow moves is reduced by an

1990 DECWRL/Livermore Magic 16

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

amount sufficient to insure that no geometry outside the boundary gets affected.

plow help
Prints a short synopsis of all theplow command options.

plow horizon n

plow horizon
The first form sets the plowing jog horizon ton units. The second form simply prints the
value of the jog horizon. Every time plowing considers introducing a jog in a piece of
material, it looks up and down that piece of material for a distance equal to the jog hor-
izon. If it finds an existing jog within this distance, it uses it. Only if no jog is found
within the jog horizon does plowing introduce one of its own. A jog horizon of zero
means that plowing will always introduce new jogs where needed. A jog horizon of
infinity (plow nojogs) means that plowing will not introduce any new jogs of its own.

plow jogs
Re-enable jog insertion with a horizon of 0. This command is equivalent toplow hor-
izon 0.

plow noboundary
Remove any boundary specified with a previousplow boundary command.

plow nojogs
Sets the jog horizon to infinity. This means that plowing will not introduce any jogs of its
own; it will only use existing ones.

plow nostraighten
Don’t straighten jogs automatically after each plow operation.

plow selection [direction [distance]]
Like the move or stretch commands, this moves all the material in the selection that
belongs to the edit cell. However, any material not in the selection is pushed out of its
way, just as though each piece of the selection were plowed individually. If no argu-
ments are given, the selection is picked up by the point underneath the lower-left corner
of the box and plowed so that this point lies at the cursor location. The box is moved
along with the selection. Ifdirection is given, it must be a Manhattan direction (e.g.
north). The selection is moved in that direction byamount. If the box is in the same
window as the selection, it is moved too.Amount defaults to 1. If there is selected
material that isn’t in the edit cell, it is ignored (note that this is different fromselect and
move). If direction isn’t given and the cursor isn’t exactly left, right, up, or down from
the box corner, then Magic first rounds the cursor position off to a position that is one of
those (whichever is closest).

plow straighten
Straighten jogs automatically after each plow operation. The effect will be as though the
straighten command were invoked after each plow operation, with the same direction,
and over the area changed by plowing.

resist cell [tolerance]
This command is similar toextresist above, but used for extracting resistance networks for indivi-
dual nodes. Only the node underneath the box is processed. The network for this node is output
to the filecell.res.ext. See the description forextresist for an explanation oftolerance.

route option [args]
This command, with nooption or arg, is used to generate routing using the Magic router in the
edit cell to make connections specified in the current netlist. The box is used to indicate the rout-
ing area: no routing will be placed outside the area of the box. The new wires are placed in the
edit cell. Options andargs have the following effects:

1990 DECWRL/Livermore Magic 17

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

route end [real]
Print the value of the channel end constant used by the channel router. If a value is sup-
plied, the channel end constant is set to that value. The channel end constant is a dimen-
sionless multiplier used to compute how far from the end of a channel to begin prepara-
tions to make end connections.

route help
Print a short synopsis of all theroute command options.

route jog [int]
Print the value of the minimum jog length used by the channel router. If a value is sup-
plied, the minimum jog length is set to that value. The channel router makes no vertical
jogs shorter than the minimum jog length, measured in router grid units. Higher values
for this constant may improve the quality of the routing by removing unnecessary jogs;
however, prohibiting short jogs may make some channels unroutable.

route metal
Toggle metal maximization on or off. The route command routes the preferred routing
layer (termed ‘‘metal’’) horizontally and the alternate routing layer vertically. By default
wires on the alternate routing layer are then converted, as much as possible, to the pre-
ferred layer before being painted into the layout. Enabling metal maximization improves
the quality of the resulting routing, since the preferred routing layer generally has better
electrical characteristics; however, designers wishing to do hand routing after automatic
routing may find it easier to disable metal maximization and deal with a layer-per-
direction layout.

route netlist [file]
Print the name of the current netlist. If a file name is specified, it is opened if possible,
and the new netlist is loaded. This option is provided primarily as a convenience so you
need not open the netlist menu before routing.

route obstacle [real]
Print the obstacle constant used by the channel router. If a value is supplied, set the
channel router obstacle constant to that value. The obstacle constant is a dimensionless
multiplier used in deciding how far in front of an obstacle the channel router should
begin jogging nets out of the way. Larger values mean that nets will jog out of the way
earlier; however, if nets jog out of the way too early routing area is wasted.

route origin [x y]
Print the x- and y-coordinates of the origin of the routing grid. By default, the routing
grid starts from (0,0). However, by supplying anx andy coordinate to theroute origin
command, the origin can be set to any other value. This command is primarily useful
when routing a chip that has been designed with routing on the same pitch as the router
will use, but where the left and bottom edges of the pre-existing routing don’t line up
with the routing grid lines (for example, the pre-existing routing might have been cen-
tered on routing grid lines). The alternative to specifying a different origin for the rout-
ing grid would be to translate all the material in the cell to be routed so that the prewiring
lined up properly with routing grid lines.

route settings
Print the values of all router parameters.

route steady [int]
Print the value of the channel router’s steady net constant. If a value is supplied, set the
steady net constant to the value. The steady net constant, measured in router grid units,
specifies how far beyond the next terminal the channel router should look for a
conflicting terminal before deciding that a net is rising or falling. Larger values mean

1990 DECWRL/Livermore Magic 18

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

that the net rises and falls less often.

route tech
Print the router technology information. This includes information such as the names of
the preferred and alternate routing layers, their wire widths, the router grid spacing, and
the contact size.

route viamin
Minimize vias in (previously) routed netlist. This subcommand removes unnecessary
layer changes in all nets in the current netlist to minimize via count. The preferred rout-
ing layer,layer1 in therouter section of the technology file, is favored by the algorithm.
Note that ‘‘route viamin’’ is an independent routing postpass that can be applied even if
the routing was not generated by theroute command, provided the layers and widths
agree with therouter section of the technology file.

route vias [int]
Print the value of the metal maximization via constant. If a value is supplied, set the via
constant to the value. The via constant, measured in router grid units, represents the
tradeoff between metal maximization and the via count. In many cases it is possible to
convert wiring on the alternate routing layer into routing on the preferred routing layer
(‘‘metal’’) at the expense of introducing one or two vias. The via constant specifies the
amount of converted wiring that makes it worthwhile to add vias to the routing.

rsim [options] [filename]
Runs rsim under Magic. SeeTutorial #11: Using IRSIM and RSIM with Magic for more informa-
tion on what options and files are required by rsim. Normally, IRSIM requires a parameter file for
the technology and a.sim file describing the circuit.

The rsim command without any options can be used to interact with a previously-started rsim.
Typersim and you will see the rsim prompt. To get back to magic, typeq.

save [name]
Save the edit cell on disk. If the editcell is currently the ‘‘(UNNAMED)’’ cell, name must be
specified; in this case the edit cell is renamed toname as well as being saved in the filename.mag.
Otherwise,name is optional. If specified, the edit cell is saved in the filename.mag; otherwise, it
is saved in the file from which it was originally read.

see option
This command is used to control which layers are to be displayed in the window under the cursor.
It has several forms:

see no layers
Do not display the given layers in the window under the cursor. Iflabels is given as a
layer name, don’t display labels in that window either. Iferrors is given as a layer, no
design-rule violations will be displayed (the checker will continue to run, though). If
layers is given as "*", all mask layers will be disabled, but errors and labels will still be
shown. See the "LAYERS" section at the end of this manual page for an explanation of
layer naming in Magic.

see layers
Reenable display of the givenlayers. Note that "*" expands to all mask layers, but does
not include the label or error layers. See the "LAYERS" section at the end of this manual
page for details.

see no Don’t display any mask layers or labels. Only subcell bounding boxes will be displayed.

see Reenable display of all mask layers, labels, and errors.

see allSame
Display all cells the same way. This disables the facility where the edit cell is displayed

1990 DECWRL/Livermore Magic 19

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

in bright colors and non-edit cells are in paler colors. Aftersee allSame, all mask infor-
mation will be displayed in bright colors.

see no allSame
Reenable the facility where non-edit cells are drawn in paler colors.

select option
This command is used to select paint, labels, and subcells before operating on them with com-
mands likemove andcopy anddelete. It has several forms:

select If the cursor is over empty space, then this command is identical toselect cell. Other-
wise, paint is selected. The first time the command is invoked, a chunk of paint is
selected: the largest rectangular area of material of the same type visible underneath the
cursor. If the command is invoked again without moving the cursor, the selection is
extended to include all material of the same type, regardless of shape. If the command is
invoked a third time, the selection is extended again to include all material that is visible
and electrically connected to the point underneath the cursor.

select more
This command is identical toselect except that the selection is not first cleared. The
result is to add the newly-selected material to what is already in the selection.

select less
This chooses material just asselect does, but the material is removed from the selection,
rather than added to it. The result is to deselect the chosen material.

select [more | less] area layers
Select material by area. Iflayers are not specified, then all paint, labels, and unexpanded
subcells visible underneath the box are selected. Iflayers is specified, then only those
layers are selected. Ifmore is specified, the new material is added to the current selec-
tion rather than replacing it. Ifless is specified, the new material is removed from the
selection (deselected).

select [more | less] cell name
Select a subcell. Ifname isn’t given, this command finds a subcell that is visible under-
neath the cursor and selects it. If the command is repeated without moving the cursor
then it will step through all the subcells under the cursor. Ifname is given, it is treated as
a hierarchical instance identifier starting from the root of the window underneath the cur-
sor. The named cell is selected. Ifmore is specified, the new subcell is added to the
current selection instead of replacing it. Ifless is specified, the new subcell is removed
from the selection (deselected).

select clear
Clear out the selection. This does not affect the layout; it merely deselects everything.

select help
Print a short synopsis of the selection commands.

select save cell
Save all the information in the selection as a Magic cell on disk. The selection will be
saved in filecell.mag.

select and the see command
Select interacts with thesee command. When selecting individual pieces of material,
only visible layers are candidates for selection. When selecting an entire area, however,
both visible and non-visible material is selected. This behavior allows entire regions of
material to be moved, even ifsee has been used to turn off the display of some of the
layers.

sideways

1990 DECWRL/Livermore Magic 20

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Flip the selection left-to-right about a vertical axis running through the center of the selection’s
area. If the box is in the same window as the selection, it is flipped too. Selected material not in
the edit cell is not affected.

simcmd cmd
Sends the commandcmd to rsim for execution. SeeTutorial #11: Using IRSIM and RSIM with
Magic for more information.

snap [on]

snap [off]
Control whether the box and point are snapped to the grid selected for the windows in which they
appear (the grid was set by thegrid command), or to the standard 1x1 grid. The default is for
snapping to beoff, i.e., snapping to a 1x1 grid. With no arguments,snap prints whether snapping
is enabled or not.

startrsim [options] [filename]
Similar to thersim command, except it returns to Magic as soon as rsim is started. SeeTutorial
#11: Using IRSIM and RSIM with Magic for more information.

straighten direction
Straighten jogs in wires underneath the box by pulling them indirection. Jogs are only
straightened if doing so will cause no additional geometry to move.

stretch [direction [amount]]
This command is identical tomove except that simple stretching occurs as the selection is moved.
Each piece of paint in the selection causes the area through which it’s moved to be erased in that
layer. Also, each piece of paint in the selection that touches unselected material along its back
side causes extra material to be painted to fill in the gap left by the move. Ifdirection isn’t given
and the cursor isn’t exactly left, right, up, or down from the box corner, then Magic first rounds
the cursor position off to a position that is one of those (whichever is closest).

tool [name | info]
Change the current tool. The result is that the cursor shape is different and the mouse buttons
mean different things. The commandtool info prints out the meanings of the buttons for the
current tool. Tool name changes the current tool toname, wherename is one ofbox, wiring, or
netlist. If tool is invoked with no arguments, it picks a new tool in circular sequence: multiple
invocations will cycle through all of the available tools.

unexpand
Unexpand all cells that touch the box but don’t completely contain it.

upsidedown
Flip the selection upside down about a horizontal axis running through the center of the selection’s
area. If the box is in the same window as the selection then it is flipped too. Selected material that
is not in the edit cell is not changed.

what Print out information about all the things that are selected.

wire option [args]
This command provides a centerline-wiring style user interface.Option andargs specify a partic-
ular wiring option, as described below. Some of the options can be invoked via mouse buttons
when thewiring tool is active.

wire help
Print out a synopsis of the various wiring commands.

wire horizontal
Just likewire leg except that the new segment is forced to be horizontal.

wire leg

1990 DECWRL/Livermore Magic 21

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

Paint a horizontal or vertical segment of wire from one side of the box over to the
cursor’s x- or y-location (respectively). The direction (horizontal or vertical) is chosen
so as to produce the longest possible segment. The segment is painted in the current wir-
ing material and thickness. The new segment is selected, and the box is placed at its tip.

wire switch [layer width]
Switch routing layers and place a contact at the box location. The contact type is chosen
to connect the old and new routing materials. The box is placed at the position of the
contact, and the contact is selected. Iflayer andwidth are specified, they are used as the
new routing material and width, respectively. If they are not specified, the new material
and width are chosen to correspond to the material underneath the cursor.

wire type [layer width]
Pick a material and width for wiring. Iflayer and width are not given, then they are
chosen from the material underneath the cursor, a square chunk of material is selected to
indicate the layer and width that were chosen, and the box is placed over this chunk. If
layer andwidth are given, then this command does not modify the box position.

wire vertical
Just likewire leg except that the new segment is forced to be vertical.

writeall [force]
This command steps through all the cells that have been modified in this edit session and gives
you a chance to write them out. If theforce option is specified, then ‘‘autowrite’’ mode is used:
all modified cells are automatically written without asking for permission.

MOUSE BUTTONS FOR WINDOW CONTROL
For systems with pre-existing window packages, such as X windows, Magic generally uses the conventions
for moving windows in those systems. For systems without pre-existing window packages, such as the
AED line of displays, windows canbe re-arranged byclicking mouse buttons in window borders. When
pressed in the border area of a window, the left and right mouse buttons resize the window, instead of
resizing the box as they would when the box tool is active. The buttons behave in the same way that they
do for the box tool. For example, the left button moves the whole window by the lower left corner while
the right button moves just the upper right corner.

The use of scroll bars and the middle button are explained in ‘‘Magic Tutorial #5: Multiple Windows’’.

COMMANDS FOR ALL WINDOWS
These commands are not used for layout, but are instead used for overall, housekeeping functions. They
are valid in all windows.

center Adjust the view in the window under the cursor so the point underneath the cursor is at the center
of the window.

closewindow
The window under the cursor is closed. That area of the screen will now show other windows or
the background.

echo [-n] str1 str2 ... strN
Printsstr1 str2 ... strN in the text window, separated by spaces and followed by a newline. If the
-n switch is given, no newline is output after the command.

grow Grows a window up to full-screen size. Typing the command again causes the window to shrink
down to its former size and position.

help [pattern]
Displays a synopsis of commands that apply to the window you are pointing to. Ifpattern is given
then only command descriptions containing the pattern are printed.Pattern may contain ’*’ and

1990 DECWRL/Livermore Magic 22

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

’?’ characters, which match a string of non-blank characters or a single non-blank character
(respectively).

logcommands [file [update]]]
If file is given, all further commands are logged to that file. If no arguments are given, command
logging is terminated. If the keywordupdate is present, commands are output to the file to cause
the screen to be updated after each command when the command file is read back in.

macro [char [command]]
Command is associated withchar such that typingchar on the keyboard is equivalent to typing
‘‘:’’ followed by command. If command is omitted, the current macro forchar is printed. Ifchar
is also omitted, then all current macros are printed. Ifcommand contains spaces, tabs, or semi-
colons then it must be placed in quotes. The semicolon acts as a command separator allowing
multiple commands to be combined in a single macro.

openwindow [cell]
Open a new, empty window at the cursor position. Placement, sizing, and methods of manipula-
tion are determined by the conventions of the window system in use. If graphics is being done
directly to aframe-buffer with nointervening window system, e.g. on an AED, the windows can
be manipulated via mouse buttons as described in ‘‘MOUSE BUTTONS FOR WINDOW CON-
TROL’’ above. If cell is specified, then that cell is displayed in the new window. Otherwise the
area of the box will be displayed in the new window.

over Move the window under the cursor so that it appears above all other windows.

pushbutton button action
Simulates a button push. Button should beleft, middle, or right. Action is one ofup, or down.
This command is normally invoked only from command scripts produced by thelogcommands
command.

quit Exit Magic and return to the shell. If any cells, colormaps, or netlists have changed since they
were last saved on disk, you are given a chance to abort the command and continue in Magic.

redo [n]
Redo the lastn commands that were undone usingundo (see below). The number of commands
to redo defaults to 1 ifn is not specified.

redraw Redraw the graphics screen.

reset Reset the graphics controller and redraw the graphics screen. You should usually reset the graph-
ics hardware manually before invoking this command. This command is a way to recover from
noise errors on serial lines, and thus is ignored on workstations with built-in frame buffers.

scroll direction [amount]
The window under the cursor is moved byamount screenfulls indirection relative to the circuit.
If amount is omitted, it defaults to 0.5.

send type command
Send acommand to the window client named bytype. The result is just as ifcommand had been
typed in a window of typetype. Seespecialopen, below, for the allowable types of windows.

setpoint [x y [windowID]]
Fakes the location of the cursor up until after the next interactive command. Without arguments,
just prints out the current point location. This command is normally invoked only from command
scripts produced by thelogcommands command or by wizards that are using Magic without a
color display.

If windowID is given, then the point is assumed to be in that window’s screen coordinate system
rather than absolute screen coordinates. This feature is needed for devices like the Sun 160 that
have separate coordinate systems for each window. To find out a window’s ID on such a device,

1990 DECWRL/Livermore Magic 23

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

turn on command logging and look at the file produced.

sleep n Causes Magic to go to sleep forn seconds.

source filename
Each line offilename is read and processed as one command. No colons are necessary. Any line
whose last character is backslash is joined to the following line. The commandssetpoint, push-
button, echo, sleep, andupdatedisplay are useful in command files, and seldom used elsewhere.

specialopen [x1 y1 x2 y2] type [args]
Open a window of typetype. If the optionalx1 y1 x2 y2 coordinates are given, then the new win-
dow will have its lower left corner at screen coordinates (x1, y1) and its upper right corner at
screen coordinates (x2, y2). The args arguments are interpreted differently depending upon the
type of the window. These types are known:

layout This type of window is used to edit a VLSI cell. The command takes a single argument
which is used as the name of a cell to be loaded. The command

open filename
is a shorthand for the command

specialopen layout filename.

color This type of window allows the color map to be edited. See the section COMMANDS
FOR COLORMAP EDITING below.

netlist This type of window presents a menu that can be used to place labels, and to generate
and edit net-lists. See the section COMMANDS FOR NETLIST EDITING below.

underneath
Move the window pointed at so that it lies underneath the rest of the windows.

undo [count]
Undoes the lastcount commands. Almost all commands in Magic are now undo-able. The only
holdouts left are cell expansion/unexpansion, and window modifications (change of size, zooming,
etc.). If count is unspecified, it defaults to 1. Only the last twenty modifications are recorded for
undoing.

updatedisplay
Update the display. This command is normally invoked only from command scripts produced by
the logcommands command. Command scripts that do not contain this command update the
screen only at the end of the script.

view Choose a view for the window underneath the cursor so that everything in the window is visible.

windscrollbars [on|off]
Set the flag that determines if new windows will have scroll bars.

windowpositions [file]
Write out the positions of the windows in a format suitable for thesource command. Iffile is
specified, then write it out to that file instead of to the terminal.

zoom [factor]
Zoom the view in the window underneath the cursor byfactor. If factor is less than 1, we zoom
in; if it is greater than one, we zoom out.

MOUSE BUTTONS FOR NETLIST WINDOWS
When the netlist menu is opened using the commandspecial netlist, a menu appears on the screen. The
colored areas on the menu can be clicked with various mouse buttons to perform various actions, such as
placing labels and editing netlists. For details on how to use the menu, see ‘‘Magic Tutorial #7: Netlists
and Routing’’. The menu buttons all correspond to commands that could be typed in netlist or layout win-
dows.

1990 DECWRL/Livermore Magic 24

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

COMMANDS FOR NETLIST WINDOWS
The commands described below work if you are pointing to the interior of the netlist menu. They may also
be invoked when you are pointing at another window by using thesend netlist command. Terminal names
in all of the commands below are hierarchical names consisting of zero or more cell use ids separated by
slashes, followed by the label name, e.g.toplatch/shiftcell_1/in. When processing the terminal paths, the
search always starts in the edit cell.

add term1 term2
Add the terminal namedterm1 to the net containing terminalterm2. If term2 isn’t in a net yet,
make a new net containing justterm1 andterm2.

cleanup
Check the netlist to make sure that for every terminal named in the list there is at least one label in
the design. Also check to make sure that every net contains at least two distinct terminals, or one
terminal with several labels by the same name. When errors are found, give the user an opportun-
ity to delete offending terminals and nets. This command can also be invoked by clicking the
‘‘Cleanup’’ menu button.

cull Examine the current netlist and the routing in the edit cell, and remove those nets from the netlist
that are already routed. This command is often used after pre-routing nets by hand, so the router
won’t try to implement them again.

dnet name name ...
For eachname given, delete the net containing that terminal. If noname is given, delete the
currently-selected net, just as happens when the ‘‘No Net’’ menu button is clicked.

dterm name name ...
For eachname given, delete that terminal from its net.

extract Pick a piece of paint in the edit cell that lies under the box. Starting from this, trace out all the
electrically-connected material in theedit cell. Where this material touches subcells, find any ter-
minals in the subcells and make a new net containing those terminals. Note: this is a different
command from theextract command in layout windows.

find pattern [layers]
Search the area beneath the box for labels matchingpattern, which may contain the regular-
expression characters ‘‘*’’ ‘‘ ?’’, ‘‘ [’’, ‘‘]’’, and ‘‘ \’’ (as matched bycsh (1); see the description of
thefind button in ‘‘Magic Tutorial #7: Netlists and Routing’’). For each label found, leave feed-
back whose text is the layer on which the label appears, followed by a semicolon, followed by the
full hierarchical pathname of the label. The feedback surrounds the area of the label by one unit
on all sides. (The reason for the one-unit extension is that feedback rectangles must have positive
area, while labels may have zero width or height). Iflayers are given, only labels attached to
those layers are considered.

flush [netlist]
The netlist namednetlist is reloaded from the disk filenetlist.net. Any changes made to the netlist
since the last time it was written are discarded. Ifnetlist isn’t given, the current netlist is flushed.

join term1 term2
Join together the nets containing terminalsterm1 andterm2. The result is a single net containing
all the terminals from both the old nets.

netlist [name]
Select a netlist to work on. Ifname is provided, readname.net (if it hasn’t already been read
before) and make it the current netlist. Ifname isn’t provided, use the name of the edit cell
instead.

print [name]
Print the names of all the terminals in the net containingname. If name isn’t provided, print the

1990 DECWRL/Livermore Magic 25

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

terminals in the current net. This command has the same effect as clicking on the ‘‘Print’’ menu
button.

ripup [netlist]
This command has two forms. Ifnetlist isn’t typed as an argument, then find a piece of paint in
the edit cell under the box. Trace out all paint in the edit cell that is electrically connected to the
starting piece, and delete all of this paint. Ifnetlist is typed, find all paint in the edit cell that is
electrically connected to any of the terminals in the current netlist, and delete all of this paint.

savenetlist [file]
Save the current netlist on disk. Iffile is given, write the netlist infile.net. Otherwise, write the
netlist back to the place from which it was read.

shownet
Find a piece of paint in any cell underneath the box. Starting from this paint, trace out all paint in
all cells that is electrically connected to the starting piece and highlight this paint on the screen.
To make the highlights go away, invoke the command with the box over empty space. This com-
mand has the same effect as clicking on the ‘‘Show’’ menu button.

showterms
Find the labels corresponding to each of the terminals in the current netlist, and generate a feed-
back area over each. This command has the same effect as clicking on the ‘‘Terms’’ menu button.

trace [name]
This command is similar toshownet except that instead of starting from a piece of paint under the
box, it starts from each of the terminals in the net containingname (or the current net if noname is
given). All connected paint in all cells is highlighted.

verify Compare the current netlist against the wiring in the edit cell to make sure that the nets are imple-
mented exactly as specified in the netlist. If there are discrepancies, feedback areas are created to
describe them. This command can also be invoked by clicking the ‘‘Verify’’ menu button.

writeall Scan through all the netlists that have been read during this editing session. If any have been
modified, ask the user whether or not to write them out.

MOUSE BUTTONS FOR COLORMAP WINDOWS
Color windows display two sets of colored bars and a swatch of the color being edited. The left set of color
bars is labeled Red, Green, and Blue; these correspond to the proportion of red, green, and blue in the
color being edited. The right set of bars is labeled Hue, Saturation, and Value; these correspond to the
same color but in a space whose axes are hue (spectral color), saturation (spectral purity vs. dilution with
white), and value (light vs. dark).

The value of a color is changed by pointing inside the region spanned by one of the color bars and clicking
any mouse button. The color bar will change so that it extends to the point selected by the crosshair when
the button was pressed. The color can also be changed by clicking a button over one of the ‘‘pumps’’ next
to a color bar. A left-button click makes a 1% increment or decrement, and a right-button click makes a
5% change.

The color being edited can be changed by pressing the left button over the current color box in the editing
window, then moving the mouse and releasing the button over a point on the screen that contains the color
to be edited. A color value can be copied from an existing color to the current color by pressing the right
mouse button over the current color box, then releasing the button when the cursor is over the color whose
value is to be copied into the current color.

COMMANDS FOR COLORMAP WINDOWS

1990 DECWRL/Livermore Magic 26

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

These commands work if you are pointing to the interior of a colormap window. The commands are:

color [number]
Loadnumber as the color being edited in the window.Number must be an octal number between
0 and 377; it corresponds to the entry in the color map that is to be edited. If nonumber is given,
this command prints out the value of the color currently being edited.

load [techStyle displayStyle monitorType]
Load a new color map. If no arguments are specified, the color map for the current technology
style (e.g,mos), display style (e.g,7bit), and monitor type (e.g,std) is re-loaded. Otherwise, the
color map is read from the filetechStyle.displayStyle.monitorType.cmap in the current directory
or in the system library directory.

save [techStyle displayStyle monitorType]
Save the current color map. If no arguments are specified, save the color map in a file determined
by the current technology style, display style, and monitor type as above. Otherwise, save it in the
file techStyle.displayStyle.monitorType.cmap in the current directory or in the system library
directory.

DIRECTIONS
Many of the commands take a direction as an argument. The valid direction names arenorth, south, east,
west, top, bottom, up, down, left, right, northeast, ne, southeast, se, northwest, nw, southwest, sw, and
center. In some cases, only Manhattan directions are permitted, which means onlynorth, south, east,
west, and their synonyms, are allowed.

LAYERS
The mask layers are different for each technology, and are described in the technology manuals. The
layers below are defined in all technologies:

* All mask layers. Does not include special layers like the label layer and the error layer (see
below).

$ All layers underneath the cursor.

errors Design-rule violations (useful primarily in thesee command).

labels Label layer.

subcell Subcell layer.

Layer masks may be formed by constructing comma-separated lists of individual layer names. The indivi-
dual layer names may be abbreviated, as long as the abbreviations are unique. For example, to indicate
polysilicon and n-diffusion, usepoly,ndiff or ndiff,poly. The special character−− causes all subsequent
layers to be subtracted from the layer mask. For example,*−−p means ‘‘all layers but polysilicon’’. The
special character+ reverses the effect of a previous−−; all subsequent layers are once again added to the
layer mask.

SEE ALSO
magicusage(1), ext2sim(1), sleeper(1), fsleeper(1), rsleeper(1), cmap(5), dstyle(5), ext(5), glyphs(5),
magic(5), displays(5), net(5)

‘‘Magic Tutorial #1: Getting Started’’
‘‘Magic Tutorial #2: Basic Painting and Selection’’
etc.

‘‘Magic Technology Manual #2: SCMOS’’
etc.

1990 DECWRL/Livermore Magic 27

-

MAGIC (1) CAD Tool User’s Manual MAGIC (1)

‘‘Magic Maintainer’s Manual #1: Hints for System Maintainers’’
etc.

FILES
∼ cad/lib/magic/sys/.magic startup file to create default macros
∼ /.magic user-specific startup command file
∼ cad/lib/magic/nmos/* some standard nmos cells
∼ cad/lib/magic/scmos/* some standard scmos cells
∼ cad/lib/magic/sys/*.cmap* colormap files, see CMAP(5) man page
∼ cad/lib/magic/sys/*.dstyle* display style files, see DSTYLE(5) man page
∼ cad/lib/magic/sys/*.glyphs cursor and window bitmap files, see GLYPH(5) man page
∼ cad/lib/magic/sys/*.tech* technology files, see ‘‘Maintainer’s Manual

#2: The Technology File’’
∼ cad/lib/displays configuration file for Magic serial-line displays

CAD_HOME variable. If the shell environment variableCAD_HOME is set, Magic uses that location
instead of the true∼ cad location whenever it sees a file name beginning with∼ cad. This allows Magic to
be run without creating an actual user called "cad".

Search path. Magic’s system and library files, such as technology files and display-style files, normally are
placed in the∼ cad/lib/magic area. However, Magic first tries to find them in the user’s current directory.
This makes it easier for an individual user to override installed system files.

AUTHORS
Original: Gordon Hamachi, Robert Mayo, John Ousterhout, Walter Scott, George Taylor

Contributors: Michael Arnold (Magic maze-router and Irouter command), Don Stark (new contact
scheme, X11 interface, various other things), Mike Chow (Rsim interface). The X11 driver is the work of
several people, including Don Stark, Walter Scott, and Doug Pan. Many other people have contributed to
Magic, but it is impossible to list them all here. We appreciate their help!

BUGS
If Magic gets stuck for some reason, try using ’kill -TERM’ on it to save your cells in ‘cell.save.mag’.

Report bugs tomagic@ucbarpa.Berkeley.EDU. Please be specific: tell us exactly what you did to cause
the problem, what you expected to happen, and what happened instead. If possible send along small files
that we can use to reproduce the bug. A list of known bugs and fixes is also available from the above
address.

Magic will not run under the Bourne shell (but we don’t know why).

1990 DECWRL/Livermore Magic 28

-

MAGICUSAGE (1) CAD Tool User’s Manual MAGICUSAGE (1)

NAME
magicusage− print the names of all cells and files used in a Magic design

SYNOPSIS
magicusage [−−T technology] [−−p path] rootcell

DESCRIPTION
Magicusage will print the names of all cells and files used in the design whose root cell isrootcell. Each
line of the output is of the form

cellname ::: filename

wherecellname is the name of the cell as it is used, andfilename is the .mag file containing the cell. If a
cell is not found, a line of the form

cellname ::: << not found >>

is output instead.

If −−p path is specified, the search path used to find.mag files will be path. Otherwise, the search path is
initialized by first reading the system-wide .magic file in∼ cad/lib/magic/sys, then the .magic file in the
user’s home directory, and finally the .magic file in the current directory. The most recentpath command
read from the three files determines the search path used to find cells.

In addition, a library path of∼ cad/lib/magic/techname is used when searching for cells. By default,tech-
name is the technology of the first cell read, but it may be overridden by specifying an explicit technology
with the−−T techname flag.

FILES
∼ cad/lib/magic/tech
∼ cad/lib/magic/sys/.magic
∼ /.magic

SEE ALSO
magic (1), magic (5)

AUTHOR
Walter Scott

1990 DECWRL/Livermore Magic 1

-

NET2IR (1) CAD Tool User’s Manual NET2IR (1)

NAME
net2ir− produce :iroute commands to route a netlist composed of two-point nets

SYNOPSIS
net2ir feedfile netfile

DESCRIPTION
Net2ir is used to produce commands for the Magic interactive hint router to route the collection of two-
point nets specified in thenet (5) file netfile, in the order in which they appear in the file. The label loca-
tions come fromfeedfile, which should consist of a series ofbox andfeedback add Magic commands, such
as produced by thefind command (in a Magic netlist window). The text associated with each feedback
command must be of the formlayer;label, wherelayer is the Magic layer on whichlabel lies.

The output ofnet2ir is a sequence of:iroute route commands, one for each net in the netlist file.

SEE ALSO
magic (1), net (5)

AUTHOR
Walter Scott

1990 DECWRL/Livermore Magic 1

-

RSLEEPER (1) CAD Tool User’s Manual RSLEEPER (1)

NAME
rsleeper − run sleeper remotely

SYNOPSIS
rsleeper remotemachine

DESCRIPTION
Rsleeper is used if you wish to run a program such as magic (1) on a different machine (remotemachine)
than the one to which a graphics terminal is attached, and the local graphics terminal has a login process.

To use it, log in on the graphics terminal and run rsleeper. The tty printed will be on the remote machine,
and can be used as the graphics display device for programs such as magic (1).

For rsleeper to work, there must be an account sleeper on the remote machine. Its login shell should be the
program sleeper (1). Users must be able to rlogin to the sleeper account without supplying a password.

SEE ALSO
fsleeper (1), magic (1), sleeper (1), displays (5)

1990 DECWRL/Livermore Magic 1

-

SIM2SPICE (1) CAD Tool User’s Manual SIM2SPICE (1)

NAME
sim2spice− convert from .sim format to spice format

SYNOPSIS
sim2spice [−d defs] file.sim

DESCRIPTION
Sim2spice reads a file in.sim format and creates a new file in spice format. The file contains just a list of
transistors and capacitors, the user must add the transistor models and simulation information. The new file
is appended with the tag.spice. One other file is created, which is a list of.sim node names and their
corresponding spice node numbers. This file is tagged.names.

Defs is a file of definitions. A definition can be used to set up equivelences between.sim node names and
spice node numbers. The form of this type of definition is:

set sim_name spice_number [tech]
The tech field is optional. In NMOS, a special node, ‘BULK’, is used to represent the substrate node. For
CMOS, two special nodes, ’NMOS’ and ’PMOS’, represent the substrate nodes for the ’n’ and ’p’ transis-
tors, repectively. For example, for NMOS the.sim node ‘GND’ corresponds to spice node 0, ‘Vdd’
corresponds to spice node 1, and ‘BULK’ corresponds to spice node 2. Thedefs file for this set up would
look like this:

set GND 0 nmos
set Vdd 2 nmos
set BULK 3 nmos

A definition also allows you to set a correspondence between.sim transistor types and and spice transistor
types. The form of this definition is:

def sim_trans spice_trans [tech]
Again, thetech field is optional. For NMOS these definitions would look as follows:

def e ENMOS nmos
def d DNMOS nmos

Definitions may also be placed in the ‘.cadrc’ file, but the definitions in thedefs file overrides those in the
‘.cadrc’ file.

SEE ALSO
ext2sim(1), magic(1), spice(1), cadrc(5), ext(5), sim(5)

AUTHOR
Dan Fitzpatrick CMOS fixes by Neil Soiffer

BUGS
The only pre-defined technologies arenmos, cmos-pw, and cmos (the same ascmos-pw). Only one
definition file is allowed.

1990 DECWRL/Livermore Magic 11/17/82 1

-

SLEEPER (1) CAD Tool User’s Manual SLEEPER (1)

NAME
sleeper − acquire a graphics terminal and hang around

SYNOPSIS
sleeper

DESCRIPTION
Certain programs such as magic (1) can require the use of a graphics terminal separate from the terminal
used to run the program. If the graphics terminal has an ordinary login process running on it, it is neces-
sary to run sleeper to acquire ownership of the terminal, set up its modes appropriately, and prevent the
login process from eating input destined for the CAD tool.

When sleeper is run, it will print a message of the form:

tty is:
/dev/ttyname

Here, /dev/ttyname is the device name of the graphics terminal. This is particularly useful when sleeper is
run over the network, or when using fsleeper (1) or rsleeper (1).

Sleeper may be killed by sending it two QUIT signals within ten seconds of each other. This is most easily
done by typing two quit characters (usually CTRL-\ or CTRL-SHIFT-L) in a row on the graphics terminal.

For sleeper to work best, there should be an account named sleeper, whose login shell is ∼ cad/bin/sleeper
and with no password. This enables users to log in as the user sleeper, and is also necessary for the pro-
grams fsleeper (1) and rsleeper (1) to work. (Note that you will have to include the full pathname of
∼ cad/bin/sleeper in /etc/passwd; the initial ∼ cad does not get expanded).

SEE ALSO
fsleeper(1), magic(1), rsleeper(1)

1990 DECWRL/Livermore Magic 1

-

DQUEUE (3) CAD Tool User’s Manual DQUEUE (3)

NAME
dqueue− procedures for managing double-ended queues in libmagicutils.a

SYNOPSIS
#include magic.h
#include malloc.h
#include dqueue.h

DQInit(q, capacity)
DQueue *q;
int capacity;

DQFree(q)
DQueue *q;

DQPushFront(q, elem)
DQueue *q;
ClientData elem;

DQPushRear(q, elem)
DQueue *q;
ClientData elem;

ClientData DQPopFront(q)
DQueue *q;

ClientData DQPopRear(q)
DQueue *q;

DQChangeSize(q, newSize)
DQueue *q;
int newSize

DQCopy(dst, src)
DQueue *dst;
DQueue *src;

bool DQIsEmpty(q)
DQueue *q;

DESCRIPTION
These procedures manipulate double-ended queues. A double-ended queue (DQueue) is a structure to
which single word elements of typeClientData (actually type(char *), but intended to mean ‘‘any one-
word type at all’’) may be added to either endor removed from either end.Callers shouldnot reference
fields of aDQueue directly, but rather should use the following procedures:

DQInit initializes the DQueueq to have sufficient capacity to holdcapacity entries at first. If more than
this many entries are pushed on the queue, it automatically doubles its size (at the cost of copying, how-
ever), socapacity should be treated as the expected number of entries on the queue rather than the max-
imum number.DQFree frees the storage allocated byDQinit for the DQueueq.

DQPushFront andDQPushRear each place a new entryelem on the queueq; DQPushFront places it on
the front of the queue, whileDQPushRear places it on the rear. If the current maximum size of the queue
would be exceeded by either operation, twice as much space is allocated automatically and the existing
queue contents are copied to the bigger area.DQPopFront and DQPopRear remove an element from
respectively the front or rear of the DQueueq and return it. If no elements are left, they returnNULL
(zero).

1990 DECWRL/Livermore Magic 1

-

DQUEUE (3) CAD Tool User’s Manual DQUEUE (3)

Although DQPushFront and DQPushRear take care of increasing the space for a queue automatically,
sometimes it is desirable to change the size of a queue explicitly. This can be done withDQChangeSize,
which changes the size of the DQueueq to newSize, as long asnewSize is at least as great as the number of
entries already in the queue. If there are more thannewSize entries in the queue, nothing happens.

One DQueue may be copied to another byDQCopy, which copies the DQueuesrc to the DQueuedst.

Finally, to check whether a queueq is empty, one may callDQIsEmpty, which returnsTRUE (non-zero) if
the queue is empty, orFALSE (zero) if it contains any elements.

BUGS
UsingNULL to indicate end-of-queue inDQPopFront andDQPopRear is of marginal usefulness. Callers
should stick to usingDQIsEmpty unless they are certain not to have pushed any zero elements on the
queue.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

EXTFLAT (3) CAD Tool User’s Manual EXTFLAT (3)

NAME
extflat− procedures in libextflat.a for flattening extractor.ext files

SYNOPSIS
#include "hash.h"
#include "extflat.h"

typedef struct hiername { ... } HierName;
typedef struct efnn { ... } EFNodeName;
typedef struct efnhdr { ... } EFNodeHdr;
typedef struct efnode { ... } EFNode;
typedef struct fet { ... } Fet;

EFInit()

EFDone()

char *
EFArgs(argc, argv, argsProc, cdata)

int argc;
char *argv[];
Void (*argsProc)(pargc, pargv, cdata);
ClientData cdata;

EFReadFile(name)
char *name;

EFFlatBuild(rootName, flags)
char *rootName;
int flags;

EFFlatDone()

EFVisitCaps(capProc, cdata)
int (*capProc)(hn1, hn2, double cap, cdata);
ClientData cdata;

EFVisitFets(fetProc, cdata)
int (*fetProc)(fet, prefix, trans, cdata)
ClientData cdata;

EFVisitNodes(nodeProc, cdata)
int (*nodeProc)(node, int r, double c, cdata);
ClientData cdata;

int
EFNodeResist(node)

EFNode *node;

EFVisitResists(resProc, cdata)
int (*resProc)(hn1, hn2, res, cdata);

1990 DECWRL/Livermore Magic 1

-

EXTFLAT (3) CAD Tool User’s Manual EXTFLAT (3)

ClientData cdata;

bool
EFLookDist(hn1, hn2, pMinDist, pMaxDist)

HierName *hn1, *hn2;
int *pMinDist, *pMaxDist;

char *
EFHNToStr(hn)

HierName *hn;

HierName *
EFStrToHN(prefix, suffixStr)

HierName *prefix;
char *suffixStr;

HierName *
EFHNConcat(prefix, suffix)

HierName *prefix, *suffix;

HashEntry *
EFHNLook(prefix, suffixStr, errorStr)

HierName *prefix;
char *suffixStr;
char *errorStr;

HashEntry *
EFHNConcatLook(prefix, suffix, errorStr)

HierName *prefix, *suffix;
char *errorStr;

EFHNOut(hn, outf)
HierName *hn;
FILE *outf;

EFHNFree(hn, prefix, type)
HierName *hn, *prefix;
int type;

bool
EFHNBest(hn1, hn2)

HierName *hn1, *hn2;

bool
EFHNIsGND(hn)

HierName *hn;

bool
EFHNIsGlob(hn)

HierName *hn;

typedef struct hiername { ... } HierName;

1990 DECWRL/Livermore Magic 2

-

EXTFLAT (3) CAD Tool User’s Manual EXTFLAT (3)

typedef struct efnn { ... } EFNodeName;
typedef struct efnhdr { ... } EFNodeHdr;
typedef struct efnode { ... } EFNode;
typedef struct fet { ... } Fet;

DESCRIPTION
This module provides procedures for reading, flattening, and traversing the hierarchical extracted circuits
(in ext (5) format) produced by the Magic circuit extractor.

To use the procedures in this library, a client should first callEFInit to initialize various hash tables. When
a client is finally finished with this library, and wishes to free up any remaining memory used by it,
EFDone should be called.

COMMAND-LINE ARGUMENT PROCESSING
The procedureEFArgs is provided for parsing of command-line flags; it should be passed the arguments to
main. It will scan through them, recognizing those specific toextflat (seeextcheck (1) for a list of these
arguments) and passing unrecognized arguments to the user-supplied procedureargsProc, which should
update*pargc and*pargv to point after each argument it recognizes, or else print an error message if the
argument is unrecognized. If it is necessary to pass any additional information toargsProc, thecdata argu-
ment of EFArgs is automatically passed as the third argument toargsProc. If argsProc is NULL, any
arguments not recognized byEFArgs are considered to be errors.EFArgs considers any argument not
beginning with a dash (‘‘−−’’) to be a filename, of which there can be at most one. The argument containing
this filename is returned to the caller.

FLATTENING A CIRCUIT
Once command-line argument processing is complete, the caller can causeext (5) files to be read by calling
EFReadFile. This procedure will readname.ext and all of the.ext files it refers to, recursively until the
entire tree rooted atname has been read and converted into an internal, hierarchical representation.
EFReadFile may be called several times with different values ofname; any portions of the tree rooted at
name that aren’t already read in will be.

To build up the flat representation of a circuit read usingEFReadFile one should callEFFlatBuild. The
argumentrootName gives the name of the cell, which should have been read withEFReadFile above, that
is the root of the hierarchical circuit to be flattened. After all subsequent processing of the flat design is
complete, the caller may callEFFlatDone to free the memory associated with the flattened circuit, possibly
in preparation for callingEFFlatBuild with a differentrootName.

A different procedure is provided for visiting all of the structures of each type in the flattened circuit:
EFVisitCaps, EFVisitFets, EFVisitNodes, and EFVisitResists. Each takes two arguments: a search pro-
cedure to apply to all structures visited, and a ClientData field used to pass additional information to this
search procedure.

EFVisitCaps visits each of the internodal capacitors in the flat circuit, applyingcapProc to each. The argu-
ments tocapProc are the HierNameshn1 andhn2 of the two nodes between which the capacitor sits, the
capacitancecap in attofarads (type double from 6.5 and later), and the client datacdata with which
EFVisitCaps was called. If it’s necessary to obtain a pointer to the flat EFNode structures to whichhn1 or
hn2 refer, they can be passed toEFHNLook (see below).

EFVisitFets visits each of the transistors in the circuit, applyingfetProc to each. The arguments tofetProc
are the transistor structure itself,fet, the hierarchical pathprefix that should be prepended to the node
names of all the fet’s terminals, a geometric transform that must be applied to all coordinates in the fet to
convert them to root coordinates, the computed lengthl and widthw of the transistor channel (taking into
account substitution of symbolic values with the−−s flag), and the client datacdata with which EFVisitFets

1990 DECWRL/Livermore Magic 3

-

EXTFLAT (3) CAD Tool User’s Manual EXTFLAT (3)

was called.

EFVisitNodes visits each of the flat nodes in the circuit, applyingnodeProc to each. The arguments to
nodeProc are the flat EFNodenode, its lumped resistancer and capacitance to substratec (r type is integer
and c type is double from 6.5 and later), and the client datacdata with which EFVisitNodes was called. An
auxiliary procedure,EFNodeResist, is provided to compute the lumped resistance of a node from the per-
imeter and area information stored in it; it returns the resistance estimate in milliohms.

EFVisitResists visits each of the explicit resistors in the circuit, applyingresProc to each. The arguments
to resProc are similar to those ofcapProc: the HierNameshn1 andhn2 of the two terminals of the resistor,
its resistanceres, and the client datacdata with which EFVisitResists was called.

A final procedure is provided for looking up distance information.EFLookDist searches to find if there
was a distance measured between the points with the HierNameshn1 and hn2. If there was a distance
found, it returns TRUE and leaves*pMinDist and*pMaxDist set respectively to the minimum and max-
imum measured distance between the two points; otherwise, it returns FALSE.

NODE ORGANIZATION
Each electrical node in the circuit is represented by anEFNode structure, which points to a NULL-
terminated list ofEFNodeNames, each of which in turn points to theHierName list representing the
hierarchical name.EFNodes contain capacitance, perimeter, and area information for a node. If this infor-
mation is not required, an application may useEFNodeHdr structures in place ofEFNodes in many cases;
an EFNodeHdr consists of just the first few fields of anEFNode. EachEFNodeName is pointed to by a
HashEntry in a hash table of all flattened node names.

HIERARCHICAL NAME MANIPULATION
Hierarchical node names are represented as lists ofHierName structures. These structures store a hierarch-
ical pathname such asfoo/bar[1][3]/bletch in reverse order, with the last component (e.g., bletch) first.
Pathnames sharing a common prefix can therefore be shared.

EFStrToHN is the fundamental procedure for creating HierNames; it builds a path of HierNames from the
string suffixStr, and then leaves this path pointing to the prefix pathprefix. For example, ifprefix were the
path of HierNames representingfoo/bar[1][3], andsuffix were the stringshift/Vb1, the resulting HierName
would befoo/bar[1][3]/shift/Vb1, but only theshift/Vb1 part would be newly allocated.EFHNFree frees
the memory allocated for the portions of the HierName path pointed to byhn betweenhn andprefix, which
should be the same as theprefix passed toEFStrToHN. The type parameter is used only for measuring
memory usage and should be zero.EFHNToStr converts a HierName back into a string; it returns a pointer
to a statically-allocated copy of the string representation of the HierNamehn.

EFHNConcat is like EFStrToHN in that it concatenates a prefix and a suffix, but the suffix passed to
EFHNConcat has already been converted to a HierName.EFHNConcat creates a copy of the HierName
pathsuffix whose final element points to the prefixprefix, in effect producing the concatenation of the two
HierNames.

EFHNLook finds the HashEntry in the flat node hash table corresponding to the HierName that is the con-
catenation of the HierNameprefix and the HierName formed from the suffix stringsuffixStr. The value
field of this HashEntry (obtained throughHashGetValue) is a pointer to an EFNodeName, which in turn
points to the EFNode for this name.EFHNLook returns NULL if there wasn’t an entry in the node hash
table by this name, and also prints an error message of the form ‘‘errorStr: node prefix/suffixStr not
found’’. EFHNConcatLook performs a similar function, but its second argument is a HierName instead of
a string.

EFHNOut writes the HierNamehn to the output FILE*outf. The -t flag can be passed toEFArgs to
request suppression of trailing ‘‘!’’ or ‘‘ #’’ characters in node names when they are output byEFHNOut.

1990 DECWRL/Livermore Magic 4

-

EXTFLAT (3) CAD Tool User’s Manual EXTFLAT (3)

Three predicates are defined for HierNames.EFHNBest returns TRUE ifhn1 is ‘‘preferred’’ to hn2, or
FALSE if the opposite is true. Global names (ending in ‘‘!’’) are preferred to ordinary names, which are
preferred to automatically-generated names (ending in ‘‘#’’). Among two names of the same type, the one
with the least number of pathname components is preferred. If two names have the same number of com-
ponents, the one lexicographically earliest is preferable.EFHNIsGND returns TRUE if its argument is the
ground node ‘‘GND!’’. EFHNIsGlob returns TRUE if its argument is a global node name, i.e., ends in an
exclamation point.

SEE ALSO
extcheck (1), ext2dlys (1), ext2sim (1), ext2spice (1), magic (1) magicutils (3), ext (5)

1990 DECWRL/Livermore Magic 5

-

GEOMETRY (3) CAD Tool User’s Manual GEOMETRY (3)

NAME
geometry− primitive geometric structures and procedures in libmagicutils.a

SYNOPSIS
#include geometry.h

typedef struct { int p_x, p_y;

typedef struct { Point r_ll, r_ur;
#define r_xbot r_ll.p_x
#define r_ybot r_ll.p_y
#define r_xtop r_ur.p_x
#define r_ytop r_ur.p_y

typedef struct G1 { Rect r_r;

typedef struct { int t_a, t_b,

#define GEO_CENTER 0
#define GEO_NORTH 1
#define GEO_NORTHEAST2
#define GEO_EAST 3
#define GEO_SOUTHEAST4
#define GEO_SOUTH 5
#define GEO_SOUTHWEST6
#define GEO_WEST 7
#define GEO_NORTHWEST8

bool GEO_OVERLAP(r1, r2)
Rect *r1;
Rect *r2;

bool GEO_TOUCH(r1, r2)
Rect *r1;
Rect *r2;

bool GEO_SURROUND(r1, r2)
Rect *r1;
Rect *r2;

bool GEO_SURROUND_STRONG(r1, r2)
Rect *r1;
Rect *r2;

bool GEO_ENCLOSE(p, r)
Point *p;
Rect *r;

bool GEO_RECTNULL(r)
Rect *r;

GEO_EXPAND(src, amount, dst)
Rect *src, *dst;
int amount;

Transform GeoIdentityTransform;
Transform GeoUpsideDownTransform;
Transform GeoSidewaysTransform;
Transform Geo90Transform;
Transform Geo180Transform;

1990 DECWRL/Livermore Magic 1

-

GEOMETRY (3) CAD Tool User’s Manual GEOMETRY (3)

Transform Geo270Transform;

Rect GeoNullRect;

GeoTransPoint(t, psrc, pdst)
Transform *t;
Point *psrc, *pdst;

GeoTransRect(t, rsrc, rdst)
Transform *t;
Rect *rsrc, *rdst;

GeoTranslateTrans(tsrc, x, y, tdst)
Transform *tsrc, *tdst;
int x, y;

GeoTransTranslate(x, y, tsrc, tdst)
Transform *tsrc, *tdst;
int x, y;

GeoTransTrans(t1, t2, tdst)
Transform *t1, *t2, *tdst;

GeoInvertTrans(tsrc, tinv)
Transform *tsrc, *tinv;

int GeoScale(t)
Transform *t;

GeoDecomposeTransform(t, upsidedown, angle)
Transform *t;
bool *upsidedown;
int *angle;

int GeoNameToPos(name, manhattan, printerrors)
char *name;
bool manhattan, printerrors;

char *GeoPosToName(pos)
int pos;

int GeoTransPos(t, pos);
Transform *t;
int pos;

bool GeoInclude(src, dst);
Rect *src, *dst;

bool GeoIncludeAll(src, dst);
Rect *src, *dst;

bool GeoIncludePoint(src, dst);
Point *src;
Rect *dst;

GeoClip(r, cliparea)
Rect *r, *cliparea;

GeoClipPoint(p, cliparea)
Point *p;
Rect *cliparea;

1990 DECWRL/Livermore Magic 2

-

GEOMETRY (3) CAD Tool User’s Manual GEOMETRY (3)

bool GeoDisjoint(area, cliparea, func, cdata)
Rect *area, *cliparea;
bool (*func)(rect, cdata);
ClientData cdata;

bool GeoDummyFunc(rect, cdata)
Rect *rect;
ClientData cdata;

GeoCanonicalRect(rsrc, rdst)
Rect *rsrc, *rdst;

int GeoRectPointSide(r, p)
Rect *r;
Point *p;

int GeoRectRectSide(r1, r2)
Rect *r1, *r2;

bool GetRect(f, nskip, r)
FILE *f;
int nskip;
Rect *r;

DESCRIPTION
These procedures implement a number of useful geometric primitives: aPoint, which consists of an
integerx andy coordinate, and aRect, which describes a rectangle by its lower-left and upper-rightPoints.
An important predefinedRect is GeoNullRect, the rectangle with both its lower-left and upper-right at the
origin (0, 0). If linked lists ofRects are needed, theLinkedRect primitive can be used.

Another primitive is a position relative to a point (GEO_NORTH, GEO_EAST, etc). There are a total of
nine positions, corresponding to the eight points around a single point in a grid plus the point itself
(GEO_CENTER).

The final primitive is aTransform, which represents some combination of rotation by a multiple of 90
degrees, mirroring across thex or y axis, scaling by an integer scale factor, and translation by an integerx
andy displacement. ATransform can be thought of as representing a simple linear transformation on two-
dimensional points, or as a matrix of the form:

a d 0
b e 0
c f 1

Multiplying a point vector of the form(x, y, 0) by this transform gives a transformed point(x’, y’, 0).
Although the transform matrix has nine elements, the three on the right-hand are always constant, so only
six numbers are needed to describe a transform: four for the rotation (a, b, d, e) and two for the translation
(c, f). Because the only rotations are multiples of 90 degrees, transforms will always be of one of the fol-
lowing even more specific forms (only the four rotation numbers are shown), whereS is the integer scale
factor:

S 0 0 -S -S 0 0 S
0 S S 0 0 -S -S 0

S 0 0 S -S 0 0 -S
0 -S S 0 0 S -S 0

1990 DECWRL/Livermore Magic 3

-

GEOMETRY (3) CAD Tool User’s Manual GEOMETRY (3)

The first four forms correspond to clockwise rotations of 0, 90, 180, and 270 degrees, and the second four
correspond to the same four orientations flipped upside down (mirror across thex-axis after rotating).

The above rotations or mirrorings with a scale factor of 1 exist as predefined transforms.GeoIdenti-
tyTransform is the identity transformation, i.e, no transformation at all, or the first transform listed above.
Geo90Transform, Geo180Transform, andGeo270Transform correspond to the next three transformations,
or clockwise rotations of 90, 180, and 270 degrees respectively.GeoUpsideDownTransform is the next
transform, mirroring across thex-axis. GeoSidewaysTransform is the seventh transform, corresponding to
mirroring across they-axis. The remaining two transforms above (the sixth and eighth) don’t have any
predefined transforms, but can be built by composing predefined transforms usingGeoTransTrans (see
below).

A number of macros exist for determining relationships betweenPoints andRects. GEO_OVERLAP is
TRUE if two rectangles share some area in common.GEO_TOUCH is TRUE if two rectangles share some
area or any part of their perimeters (including touching only at a corner).GEO_SURROUND is TRUE if
r1 completely surroundsr2, where the boundaries ofr1 and r2 are allowed to touch.
GEO_SURROUND_STRONG is like GEO_SURROUND, but is only TRUE ifr1 completely surroundsr2
without their borders touching.GEO_ENCLOSE is TRUE if a pointp lies inside or on the border of the
rectangler. GEO_RECTNULL is TRUE if r has zero area, which can result if thex-coordinate of its
upper-right is less than or equal to thex-coordinate of its lower-left, or similarly for they-coordinates.
Finally, GEO_EXPAND is used to grow (or shrink) a rectanglesrc by an integer distanceamount, leaving
the new rectangle indst (which may be the same assrc).

Many procedures exist to manipulate transformations. In general, when they accept more than one Point or
Rect as arguments, the Points or Rects must be distinct from each other (i.e, no aliasing is allowed).Geo-
TransPoint applies the Transform*t to the Point*psrc and leaves its result in the Point*pdst. Geo-
TransRect is identical, but for Rects; it appliest to *rsrc and leaves its result in*rdst. GeoTransRect
guarantees thatrdst->r_ur is really above and to the right ofrdst->r_ll, by interchanging upper and lower
coordinates if necessary after the transform. Note that this is NOT the same as transforming the upper-
right and lower-left Points separately, since separate transformations can result in a rectangle whose upper
right is below its lower left (e.g,GeoUpsideDownTransform).

Three procedures compose transforms, producing the transform that is equivalent to applying first one, then
the second of the two transforms. There are two special-case procedures.GeoTranslateTrans composes
first the Transform*tsrc and then a simple translation byx and y, storing its result in*tdst. GeoTran-
sTranslate composes first a simple translation byx andy, followed by the Transform*tsrc, also storing its
result in*tdst. Finally, GeoTransTrans composes two arbitrary transforms*t1 and*t2, leaving its result in
*tdst.

Transforms that adhere to one of the eight rotation formats described above are always invertible. The
inverse of such a transform can be computed byGeoInvertTrans, which leaves the inverse of*tsrc in *tinv.

Two procedures extract useful information from Transforms.GeoScale returns the scale factor associated
with the Transform*t. GeoDecomposeTransform breaks up a transform into an optional mirror about the
x-axis (i.e., flipping upside down), followed by an optional counterclockwise rotation. It sets*upsidedown
to TRUE if the transform requires flipping upside down before rotation, and sets*angle to the degrees of
rotation: 0, 90, 180, or 270.

Three procedures manipulate positions such asGEO_NORTH. GeoNameToPos maps the ASCIIname for
a position (e.g, ‘‘north’’, ‘‘top’’, or ‘‘left’’, ‘‘west’’, etc) into the internal position number. Ifname is
ambiguous, -1 is returned; ifname is unrecognized, -2 is returned. Ifmanhattan is TRUE, only the direc-
tions corresponding toGEO_NORTH, GEO_SOUTH, GEO_WEST, or GEO_EAST are accepted. Ifprin-
terrors is TRUE,GeoNameToPos will print an error message on the standard output in addition to return-
ing -1 or -2. The inverse ofGeoNameToPos is GeoPosToName, which returns the ASCII string for a given
positionpos. GeoTransPos applies the Transfor*t to the positionpos and returns the new position. Only
the rotational part of*t is relevant; the translation is ignored.

1990 DECWRL/Livermore Magic 4

-

GEOMETRY (3) CAD Tool User’s Manual GEOMETRY (3)

The next collection of procedures manipulate Points and Rects.GeoInclude and GeoIncludeAll extend
whichever sides of the Rect*dst that are necessary to include the area of the Rect*src. Both return TRUE
if *dst was enlarged. If*src is considered to be zero-size (see below),*dst is unchanged. If*dst is zero-
size, it is set to*src if *src is not also zero-size. The two procedures differ in thatGeoInclude considers
zero-arearectangles to be zero-size, whileGeoIncludeAll only considers rectangles whose bottom is actu-
ally above their top or whose LHS is to the right of their RHS to be zero-size.GeoIncludePoint is like
GeoInclude except*src is a Point instead of a Rect.

Three procedures are provided for clipping.GeoClip determines the portion of the Rect*r that overlaps
the Rect*cliparea and replaces*r with the new Rect. If*r and*cliparea don’t overlap at all,*r is turned
inside out (r_xbot > r_xtop or r_ybot > r_ytop). GeoClipPoint moves the Point*p to the closest point on
the boundary of the Rect*cliparea if it isn’t already contained in*cliparea or on its border. Finally,Geo-
Disjoint is used to clip a Rect against another, but to apply a procedure to each region in*area that lies out-
side*cliparea, instead of modifying*area. The procedure(*proc)() it applies should be like the library
procedureGeoDummyFunc, which accepts a Rect and thecdata argument passed toGeoDisjoint and
returns TRUE always. If(*proc)() returns FALSE,GeoDisjoint aborts and returns FALSE itself; other-
wise, it returns TRUE.GeoDisjoint works in ‘‘tile’’ space, so each rectangle is considered to contain its
lower x- andy-coordinates, but not its upper coordinates.

The discussion earlier on transformation mentioned that transforming the two corner points of a Rect
independently could result in a Rect whose lower left was above or to the right of its upper right.Geo-
CanonicalRect can remedy this situation; it flips the top and bottom or left and right (or both) of the Rect
*rsrc as necessary to ensure that the upper right is above and to the right of the lower left, leaving the
canonical Rect in*rdst.

Two procedures compute the relative positions of Points and Rects.GeoRectPointSide gives the side
(GEO_NORTH, etc) of the Rect*r on which the Point*p lies (*p must lie on the boundary of*r; other-
wise,GEO_CENTER is returned). Similarly,GeoRectRectSide gives the side of*r1 on which*r2 lies, or
GEO_CENTER if they don’t share any side. Unfortunately this procedure doesn’t detect the case where
the Rects share a coordinate without sharing a side (e.g, the LHS of one is equal to the RHS of the other,
but they don’t come even close in the vertical dimension).

A final procedure is provided for high-speed reading of ascii files containing descriptions of rectangles,
GetRect. This procedure reads from a stdio-opened FILE*f, which should be positioned so that after skip-
ping nskip characters, it will be at the start of a line containing four ascii numbers that will be stored inr-
>r_xbot, r->r_ybot, r->r_xtop, andr->r_ytop. It returns TRUE if it successfully recognized a rectangle,
FALSE on error or end-of-file.GetRect is considerably faster than eitherfscanf (3s) or evenfgets (3s) fol-
lowed by manual decoding of the line, because it reads data directly from the stdio buffer in its input file.
As such, it depends on the structure of a FILE, and may fail to work properly on machines with wildly dif-
ferent implementations of the stdio library from the standard Berkeley distribution (those in which certain
fields are nonexistent or renamed).

MACROS FOR SPEED
If speed is essential, macros are defined ingeofast.h to take the place of the several procedures for special
cases.GEOCLIP is identical to the procedureGeoClip, but it returns no value. Four macros for manipu-
lating Transforms, GEOTRANSRECT, GEOTRANSTRANS, GEOINVERTTRANS, and GEOTRAN-
STRANSLATE, are similar to their procedural counterpartsGeoTransRect, GeoTransTrans, GeoInvert-
Trans, andGeoTransTranslate, but only work with Transforms whose scale factor is unity (1). These mac-
ros are several times faster than their procedural counterparts; on a Sun-2 the speed difference is close to a
factor of 10, but on other machines the difference is less extreme.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 5

-

HASH (3) CAD Tool User’s Manual HASH (3)

NAME
hash− procedures for managing hash tables in libmagicutils.a

SYNOPSIS
#include hash.h

HashInit(table, initsize, keysize)
HashTable *table;
int initsize, keysize;

HashInitClient(table, initsize, keysize, compareFn, copyFn, hashFn, killFn)
HashTable *table;
int initsize, keysize;
int (*compareFn)(key1, key2);
char *(*copyFn)(key);
int (*hashFn)(key);
Void (*killFn)(key);

int HashSize(keybytes)
int keybytes;

HashKill(table)
HashTable *table;

HashEntry *HashLookOnly(table, key)
HashTable *table;
ClientData key;

HashEntry *HashFind(table, key)
HashTable *table;
ClientData key;

ClientData HashGetValue(he)
HashEntry *he;

HashSetValue(he, value)
HashEntry *he;
ClientData value;

HashStartSearch(hs)
HashSearch *hs;

HashEntry *HashNext(table, hs)
HashTable *table;
HashSearch *hs;

DESCRIPTION
This module provides procedures for creating, accessing, and destroying hash tables. These tables grow
automatically as more elements are added to them to avoid overloading. They may be indexed by strings,
single words, or multi-word structures. Single-word can be interpreted (e.g., compared or hashed) by
user-supplied procedures. Each entry stores a single word value, which may be set or read by the macros
HashSetValue or HashGetValue but should not be manipulated directly.

HashInit is used to allocate space for the initially empty hash tabletable. Enough space is allocated for
initsize buckets (which should be a power of two), although subsequent additions to the hash table can
cause the number of buckets to increase. Tables can be organized in one of three different ways, depend-
ing on the value ofkeysize.

1990 DECWRL/Livermore Magic 1

-

HASH (3) CAD Tool User’s Manual HASH (3)

If keysize is HT_STRINGKEYS, then keys passed toHashFind (or HashLookOnly) are treated as the
addresses of NULL-terminated strings. TheHashEntry structures for this type of key are variable-sized;
sufficient space is allocated at the end of each structure to hold the key string and its trailing NULL byte. If
keysize is HT_WORDKEYS, then keys are single words of data passed directly toHashFind, and are
compared usingstrcmp (1). If keysize is HT_STRUCTKEYS or greater, keys are multiple words of data,
but their address is passed toHashFind (instead of the actual value as whenkeysize was
HT_WORDKEYS). The value ofkeysize in this case should be the number of words in a key. The macro
HashSize should be used to produce this number;HashSize(sizeof (struct foo)) gives the number of words
needed if keys are to be of type (struct foo). In general, single-word keys (keysize equal to
HT_WORDKEYS) are the fastest, but the most restrictive.

A second procedure,HashInitClient, may be used to initialize a hash table instead ofHashInit. This
second procedure is a more general one, in that it allows a fourth value ofkeysize to be provided,
HT_CLIENTKEYS, along with four client procedures. The keys in such a case are single-word values,
passed toHashFind just like keys whenkeysize is HT_WORDKEYS. However, they are interpreted using
the client procedures passed in the call toHashInitClient. These procedures perform four functions; if any
are NULL, then those functions are performed exactly as in the case ofHT_WORDKEYS. The first,
(*compareFn)(key1, key2), takes two single-word key values and returns either 0 if they are equal, or 1 if
they are not. The next procedure,(*copyFn)(key), is called when a new entry is being created for a key; it
performs whatever processing is needed to ensure that the key can be kept around permanently (e.g., mak-
ing a copy of it), and returns the value that will actually be stored as the key in the hash table (e.g., the
copy). The third procedure,(*hashFn)(key), is used to produce a single 32-bit value fromkey. It is pri-
marily useful whenkey is in fact a pointer to a structure, and the contents of the structure, rather than its
address, determine the hash value. Finally,(*killFn)(key) is called when the hash table is being freed by
HashKill to perform any final cleanup of a key, such as freeing a key that had been copied by(*copyFn)()
when it was installed in the hash table.

HashKill can be used to free all the storage associated withtable.

Both HashLookOnly and HashFind are used for retrieving the entry fromtable that matchskey. They
differ in their behavior whenkey is not in the table.HashLookOnly will return NULL if the key is not
found, whileHashFind will create a new HashEntry whose value (as returned byHashGetValue) is zero.

It is possible to scan sequentially through a hash table to visit all its entries.HashStartSearch initializes the
HashSearch structurehs, which is then passed toHashNext, which keeps returning subsequent entries in
the table until all have been returned, when it returns NULL.

BUGS
If it is possible for initialized entries in the hash table to have NULL values, thenHashLookOnly must be
called beforeHashFind if you are to be certain that an entry was not already in the table, since there is no
distinction between a NULL value that was already in the table and a NULL value that signifies that the
entry was newly created byHashFind.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

HEAP (3) CAD Tool User’s Manual HEAP (3)

NAME
heap− procedures for managing sorted heaps in libmagicutils.a

SYNOPSIS
#include magic.h
#include heap.h

typedef struct { int he_key, char *he_id; } HeapEntry;

bool HEAP_EMPTY(h)
Heap *h;

HeapInit(h, initsize, descending, stringids)
Heap *h;
int initsize;
bool descending, stringids;

HeapKill(h, func)
Heap *h;
int (*func)(h, index);

HeapFreeIdFunc(h, index)
Heap *h;
int index;

HeapEntry *HeapRemoveTop(h, entry);
Heap *h;
HeapEntry *entry;

HeapAdd(h, key, id)
Heap *h;
int key;
char *id;

DESCRIPTION
These procedures create, manipulate, and destroy heaps. A heap is essentially an array that automatically
sorts itself when items are added to it. The items added to the heap consist of an integer key and a one-
word datum which can either be the address of a NULL-terminated string (treated specially), or any other
one-word data item. Heaps can be sorted in either ascending or descending order. The data storage for a
heap automatically grows as more elements are added to the heap.

The HeapEntry structure identifies the integer key value (he_key) on which the element is sorted, and a
one-word datum (he_id). Heaps are created byHeapInit, which initializes the data storage forh. Enough
space is left initially forinitsize elements, although the heap will grow automatically as more elements are
added. Ifdescending is TRUE, the largest element in the heap will be removed first; otherwise, the smal-
lest element will be the first to be removed byHeapRemoveTop. Each heap entry has an associated datum
or id; if stringids is TRUE, these are considered to be ASCII strings and handled specially byHeapAdd and
HeapKill.

HeapKill deallocates the storage associated with a heap. Iffunc is non-NULL, it is applied to each element
in the heap. A common use offunc is to free the storage associated with string ids in the heap, such as is
necessary when the heap was created withstringids set toTRUE in the call toHeapInit above. A library
function,HeapFreeIdFunc, is provided for this purpose.

HeapRemoveTop places the top element fromh in the HeapEntry pointed to byentry and returnsentry.
However, if the heap was empty,HeapRemoveTop returns NULL. HeapRemoveTop always removes the
smallest (if keys are ascending) or largest (if keys are descending) element from the heap.

1990 DECWRL/Livermore Magic 1

-

HEAP (3) CAD Tool User’s Manual HEAP (3)

HeapAdd is used to add a new entry toh. The new entry has an integer key ofkey, and a value ofid. If the
heap was created withstringids to be TRUE in HeapInit, then id is interpreted as a NULL-terminated
ASCII string; sufficient additional memory to hold this string is allocated, the string is copied into this new
memory, and a pointer to this new memory is stored with the heap entry. Otherwise, the value ofid is just
stored directly in the heap entry.

BUGS
The management of thehe_id field should be consistent with the management of keys for hash tables, i.e,
multi-word structures should be supported along with strings and single-word values.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

List (3) CAD Tool User’s Manual List (3)

NAME
list − procedures for managing lisp style lists in libmagicutils.a

SYNOPSIS
#include magic.h
#include list.h

LIST_ADD(item,list)

LIST_FIRST(list)

LIST_TAIL(list)

bool ListContainsP(element, list)
ClientData element;
List *list;

Void ListDealloc(list)
List *list;

Void ListDeallocC(list)
List *list;

int ListLength(list)
List *list;

ClientData ListPop(listPP)
List **listPP;

List *ListReverse(list)
List *list

DESCRIPTION
These macros and procedures permit the implementation of linked lists of arbitrary things. The lists are
lisp like, i.e., list pointers are in separate structures rather than in the strucs being linked. Macros are dis-
tinguished from procedues by names that are all upper-case.

LIST_ADD(i,l) adds an item to the front of a list.

LIST_COPY(l,lnew) creates a copy of a list

LIST_FIRST references the firstitem on the list.

LIST_TAIL(l) references thesublist consisting of all but the first item of the list.

ListContainsP returnsTRUE in the specified item is contained in the list.

int ListLength returns the length of the list.

Void ListDealloc reclaims a list (but not its contents).

Void ListDeallocC reclaims a list /fIand/fR its contents.

ListPop deletes the first item from the list, and returns it (the item).

List *ListReverse creates and returns a reversed copy of a list.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 1

-

MAGICUTILS (3) CAD Tool User’s Manual MAGICUTILS (3)

NAME
magicutils− collection of utility procedures in -lmagicutils

SYNOPSIS
cc -I∼ cad/src/magic/include ∼ cad/src/magic/lib/libmagicutils.a
cc -I∼ cad/src/magic/include ∼ cad/src/magic/lib/libmagictrace.a
cc -I∼ cad/src/magic/include -pg ∼ cad/src/magic/lib/libmagicutils_p.a
cc -I∼ cad/src/magic/include -pg ∼ cad/src/magic/lib/libmagictrace_p.a
(replace∼ cad with the home directory of the usercad).

MainExit(code) int code;

TxError(fmt, va_alist) char *fmt; va_dcl;

char *TxGetLine(buf, len) char *buf; int len;

DESCRIPTION
The two librarieslibmagicutils.a and libmagictrace.a include all of the procedures from theutils module
used internally by the Magic layout system. The first library is for normal use; the second library is for use
with the tracing option of the new memory allocator. See the documentation on the individual pieces of the
library for details of the procedures they contain.

To use these libraries, you should compile your programs with the flag-I∼ cad/src/magic/include (to
search the Magic include directory for needed.h files). The documentation for the various pieces of the
libraries lists which.h files are needed for which procedures.

Three default procedures are defined for the library but can be replaced by your own procedures if you so
wish. The procedures areMainExit, which has the same semantics asexit (3) but can be replaced by your
own procedure by that name to do additional cleanup,TxError, which is like fprintf(stderr, fmt, args),
where args can be zero or more arguments, just as infprintf (3), and finallyTxGetLine, which is like
fgets(buf, len, stdin). The library versions of these procedures only get pulled in if you haven’t defined
them yourself.

Versions exist of both libraries with profiling (-pg) enabled; these arelibmagicutils_p.a and
libmagictrace_p.a.

SEE ALSO
magic(1), dqueue(3), geometry(3), hash(3), heap(3), list(3), malloc(3), path(3), runstats(3), set(3) show(3)
stack(3), string(3)

1990 DECWRL/Livermore Magic 1

-

MALLOC (3) CAD Tool User’s Manual MALLOC (3)

NAME
mallocMagic, freeMagic− a new memory allocator in libmagicutils.a

SYNOPSIS
#include magic.h
#include malloc.h

char *mallocMagic(size)
unsigned size;

char *callocMagic(size)
unsigned size;

MALLOC(type_decl, var, size)
type_decl var;
unsigned size;

CALLOC(type_decl, var, size)
type_decl var;
unsigned size;

freeMagic(var)
char *var;

FREE(var)
char *var;

cc -DMALLOCTRACE ... ∼∼ cad/src/magic/lib/libmagictrace.a

mallocTraceInit(filename)
char *filename;

mallocTraceEnable()

mallocTraceDisable()

mallocTraceDone()

mallocTraceOnlyWatched(only)
bool only;

bool mallocTraceWatch(addr)
char *addr;

bool mallocTraceUnWatch(addr)
char *addr;

DESCRIPTION
These procedures implement a new memory allocator. They provide fast allocation and freeing for pro-
grams that allocate thousands or millions of objects of similar sizes. Speed results from maintaining
separate free-lists for objects of each size, providing fast macrosMALLOC andFREE for doing allocation
and freeing, and clustering objects of the same size on the same page in an attempt to improve locality of
reference. Inaddition, these procedures provide features to aid in the debugging of programs that do a lot
of memory allocation and freeing; used in conjunction withprleak (8) they can detect storage leaks and
also duplicate attempts to free the same storage location.

Memory is allocated using either the proceduremallocMagic or the macroMALLOC. The former has an
interface identical to that of the standard UNIX library proceduremalloc (3), namely, it returns a pointer to
a region of memory sufficiently large to holdsize bytes. The macroMALLOC is noticeably faster, particu-
larly on machines with brain-dead procedure calls (such as a certain popular machine made by the second
largest U.S. computer manufacturer). Its usage is a bit unusual, in that its first argument is a type

1990 DECWRL/Livermore Magic 1

-

MALLOC (3) CAD Tool User’s Manual MALLOC (3)

specification and its second is modified in place. For example, to allocate an object of typeHashEntry *
that is 20 bytes long, and to assign this to the pointerhe, one could write:

MALLOC(HashEntry *, he, 20);

Note that there are no parentheses around theHashEntry * above. After executing this macro,he would
point to aHashEntry that was 20 bytes long.

The macroCALLOC and the procedurecallocMagic perform function analagous toMALLOC andmalloc-
Magic except that the malloc’d memory is zeroed.

Memory can be freed using either the procedurefreeMagic, which frees its argumentvar exactly as does
the UNIX free (3), or using theFREE macro, which does the same thing tovar but is faster.

Users ofMALLOC andFREE should beware that they are macros that include C statements enclosed in a
pair of braces ({ ... }), and should be treated accordingly. For example, it is not legal to type:

if (i != j)
MALLOC(HashEntry *, he, i);

else
return (NULL);

One should instead use:

if (i != j)
{

MALLOC(HashEntry *, he, i);
}
else

return (NULL);

If you wish to take advantage of the debugging features of this memory allocator, you must do two things.
First, compile all of your.c files that #include ‘‘malloc.h’’ with the-DMALLOCTRACE flag. Second,
when you link your program to build ana.out file, use the library∼∼ cad/src/magic/lib/libmagictrace.a
instead of the normallibmagicutils.a. The libmagictrace.a library contains additional code to maintain
the information needed by the debugging procedures below. If you link your program with the standard
library, it will link successfully, but the debugging procedures won’t do anything.

The debugging procedures produce a trace file for subsequent analysis byprleak (8). Before any memory
is allocated, you should callmallocTraceInit to create the trace filename. Tracing won’t actually begin,
however, until you callmallocTraceEnable. From that point untilmallocTraceDisable, all calls tomalloc-
Magic or freeMagic (or their corresponding macro versionsMALLOC and FREE) will be logged to the
trace file. Calls tomallocTraceDisable andmallocTraceEnable may be nested; only the outermostmalloc-
TraceEnable has any effect.

If more selective tracing is desired, you can specify that trace information is to be output only for certain
addresses. CallingmallocTraceOnlyWatched with only equal toTRUE causes this to happen. An address
addr is added to the list of addresses to trace by callingmallocTraceWatch, or removed from this list by
calling mallocTraceUnWatch. When mallocTraceOnlyWatched is called with only equal to FALSE,
operation reverts to the normal mode of tracing all addresses.

When you are finished with all memory allocation tracing and want to flush all results out to the trace file,
call mallocTraceDone. Subsequent calls to the memory allocator will not be traced.

BUGS
TheMALLOC andFREE macros are syntactically clumsy, but unfortunately some C optimizers have trou-
ble with syntactically cleaner forms.

1990 DECWRL/Livermore Magic 2

-

MALLOC (3) CAD Tool User’s Manual MALLOC (3)

The ability to trace specific addresses is only useful if you know which ones to watch. A more generally
useful facility would probably be to watch certain sizes of objects, or to allow the user to supply a pro-
cedure that could determine whether or not an address was to be traced.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 3

-

MPACK (3) CAD Tool User’s Manual MPACK (3)

NAME
mpack− routines for generating semi-regular modules

DESCRIPTION
Mpack is a library of ‘C’ routines that aid the process of generating semi-regular modules. Decoder
planes, barrel shifters, and PLAs are common examples of semi-regular modules.

Using Magic, an mpack user will draw an example of a finished module and then break it into tiles. These
tiles represent the building blocks for more complicated instances of the module. The mpack library pro-
vides routines to aid in assembling tiles into a finished module.

MAKING AN EXAMPLE MODULE
The first step in using mpack is to create an example instance of the module, called atemplate. The basic
building blocks of the structure, ortiles, are then chosen. Each tile should be given a name by means of a
rectangular label which defines its contents. If the tiles in the module do not abut (e.g. they overlap) it is
useful to define another tile whose size indicates how far apart the tiles should be placed.

Templates should be in Magic format and, by convention, end with a.mag suffix. With some programs, it
is possible to generate the same structure in a different technology or style by changing just the template.
If this is the case, each template should have a filename of the
form basename-style.mag. Thestyle part of the filename interacts with the-s option (see later part of this
manual).

WRITING AN MPACK PROGRAM
An mpack program is the ‘C’ code which assembles tiles into the desired module. Typically this program
reads a file (such as a truth table) and then calls the tile placement routines in the mpack library.

The mpack program must first include the file∼∼ cad/lib/mpack.h which defines the interface to the mpack
system. Next theTPinitialize procedure is called. This procedure processes command line arguments,
opens an input file as the standard input (stdin), and loads in a template.

The program should now read from the standard input and compute where to place the next tile. Tiles may
be aligned with previously placed tiles or placed at absolute coordinates. If a tile is to overlap an existing
tile the program must space over the distance of the overlap before placing the tile.

When all tiles are placed the program should call the routineTPwrite_tile to create the output file that was
specified on the command line.

To use the mpack library be sure to include it with your compile or load command (e.g.cc your_file
∼∼ cad/lib/mpack.lib).

ROUTINES
Initialization and Output Routines

TPinitialize(argc, argv, base_name)
The mpack system is initialized, command line arguments are processed, and a template
is loaded. The file descriptorstdin is attached to the input file specified on the command
line. The template’s filename is formed by taking thebase_name, adding any extension
indicated by the-s option, and then adding the.mag suffix. The-t option allows the user
to overridebase_name from the command line.

Argc and argv should contain the command line arguments.Argc is a count of the
number of arguments, whileargv is an array of pointers to strings. Strings of length zero
are ignored (as is the flag consisting of a single space), in order to make it easy for the
calling program to intercept its own arguments.Argc andargv are of the same structure
as the two parameters passed to the main program. A later section of this manual sum-
marizes the command line options.

TPload_tiles(file_name)

1990 DECWRL/Livermore Magic 2/20/85 1

-

MPACK (3) CAD Tool User’s Manual MPACK (3)

The givenfile_name is read, and each rectangular label found in the file becomes a tile
accessible via TPname_to_tile. No extensions are added tofile_name.

TILE TPread_tile(file_name)
A tile is created andfile_name is read into it. The tile is returned as the value of the func-
tion.

TPwrite_tile(tile, filename)
The tile tile is written to the file specified byfilename, with .ca or .cif extensions added.
See the description of the-o option for information on what file name is chosen if
filename is the null string. The choice between Magic or CIF format is chosen with the
-a or -c command line options.

Tile creation, deletion, and access

TPdelete_tile(tile)
The tiletile is deleted from the database and the space occupied by it is reused.

TILE TPcreate_tile(name)
A new, empty tile is created and given the namename. This name is used by the routine
TPname_to_tile and in error messages. The typeTILE returned is a unique ID for the
tile, not the tile itself. Currently this is implemented by defining the type TILE to be a
pointer to the internal database representation of the tile.

int TPtile_exists(name)
TRUE (1) is returned if a tile with the givenname exists (such as in the template or from
a call to TPcreate_tile).

TILE TPname_to_tile(name)
A value of typeTILE is returned. This value is a unique ID for the tile that has the name
name. This name comes from a call to TPcreate_tile(), or from the rectangular label that
defined it in a template that was read in by TPread_tiles() or TPinitialize(). If the tile
does not exist then a value of NULL is returned and an error message is printed.

RECTANGLE TPsize_of_tile(tile)
A rectangle is returned that is the same size as the tiletile. The rectangle’s lower left
corner is located at the coordinate (0, 0). All coordinates in mpack are specified in half-
lambda.

Painting and Placement Routines

RECTANGLE TPpaint_tile(from_tile, to_tile, ll_corner)
The tile from_tile is painted into the tileto_tile such that its lower left corner is placed at
the pointll_corner in the tile to_tile . The location of the newly painted area in the out-
put tile is returned as a value of type RECTANGLE. The tileto_tile is often an empty
tile made byTPcreate_tile(). The pointll_corner is almost never provided directly, it is
usually generated by routines such asalign().

TPdisp_tile(from_tile, ll_corner)
A rectangle the size offrom_tile with the lower left corner located atll_corner is
returned. Note that this routine behaves exactly like the routine TPpaint_tile except that
no output tile is modified. This routine, in conjunction with thealign routine, is useful

1990 DECWRL/Livermore Magic 2/20/85 2

-

MPACK (3) CAD Tool User’s Manual MPACK (3)

for controlling the overlap of tiles.

RECTANGLE TPpaint_cell(from_tile, to_tile, ll_corner)
This routine behaves likeTPpaint_tile() except that thefrom_tile is placed as a subcell
rather than painted into place. The tilefrom_tile must exist in the file system (i.e. it must
have been read in from disk or have been written out to disk).

Label Manipulation Routines

TPplace_label(tile, rect, label_name)
A label namedlabel_name is place in the tiletile. The size and location of the label is
the given by the RECTANGLErect.

int TPfind_label(tile, &rect1, str, &rect2)
The tile tile is searched for a label of namestr. The location of the first such label found
is returned in the rectanglerect2. The function returns 1 if such a label was found, and 0
otherwise. The rectangle pointer&rect1, if non-NULL, restricts the search to an area of
the tile.

TPstrip_labels(tile, ch)
All labels in the tiletile that begin with the characterch are deleted.

TPremove_labels(tile, name, r)
All labels in the tiletile that are completely within the arear are deleted. Ifname is non-
NULL, then only labels with that name will be affected.

TPstretch_tile(tile, str, num)
The stringstr is the name of one or more labels within the tiletile. Each of these labels
must be of zero width or zero height, i.e. they must be lines. Each of these lines define a
line across which the tile will be stretched. The amount of the stretch is specified bynum
in units of half-lambda. Stretching such a line turns it into a rectangle. Note that if the
tile contains 2 lines that are co-linear, the stretching of one of them will turn both into
rectangles.

Point-Valued Routines

POINT tLL(tile)
POINT tLR(tile)
POINT tUL(tile)
POINT tUR(tile)

The location of the specified corner of tiletile, relative to the tile’s lower left corner, is
returned as a point. LL stands for lower-left, LR for lower-right, UL for upper-left, and
UR for upper-right. Note thattLL() returns (0, 0).

POINT rLL(rect)
POINT rLR(rect)
POINT rUL(rect)
POINT rUR(rect)

The location of the specified corner of the rectanglerect is returned as a point. LL stands
for lower-left, LR for lower-right, UL for upper-left, and UR for upper-right.

POINT align(p1, p2)

1990 DECWRL/Livermore Magic 2/20/85 3

-

MPACK (3) CAD Tool User’s Manual MPACK (3)

A point is computed such that when added to the pointp2 gives the pointp1. p1 is nor-
mally a corner of a rectangle within a tile andp2 is normally a corner of a tile. In this
case the point computed can be treated as the location for the placement of the tile.

For example, TPpaint_tile(outtile, fromtile, align(rUL(rect), tLL(fromtile))) will paint the
tile fromtile into outtile such that the lower left corner offromtile is aligned with the
upper-left corner ofrect. In this examplerect would probably be something returned
from a previous TPpaint_tile() call.

Point and Rectangle Addition Routines

POINT TPadd_pp(p1, p2)
POINT TPsub_pp(p1, p2)

The pointsp1 andp2 are added or subtracted, and the result is returned as a point. In the
subtract casep2 is subtracted fromp1.

RECTANGLE TPadd_rp(r1, p1)
RECTANGLE TPsub_rp(r1, p1)

The rectangler1 has the pointp1 added or subtracted from it. This has the effect of
displacing the rectangle in the X and/or Y dimensions.

Miscellaneous Functions

int TPget_lambda()
This function returns the current value of lambda in centi-microns.

INTERFACE DATA STRUCTURES
In those cases where tiles must be placed using absolute, (half-lambda) coordinates, it is useful to know
thatRECTANGLEs andPOINTs are defined as:

typedef struct {
int x_left, x_right, y_top, y_bot;

} RECTANGLE;

typedef struct {
int x, y;

} POINT;

The variableorigin_point is predefined to be (0, 0).origin_rect is defined to be a zero-sized rectangle
located at the origin.

OPTIONS ACCEPTED BY TPinitialize()
Typical command line:program_name [-t template] [-s style] [-o output_file] input_file

-a produce Magic format (this is the default)

-c produce CIF format

-v be verbose (sequentially label the tiles in the output for debugging purposes; also print out infor-
mation about the number of rectangles processed by mpack)

-s style generate output using the template for this style (see TPinitialize for details)

-o The next argument is taken to be the base name of the output file. The default is the input file
name with any extensions removed. If there is not input file specified and no -o option specified,
the output will go tostdout.

1990 DECWRL/Livermore Magic 2/20/85 4

-

MPACK (3) CAD Tool User’s Manual MPACK (3)

-p (pipe mode) Send the output tostdout.

-t The next argument specifies the template base name to use. This overrides the default supplied by
the program. A.mag extension is automatically added. (see TPinitialize)

-l name Set the cif output style toname. name is the name of a cif output style as defined in Magic’s tech-
nology file. If this option is not specified then the first output style in the technology file is used.
(Note: In the old tpack system this option set the size of lambda.)

input_file
The name of the file that the program should read from (such as a truth table file). If this filename
is omitted then the input is taken from the standard input (such as a pipe).

-M num This option is accepted by mpack, but ignored. It is a leftover from the tpack system.

-D num1 num2
TheDemo or Debug option. This option will causempack to place only the firstnum1 tiles, and
the lastnum2 of those will be outlined with rectangular labels. In addition, if a tile called "blotch"
is defined then a copy of it will be placed in the output tile upon each call to thealign function
during the placing of the lastnum2 tiles. The blotch tile will be centered on the first point passed
to align, and usually consists of a small blotch of brightly colored paint. This has the effect of
marking the alignment points of tiles. The last tile painted into is assumed to be the output tile.

EXAMPLE
It is highly recommended that the example in∼∼ cad/src/mquilt be examined. Look at both the template
and the ‘C’ code. A more complex example is in∼∼ cad/src/mpla.

FILES
∼ cad/lib/mpack.h (definition of the mpack interface)
∼ cad/lib/mpack.lib (linkable mpack library)
∼ cad/lib/mpack.ln (lint-library for lint)
∼ cad/src/mquilt/* (an example of an mpack program)
∼ cad/lib/magic/sys/*.tech*(technology descriptionfiles)

ALSO SEE
magic(CAD), mquilt(CAD), mpla(CAD)
Robert N. MayoPictures with Parentheses: Combining Graphics and Procedures in a VLSI Layout Tool,
 Proceedings of the 20th Design Automation Conference, June, 1983.
`C’ Manual

HISTORY
This is a port of the tpack(1) system which generated Caesar files.

AUTHOR
Robert N. Mayo

BUGS
When a tile contains part of a subcell, or touches a subcell, then the whole subcell is considered to be part
of the tile. The same goes for arrays of subcells.

1990 DECWRL/Livermore Magic 2/20/85 5

-

PATH (3) CAD Tool User’s Manual PATH (3)

NAME
path− procedures for managing search paths in libmagicutils.a

SYNOPSIS
#include <stdio.h>
#include utils.h

int PaConvertTilde(psource, pdest, size)
char **psource, **pdest;
int size;

FILE *PaOpen(file, mode, ext, path, libpath, prealname)
char *file, *mode, *ext;
char *path, *libpath;
char **prealname;

char *PaSubsWD(path, newWD)
char *path, *newWD;

int PaEnum(path, file, func, cdata)
char *path, *file;
int (*func)(name, cdata);
ClientData cdata;

DESCRIPTION
These procedures implement a path mechanism, whereby several places may be searched for files.

PaConvertTilde is used to convertcsh (1)-style tilde notation for users’ home directories (e.g., ‘‘∼ wss’’,
‘‘ ∼ /mydir/file.o’’) to standard directory names as understood byopen (2), etc. If **psource is a tilde
(‘‘ ∼∼ ’’), then the name following the tilde up to the first slash or end of string is converted to a home direc-
tory and stored in the string pointed to by*pdest. Then remaining characters in the file name at*psource
are copied to*pdest (the file name is terminated by white space, a NULL character, or a colon) and
*psource is updated. Upon return,*psource points to the terminating character in the source file name, and
*pdest points to the null character terminating the expanded name. If a tilde cannot be converted because
the user name cannot be found,*psource is still advanced past the current entry, but nothing is stored at the
destination. At mostsize characters (including the terminating nullcharacter) will bestored at*pdest. The
name consisting of a single tilde, i.e, ‘‘∼∼ ’’ with no user name, expands to the current user’s home directory.
PaConvertTilde returns the number of bytes of space left in the destination area if successful, or -1 if the
user name couldn’t be found in the password file.

PaOpen opens a file, looking it up in the current path and supplying a default extension. It either returns a
pointer to aFILE, as doesfopen (3s), or NULL if no file could be opened. The mode of the file opened is
determined bymode, also as infopen. If ext is specified, then it is tacked onto the end ofname to construct
the name of the filePaOpen will attempt to find. (Ext must begin with a dot if that is the extension separa-
tor; none is inserted automatically.) If the first character ofname is a tilde or slash,PaOpen tries to look up
the file with the original name (and extension), doing tilde expansion if necessary and returning the result.
Otherwise, it goes through the search pathpath (a colon-separated list of directories much as incsh (1)) one
entry at a time, trying to look up the file once for each path entry by prepending the path entry to the origi-
nal file name. This concatenated name is stored in a static string and made available to the caller by setting
*prealName to point to it if prealName is non-NULL and if the open succeeds. If the entirepath is tried,
and still nothing works, then we try each entry in the library pathlibpath next. The static string will be
trashed on the next call to this routine. Also, no individual file name is allowed to be more than 200 char-
acters long; excess characters are lost.

1990 DECWRL/Livermore Magic 1

-

PATH (3) CAD Tool User’s Manual PATH (3)

PaSubsWD replaces all uses of the working directory in a path by some fixed directory. It returns a pointer
to a path that is just likepath, except that every implicit or explicit use of the working directory (‘‘.’’) is
replaced by thenewWD argument. The result is a static array, which will be trashed on the next call to this
procedure.

PaEnum is used to call a client procedure with each directory inpath prepended to the stringfile. The
client procedure is of the form(*func)(name, cdata), wherename is a directory in the path prepended to
file, andcdata is the same ascdata passed toPaEnum. This client procedure should return 0 normally, or 1
to abort the path enumeration. If a directory in the search path refers to a non-existent user name (using the
‘‘ ∼ user’’ syntax), we skip that component.PaEnum returns 0 if all clients returned 0, or 1 if some client
returned 1. If some client returns 1, the enumeration is aborted.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

RUNSTATS (3) CAD Tool User’s Manual RUNSTATS (3)

NAME
runstats− keep track of process time and memory utilization (in libmagicutils.a)

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>
#include <sys/time.h>
#include runstats.h

char *RunStats(flags, lastt, deltat)
int flags;
struct tms *lastt, *deltat;

char *RunStatsRealTime()

DESCRIPTION
RunStats collects information about a process’s utilization of memory and CPU time. Depending on the
flags provided, the following information is returned:

RS_TCUM
cumulative user and system time

RS_TINCR
the difference between the current cumulative user and system time and the values stored in the
tms struct pointed to bylastt. This struct is usually the one last passed toRunStats when it was
last called withRS_TINCR as a flag.

RS_MEM
the number of bytes by which the data segment has grown past its initial size.

RunStats returns a pointer to a statically allocated character string of the form ‘‘[... stuff ...]’’, where stuff
contains the information specified by the flags. Times are of the formmins:secsu mins:secss, where the
first time is the amount of user CPU time this process has used, and the second time is the amount of sys-
tem time used. Memory is specified by a string of the formNk, whereN is the number of kilobytes by
which the data segment has grown past its initial size.

If RS_TINCR is specified, the parameterslastt anddeltat are set if they are non-NULL. Both point totms
structs; the one pointed to bydeltat is set to the difference between the current user/system time and the
time given in thetms struct pointed to bylastt; the one pointed to bylastt is then set to the current
user/system time.

RunStatsRealTime reports the real time, both since the first invocation and incremental since the last invo-
cation. It returns a statically allocated string of the formx:xx.x x:xx.x, where the first number is the amount
of elapsed real time since the first call toRunStatsRealTime, and the second is the amount of elapsed real
time since the latest call.

BUGS
The interfaces toRunStats andRunStatsRealTime should really be consistent.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 1

-

SET (3) CAD Tool User’s Manual SET (3)

NAME
set− procedures for setting parameters (from strings) and for printing their values.

SYNOPSIS
Void SetNoisyInt(parm,valueS,file)
int *parm;
char *valueS;
FILE *file;

Void SetNoisyBool(parm,valueS,file)
bool *parm;
char *valueS;
FILE *file;

Void SetNoisyDI(parm,valueS,file)
DoubleInt *parm;
char *valueS;
FILE *file;

DESCRIPTION
These procedures interpet a string and set a parameter accordingly. Error messages are printed if the string
doesn’t make sense, and in any event the final parameter value is printed. IfvalueS is NULL, the parame-
ter value is not changed. Iffile is NULL the result is printed withTxPrintf, Magic’s standard print func-
tion, otherwise it is printed on the specified file.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 1

-

SHOW (3) CAD Tool User’s Manual SHOW (3)

NAME
show− procedure for displaying rects as feedback, for debugging. printing their values.

SYNOPSIS
Void ShowRect(def, r, style)
CellDef *def;
Rect *r;
int style;

DESCRIPTION
Highlights the specified area in the specified cell and the specified style. See the Magicgarouter module
for example uses.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 1

-

STACK (3) CAD Tool User’s Manual STACK (3)

NAME
stack− procedures for managing stacks in libmagicutils.a

SYNOPSIS
#include magic.h
#include stack.h

Stack *StackNew(sincr)
int sincr;

StackFree(stack)
Stack *stack;

ClientData StackPop(stack)
Stack *stack;

ClientData StackLook(stack)
Stack *stack;

StackPush(arg, stack)
ClientData arg;
Stack *stack;

StackEnum(stack, func, cdata)
Stack *stack;
int (*func)(item, i, cdata)
ClientData item, cdata;
int i;

StackCopy(src, dest, copystr)
Stack *src, **dest;
bool copystr;

bool StackEmpty(stack)
Stack *stack;

ClientData STACKPOP(stack)
Stack *stack;

ClientData STACKLOOK(stack)
Stack *stack;

STACKPUSH(arg, stack)
ClientData arg;
Stack *stack;

DESCRIPTION
These procedures implement a simple stack mechanism, allowing stacks containing an arbitrary number of
one-word elements to be created, manipulated, and destroyed.

StackNew creates and returns a newStack. This stack grows automatically as new items are pushed on it.
The number of new elements for which space is added each time the stack grows is specified bysincr.
When the stack is through being used,StackFree frees it.

Elements can be pushed on the stack usingStackPush. The top of the stack can be viewed without remov-
ing it by usingStackLook, or removed byStackPop. Both return the top element from the stack, or NULL
if the stack is empty. Fast macro versions exist for each of these functions:STACKPUSH, STACKLOOK,
and STACKPOP. To test whetherstack is empty, one can callStackEmpty, which returnsTRUE if the
stack is empty, orFALSE if it contains any entries.

1990 DECWRL/Livermore Magic 1

-

STACK (3) CAD Tool User’s Manual STACK (3)

StackEnum visits all the elements instack without popping them. It applies(*func)() to each element. The
arguments to(*func)() areitem, the stack element being visited,i, its index on the stack (1 for the top of the
stack, increasing as one moves down the stack), and the samecdata as was passed toStackEnum. If
(*func)() returns a non-zero value, the enumeration of the stack aborts andStackEnum returns 1; otherwise,
StackEnum returns 0 after visiting all elements in the stack.

StackCopy is used to make a copy of a stacksrc. It leaves*dest pointing to the copy. If the parameter
copystr is TRUE, then the elements ofsrc are interpreted as pointers to NULL-terminated ASCII strings,
which are copied into newly allocated memory before the address of the new string is stored in*dest; oth-
erwise, the elements ofsrc are just copied to*dest.

BUGS
There should be a way of declaring aStack that pushes or pops more than a single word at a time.

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

STRING (3) CAD Tool User’s Manual STRING (3)

NAME
string− procedures for manipulating strings in libmagicutils.a

SYNOPSIS
#include magic.h
#include utils.h

typedef struct { char *d_str; } LookupTable;

int Lookup(str, table)
char *str;
char *table[];

int LookupStruct(str, table, size)
char *str;
LookupTable *table;
int size;

int LookupAny(c, table)
char c;
char *table[];

int LookupFull(name, table)
char *name;
char *table[];

char *StrDup(oldstr, str)
char **oldstr, *str;

bool StrIsWhite(str, commentok)
char *str;
bool commentok;

bool StrIsInt(str)
char *str;

bool Match(pattern, string)
char *pattern, *string;

char *ArgStr(pargc, pargv, argType)
int *pargc;
char ***pargv;
char *argType;

DESCRIPTION
This collection of procedures provide a number of useful functions for dealing with strings.Lookup
searches a table of strings to find one that matches a given string. It’s useful mostly for command lookup.
The table of strings should be terminated with a NULL string pointer, and the entries should be alphabeti-
cal and all lower-case. Any characters following the first white space in an entry are ignored. Ifstr is an
unambiguous abbreviation for one of the entries intable, then the index of the matching entry is returned.
If str is an abbreviation for more than one entry in table, then -1 is returned. Ifstr doesn’t match any entry,
then -2 is returned. Case differences are ignored.

LookupStruct is a more general version ofLookup for dealing with tables of structures whose first word is a
string pointer. Thetable argument should be a pointer to an array of such structures, cast as type
(LookupTable *). The table should be terminated with an entry whose string pointer is NULL. As in
Lookup, all entries should contain lower-case strings and should be sorted alphabetically. Thesize parame-
ter gives the size in bytes of each structure in the table.

1990 DECWRL/Livermore Magic 1

-

STRING (3) CAD Tool User’s Manual STRING (3)

LookupAny looks up a single character in a table of pointers to strings. The last entry in the string table
must be a NULL pointer. The index of the first string in the table containing the indicated character is
returned, or -1 if no matching string is found.

LookupFull is like Lookup, but does not allow abbreviations. It either returns the index of the entry oftable
matchingstr, or -1 if no match is found. Case is significant, and entries are considered to extend all the
way to their trailing NULL byte, instead of being terminated by the first white space as inLookup.

StrDup can be used to replace an old string with a new one, freeing the storage for the old one and allocat-
ing sufficient storage for the new one. It returns a pointer to a newly allocated character array just large
enough to holdstr and its trailing NULL byte. This newly allocated array contains a copy ofstr. How-
ever, if str is NULL, no memory is allocated and we return NULL. Ifoldstr is non-NULL, then if*oldstr
is non-NULL, StrDup frees the storage pointed to by*oldstr. StrDup then sets*oldstr to point to the new
array of memory just allocated, or NULL ifstr was NULL.

StrIsWhite returns TRUE ifstr is all white space, or FALSE otherwise. Ifcommentok is TRUE, then if the
first non-white character instr is a pound-sign (‘‘#’’), str is considered to be all white space.

StrIsInt returns TRUE ifstr is a well-formed decimal integer, or FALSE if it isn’t.

Match provides acsh (1)-like wild-card matching facility. The stringpattern may contain any of thecsh
wildcard characters:*, ?, \, [, and]. If pattern matchesstring, Match returns TRUE; otherwise, it returns
FALSE.

ArgStr is provided to allow standard processing of command-line arguments that take parameters. It recog-
nizes flag-value pairs of either the form ‘‘−−Xvalue’’ (a single argument string) or ‘‘−−X value’’ (two succes-
sive argument strings) in the argument list (*pargc, *pargv), incrementing*pargc and *pargv by an
amount sufficient to step over the flag-value pair. If there are no more arguments remaining in the list,
ArgStr prints an error message complaining thatargType is required for the flag*pargv[0].

SEE ALSO
magicutils (3)

1990 DECWRL/Livermore Magic 2

-

CMAP (5) CAD Tool User’s Manual CMAP (5)

NAME
cmap− format of .cmap files (color maps)

DESCRIPTION
Color-map files define the mapping between eight-bit color numbers and red, green and blue intensities
used for those numbers. They are read by Magic as part of system startup, and also by the:load and:save
commands in color-map windows. Color-map file names usually have the formx.y.z.cmapn, wherex is a
class of technology files,y is a class of displays,z is a class of monitors, andn is a version number
(currently1). The version number will change in the future if the formap of color-map files ever changes.
Normally, x and y correspond to the corresponding parts of a display styles file. For example, the color
map filemos.7bit.std.cmap1 is used today for most nMOS and CMOS technology files using displays that
support at least seven bits of color per pixel and standard-phosphor monitors. It corresponds to the display
styles filemos.7bit.dstyle5.

Color-map files are stored in ASCII form, with each line containing four decimal integers separated by
white space. The first three integers are red, green, and blue intensities, and the fourth field is a color
number. For current displays the intensities must be integers between 0 and 255. The color numbers must
increase from line to line, and the last line must have a color number of 255. The red, green, and blue
intensities on the first line are used for all colors from 0 up to and including the color number on that line.
For other lines, the intensities on that line are used for all colors starting one color above the color number
on the previous line and continuing up and through the color number on the current line. For example,
consider the color map below:

255 0 0 2
0 0 255 3
255 255 255 256

This color map indicates that colors 0, 1, and 2 are to be red, color 3 is to be blue, and all other colors are to
be white.

SEE ALSO
magic (1), dstyle (5)

1990 DECWRL/Livermore Magic 1

-

DISPLAYS (5) CAD Tool User’s Manual DISPLAYS (5)

NAME
displays− Display Configuration File

DESCRIPTION
The interactive graphics programs Caesar, Magic, and Gremlin use two separate terminals: a text terminal
from which commands are issued, and a color graphics terminal on which graphical output is displayed.
These programs use adisplays file to associate their text terminal with its corresponding display device.

Thedisplays file is an ASCII text file with one line for each text terminal/graphics terminal pair. Each line
contains 4 items separated by spaces: the name of the port attached to a text terminal, the name of the port
attached to the associated graphics terminal, the phosphor type of the graphics terminal’s monitor, and the
type of graphics terminal.

An applications program may use the phosphor type to select a color map tuned to the monitor’s charac-
teristics. Only thestd phosphor type is supported at UC Berkeley.

The graphics terminal type specifies the device driver a program should use when communicating with its
graphics terminal. Magic supports typesUCB512, AED1024, andSUN120. Other programs may recog-
nize different display types. See the manual entry for your specific application for more information.

A sample displays file is:

/dev/ttyi1 /dev/ttyi0 std UCB512
/dev/ttyj0 /dev/ttyj1 std UCB512
/dev/ttyjf /dev/ttyhf std UCB512
/dev/ttyhb /dev/ttyhc std UCB512
/dev/ttyhc /dev/ttyhb std UCB512 .in -0.5i

In this example,/dev/ttyi1 connects to a text terminal. An associatedUCB512 graphics terminal with stan-
dard phosphor is connected to/dev/ttyi0.

FILES
Magic uses the displays file∼ cad/lib/displays. Gremlin looks in /usr/local/displays.

SEE ALSO
magic(1)

1990 DECWRL/Livermore Magic 2/19/85 1

-

DLYS (5) CAD Tool User’s Manual DLYS (5)

NAME
dlys− format of .dlys files read by the SCALD simulator and timing verifier

DESCRIPTION
The SCALD simulator and timing verifier can accept information about the actual delays of wires in a cir-
cuit. This delay information is described in a.dlys file, which consists of a sequence of records, one for
each electrical net. Each record begins with the signal name for the net (note that this is the SCALD signal
name, i.e, the name given by the user to the entire net, and not usually the name of one of the pins in the
net), followed by an=, then a comma-separated list of the terminals in the net and their associated delay,
with the list terminated by a semicolon. The end of the file is marked with a second semicolon.

The elements of the comma-separated list for each net take the form

location [min:max]

wherelocation is the full hierarchical SCALD name of the physical pin to which the delay is computed,
and min and max are the best-case and worst-case wire delay in nanoseconds (both are floating-point
numbers). The assumption is that only a single driver exists per net, so all delays are computed from this
driver. If a net has multiple drivers, then the interpretation of delays is up to the program reading this file
(e.g,min delays are taken from the fastest driver,max from the slowest).

Here is an example.dlys file:

(APS)ALU STATUS BITS I1<0> =
(APS MR 3V6 R1 1P)IN#63[0.3 : 0.4],
(APS APS 4RI RFC RF)OUT[0.5 : 0.7];

(APS)ALU STATUS BITS I1<1> =
(APS APS 4ALUD DCD)AN#12[1.4 : 1.6],
(APS APS 4ALUD DCD)AN#8[1.1 : 1.3],
(APS APS 4ALUD DCD)AN#9[1.1 : 1.3],
(APS APS 4ALUD DCD)AN#10[1.1 : 1.3],
(APS APS 4ALUD DCD)AN#11[1.1 : 1.3],
(APS MR 3V2 R1 1P)#23 [0.6 : 0.8],
(APS MR 3V6 R1 1P)#62 [0.3 : 0.4],
(APS APS 4ALUD DCD) [0.4 : 0.6],
(APS APS 4ALUD DCD)#1 [0.4 : 0.6],
(APS APS 4ALUD DCD)#2 [0.4 : 0.6],
(APS APS 4ALUD DCD)#3 [0.4 : 0.6],
(APS APS 4ALUD DCD)#4 [0.7 : 0.8],
(APS APS 4ALUD DCD)#5 [0.7 : 0.8];

;

Although it is not good practice, it is possible to omit the actual pin names from thelocation names and
only give the path to the part; the example above shows several cases where the final pin name is missing.
Since the timing verifier and simulator have the original SCALD netlist available, they are usually able to
use the signal name to determine the net, and then use the part’s path to identify which pin of the net is
meant. This is accurate when a net connects to at most one pin per part; if it connects to more than one pin
per part then there is ambiguity over which pin is meant. Usually, though, this ambiguity results in only a
small inaccuracy, since the delay to different pins on the same part is usually similar. Also, if delay is
capacitive, the delay to all pins in a net will be the same anyway, so there is no inaccuracy.

1990 DECWRL/Livermore Magic 1

-

DLYS (5) CAD Tool User’s Manual DLYS (5)

SEE ALSO
ext2dlys (1), ext (5), sim (5)

BUGS
There should be some way to specify which pins are drivers and which are receivers in a net.

The ability to omit pin names is dangerous; although it usually works it can introduce large inaccuracies
when the parts are large compared to the sizes of the wires used to connect them, as might be the case on a
silicon PCB.

1990 DECWRL/Livermore Magic 2

-

DSTYLE (5) CAD Tool User’s Manual DSTYLE (5)

NAME
dstyle− format of .dstyle files (display styles)

DESCRIPTION
Display styles indicate how to render information on a screen. Each style describes one way of rendering
information, for example as a solid area in red or as a dotted outline in purple. Different styles correspond
to mask layers, highlights, labels, menus, window borders, and so on. See ‘‘Magic Maintainer’s Manual
#3: Display Styles, Color Maps, and Glyphs’’ for more information on how the styles are used.

Dstyle files usually have names of the formx.y.dstylen, wherex is a class of technologies,y is a class of
displays, andn is a version number (currently5). The version number may increase in the future if the for-
mat of dstyle files changes. For example, the display style filemos.7bit.dstyle5 provides all the rendering
information for our nMOS and CMOS technologies for color displays with at least 7 bits of color.

Dstyle files are stored in ASCII as a series of lines. Lines beginning with ‘‘#’’ are considered to be com-
ments and are ignored. The rest of the lines of the file are divided up into two sections separated by blank
lines. There should not be any blank lines within a section.

DISPLAY_STYLES SECTION
The first section begins with a linedisplay_styles planes whereplanes is the number of bits of color infor-
mation per pixel on the screen (between 1 and 8). Each line after that describes one display style and con-
tains eight fields separated by white space:style writeMask color outline fill stipple shortName longName
The meanings of the fields are:

style The number of this style, in decimal. Styles 1 through 64 are used to display mask layers in the
edit cell. The style number(s) to use for each mask layer is (are) specified in the technology file.
Styles 65-128 are used for displaying mask layers in non-edit cells. If stylex is used for a mask
layer in the edit cell, stylex+64 is used for the same mask layer in non-edit cells. Styles above
128 are used by the Magic code for various things like menus and highlights. See the filestyles.h
in Magic for how styles above 128 are used. When redisplaying, the styles are drawn in order
starting at 1, so the order of styles may affect what appears on the screen.

writeMask
This is an octal number specifying which bit-planes are to be modified when this style is rendered.
For example, 1 means only information in bit-plane 0 will be affected, and 377 means all eight
bit-planes are affected.

color An octal number specifying the new values to be written into the bit-planes that are modified.
This is used along withwriteMask to determine the new value of each pixel that’s being modified:
newPixel = (oldPixel &∼ writeMask) | (color & writeMask) The red, green, and blue intensities
displayed for each pixel are not deterimined directly by the value of the pixel; they come from a
color map that maps the eight-bit pixel values into red, green, and blue intensities. Color maps are
stored in separate files.

outline If this field is zero, then no outline is drawn. If the field is non-zero, it specifies that outlines are to
be drawn around the rectangular areas rendered in this style, and the octal value gives an eight-bit
pattern telling how to draw the outline. For example, 377 means to draw a solid line, 252 means
to draw a dotted line, 360 specifies long dashes, etc. This field only indicateswhich pixels will be
modified: thewriteMask andcolor fields indicate how the pixels are modified.

fill This is a text string specifying how the areas drawn in this style should be filled. It must have one
of the valuessolid, stipple, cross, outline, grid. Solid means that every pixel in the area is to
modified according towriteMask andcolor. Stipple means that the area should be stippled: the
stipple pattern given bystipple is used to determine which pixels in the area are to be modified.
Cross means that an X is drawn in a solid line between the diagonally-opposite corners of the area
being rendered.Outline means that the area should not be filled at all; only an outline is drawn
(if specified byoutline). Grid is a special style used to draw a grid in the line style given by

1990 DECWRL/Livermore Magic 1

-

DSTYLE (5) CAD Tool User’s Manual DSTYLE (5)

outline. The stylescross andstipple may be supplemented with an outline by giving a non-zero
outline field. The outline and grid styles don’t make sense without an an outline, andsolid
doesn’t make sense with an outline (since all the pixels are modified anyway).

stipple Used whenfill is stipple to specify (in decimal) the stipple number to use.

shortName
This is a one-charactername for this style. These names are used in the specification of glyphs
and also in a few places in the Magic source code. Most styles have no short name; use a ‘‘-’’ in
this field for them.

longName
A more human-readable name for the style. It’s not used at all by Magic.

STIPPLES SECTION
The second section of a dstyle file is separated from the first by a blank line. The first line of the second
section must bestipples and each additional line specifies one stipple pattern with the syntaxnumber pat-
tern name Number is a decimal number used to name the stipple in thestipple fields of style lines.Number
must be no less than 1 and must be no greater than a device-dependent upper limit. Most devices support
at least 15 stipple patterns.Pattern consists of eight octal numbers, each from 0-377 and separated by
white space. The numbers form an 8-by-8 array of bits indicating which pixels are to be modified when the
stipple is used. Thename field is just a human-readable description of the stipple; it isn’t used by Magic.

FILES
∼ cad/lib/magic/sys/mos.7bit.dstyle5

SEE ALSO
magic (1), cmap (5), glyphs (5)

1990 DECWRL/Livermore Magic 2

-

EXT (5) CAD Tool User’s Manual EXT (5)

NAME
ext − format of .ext files produced by Magic’s hierarchical extractor

DESCRIPTION
Magic’s extractor produces a.ext file for each cell in a hierarchical design. The.ext file for cell name is
name.ext. This file contains three kinds of information: environmental information (scaling, timestamps,
etc), the extracted circuit corresponding to the mask geometry of cellname, and the connections between
this mask geometry and the subcells ofname.

A .ext file consists of a series of lines, each of which begins with a keyword. The keyword beginning a
line determines how the remainder of the line is interpreted. The following set of keywords define the
environmental information:

tech techname
Identifies the technology of cellname astechname, e.g,nmos, cmos.

timestamp time
Identifies the time when cellname was last modified. The valuetime is the time stored by Unix,
i.e, seconds since 00:00 GMT January 1, 1970. Note that this isnot the timename was extracted,
but rather the timestamp value stored in the.mag file. The incremental extractor compares the
timestamp in each.ext file with the timestamp in each.mag file in a design; if they differ, that cell
is re-extracted.

version version
Identifies the version of.ext format used to writename.ext. The current version is5.1.

style style
Identifies the style that the cell has been extracted with.

scale rscale cscale lscale
Sets the scale to be used in interpreting resistance, capacitance, and linear dimension values in the
remainder of the.ext file. Each resistance value must be multiplied byrscale to give the real
resistance in milliohms. Each capacitance value must be multiplied bycscale to give the real
capacitance in attofarads. Each linear dimension (e.g, width, height, transform coordinates) must
be multiplied bylscale to give the real linear dimension in centimicrons. Also, each area dimen-
sion (e.g, transistor channel area) must be multiplied byscale*scale to give the real area in square
centimicrons. At most onescale line may appear in a.ext file. If none appears, all ofrscale,
cscale, andlscale default to 1.

resistclasses r1 r2 ...
Sets the resistance per square for the various resistance classes appearing in the technology file.
The valuesr1, r2, etc. are in milliohms; they are not scaled by the value ofrscale specified in the
scale line above. Each node in a.ext file has a perimeter and area for each resistance class; the
valuesr1, r2, etc. are used to convert these perimeters and areas into actual node resistances. See
‘‘Magic Tutorial #8: Circuit Extraction’’ for a description of how resistances are computed from
perimeters and areas by the programext2sim.

The following keywords define the circuit formed by the mask information in cellname. This circuit is
extracted independently of any subcells; its connections to subcells are handled by the keywords in the sec-
tion after this one.

node name R C x y type a1 p1 a2 p2 ... aN pN
Defines an electrical node inname. This node is referred to by the namename in subsequent
equiv lines, connections to the terminals of transistors infet lines, and hierarchical connections or
adjustments usingmerge or adjust. The node has a total capacitance to ground ofC attofarads,
and a lumped resistance ofR milliohms. For purposes of going back from the node name to the
geometry defining the node,(x, y) is the coordinate of a point inside the node, andtype is the layer
on which this point appears. The valuesa1, p1, ... aN, pN are the area and perimeter for the

1990 DECWRL/Livermore Magic 1

-

EXT (5) CAD Tool User’s Manual EXT (5)

material in each of the resistance classes described by theresistclasses line at the beginning of the
.ext file; these values are used to compute adjusted hierarchical resistances more accurately.
NOTE: since many analysis tools compute transistor gate capacitance themselves from the
transistor’s area and perimeter, the capacitance between a node and substrate (GND!) normally
does not include the capacitance from transistor gates connected to that node. If the.sim file was
produced byext2sim (1), check the technology file that was used to produce the original.ext files
to see whether transistor gate capacitance is included or excluded; see ‘‘Magic Maintainer’s
Manual #2: The Technology File’’ for details.

attr name xl yl xh yh type text
One of these lines appears for each label ending in the character ‘‘@’’ that was attached to
geometry in the nodename. The location of each attribute label (xl yl xh yh) and the type of
material to which it was attached (type) are given along with the text of the label minus the trailing
‘‘ @’’ character (text).

equiv node1 node2
Defines two node names in cellname as being equivalent:node1 andnode2. In a collection of
node names related byequiv lines, exactly one must be defined by anode line described above.

fet type xl yl xh yh area perim sub GATE T1 T2 ...
Defines a transistor inname. The kind of transistor istype, a string that comes from the technol-
ogy file and is intended to have meaning to simulation programs. The coordinates of a square
entirely contained in the gate region of the transistor are(xl, yl) for its lower-left and(xh, yh) for
its upper-right. All four coordinates are in thename’s coordinate space, and are subject to scaling
as described inscale above. The gate region of the transistor has areaarea square centimicrons
and perimeterperim centimicrons. The substrate of the transistor is connected to nodesub.

The remainder of afet line consists of a series of triples:GATE, T1, Each describes one of the
terminals of the transistor; the first describes the gate, and the remainder describe the transistor’s
non-gate terminals (e.g, source and drain). Each triple consists of the name of a node connecting
to that terminal, a terminal length, and an attribute list. The terminal length is in centimicrons; it is
the length of that segment of the channel perimeter connecting to adjacent material, such as
polysilicon for the gate or diffusion for a source or drain.

The attribute list is either the single token ‘‘0’’, meaning no attributes, or a comma-separated list
of strings. The strings in the attribute list come from labels attached to the transistor. Any label
ending in the character ‘‘ˆ’’ is considered a gate attribute and appears on the gate’s attribute list,
minus the trailing ‘‘̂ ’’. Gate attributes may lie either along the border of a channel or in its inte-
rior. Any label ending in the character ‘‘$’’ is considered a non-gate attribute. It appears on the
list of the terminal along which it lies, also minus the trailing ‘‘$’’. Non-gate attributes may only
lie on the border of the channel.

The keywords in this section describe information that is not processed hierarchically: path lengths and
accurate resistances that are computed by flattening an entire node and then producing a value for the
flattened node.

killnode node
During resistance extraction, it is sometimes necessary to break a node up into several smaller
nodes. Theappearance of akillnode line during the processing of a.ext file means that all infor-
mation currently accumulated aboutnode, along with all fets that have a terminal connected to
node, should be thrown out; it will be replaced by information later in the.ext file. The order of
processing.ext files is important in order for this to work properly: children are processed before
their parents, so akillnode in a parent overrides one in a child.

resist node1 node2 R
Defines a resistor ofR milliohms between the two nodesnode1 and node2. Both names are

1990 DECWRL/Livermore Magic 2

-

EXT (5) CAD Tool User’s Manual EXT (5)

hierarchical.

distance name1 name2 dmin dmax
Gives the distance between two electrical terminalsname1 (a driver) andname2 (a receiver).
Note that these are terminals and not nodes: the names (which are hierarchical label names) are
used to specify two different locations on the same electrical node. The two distances,dmin and
dmax, are the lengths (in lambda) of the shortest and longest acyclic paths between the driver and
receiver.

The keywords in this last section describe the subcells used byname, and how connections are made to and
between them.

use def use-id TRANSFORM
Specifies that celldef with instance identifieruse-id is a subcell of cellname. If cell def is
arrayed, thenuse-id will be followed by two bracketed subscript ranges of the form:[lo,hi,sep].
The first range is for x, and the second for y. The subscripts for a given dimension arelo through
hi inclusive, and the separation between adjacent array elements issep centimicrons.

TRANSFORM is a set of six integers that describe how coordinates indef are to be transformed to
coordinates in the parentname. It is used byext2sim (1) in transforming transistor locations to
coordinates in the root of a design. The six integers ofTRANSFORM (ta, tb, tc, td, te, tf) are inter-
preted as components in the following transformation matrix, by which all coordinates indef are
post-multiplied to get coordinates inname:

ta td 0
tb te 0
tc tf 1

merge path1 path2 C a1 p1 a2 p2 ... aN pN
Used to specify a connection between two subcells, or between a subcell and mask information of
name. Both path1 andpath2 are hierarchical node names. To refer to a node in cellname itself,
its pathname is just its node name. To refer to a node in a subcell ofname, its pathname consists
of the use-id of the subcell (as it appeared in ause line above), followed by a slash (/), followed
by the node name in the subcell. For example, ifname contains subcellsub with use identifier
sub-id, andsub contains noden, the full pathname of noden relative toname will be sub-id/n.

Connections between adjacent elements of an array are represented using a special syntax that takes advan-
tage of the regularity of arrays. A use-id in a path may optionally be followed by a range of the form
[lo:hi] (before the following slash). Such a use-id is interpreted as the elementslo throughhi inclusive of a
one-dimensional array. An element of a two-dimensional array may be subscripted with two such ranges:
first the y range, then the x range.

Whenever onepath in a merge line contains such a subscript range, the other must contain one of compar-
able size. For example,

merge sub-id[1:4,2:8]/a sub-id[2:5,1:7]/b

is acceptable because the range 1:4 is the same size as 2:5, and the range 2:8 is the same size as 1:7.

When a connection occurs between nodes in different cells, it may be that some resistance and capacitance
has been recorded redundantly. For example, polysilicon in one cell may overlap polysilicon in another, so
the capacitance to substrate will have been recorded twice. The valuesC, a1, p1, etc. in amerge line pro-
vide a way of compensating for such overlap. Each ofa1, p1, etc. (usually negative) are added to the area
and perimeter for material of each resistance class to give an adjusted area and perimeter for the aggregate
node. The valueC attofarads (also usually negative) is added to the sum of the capacitances (to substrate)
of nodespath1 andpath2 to give the capacitance of the aggregate node.

1990 DECWRL/Livermore Magic 3

-

EXT (5) CAD Tool User’s Manual EXT (5)

cap node1 node2 C
Defines a capacitor between the nodesnode1 and node2, with capacitanceC. This construct is
used to specify both internodal capacitance within a single cell and between cells.

AUTHOR
Walter Scott

SEE ALSO
ext2sim (1), magic (1)

1990 DECWRL/Livermore Magic 4

-

GLYPHS (5) CAD Tool User’s Manual GLYPHS (5)

NAME
glyphs− format of .glyphs files

DESCRIPTION
Glyph files (‘‘.glyph’’ extension) are used to store commonly-used bit patterns (glyphs) for Magic. Right
now, the bit patterns are used for two purposes in Magic. First, they specify patterns for programmable
cursors: each cursor shape (e.g. the arrow used for the wiring tool) is read in as a glyph from a glyph file.
Second, glyphs are used by the window manager to represent the icons displayed at the ends of scroll bars.
Glyph file names normally have the extension.glyph.

Glyph files are stored in ASCII format. Lines beginning with ‘‘#’’ are considered to be comments and are
ignored. Blank lines are also ignored. The first non-comment line in a glyph file must have the syntaxsize
nGlyphs width height The nGlyphs field must be a number giving the total number of glyphs stored in the
file. The width andheight fields give the dimensions of each glyph in pixels. All glyphs in the same file
must have the same size.

The size line is followed by a description for each of the glyphs. Each glyph consists ofheight lines each
containing 2×width characters. Each pair of characters corresponds to a bit position in the glyph, with the
leftmost pair on the topmost line corresponding to the upper-left pixel in the glyph.

The first character of each pair specifies the color to appear in that pixel. The color is represented as as a
single character, which must be the short name of a display style in the current display style file. Some
commonly-used characters areK for black,W for white, and. for the background color (when. is used in a
cursor, it means that that pixel position is transparent: the underlying picture appears through the cursor).
See ‘‘Magic Maintainer’s Manual #3: Display Styles, Color Maps, and Glyphs’’ for more information.

The second character of each pair is normally blank, except for one pixel per glyph which may contain a
‘‘*’’ in the second character. The ‘‘*’’ is used for programmable cursors to indicate the hot-spot: the pixel
corresponding to the ‘‘*’’ is the one that the cursor is considered to point to.

For an example of a glyph file, see∼ cad/lib/magic/sys/color.glyphs.

SEE ALSO
magic (1), dstyle (5)

1990 DECWRL/Livermore Magic 1

-

MAGIC (5) CAD Tool User’s Manual MAGIC (5)

NAME
magic− format of .mag files read/written by Magic

DESCRIPTION
Magic uses its own internal ASCII format for storing cells in disk files. Each cellname is stored in its own
file, namedname.mag.

The first line in a.mag file is the string

magic

to identify this as a Magic file.

The next line is optional and is used to identify the technology in which a cell was designed. If present, it
should be of the form

tech techname

If absent, the technology defaults to a system-wide standard, currentlynmos.

The next line is also optional and gives a timestamp for the cell. The line is of the format

timestamp stamp

wherestamp is a number of seconds since 00:00 GMT January 1, 1970 (i.e, the Unix time returned by the
library functiontime()). It should be the last time this cell or any of its children changed. The timestamp is
used to detect when a child is edited outside the context of its parent (the parent stores the last timestamp it
saw for each of its children; see below). When this occurs, the design-rule checker must recheck the entire
area of the child for subcell interaction errors. If this field is omitted in a cell, Magic supplies a default
value that forces the rechecks.

Next come lines describing the contents of the cell. There are three kinds of groups of lines, describing
mask rectangles, subcell uses, and labels. Each group must appear contiguously in the file, but the order
between groups is arbitrary.

Each group of mask rectangles is headed with a line of the format

<< layer >>

wherelayer is a layername known in the current technology (see thetech line above). Each line after this
header has the format

rect xbot ybot xtop ytop

where(xbot, ybot) is the lower-left corner of the rectangle in Magic (lambda) coordinates, and(xtop, ytop)
is the upper-right corner. Degenerate rectangles are not allowed;xbot must be strictly less thanxtop, and
ybot strictly less thanytop. The smallest legal value ofxbot or ybot is −−67108858, and the largest legal
value forxtop or ytop is 67108858. Values that approach these limits (within a factor of 100 or 1000) may
cause numerical overflows in Magic even though they are not strictly illegal. We recommend using coordi-
nates around zero as much as possible.

Rectangles should be non-overlapping, although this is not essential. They should also already have been
merged into maximal horizontal strips (the neighbor to the right or left of a rectangle should not be of the
same type), but this is also not essential.

1990 DECWRL/Livermore Magic 1

-

MAGIC (5) CAD Tool User’s Manual MAGIC (5)

The second kind of line group describes a single cell use. Each cell use group is of the following form:

use filename use-id
array xlo xhi xsep ylo yhi ysep
timestamp stamp
transform a b c d e f
box xbot ybot xtop ytop

A group specifies a single instance of the cell namedfilename, with instance-identifieruse-id. The
instance-identifieruse-id must be unique among all cells used by this.mag file. If use-id is not specified, a
unique one is generated automatically.

Thearray line need only be present if the cell is an array. If so, the X indices run fromxlo to xhi inclusive,
with elements being separated from each other in the X dimension byxsep lambda. The Y indices run
from ylo to yhi inclusive, with elements being separated from each other in the Y dimension byysep
lambda. Ifxlo andxhi are equal,xsep is ignored; similarly ifylo andyhi are equal,ysep is ignored.

The timestamp line is optional; if present, it gives the last time this cell was aware that the childfilename
changed. If there is notimestamp line, a timestamp of 0 is assumed. When the subcell is read in, this
value is compared to the actual value at the beginning of the child cell. If there is a difference, the ‘‘times-
tamp mismatch’’ message is printed, and Magic rechecks design-rules around the child.

The transform line gives the geometric transform from coordinates of the childfilename into coordinates
of the cell being read. The six integersa, b, c, d, e, andf are part of the following transformation matrix,
which is used to postmultiply all coordinates in the childfilename whenever their coordinates in the parent
are required:

a d 0
b e 0
c f 1

Finally, box gives an estimate of the bounding box of cellfilename (covering all the elements of the array if
anarray line was present), in coordinates of the cell being read.

The third kind of line group in a.mag file is a list of labels. It begins with the line

<< labels >>

and is followed by zero or more lines of the following form:

rlabel layer xbot ybot xtop ytop position text

Here layer is the name of one of the layers specified in the technology file for this cell. The label is
attached to material of this type.Layer may bespace, in which case the label is not considered to be
attached to any layer.

Labels are rectangular. The lower-left corner of the label (the part attached to any geometry iflayer is
non-space) is at (xbot, ybot), and the upper-right corner at(xtop, ytop). The width of the rectangle or its
height may be zero. In fact, most labels in Magic have a lower-left equal to their upper right.

The text of the label,text, may be any sequence of characters not including a newline. This text is located
at one of nine possible orientations relative to the center of the label’s rectangle.Position is an integer
between 0 and 8, each of which corresponds to a different orientation:

0 center
1 north
2 northeast

1990 DECWRL/Livermore Magic 2

-

MAGIC (5) CAD Tool User’s Manual MAGIC (5)

3 east
4 southeast
5 south
6 southwest
7 west
8 northwest

A .mag file is terminated by the line

<< end >>

Everything following this line is ignored.

Any line beginning with a pound sigh (‘‘#’’) is considered to be a comment and ignored. Beware, how-
ever, that these comments are discarded by Magic when it reads a cell, so if that cell is written again by
Magic, the comments will be lost.

NOTE FOR PROGRAMS THAT GENERATE MAGIC FILES
Magic’s incremental design rule checker expects that every cell is either completely checked, or contains
information to tell the checker which areas of the cell have yet to be examined for design-rule violations.
To make sure that the design-rule checker verifies all the material that has been generated for a cell, pro-
grams that generate.mag files should place the following rectangle in each file:

<< checkpaint >>
rect xbot ybot xtop ytop

This rectangle may appear anywhere a list of rectangles is allowed; immediately following thetimestamp
line at the beginning of a.mag file is a good place. The coordinatesxbot etc. should be large enough to
completely cover anything in the cell, and must surround all this material by at least one lambda. Be care-
ful, however, not to make this area too ridiculously large. For example, if you use the maximum and
minimum legal tile coordinates, it will take the design-rule checker an extremely long time to recheck the
area.

SEE ALSO
magic (1)

1990 DECWRL/Livermore Magic 3

-

NET (5) CAD Tool User’s Manual NET (5)

NAME
net− format of .net files read/written by Magic’s netlist editor

DESCRIPTION
Netlist files are read and written by Magic’s netlist editor in a very simple ASCII format. The first line
contains the characters ‘‘ Netlist File’’ (the leading blank is important). After that comes a blank line and
then the descriptions of one or more nets. Each net contains one or more lines, where each line contains a
single terminal name. The nets are separated by blank lines. Any line that is blank or whose first character
is blank is considered to be a separator line and the rest of its contents are ignored.

Each terminal name is a path, much like a file path name in Unix. It consists of one or more fields
separated by slashes. The last field in the path is the name of a label in a cell. The other fields (if any), are
cell instance identifiers that form a path from the edit cell down to the label. The first instance identifier
must name a subcell of the edit cell, the second must be a subcell of the first, and so on.

Instance identifiers are unique within their parent cells, so a terminal path selects a unique cell to contain
the label. However, the same label may appear multiple times within its cell. When this occurs, Magic
assumes that the identical labels identify electrically equivalent terminals; it will choose the closest of them
when routing to that terminal. Further, after connecting to one of these terminals Magic may take advan-
tage of the internal wiring connecting them together and route through a cell to complete the net’s wiring.

An example netlist file follows below. It contains three distinct nets.

———
Ne t l i s t F i l e

a l u / b i t _1 / cou t
a l u / b i t _2 / c i n

r egc e l l [21 , 2] / ou t pu t
l a t ch [2] / i npu t
Th i s l i ne s t a r t s wi t h a b l ank , s o i t ’ s a s epa r a t o r .

opcode_p l a / ou t 6
s h i f t e r / d r i ve r s / s h i f t 2

———

SEE ALSO
magic (1)

1990 DECWRL/Livermore Magic 1

-

SIM (5) CAD Tool User’s Manual SIM (5)

NAME
sim− format of .sim files read by esim, crystal, etc.

DESCRIPTION
The simulation toolscrystal (1) andesim (1) accept a circuit description in.sim format. There is a single
.sim file for the entire circuit, unlike Magic’sext (5) format in which there is a.ext file for every cell in a
hierarchical design.

A .sim file consists of a series of lines, each of which begins with a key letter. The key letter beginning a
line determines how the remainder of the line is interpreted. The following are the list of key letters under-
stood.

||units: s tech: tech format:MIT|LBL|SU
If present, this must be the first line in the.sim file. It identifies the technology of this circuit as
tech and gives a scale factor for units of linear dimension ass. All linear dimensions appearing in
the .sim file are multiplied bys to give centimicrons. The format field signifies the sim variant.
MIT and SU are compatible and understood by all tools. LBL is understood only by gemini(1).

type g s d l w x y g=gattrs s=sattrs d=dattrs
Defines a transistor of typetype. Currently,type may bee or d for NMOS, orp or n for CMOS.
The name of the node to which the gate, source, and drain of the transistor are connected are given
by g, s, and d respectively. The length and width of the transistor arel and w. The next two
tokens,x andy, are optional. If present, they give the location of a point inside the gate region of
the transistor. The last three tokens are the attribute lists for the transistor gate, source, and drain.
If no attributes are present for a particular terminal, the corresponding attribute list may be absent
(i.e, there may be nog= field at all). The attribute listsgattrs, etc. are comma-separated lists of
labels. The label names should not include any spaces, although some tools can accept label
names with spaces if they are enclosed in double quotes.In version 6.4.5 and later the default
format produced by ext2sim is SU. In this format the attribute of the gate starting with S_ is the
substrate node of the fet. The attributes of the gate, and source and substrate starting with A_, P_
are the area and perimeter (summed for that node only once) of the source and drain respectively.
This addition to the format is backwards compatible.

C n1 n2 cap
Defines a capacitor between nodesn1 and n2. The value of the capacitor iscap femtofarads.
NOTE: since many analysis tools compute transistor gate capacitance themselves from the
transistor’s area and perimeter, the capacitance between a node and substrate (GND!) normally
does not include the capacitance from transistor gates connected to that node. If the.sim file was
produced byext2sim (1), check the technology file that was used to produce the original.ext files
to see whether transistor gate capacitance is included or excluded; see ‘‘Magic Maintainer’s
Manual #2: The Technology File’’ for details.

R node res
Defines the lumped resistance of nodenode to beres ohms. This construct is only interpreted by a
few programs.

r node1 node2 res
Defines an explicit resistor between nodesnode1 and node2 of resistanceres ohms. This con-
struct is only interpreted by a few programs.

N node darea dperim parea pperim marea mperim
As an alternative to computed capacitances, some tools expect the total perimeter and area of the
polysilicon, diffusion, and metal in each node to be reported in the.sim file. The N construct
associates diffusion areadarea (in square centimicrons) and diffusion perimeterdperim (in cen-
timicrons) with nodenode, polysilicon areaparea and perimeterpperim, and metal areamarea
and perimetermperim. This construct is technology dependent and obsolete.

1990 DECWRL/Livermore Magic 1

-

SIM (5) CAD Tool User’s Manual SIM (5)

A node attr
Associates attributeattr for nodenode. The stringattr should contain no blanks.

= node1 node2
Each node in a.sim file is named implicitly by having it appear in a transistor definition. All node
names appearing in a.sim file are assumed to be distinct. Some tools, such asesim (1), recognize
aliases for node names. The= construct allows the namenode2 to be defined as an alias for the
namenode1. Aliases defined by means of this construct may not appear anywhere else in the.sim
file.

SEE ALSO
crystal (1), esim (1), ext2sim (1), sim2spice (1), ext (5)

1990 DECWRL/Livermore Magic 2

-

vdmpc (5) CAD Tool User’s Manual vdmpc (5)

NAME
vdmpc− format of vdmpc color bitmaps (raster images for printing)

SYNTAX
(none)

DESCRIPTION
Vdmpc color bitmap files are processed by the vdmpc filter, which comes with the Magic VLSI layout edi-
tor from Berkeley.

A vdmpc file consists of 5 parts: a 1024 byte header and four bitmaps, one for each of the following colors
in order: black, cyan, magenta, and yellow. This format is inspired by the 3000-series Versatec color
plotters.

The 1024 byte header starts with a 1-word magic number: 0xA5CF4DFB. Thus, the first 4 bytes of the file
are: 0x4D, 0xFB, 0xA5, 0xCF. The second word (four bytes) contain the length of the bitmap in pixels.
The third word gives the width of the bitmap. The width must be a multiple of 8. It does not have to match
the physical width of the plotter, as it will be clipped or padded as needed. The remaining words of the
header are currently unused, and should be set to zero.

The rest of the file contains the bitmaps. There are no separation or formatting characters between the bit-
maps -- they follow immediately after the header block and are packed back-to-back. Each bitmap is of
size width*height bits, where width and height are defined in the header. Each bitmap consists of a
sequence of bits packed into bytes. The bits are ordered from the top-left of the image moving towards the
top-right. After a complete scan-line is represented this way, the data for the next lower scan line is
represented. Bits are packed into bytes such that the leftmost bit on the physical device is placed into the
high-order bit position of the byte.

SEE ALSO
vdmpc(8)

AUTHOR
Bob Mayo

1990 DECWRL/Livermore Magic 1

-

PRLEAK (8) CAD Tool User’s Manual PRLEAK (8)

NAME
prleak− aid for debugging programs using malloc/free

SYNOPSIS
prleak [−−a] [−−d] [−−l] [objfile [tracefile]]

DESCRIPTION
Prleak is a tool for use in debugging programs that make use of Magic’s versions ofmalloc and free. It
examines the trace file produced by special versions ofmalloc andfree produced when they are compiled
with the −−DMALLOCTRACE flag. The output of prleak is the average allocation size, a list of ‘leaky’
allocations (blocks still allocated at program exit) if−−l is specified, a list of duplicate frees (blocks that the
program attempted to free after they had already been deallocated) if−−d is specified, and a list of all calls
to malloc and free if−−a is specified. If no switches are given, the default action is as though−−l and−−d
were in effect.

For each entry output, both the address of the allocated block and a stack backtrace at the time of the call to
malloc or free are printed.Prleak attempts to use the namelist fromobjfile (a.out if no file is given) to pro-
duce a symbolic backtrace. If no namelist can be found, the backtrace is printed in hex. Iftracefile is
specified, the malloc trace is read from it; otherwise, it is read from the filemalloc.out in the current direc-
tory.

An example output might be as follows:

Average allocation size = 12 bytes

Leaks:

0x11540 [11 bytes]
at _foo+0x14
called from ∼∼ main+026

0x11556 [14 bytes]
at _bar+0x50
called from _foo+0x36
called from ∼∼ main+0x26

--------- ------
Duplicate frees:
--------- ------

0x11556
at _bar+0x40
called from _foo+0x36
called from ∼∼ main+0x26

FILES
malloc.out

SEE ALSO
ACM SIGPLAN Notices, Vol 17, No 5 (May 1982), the article by Barach and Taenzer.

1990 DECWRL/Livermore Magic 1

-

PRLEAK (8) CAD Tool User’s Manual PRLEAK (8)

AUTHOR
Walter Scott

BUGS
Local symbols (beginning with ‘‘∼ ’’) in the backtrace output should be tagged with the source file to which
they refer.

1990 DECWRL/Livermore Magic 2

-

vdmpc (8) CAD Tool User’s Manual vdmpc (8)

NAME
vdmpc− bitmap (raster image) filter for a Color Versatec (3000 series)

SYNTAX
/usr/lib/vdmpc -x width -y length -n login -h host acnt_file

DESCRIPTION
The vdmpc filter is a modification of the vdmp filter. It works with color Versatec plotters, such as the
3000 series.Width is the width of the plotter in pixels, taken from thepx entry in /etc/printcap.Length is
the length of a12 inch plot, in pixels, taken from thepy entry in /etc/printcap. 12 inches was chosen
because older software uses the foot as the accounting unit for roll-fed paper.

Vdmpc uses the vdmpc file format described in vdmpc(5).

AUTHOR
Modifications, of original vdmp program, by Bob Mayo.

SEE ALSO
lpr(1), vdmpc(5)

1990 DECWRL/Livermore Magic 1

Magic Tutorial #1: Getting Started

John Ousterhout
(updated by others, too)

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 6.

1. What is Magic?

Magic is an interactive system for creating and modifying VLSI circuit layouts.
With Magic, you use a color graphics display and a mouse or graphics tablet to design
basic cells and to combine them hierarchically into large structures. Magic is different
from other layout editors you may have used. The most important difference is that
Magic is more than just a color painting tool: it understands quite a bit about the nature
of circuits and uses this information to provide you with additional operations. For
example, Magic has built-in knowledge of layout rules; as you are editing, it continu-
ously checks for rule violations. Magic also knows about connectivity and transistors,
and contains a built-in hierarchical circuit extractor. Magic also has a plow operation
that you can use to stretch or compact cells. Lastly, Magic has routing tools that you can
use to make the global interconnections in your circuits.

Magic is based on the Mead-Conway style of design. This means that it uses
simplified design rules and circuit structures. The simplifications make it easier for you
to design circuits and permit Magic to provide powerful assistance that would not be pos-
sible otherwise. However, they result in slightly less dense circuits than you could get
with more complex rules and structures. For example, Magic permits only Manhattan
designs (those whose edges are vertical or horizontal). Circuit designers tell us that our
conservative design rules cost 5-10% in density. We think that the density sacrifice is
compensated for by reduced design time.

2. How to Get Help and Report Problems

There are several ways you can get help about Magic. If you are trying to learn
about the system, you should start off with the Magic tutorials, of which this is the first.
Each tutorial introduces a particular set of facilities in Magic. There is also a set of

- 1 -

Magic Tutorial #1: Getting Started September 19, 1990

���
Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #3: Advanced Painting (Wiring and Plowing)
Magic Tutorial #4: Cell Hierarchies
Magic Tutorial #5: Multiple Windows
Magic Tutorial #6: Design-Rule Checking
Magic Tutorial #7: Netlists and Routing
Magic Tutorial #8: Circuit Extraction
Magic Tutorial #9: Format Conversion for CIF and Calma
Magic Tutorial #10: The Interactive Route
Magic Tutorial #11: Using RSIM with Magic���
Magic Maintainer’s Manual #1: Hints for System Maintainers
Magic Maintainer’s Manual #2: The Technology File
Magic Maintainer’s Manual #3: Display Styles, Color Maps, and Glyphs
Magic Maintainer’s Manual #4: Using Magic Under X Windows���
Magic Technology Manual #1: NMOS
Magic Technology Manual #2: SCMOS���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table I. The Magic tutorials, maintenance manuals, and technology manuals.

manuals intended for system maintainers. These describe things like how to create new
technologies. Finally, there is a set of technology manuals. Each one of the technology
manuals describes the features peculiar to a particular technology, such as layer names
and design rules. Table I lists all of the Magic manuals. The tutorials are designed to be
read while you are running Magic, so that you can try out the new commands as they are
explained. You needn’t read all the tutorials at once; each tutorial lists the other tutorials
that you should read first.

The tutorials are not necessarily complete. Each one is designed to introduce a set
of facilities, but it doesn’t necessarily cover every possibility. The ultimate authority on
how Magic works is the reference manual, which is a standard Unix man page. The man
page gives concise and complete descriptions of all the Magic commands. Once you
have a general idea how a command works, the man page is probably easier to consult
than the tutorial. However, the man page may not make much sense until after you’ve
read the tutorial.

A third way of getting help is available on-line through Magic itself. The :help
command will print out one line for each Magic command, giving the command’s syntax
and an extremely brief description of the command. This facility is useful if you’ve for-
gotten the name or exact syntax of a command. After each screenful of help information,
:help stops and prints ‘‘--More--’’. If you type a space, the next screenful of data will be
output, and if you type q the rest of the output will be skipped. If you’re interested in
information about a particular subject, you can type

:help subject

This command will print out each command description that contains the subject string.

- 2 -

Magic Tutorial #1: Getting Started September 19, 1990

If you have a question or problem that can’t be answered with any of the above
approaches, you may contact the Magic authors by sending mail to
magic@ucbarpa.Berkeley.EDU (or ucbvax!ucbarpa!magic). This will log your mes-
sage in a file (so we can’t forget about it) and forward the message to the Magic main-
tainers. Magic maintenance is a mostly volunteer effort, so when you report a bug or ask
a question, please be specific. Obviously, the more specific you are, the more likely we
can answer your question or reproduce the bug you found. We’ll tend to answer the
specific bug reports first, since they involve less time on our part. Try to describe the
exact sequence of events that led to the problem, what you expected to happen, and what
actually happened. If possible, find a small example that reproduces the problem and
send us the relevant (small!) files so we can make it happen here. Or best of all, send us
a bug fix along with a small example of the problem.

3. Graphics Configuration

Magic can be run with different graphics hardware. The most common
configuration is to run Magic under X11 on a workstation. Another way to run Magic is
on a mainframe with a serial-line graphics display. The rest of this section concerns
X11.

Before starting up magic, make sure that your DISPLAY variable is set correctly. If
you are running magic and your X server on the same machine, set it to unix:0:

setenv DISPLAY unix:0

Under X10, the layout window will appear in the upper left quadrant of your screen. The
X11 server will normally prompt you for the window’s position and size. This window is
an ordinary X window, and can be moved and resized using the window manager.

For now, you can skip to the next major section: "Running Magic".

3.1. Advanced X Use

The X11 driver can read in window sizing and font preferences from your .Xde-
faults file. The following specifications are recognized:

magic.window: 1000x600+10+10
magic.newwindow: 300x300+400+100
magic.small: helvetica8
magic.medium: helvetica12
magic.large: helvetica18
magic.xlarge: helvetica24

magic.window is the size and position of the initial window, while magic.newwindow is
the size and position of subsequent windows. If these are left blank, you will be
prompted to give the window’s position and size. small, medium, large, and xlarge are
various fonts magic uses for labels. Some X11 servers read the .Xdefaults file only when
you initially log in; you may have to log out and then back in again for the changes to
take effect.

Under X11, Magic can run on a display of any depth for which there are colormap
and dstyle files. Monochrome, 4 bit, 6 bit, and 7 bit files for Mos are distributed in this
release. You can explicitly specify how many planes Magic is to use by adding a suffix

- 3 -

Magic Tutorial #1: Getting Started September 19, 1990

numeral between 1 and 7 to "XWIND" when used with Magic’s "-d" option. For exam-
ple, "magic -d XWIND1" runs magic on a monochrome display and "magic -d
XWIND7" runs magic on a 7 plane display. If this number is not specified, magic checks
the depth of the display and picks the largest number in the set {1,4,6,7} that the display
will support.

The X10 driver only supports monochrome and 7 bit displays.

3.2. Serial-line Displays

If you are running Magic on a mainframe, each station consists of a standard video
terminal, called the text display, and a color display. You use the keyboard on the text
display to type in commands, and Magic uses its screen to log the commands and their
results. The color display is used to display one or more portions of the circuit you are
designing. You will use a graphics tablet or mouse to point to things on the color display
and to invoke some commands. If there is a keyboard attached to the color display (as,
for example, with AED512 displays) it is not used except to reset the display. The
current version of Magic supports the AED family of displays. Most of the displays are
now available with special ROMs in them that provide extra Magic support (talk to your
local AED sales rep to make sure you get the UCB ROMs). More displays are being
added, so check the Unix man page for the most up-to-date information.

4. Running Magic

From this point on, you should be sitting at a Magic workstation so you can experi-
ment with the program as you read the manuals. Starting up Magic is usually pretty sim-
ple. Just log in and, if needed, start up your favorite window system. Then type the shell
command

magic tut1

Tut1 is the name of a library cell that you will play with in this tutorial. At this point,
several colored rectangles should appear on the color display along with a white box and
a cursor. A message will be printed on the text display to tell you that tut1 isn’t writable
(it’s in a read-only library), and a ‘‘>’’ prompt should appear. If this has happened, then
you can skip the rest of this section (except for the note below) and go directly to Section
5.

Note: in the tutorials, when you see things printed in boldface, for example, magic
tut1 from above, they refer to things you type exactly, such as command names and file
names. These are usually case sensitive (A is different from a). When you see things
printed in italics, they refer to classes of things you might type. Arguments in square
brackets are optional. For example, a more complete description of the shell command
for Magic is

magic [file]

You could type any file name for file, and Magic would start editing that file. It turns out
that tut1 is just a file in Magic’s cell library. If you didn’t type a file name, Magic would
load a new blank cell.

If things didn’t happen as they should have when you tried to run Magic, any of
several things could be wrong. If a message of the form ‘‘magic: Command not found’’

- 4 -

Magic Tutorial #1: Getting Started September 19, 1990

appears on your screen it is because the shell couldn’t find the Magic program. The most
stable version of Magic is the directory ∼ cad/bin, and the newest public version is in
∼ cad/new. You should make sure that both these directories are in your shell path. Nor-
mally, ∼ cad/new should appear before ∼ cad/bin. If this sounds like gibberish, find a Unix
hacker and have him or her explain to you about paths. If worst comes to worst, you can
invoke Magic by typing its full name:

∼ cad/bin/magic tut1

Another possible problem is that Magic might not know what kind of display you
are using. To solve this, use magic’s -d flag:

magic -d display tut1

Display is usually the model number of the workstation you are using or the name of
your window system. Look in the manual page for a list of valid names, or just guess
something. Magic will print out the list of valid names if you guess wrong.

If you are using a graphics terminal (not a workstation), it is possible that Magic
doesn’t know which serial line to use. To learn how to fix this, read about the -g switch
in the magic(1) manual page. Also read the displays(5) manual page.

5. The Box and the Cursor

Two things, called the box and the cursor, are used to select things on the color
display. As you move the mouse, the cursor moves on the screen. The cursor starts out
with a crosshair shape, but you’ll see later that its shape changes as you work to provide
feedback about what you’re doing. The left and right mouse buttons are used to position
the box. If you press the left mouse button and then release it, the box will move so that
its lower left corner is at the cursor position. If you press and release the right mouse
button, the upper right corner of the box will move to the cursor position, but the lower
left corner will not change. These two buttons are enough to position the box anywhere
on the screen. Try using the buttons to place the box around each of the colored rectan-
gles on the screen.

Sometimes it is convenient to move the box by a corner other than the lower left.
To do this, press the left mouse button and hold it down. The cursor shape changes to
show you that you are moving the box by its lower left corner:

While holding the button down, move the cursor near the lower right corner of the box,
and now click the right mouse button (i.e. press and release it, while still holding down
the left button). The cursor’s shape will change to indicate that you are now moving the
box by its lower right corner. Move the cursor to a different place on the screen and
release the left button. The box should move so that its lower right corner is at the cursor
position. Try using this feature to move the box so that it is almost entirely off-screen to
the left. Try moving the box by each of its corners.

You can also reshape the box by corners other than the upper right. To do this,
press the right mouse button and hold it down. The cursor shape shows you that you are

- 5 -

Magic Tutorial #1: Getting Started September 19, 1990

reshaping the box by its upper right corner:

Now move the cursor near some other corner of the box and click the left button, all the
while holding the right button down. The cursor shape will change to show you that now
you are reshaping the box by a different corner. When you release the right button, the
box will reshape so that the selected corner is at the cursor position but the diagonally
opposite corner is unchanged. Try reshaping the box by each of its corners.

6. Invoking Commands

Commands can be invoked in Magic in three ways: by pressing buttons on the
mouse; by typing single keystrokes on the text keyboard (these are called macros); or by
typing longer commands on the text keyboard (these are called long commands). Many
of the commands use the box and cursor to help guide the command.

To see how commands can be invoked from the buttons, first position the box over a
small blank area in the middle of the screen. Then move the cursor over the red rectan-
gle and press the middle mouse button. At this point, the area of the box should get
painted red. Now move the cursor over empty space and press the middle button again.
The red paint should go away. Note how this command uses both the cursor and box
locations to control what happens.

As an example of a macro, type the g key on the text keyboard. A grid will appear
on the color display, along with a small black box marking the origin of the cell. If you
type g again, the grid will go away. You may have noticed earlier that the box corners
didn’t move to the exact cursor position: you can see now that the box is forced to fall
on grid points.

Long commands are invoked by typing a colon (‘‘:’’) or semi-colon (‘‘;’’). After
you type the colon or semi-colon, the ‘‘>’’ prompt on the text screen will be replaced by
a ‘‘:’’ prompt. This indicates that Magic is waiting for a long command. At this point
you should type a line of text, followed by a return. When the long command has been
processed, the ‘‘>’’ prompt reappears on the text display. Try typing semi-colon fol-
lowed by return to see how this works. Occasionally a ‘‘]’’ (right bracket) prompt will
appear. This means that the design-rule checker is reverifying part of your design. For
now you can just ignore this and treat ‘‘]’’ like ‘‘>’’.

Each long command consists of the name of the command followed by arguments,
if any are needed by that command. The command name can be abbreviated, just as long
as you type enough characters to distinguish it from all other long commands. For exam-
ple, :h and :he may be used as abbreviations for :help. On the other hand, :u may not be
used as an abbreviation for :undo because there is another command, :upsidedown, that
has the same abbreviation. Try typing :u.

As an example of a long command, put the box over empty space on the color
display, then invoke the long command

- 6 -

Magic Tutorial #1: Getting Started September 19, 1990

:paint red

The box should fill with the red color, just as if you had used the middle mouse button to
paint it. Everything you can do in Magic can be invoked with a long command. It turns
out that the macros are just conveniences that are expanded into long commands and exe-
cuted. For example, the long command equivalent to the g macro is

:grid

Magic permits you to define new macros if you wish. Once you’ve become familiar with
Magic you’ll almost certainly want to add your own macros so that you can invoke
quickly the commands you use most frequently. See the magic(1) man page under the
command :macro.

One more long command is of immediate use to you. It is

:quit

Invoke this command. Note that before exiting, Magic will give you one last chance to
save the information that you’ve modified. Type y to exit without saving anything.

- 7 -

Magic Tutorial #2: Basic Painting and Selection

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Commands introduced in this tutorial:

:box, :clockwise, :copy, :erase, :findbox :grid, :label, :layers, :macro, :move, :paint,
:redo, :save, :select, :sideways, :undo, :upsidedown, :view, :what, :writeall, :zoom

Macros introduced in this tutorial:

a, A, c, d, ˆD, e, E, g, G, q, Q, r, R, s, S, t, T, u, U, v, w, W, z, Z, 4

1. Cells and Paint

In Magic, a circuit layout is a hierarchical collection of cells. Each cell contains
three things: colored shapes, called paint, that define the circuit’s structure; textual labels
attached to the paint; and subcells, which are instances of other cells. The paint is what
determines the eventual function of the VLSI circuit. Labels and subcells are a conveni-
ence for you in managing the layout and provide a way of communicating information
between various synthesis and analysis tools. This tutorial explains how to create and
edit paint and labels in simple single-cell designs, using the basic painting commands.
‘‘Magic Tutorial #3: Advanced Painting (Wiring and Plowing)’’ describes some more
advanced features for manipulating paint. For information on how to build up cell
hierarchies, see ‘‘Magic Tutorial #4: Cell Hierarchies’’.

- 1 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

2. Painting and Erasing

Enter Magic to edit the cell tut2a (type magic tut2a to the Unix shell; follow the
directions in ‘‘Tutorial #1: Getting Started’’ if you have any problems with this). The
tut2a cell is a sort of palette: it shows a splotch of each of several paint layers and gives
the names that Magic uses for the layers.

The two basic layout operations are painting and erasing. They can be invoked
using the :paint and :erase long commands, or using the buttons. The easiest way to
paint and erase is with the mouse buttons. To paint, position the box over the area you’d
like to paint, then move the cursor over a color and click the middle mouse button. To
erase everything in an area, place the box over the area, move the cursor over a blank
spot, and click the middle mouse button. Try painting and erasing various colors. If the
screen gets totally messed up, you can always exit Magic and restart it. While you’re
painting, white dots may occasionally appear and disappear. These are design rule viola-
tions detected by Magic, and will be explained in ‘‘Magic Tutorial #6: Design Rule
Checking’’. You can ignore them for now.

It’s completely legal to paint one layer on top of another. When this happens, one
of three things may occur. In some cases, the layers are independent, so what you’ll see
is a combination of the two, as if each were a transparent colored foil. This happens, for
example, if you paint metal1 (blue) on top of polysilicon (red). In other cases, when you
paint one layer on top of another you’ll get something different from either of the two
original layers. For example, painting poly on top of ndiff produces ntransistor (try this).
In still other cases the new layer replaces the old one: this happens, for example, if you
paint a pcontact on top of ntransistor. Try painting different layers on top of each other
to see what happens. The meaning of the various layers is discussed in more detail in
Section 11 below.

There is a second way of erasing paint that allows you to erase some layers without
affecting others. This is the macro ˆD (control-D, for ‘‘Delete paint’’). To use it, posi-
tion the box over the area to be erased, then move the crosshair over a splotch of paint
containing the layer(s) you’d like to erase. Type ˆD key on the text keyboard: the colors
underneath the cursor will be erased from the area underneath the box, but no other
layers will be affected. Experiment around with the ˆD macro to try different combina-
tions of paints and erases. If the cursor is over empty space then the ˆD macro is
equivalent to the middle mouse button: it erases everything.

You can also paint and erase using the long commands

:paint layers
:erase layers

In each of these commands layers is one or more layer names separated by commas (you
can also use spaces for separators, but only if you enclose the entire list in double-
quotes). Any layer can be abbreviated as long as the abbreviation is unambiguous. For
example, :paint poly,metal1 will paint the polysilicon and metal1 layers. The macro ˆD
is predefined by Magic to be :erase $ ($ is a pseudo-layer that means ‘‘all layers under-
neath the cursor’’).

- 2 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

3. Undo

There are probably going to be times when you’ll do things that you’ll later wish
you hadn’t. Fortunately, Magic has an undo facility that you can use to restore things
after you’ve made mistakes. The command

:undo

(or, alternatively, the macro u) will undo the effects of the last command you invoked. If
you made a mistake several commands back, you can type :undo several times to undo
successive commands. However, there is a limit to all this: Magic only remembers how
to undo the last ten or so commands. If you undo something and then decide you wanted
it after all, you can undo the undo with the command

:redo

(U is a macro for this command). Try making a few paints and erases, then use :undo
and :redo to work backwards and forwards through the changes you made.

4. The Selection

Once you have painted a piece of layout, there are several commands you can
invoke to modify the layout. Many of them are based on the selection: you select one or
more pieces of the design, and then perform operations such as copying, deletion, and
rotation on the selected things. To see how the selection works, load cell tut2b. You can
do this by typing :load tut2b if you’re still in Magic, or by starting up Magic with the
shell command magic tut2b.

The first thing to do is to learn how to select. Move the cursor over the upper por-
tion of the L-shaped blue area in tut2b, and type s, which is a macro for :select. The box
will jump over to cover the vertical part of the ‘‘L’’. This operation selected a chunk of
material. Move the box away from the chunk, and you’ll see that a thin white outline is
left around the chunk to show that it’s selected. Now move the cursor over the vertical
red bar on the right of the cell and type s. The box will move over that bar, and the selec-
tion highlighting will disappear from the blue area.

If you type s several times without moving the cursor, each command selects a
slightly larger piece of material. Move the cursor back over the top of the blue ‘‘L’’, and
type s three times without moving the cursor. The first s selects a chunk (a rectangular
region all of the same type of material). The second s selects a region (all of the blue
material in the region underneath the cursor, rectangular or not). The third s selects a net
(all of the material that is electrically connected to the original chunk; this includes the
blue metal, the red polysilicon, and the contact that connects them).

The macro S (short for :select more) is just like s except that it adds on to the selec-
tion, rather than replacing it. Move the cursor over the vertical red bar on the right and
type S to see how this works. You can also type S multiple times to add regions and nets
to the selection.

If you accidentally type s or S when the cursor is over space, you’ll select a cell
(tut2b in this case). You can just undo this for now. Cell selection will be discussed in
‘‘Magic Tutorial #4: Cell Hierarchies’’.

- 3 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

You can also select material by area: place the box around the material you’d like
to select and type a (short for :select area). This will select all of the material under-
neath the box. You can use the macro A to add material to the selection by area, and you
can use the long command

:select [more] area layers

to select only material on certain layers. Place the box around everything in tut2b and
type :select area metal1 followed by :select more area poly.

If you’d like to clear out the selection without modifying any of the selected
material, you can use the command

:select clear

or type the macro C. You can clear out just a portion of the selection by typing :select
less or :select less area layers; the former deselects paint in the order that :select selects
paint, while the latter deselects paint under the box (just as :select area selects paint
under the box). For a synopsis of all the options to the :select command, type

:select help

5. Operations on the Selection

Once you’ve made a selection, there are a number of operations you can perform on
it:

:delete
:move [direction [distance]]

:stretch [direction [distance]]
:copy

:upsidedown
:sideways

:clockwise [degrees]

The :delete command deletes everything that’s selected. Watch out: :delete is different
from :erase, which erases paint from the area underneath the box. Select the red bar on
the right in tut2b and type d, which is a macro for :delete. Undo the deletion with the u
macro.

The :move command picks up both the box and the selection and moves them so
that the lower-left corner of the box is at the cursor location. Select the red bar on the
right and move it so that it falls on top of the vertical part of the blue ‘‘L’’. You can use
t (‘‘translate’’) as a macro for :move. Practice moving various things around the screen.
The command :copy and its macro c are just like :move except that a copy of the selec-
tion is left behind at the original position.

There is also a longer form of the :move command that you can use to move the
selection a precise amount. For example, :move up 10 will move the selection (and the
box) up 10 units. The direction argument can be any direction like left, south, down,
etc. See the Magic manual page for a complete list of the legal directions. The macros

- 4 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

q, w, e, and r are defined to move the selection left, down, up, and right (respectively) by
one unit.

The :stretch command is similar to :move except that it stretches and erases as it
moves. :stretch does not operate diagonally, so if you use the cursor to indicate where
to stretch to, Magic will either stretch up, down, left, or right, whichever is closest. The
:stretch command moves the selection and also does two additional things. First, for
each piece of paint that moves, :stretch will erase that layer from the region that the
paint passes through as it moves, in order to clear material out of its way. Second, if the
back edge of a piece of selected paint touches non-selected material, one of the two
pieces of paint is stretched to maintain the connection. The macros Q, W, E, and R just
like the macros q, etc. described above for :move. The macro T is predefined to
:stretch. To see how stretching works, select the horizontal piece of the green wire in
tut2b and type W, then E. Stretching only worries about material in front of and behind
the selection; it ignores material to the sides (try the Q and R macros to see). You can
use plowing (described in Tutorial #3) if this is a problem.

The command :upsidedown will flip the selection upside down, and :sideways flips
the selection sideways. Both commands leave the selection so it occupies the same total
area as before, but with the contents flipped. The command :clockwise will rotate the
selection clockwise, leaving the lower-left corner of the new selection at the same place
as the lower-left corner of the old selection. Degrees must be a multiple of 90, and
defaults to 90.

At this point you know enough to do quite a bit of damage to the tut2b cell. Exper-
iment with the selection commands. Remember that you can use :undo to back out of
trouble.

6. Labels

Labels are pieces of text attached to the paint of a cell. They are used to provide
information to other tools that will process the circuit. Most labels are node names: they
provide an easy way of referring to nodes in tools such as routers, simulators, and timing
analyzers. Labels may also be used for other purposes: for example, some labels are
treated as attributes that give Crystal, the timing analyzer, information about the direc-
tion of signal flow through transistors.

Load the cell tut2c and place a cross in the middle of the red chunk (to make a
cross, position the lower-left corner of the box with the left button and then click the
right button to place the upper-right corner on top of the lower-left corner). Then type
type the command :label test. A new label will appear at the position of the box. The
complete syntax of the :label command is

:label [text [position [layer]]]

Text must be supplied, but the other arguments can be defaulted. If text has any spaces in
it, then it must be enclosed in double quotes. Position tells where the text should be
displayed, relative to the point of the label. It may be any of north, south, east, west,
top, bottom, left, right, up, down, center, northeast, ne, southeast, se, southwest, sw,
northwest, nw. For example, if ne is given, the text will be displayed above and to the
right of the label point. If no position is given, Magic will pick a position for you. Layer

- 5 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

tells which paint layer to attach the label to. If layer covers the entire area of the label,
then the label will be associated with the particular layer. If layer is omitted, or if it
doesn’t cover the label’s area, Magic initially associates the label with the ‘‘space’’ layer,
then checks to see if there’s a layer that covers the whole area. If there is, Magic moves
the label to that layer. It is generally a bad idea to place labels at points where there are
several paint layers, since it will be hard to tell which layer the label is attached to. As
you edit, Magic will ensure that labels are only attached to layers that exist everywhere
under the label. To see how this works, paint the layer pdiff (brown) over the label you
just created: the label will switch layers. Finally, erase poly over the area, and the label
will move again.

Although many labels are point labels, this need not be the case. You can label any
rectangular area by setting the box to that area before invoking the label command. This
feature is used for labelling terminals for the router (see below), and for labelling tiles
used by Mpack, the tile packing program. Tut2c has examples of point, line, and rec-
tangular labels.

All of the selection commands apply to labels as well as paint. Whenever you
select paint, the labels attached to that paint will also be selected. Selected labels are
highlighted in white. Select some of the chunks of paint in tut2c to see how the labels
are selected too. When you use area selection, labels will only be selected if they are
completely contained in the area being selected. If you’d like to select just a label
without any paint, make the box into a cross and put the cross on the label: s and S will
select just the label.

There are several ways to erase a label. One way is to select and then delete it.
Another way is to erase the paint that the label is attached to. If the paint is erased all
around the label, then Magic will delete the label too. Try attaching a label to a red area,
then paint blue over the red. If you erase blue the label stays (since it’s attached to red),
but if you erase the red then the label is deleted.

You can also erase labels using the :erase command and the pseudo-layer labels.
The command

:erase labels

will erase all labels that lie completely within the area of the box. Finally, you can erase
a label by making the box into a cross on top of the label, then clicking the middle button
with the cursor over empty space. Technically, this will erase all paint layers and labels
too. However, since the box has zero area, erasing paint has no effect: only the labels
are erased.

7. Labelling Conventions

When creating labels, Magic will permit you to use absolutely any text whatsoever.
However, many other tools, and even parts of Magic, expect label names to observe cer-
tain conventions. Except for the special cases described below, labels shouldn’t contain
any of the characters ‘‘/$@!ˆ’’. Spaces, control characters, or parentheses within labels
are probably a bad idea too. Many of the programs that process Magic output have their
own restrictions on label names, so you should find out about the restrictions that apply at
your site. Most labels are node names: each one gives a unique identification to a set of

- 6 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

things that are electrically connected. There are two kinds of node names, local and glo-
bal. Any label that ends in ‘‘!’’ is treated as a global node name; it will be assumed that
all nodes by this name, anywere in any cell in a layout, are electrically connected. The
most common global names are Vdd! and GND!, the power rails. You should always
use these names exactly, since many other tools require them. Nobody knows why
‘‘GND!’’ is all in capital letters and ‘‘Vdd!’’ isn’t.

Any label that does not end in ‘‘!’’ or any of the other special characters discussed
below is a local node name. It refers to a node within that particular cell. Local node
names should be unique within the cell: there shouldn’t be two electrically distinct nodes
with the same name. On the other hand, it is perfectly legal, and sometimes advanta-
geous, to give more than one name to the same node. It is also legal to use the same local
node name in different cells: the tools will be able to distinguish between them and will
not assume that they are electrically connected.

The only other labels currently understood by the tools are attributes. Attributes are
pieces of text associated with a particular piece of the circuit: they are not node names,
and need not be unique. For example, an attribute might identify a node as a chip input,
or it might identify a transistor terminal as the source of information for that transistor.
Any label whose last character is ‘‘@’’, ‘‘$’’, or ‘‘ˆ’’ is an attribute. There are three dif-
ferent kinds of attributes. Node attributes are those ending with ‘‘@’’; they are associ-
ated with particular nodes. Transistor source/drain attributes are those ending in ‘‘$’’;
they are associated with particular terminals of a transistor. A source or drain attribute
must be attached to the channel region of the transistor and must fall exactly on the
source or drain edge of the transistor. The third kind of attribute is a transistor gate attri-
bute. It ends in ‘‘ˆ’’ and is attached to the channel region of the transistor. To see exam-
ples of attributes and node names, edit the cell tut2d in Magic.

Special conventions apply to labels for routing terminals. The standard Magic
router (invoked by :route) ignores all labels except for those on the edges of cells. (This
restriction does not apply to the gate-array router, Garoute, or to the interactive router,
Iroute). If you expect to use the standard router to connect to a particular node, you
should place the label for that node on its outermost edge. The label should not be a
point label, but should instead be a horizontal or vertical line covering the entire edge of
the wire. The router will choose a connection point somewhere along the label. A good
rule of thumb is to label all nodes that enter or leave the cell in this way. For more
details on how labels are used by the standard router, see ‘‘Magic Tutorial #7: Netlists
and Routing’’. Other labeling conventions are used by the Garouter and Irouter, consult
their respective tutorials for details.

8. Files and Formats

Magic provides a variety of ways to save your cells on disk. Normally, things are
saved in a special Magic format. Each cell is a separate file, and the name of the file is
just the name of the cell with .mag appended. For example, the cell tut2a is saved in file
tut2a.mag. To save cells on disk, invoke the command

:writeall

This command will run through each of the cells that you have modified in this editing
session, and ask you what to do with the cell. Normally, you’ll type write, or just hit the

- 7 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

return key, in which case the cell will be written back to the disk file from which it was
read (if this is a new cell, then you’ll be asked for a name for the cell). If you type
autowrite, then Magic will write out all the cells that have changed without asking you
what to do on a cell-by-cell basis. Flush will cause Magic to delete its internal copy of
the cell and reload the cell from the disk copy, thereby expunging all edits that you’ve
made. Skip will pass on to the next cell without writing this cell (but Magic still
remembers that it has changed, so the next time you invoke :writeall Magic will ask
about this cell again). Abort will stop the command immediately without writing or
checking any more cells.

IMPORTANT NOTE: Unlike vi and other text editors, Magic doesn’t keep
checkpoint files. This means that if the system should crash in the middle of a session,
you’ll lose all changes since the last time you wrote out cells. It’s a good idea to save
your cells frequently during long editing sessions.

You can also save the cell you’re currently editing with the command

:save name

This command will append ‘‘.mag’’ to name and save the cell you are editing in that
location. If you don’t provide a name, Magic will use the cell’s name (plus the ‘‘.mag’’
extension) as the file name, and it will prompt you for a name if the cell hasn’t yet been
named.

Once a cell has been saved on disk you can edit it by invoking Magic with the com-
mand

magic name

where name is the same name you used to save the cell (no ‘‘.mag’’ extension).

Magic can also read and write files in CIF and Calma Stream formats. See ‘‘Magic
Tutorial #9: Format Conversion for CIF and Calma’’ for details.

9. Plotting

Magic can generate hardcopy plots of layouts in four ways: versatec (black-and-
white or color), gremlin and pixels (a generalized pixel-file that can be massaged in many
ways). The first style is for printers like the black-and-white Versatec family: for these,
Magic will output a raster file and spool the file for printing. To plot part of your design,
place the box around the part you’d like to plot and type

:plot versatec [width [layers]]

This will generate a plot of the area of the box. Everything visible underneath the box
will appear in more-or-less the same way in the plot. Width specifies how wide the plot
will be, in inches. Magic will scale the plot so that the area of the box comes out this
wide. The default for width is the width of the plotter (if width is larger than the plotter
width, it’s reduced to the plotter width). If layers is given, it specifies exactly what infor-
mation is to be plotted. Only those layers will appear in the plot. The special ‘‘layer’’
labels will enable label plotting.

The second form is for driving printers like color Versatecs. It is enabled by setting
the color plot parameter to true. A table of stipples for the primary colors (black, cyan,

- 8 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

magenta abd yellow) is given in the technology file. When the plot command is given,
four rasters (one for each of the colors) are generated, separated with the proper control
sequences for the printer. Otherwise, operation is exactly as for the black-and-white
case.

The third form of plotting is for generating Gremlin-format files, which can then be
edited with the Gremlin drawing system or included in documents processed by Grn and
Ditroff. The command to get Gremlin files is

:plot gremlin file [layers]

It will generate a Gremlin-format file in file that describes everything underneath the box.
If layers is specified, it indicates which layers are to appear in the file; otherwise every-
thing visible on the screen is output. The Gremlin file is output without any particular
scale; use the width or height commands in Grn to scale the plot when it’s printed. You
should use the mg stipples when printing Magic Gremlin plots; these will produce the
same stipple patterns as :plot versatec.

Finally, the ‘‘pixels’’ style of plotting generates a file of pixel values for the region
to be plotted. This can be useful for input to other image tools, or for generation of slides
and viewgraphs for presentations. The file consists of a sequence of bytes, three for each
pixel, written from left to right and top to bottom. Each three bytes represent the red,
green and blue values used to display the pixel. Thus, if the upper-left-most pixel were
to be red, the first three bytes of the file would have values of 255, 0 and 0.

The resolution of the generated file is normally 512, but can be controlled by setting
the plot parameter pixWidth. It must be a multiple of 8; Magic will round up if an inap-
propriate value is entered. The height of the file is determined by the shape of the box.
In any case, the actual resolution of the file is appended to the file name. For example,
plotting a square region, 2048 pixels across, will result in a file named something like
‘‘magicPlot1234a-2048-2048’’.

There are several plotting parameters used internally to Magic, such as the width of
the Versatec printer and the number of dots per inch on the Versatec printer. You can
modify most of these to work with different printers. For details, read about the various
:plot command options in the man page.

10. Utility Commands

There are several additional commands that you will probably find useful once you
start working on real cells. The command

:grid [spacing]
:grid xSpacing ySpacing

:grid xSpacing ySpacing xOrigin yOrigin
:grid off

will display a grid over your layout. Initially, the grid has a one-unit spacing. Typing
:grid with no arguments will toggle the grid on and off. If a single numerical argument
is given, the grid will be turned on, and the grid lines will be spacing units apart. The
macro g provides a short form for :grid and G is short for :grid 2. If you provide two
arguments to :grid, they are the x- and y-spacings, which may be different. If you

- 9 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

provide four arguments, the last two specify a reference point through which horizontal
and vertical grid lines pass; the default is to use (0,0) as the grid origin. The command
:grid off always turns the grid off, regardless of whether or not is was previously on.
When the grid is on, a small black box is displayed to mark the (0,0) coordinate of the
cell you’re editing.

If you want to create a cell that doesn’t fit on the screen, you’ll need to know how to
change the screen view. This can be done with three commands:

:zoom factor
:findbox [zoom]

:view

If factor is given to the zoom command, it is a zoom-out factor. For example, the com-
mand :zoom 2 will change the view so that there are twice as many units across the
screen as there used to be (Z is a macro for this). The new view will have the same
center as the old one. The command :zoom .5 will increase the magnification so that
only half as much of the circuit is visible.

The :findbox command is used to change the view according to the box. The com-
mand alone just moves the view (without changing the scale factor) so that the box is in
the center of the screen. If the zoom argument is given then the magnification is changed
too, so that the area of the box nearly fills the screen. z is a macro for :findbox zoom and
B is a macro for :findbox.

The command :view resets the view so that the entire cell is visible in the window.
It comes in handy if you get lost in a big layout. The macro v is equivalent to :view.

The command :box prints out the size and location of the box in case you’d like to
measure something in your layout. The macro b is predefined to :box. The :box com-
mand can also be used to set the box to a particular location, height, or width. See the
man page for details.

The command

:what

will print out information about what’s selected. This may be helpful if you’re not sure
what layer a particular piece of material is, or what layer a particular label is attached to.

If you forget what a macro means, you can invoke the command

:macro [char]

This command will print out the long command that’s associated with the macro char. If
you omit char, Magic will print out all of the macro associations. The command

:macro char command

We set up char to be a macro for command, replacing the old char macro if there was
one. If command contains any spaces then it must be enclosed in double-quotes. To see
how this works, type the command :macro 1 "echo You just typed the 1 key.", then
type the 1 key.

One of the macros, ‘‘.’’, has special meaning in Magic. This macro is always
defined by the system to be the last long command you typed. Whenever you’d like to
repeat a long command, all you have to do is use the dot macro.

- 10 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

11. What the Layers Mean

The paint layers available in Magic are different from those that you may be used to
in Caesar and other systems because they don’t correspond exactly to the masks used in
fabrication. We call them abstract layers because they correspond to constructs such as
wires and contacts, rather than mask layers. We also call them logs because they look
like sticks except that the geometry is drawn fully fleshed instead of as lines. In Magic
there is one paint layer for each kind of conducting material (polysilicon, ndiffusion,
metal1, etc.), plus one additional paint layer for each kind of transistor (ntransistor,
ptransistor, etc.), and, finally, one further paint layer for each kind of contact (pcontact,
ndcontact, m2contact, etc.) Each layer has one or more names that are used to refer to
that layer in commands. To find out the layers available in the current technology, type
the command

:layers

In addition to the mask layers, there are a few pseudo-layers that are valid in all technolo-
gies; these are listed in Table I. Each Magic technology also has a technology manual
describing the features of that technology, such as design rules, routing layers, CIF styles,
etc. If you haven’t seen any of the technology manuals yet, this is a good time to take a
look at the one for your process.

����������������������������������
errors (design-rule violations)
labels
subcells
* (all mask layers)
$ (all mask layers visible under cursor)�����������������������������������

�
�
�
�
�

�
�
�
�
�
�

Table I. Pseudo-layers available in all technologies.

If you’re used to designing with mask layers (e.g. you’ve been reading the Mead-
Conway book), Magic’s log style will take some getting used to. One of the reasons for
logs is to save you work. In Magic you don’t draw implants, wells, buried windows, or
contact via holes. Instead, you draw the primary conducting layers and paint some of
their overlaps with special types such as n-transistor or polysilicon contact. For transis-
tors, you draw only the actual area of the transistor channel. Magic will generate the
polysilicon and diffusion, plus any necessary implants, when it creates a CIF file. For
contacts, you paint the contact layer in the area of overlap between the conducting layers.
Magic will generate each of the constituent mask layers plus vias and buried windows
when it writes the CIF file. Figure 1 shows a simple cell drawn with both mask layers (as
in Caesar) and with logs (as in Magic). If you’re curious about what the masks will look
like for a particular layout, you can use the :cif see command to view the mask informa-
tion.

- 11 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

Metal

Polysilicon

N-Diffusion

P-Diffusion

Contacts

N-Fet

P-Fet

Figure 1. An example of how the logs are used. The figure on the left shows actual mask
layers for an CMOS inverter cell, and the figure on the right shows the layers used to
represent the cell in Magic.

An advantage of the logs used in Magic is that they simplify the design rules. Most
of the formation rules (e.g. contact structure) go away, since Magic automatically gen-
erates correctly-formed structures when it writes CIF. All that are left are minimum size
and spacing rules, and Magic’s abstract layers result in fewer of these than there would
be otherwise. This helps to make Magic’s built-in design rule checker very fast (see
‘‘Magic Tutorial #6: Design Rule Checking’’), and is one of the reasons plowing is pos-
sible.

- 12 -

Magic Tutorial #3: Advanced Painting (Wiring and Plowing)

John Ousterhout
Walter Scott

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:array, :corner, :fill, :flush, :plow, :straighten, :tool, :wire

Macros introduced in this tutorial:

<space>

1. Introduction

Tutorial #2 showed you the basic facilities for placing paint and labels, selecting,
and manipulating the things that are selected. This tutorial describes two additional facil-
ities for manipulating paint: wiring and plowing. These commands aren’t absolutely
necessary, since you can achieve the same effect with the simpler commands of Tutorial
#2; however, wiring and plowing allow you to perform certain kinds of manipulations
much more quickly than you could otherwise. Wiring is described in Section 2; it
allows you to place wires by pointing at the ends of legs rather than by positioning the
box, and also provides for convenient contact placement. Plowing is the subject of Sec-
tion 3. It allows you to re-arrange pieces of your circuit without having to worry about
design-rule violations being created: plowing automatically moves things out of the way
to avoid trouble.

- 1 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

2. Wiring

The box-and-painting paradigm described in Tutorial #2 is sufficient to create any
possible layout, but it’s relatively inefficient since three keystrokes are required to paint
each new area: two button clicks to position the box and one more to paint the material.
This section describes a different painting mechanism based on wires. At any given
time, there is a current wiring material and wire thickness. With the wiring interface you
can create a new area of material with a single button click: this paints a straight-line
segment of the current material and width between the end of the previous wire segment
and the cursor location. Each additional button click adds an additional segment. The
wiring interface also makes it easy for you to place contacts.

2.1. Tools

Before learning about wiring, you’ll need to learn about tools. Until now, when
you’ve pressed mouse buttons in layout windows the buttons have caused the box to
change or material to be painted. The truth is that buttons can mean different things at
different times. The meaning of the mouse buttons depends on the current tool. Each
tool is identified by a particular cursor shape and a particular interpretation of the mouse
buttons. Initially, the current tool is the box tool; when the box tool is active the cursor
has the shape of a crosshair. To get information about the current tool, you can type the
long command

:tool info

This command prints out the name of the current tool and the meaning of the buttons.
Run Magic on the cell tut3a and type :tool info.

The :tool command can also be used to switch tools. Try this out by typing the
command

:tool

Magic will print out a message telling you that you’re using the wiring tool, and the cur-
sor will change to an arrow shape. Use the :tool info command to see what the buttons
mean now. You’ll be using the wiring tool for most of the rest of this section. The
macro ‘‘ ’’ (space) corresponds to :tool. Try typing the space key a few times: Magic
will cycle circularly through all of the available tools. There are three tools in Magic
right now: the box tool, which you already know about, the wiring tool, which you’ll
learn about in this tutorial, and the netlist tool, which has a square cursor shape and is
used for netlist editing. ‘‘Tutorial #7: Netlists and Routing’’ will show you how to use
the netlist tool.

The current tool affects only the meanings of the mouse buttons. It does not change
the meanings of the long commands or macros. This means, for example, that you can
still use all the selection commands while the wiring tool is active. Switch tools to the
wiring tool, point at some paint in tut3a, and type the s macro. A chunk gets selected
just as it does with the box tool.

- 2 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

2.2. Basic Wiring

There are three basic wiring commands: selecting the wiring material, adding a
leg, and adding a contact. This section describes the first two commands. At this point
you should be editing the cell tut3a with the wiring tool active. The first step in wiring is
to pick the material and width to use for wires. This can be done in two ways. The easi-
est way is to find a piece of material of the right type and width, point to it with the cur-
sor, and click the left mouse button. Try this in tut3a by pointing to the label 1 and left-
clicking. Magic prints out the material and width that it chose, selects a square of that
material and width around the cursor, and places the box around the square. Try pointing
to various places in tut3a and left-clicking.

Once you’ve selected the wiring material, the right button paints legs of a wire.
Left-click on label 1 to select the red material, then move the cursor over label 2 and
right-click. This will paint a red wire between 1 and 2. The new wire leg is selected so
that you can modify it with selection commands, and the box is placed over the tip of the
leg to show you the starting point for the next wire leg. Add more legs to the wire by
right-clicking at 3 and then 4. Use the mouse buttons to paint another wire in blue from
5 to 6 to 7.

Each leg of a wire must be either horizontal or vertical. If you move the cursor
diagonally, Magic will still paint a horizontal or vertical line (whichever results in the
longest new wire leg). To see how this works, left-click on 8 in tut3a, then right-click on
9. You’ll get a horizontal leg. Now undo the new leg and right-click on 10. This time
you’ll get a vertical leg. You can force Magic to paint the next leg in a particular direc-
tion with the commands

:wire horizontal
:wire vertical

Try out this feature by left-clicking on 8 in tut3a, moving the cursor over 10, and typing
:wire ho (abbreviations work for :wire command options just as they do elsewhere in
Magic). This command will generate a short horizontal leg instead of a longer vertical
one.

2.3. Contacts

When the wiring tool is active, the middle mouse button places contacts. Undo all
of your changes to tut3a by typing the command :flush and answering yes to the ques-
tion Magic asks. This throws away all of the changes made to the cell and re-loads it
from disk. Draw a red wire leg from 1 to 2. Now move the cursor over the blue area and
click the middle mouse button. This has several effects. It places a contact at the end of
the current wire leg, selects the contact, and moves the box over the selection. In addi-
tion, it changes the wiring material and thickness to match the material you middle-
clicked. Move the cursor over 3 and right-click to paint a blue leg, then make a contact
to purple by middle-clicking over the purple material. Continue by drawing a purple leg
to 4.

Once you’ve drawn the purple leg to 4, move the cursor over red material and
middle-click. This time, Magic prints an error message and treats the click just like a
left-click. Magic only knows how to make contacts between certain combinations of

- 3 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

layers, which are specified in the technology file (see ‘‘Magic Maintainer’s Manual #2:
The Technology File’’). For this technology, Magic doesn’t know how to make contacts
directly between purple and red.

2.4. Wiring and the Box

In the examples so far, each new wire leg appeared to be drawn from the end of the
previous leg to the cursor position. In fact, however, the new material was drawn from
the box to the cursor position. Magic automatically repositions the box on each button
click to help set things up for the next leg. Using the box as the starting point for wire
legs makes it easy to start wires in places that don’t already have material of the right
type and width. Suppose that you want to start a new wire in the middle of an empty
area. You can’t left-click to get the wire started there. Instead, you can left-click some
other place where there’s the right material for the wire, type the space bar twice to get
back the box tool, move the box where you’d like the wire to start, hit the space bar once
more to get back the wiring tool, and then right-click to paint the wire. Try this out on
tut3a.

When you first start wiring, you may not be able to find the right kind of material
anywhere on the screen. When this happens, you can select the wiring material and
width with the command

:wire type layer width

Then move the box where you’d like the wire to start, switch to the wiring tool, and
right-click to add legs.

2.5. Wiring and the Selection

Each time you paint a new wire leg or contact using the wiring commands, Magic
selects the new material just as if you had placed the cursor over it and typed s. This
makes it easy for you to adjust its position if you didn’t get it right initially. The :stretch
command is particularly useful for this. In tut3a, paint a wire leg in blue from 5 to 6 (use
:flush to reset the cell if you’ve made a lot of changes). Now type R two or three times
to stretch the leg over to the right. Middle-click over purple material, then use W to
stretch the contact downward.

It’s often hard to position the cursor so that a wire leg comes out right the first time,
but it’s usually easy to tell whether the leg is right once it’s painted. If it’s wrong, then
you can use the stretching commands to shift it over one unit at a time until it’s correct.

2.6. Bundles of Wires

Magic provides two additional commands that are useful for running bundles of
parallel wires. The commands are:

fill direction [layers]
corner direction1 direction2 [layers]

To see how they work, load the cell tut3b. The :fill comand extends a whole bunch of

- 4 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

paint in a given direction. It finds all paint touching one side of the box and extends that
paint to the opposite side of the box. For example, :fill left will look underneath the right
edge of the box for paint, and will extend that paint to the left side of the box. The effect
is just as if all the colors visible underneath that edge of the box constituted a paint brush;
Magic sweeps the brush across the box in the given direction. Place the box over the
label ‘‘Fill here’’ in tut3b and type :fill left.

The :corner command is similar to :fill except that it generates L-shaped wires that
follow two sides of the box, travelling first in direction1 and then in direction2. Place the
box over the label ‘‘Corner here’’ in tut3b and type :corner right up.

In both :fill and :corner, if layers isn’t specified then all layers are filled. If layers
is given then only those layers are painted. Experiment on tut3b with the :fill and
:corner commands.

When you’re painting bundles of wires, it would be nice if there were a convenient
way to place contacts across the whole bundle in order to switch to a different layer.
There’s no single command to do this, but you can place one contact by hand and then
use the :array command to replicate a single contact across the whole bundle. Load the
cell tut3c. This contains a bundle of wires with a single contact already painted by hand
on the bottom wire. Type s with the cursor over the contact, and type S with the cursor
over the stub of purple wiring material next to it. Now place the box over the label
‘‘Array’’ and type the command :array 1 10. This will copy the selected contact across
the whole bundle.

The syntax of the :array command is

:array xsize ysize

This command makes the selection into an array of identical elements. Xsize specifies
how many total instances there should be in the x-direction when the command is
finished and ysize specifies how many total instances there should be in the y-direction.
In the tut3c example, xsize was one, so no additional copies were created in that direc-
tion; ysize was 10, so 9 additional copies were created. The box is used to determine
how far apart the elements should be: the width of the box determines the x-spacing and
the height determines the y-spacing. The new material always appears above and to the
right of the original copy.

In tut3c, use :corner to extend the purple wires and turn them up. Then paint a
contact back to blue on the leftmost wire, add a stub of blue paint above it, and use
:array to copy them across the top of the bundle. Finally, use :fill again to extend the
blue bundle farther up.

3. Plowing

Magic contains a facility called plowing that you can use to stretch and compact
cells. The basic plowing command has the syntax

:plow direction [layers]

where direction is a Manhattan direction like left and layers is an optional, comma-
separated list of mask layers. The plow command treats one side of the box as if it were
a plow, and shoves the plow over to the other side of the box. For example, :plow up

- 5 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

treats the bottom side of the box as a plow, and moves the plow to the top of the box.

As the plow moves, every edge in its path is pushed ahead of it (if layers is
specified, then only edges on those layers are moved). Each edge that is pushed by the
plow pushes other edges ahead of it in a way that preserves design rules, connectivity,
and transistor and contact sizes. This means that material ahead of the plow gets com-
pacted down to the minimum spacing permitted by the design rules, and material that
crossed the plow’s original position gets stretched behind the plow.

You can compact a cell by placing a large plow off to one side of the cell and plow-
ing across the whole cell. You can open up space in the middle of a cell by dragging a
small plow across the area where you want more space.

To try out plowing, edit the cell tut3d, place the box over the rectangle that’s
labelled ‘‘Plow here’’, and try plowing in various directions. Also, try plowing only cer-
tain layers. For example, with the box over the ‘‘Plow here’’ label, try

:plow right metal2

Nothing happens. This is because there are no metal2 edges in the path of the plow. If
instead you had typed

:plow right metal1

only the metal would have been plowed to the right.

In addition to plowing with the box, you can plow the selection. The command to
do this has the following syntax:

:plow selection [direction [distance]]

This is very similar to the :stretch command: it picks up the selection and the box and
moves both so that the lower-left corner of the box is at the cursor location. Unlike the
:stretch command, though, :plow selection insures that design rule correctness and con-
nectivity are preserved.

Load the cell tut3e and use a to select the area underneath the label that says
‘‘select me’’. Then point with the cursor to the point labelled ‘‘point here’’ and type
:plow selection. Practice selecting things and plowing them. Like the :stretch com-
mand, there is also a longer form of :plow selection. For example, :plow selection
down 5 will plow the selection and the box down 10 units.

Selecting a cell and plowing it is a good way to move the cell. Load tut3f and
select the cell tut3e. Point to the label ‘‘point here’’ and plow the selection with :plow
selection. Notice that all connections to the cell have remained attached. The cell you
select must be in the edit cell, however.

The plowing operation is implemented in a way that tries to keep your design as
compact as possible. To do this, it inserts jogs in wires around the plow. In many cases,
though, the additional jogs are more trouble than they’re worth. To reduce the number of
jogs inserted by plowing, type the command

:plow nojogs

From now on, Magic will insert as few jogs as possible when plowing, even if this means
moving more material. You can re-enable jog insertion with the command

- 6 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

:plow jogs

Load the cell tut3d again and try plowing it both with and without jog insertion.

There is another way to reduce the number of jogs introduced by plowing. Instead
of avoiding jogs in the first place, plowing can introduce them freely but clean them up
as much as possible afterward. This results in more dense layouts, but possibly more
jogs than if you had enabled :plow nojogs. To take advantage of this second method for
jog reduction, re-enable jog insertion (:plow jogs) and enable jog cleanup with the com-
mand

:plow straighten

From now on, Magic will attempt to straighten out jogs after each plow operation. To
disable straightening, use the command

:plow nostraighten

It might seem pointless to disable jog introduction with :plow nojogs at the same time
straightening is enabled with :plow straighten. While it is true that :plow nojogs won’t
introduce any new jogs for :plow straighten to clean up, plowing will straighten out any
existing jogs after each operation.

In fact, there is a separate command that is sometimes useful for cleaning up layouts
with many jogs, namely the command

:straighten direction

where direction is a Manhattan direction, e.g., up, down, right, or left. This command
will start from one side of the box and pull jogs toward that side to straighten them.
Load the cell tut3g, place the box over the label ‘‘put box here’’, and type :straighten
left. Undo the last command and type :straighten right instead. Play around with the
:straighten command.

There is one more feature of plowing that is sometimes useful. If you are working
on a large cell and want to make sure that plowing never affects any geometry outside of
a certain area, you can place a boundary around the area you want to affect with the com-
mand

:plow boundary

The box is used to specify the area you want to affect. After this command, subsequent
plows will only affect the area inside this boundary.

Load the cell tut3h place the box over the label ‘‘put boundary here’’, and type
:plow boundary. Now move the box away. You will see the boundary highlighted with
dotted lines. Now place the box over the area labelled ‘‘put plow here’’ and plow up.
This plow would cause geometry outside of the boundary to be affected, so Magic
reduces the plow distance enough to prevent this and warns you of this fact. Now undo
the last plow and remove the boundary with

:plow noboundary

Put the box over the ‘‘put plow here’’ label and plow up again. This time there was no
boundary to stop the plow, so everything was moved as far as the height of the box.
Experiment with placing the boundary around an area of this cell and plowing.

- 7 -

Magic Tutorial #4: Cell Hierarchies

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:array, :edit, :expand, :flush, :getcell, :identify, :load, :path, :see, :unexpand

Macros introduced in this tutorial:

x, X, ˆX

1. Introduction

In Magic, a layout is a hierarchical collection of cells. Each cell contains three
things: paint, labels, and subcells. Tutorial #2 showed you how to create and edit paint
and labels. This tutorial describes Magic’s facilities for building up cell hierarchies.
Strictly speaking, hierarchical structure isn’t necessary: any design that can be
represented hierarchically can also be represented ‘‘flat’’ (with all the paint and labels in
a single cell). However, many things are greatly improved if you use a hierarchical
structure, including the efficiency of the design tools, the speed with which you can enter
the design, and the ease with which you can modify it later.

- 1 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

2. Selecting and Viewing Hierarchical Designs

‘‘Hierarchical structure’’ means that each cell can contain other cells as com-
ponents. To look at an example of a hierarchical layout, enter Magic with the shell com-
mand magic tut4a. The cell tut4a contains four subcells plus some blue paint. Two of
the subcells are instances of cell tut4x and two are instances of tut4y. Initially, each
subcell is displayed in unexpanded form. This means that no details of the subcell are
displayed; all you see is the cell’s bounding box, plus two names inside the bounding
box. The top name is the name of the subcell (the name you would type when invoking
Magic to edit the cell). The cell’s contents are stored in a file with this name plus a .mag
extension. The bottom name inside each bounding box is called an instance identifier,
and is used to distinguish different instances of the same subcell. Instance id’s are used
for routing and circuit extraction, and are discussed in Section 6.

Subcells can be manipulated using the same selection mechanism that you learned
in Tutorial #2. To select a subcell, place the cursor over the subcell and type f (‘‘find
cell’’), which is a macro for :select cell. You can also select a cell by typing s when the
cursor is over a location where there’s no paint; f is probably more convenient, particu-
larly for cells that are completely covered with paint. When you select a cell the box will
be set to the cell’s bounding box, the cell’s name will be highlighted, and a message will
be printed on the text display. All the selection operations (:move, :copy, :delete, etc.)
apply to subcells. Try selecting and moving the top subcell in tut4a. You can also select
subcells using area selection (the a and A macros): any unexpanded subcells that inter-
sect the area of the box will be selected.

To see what’s inside a cell instance, you must expand it. Select one of the instances
of tut4y, then type the command

:expand toggle

or invoke the macro ˆX which is equivalent. This causes the internals of that instance of
tut4y to be displayed. If you type ˆX again, the instance is unexpanded so you only see a
bounding box again. The :expand toggle command expands all of the selected cells that
are unexpanded, and unexpands all those that are expanded. Type ˆX a third time so that
tut4y is expanded.

As you can see now, tut4y contains an array of tut4x cells plus some additional
paint. In Magic, an array is a special kind of instance containing multiple copies of the
same subcell spaced at fixed intervals. Arrays can be one-dimensional or two-
dimensional. The whole array is always treated as a single instance: any command that
operates on one element of the array also operates on all the other elements simultane-
ously. The instance identifiers for the elements of the array are the same except for an
index. Now select one of the elements of the array and expand it. Notice that the entire
array is expanded at the same time.

When you have expanded the array, you’ll see that the paint in the top-level cell
tut4a is displayed more brightly than the paint in the tut4x instances. Tut3a is called the
edit cell, because its contents are currently editable. The paint in the edit cell is normally
displayed more brightly than other paint to make it clear that you can change it. As long
as tut4a is the edit cell, you cannot modify the paint in tut4x. Try erasing paint from the
area of one of the tut4x instances: nothing will be changed. Section 4 tells how to switch
the edit cell.

- 2 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

Place the cursor over one of the tut4x array elements again. At this point, the cur-
sor is actually over three different cells: tut4x (an element of an array instance within
tut4y), tut4y (an instance within tut4a), and tut4. Even the topmost cell in the hierarchy
is treated as an instance by Magic. When you press the s key to select a cell, Magic ini-
tially chooses the smallest instance visible underneath the cursor, tut4x in this case.
However, if you invoke the s macro again (or type :select) without moving the cursor,
Magic will step through all of the instances under the cursor in order. Try this out. The
same is true of the f macro and :select cell.

When there are many different expanded cells on the screen, you can use the selec-
tion commands to select paint from any of them. You can select anything that’s visible,
regardless of which cell it’s in. However, as mentioned above, you can only modify
paint in the edit cell. If you use :move or :upsidedown or similar commands when
you’ve selected information outside the edit cell, the information outside the edit cell is
removed from the selection before performing the operation.

There are two additional commands you can use for expanding and unexpanding
cells:

:expand
:unexpand

Both of these commands operate on the area underneath the box. The :expand command
will recursively expand every cell that intersects the box until there are no unexpanded
cells left under the box. The :unexpand command will unexpand every cell whose area
intersects the box but doesn’t completely contain it. The macro x is equivalent to
:expand, and X is equivalent to :unexpand. Try out the various expansion and unexpan-
sion facilities on tut4a.

3. Manipulating Subcells

There are a few other commands, in addition to the selection commands already
described, that you’ll need in order to manipulate subcells. The command

:getcell name

will find the file name.mag on disk, read the cell it contains, and create an instance of
that cell with its lower-left corner aligned with the lower-left corner of the box. Use the
getcell command to get an instance of the cell tut4z. After the getcell command, the
new instance is selected so you can move it or copy it or delete it. The getcell command
recognizes additional arguments that permit the cell to be positioned using labels and/or
explicit coordinates. See the man page for details.

To turn a normal instance into an array, select the instance and then invoke the
:array command. It has two forms:

:array xsize ysize
:array xlo xhi ylo yhi

In the first form, xsize indicates how many elements the array should have in the x-
direction, and ysize indicates how many elements it should have in the y-direction. The
spacing between elements is controlled by the box’s width (for the x-direction) and

- 3 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

height (for the y-direction). By changing the box size, you can space elements so that
they overlap, abut, or have gaps between them. The elements are given indices from 0 to
xsize-1 in the x-direction and from 0 to ysize-1 in the y-direction. The second form of the
command is identical to the first except that the elements are given indices from xlo to
xhi in the x-direction and from ylo to yhi in the y-direction. Try making a 4x4 array out
of the tut4z cell with gaps between the cells.

You can also invoke the :array command on an existing array to change the
number of elements or spacing. Use a size of 1 for xsize or ysize in order to get a one-
dimensional array. If there are several cells selected, the :array command will make
each of them into an array of the same size and spacing. It also works on paint and
labels: if paint and labels are selected when you invoke :array, they will be copied
many times over to create the array. Try using the array command to replicate a small
strip of paint.

4. Switching the Edit Cell

At any given time, you are editing the definition of a single cell. This definition is
called the edit cell. You can modify paint and labels in the edit cell, and you can re-
arrange its subcells. You may not re-arrange or delete the subcells of any cells other than
the edit cell, nor may you modify the paint or labels of any cells except the edit cell. You
may, however, copy information from other cells into the edit cell, using the selection
commands. To help clarify what is and isn’t modifiable, Magic displays the paint of the
edit cell in brighter colors than other paint.

When you rearrange subcells of the edit cell, you aren’t changing the subcells them-
selves. All you can do is change the way they are used in the edit cell (location, orienta-
tion, etc.). When you delete a subcell, nothing happens to the file containing the subcell;
the command merely deletes the instance from the edit cell.

Besides the edit cell, there is one other special cell in Magic. It’s called the root
cell and is the topmost cell in the hierarchy, the one you named when you ran Magic
(tut4a in this case). As you will see in Tutorial #5, there can actually be several root
cells at any given time, one in each window. For now, there is only a single window on
the screen, and thus only a single root cell. The window caption at the top of the color
display contains the name of the window’s root cell and also the name of the edit cell.

Up until now, the root cell and the edit cell have been the same. However, this need
not always be the case. You can switch the edit cell to any cell in the hierarchy by
selecting an instance of the definition you’d like to edit, and then typing the command

:edit

Use this command to switch the edit cell to one of the tut4x instances in tut4a. Its paint
brightens, while the paint in tut4a becomes dim. If you want to edit an element of an
array, select the array, place the cursor over the element you’d like to edit, then type
:edit. The particular element underneath the cursor becomes the edit cell.

When you edit a cell, you are editing the master definition of that cell. This means
that if the cell is used in several places in your design, the edits will be reflected in all
those places. Try painting and erasing in the tut4x cell that you just made the edit cell:

- 4 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

the modifications will appear in all of its instances.

There is a second way to change the edit cell. This is the command

:load name

The :load command loads a new hierarchy into the window underneath the cursor. Name
is the name of the root cell in the hierarchy. If no name is given, a new unnamed cell is
loaded and you start editing from scratch. The :load command only changes the edit cell
if there is not already an edit cell in another window.

5. Subcell Usage Conventions

Overlaps between cells are occasionally useful to share busses and control lines run-
ning along the edges. However, overlaps cause the analysis tools to work much harder
than they would if there were no overlaps: wherever cells overlap, the tools have to com-
bine the information from the two separate cells. Thus, you shouldn’t use overlaps any
more than absolutely necessary. For example, suppose you want to create a one-
dimensional array of cells that alternates between two cell types, A and B: ‘‘ABABA-
BABABAB’’. One way to do this is first to make an array of A instances with large gaps
between them (‘‘A A A A A A’’), then make an array of B instances with large gaps
between them (‘‘B B B B B B’’), and finally place one array on top of the other so
that the B’s nestle in between the A’s. The problem with this approach is that the two
arrays overlap almost completely, so Magic will have to go to a lot of extra work to han-
dle the overlaps (in this case, there isn’t much overlap of actual paint, but Magic won’t
know this and will spend a lot of time worrying about it). A better solution is to create a
new cell that contains one instance of A and one instance of B, side by side. Then make
an array of the new cell. This approach makes it clear to Magic that there isn’t any real
overlap between the A’s and B’s.

If you do create overlaps, you should use the overlaps only to connect the two cells
together, and not to change their structure. This means that the overlap should not cause
transistors to appear, disappear, or change size. The result of overlapping the two sub-
cells should be the same electrically as if you placed the two cells apart and then ran
wires to hook parts of one cell to parts of the other. The convention is necessary in order
to be able to do hierarchical circuit extraction easily (it makes it possible for each subcell
to be circuit-extracted independently).

Three kinds of overlaps are flagged as errors by the design-rule checker. First, you
may not overlap polysilicon in one subcell with diffusion in another cell in order to
create transistors. Second, you may not overlap transistors or contacts in one cell with
different kinds of transistors or contacts in another cell (there are a few exceptions to this
rule in some technologies). Third, if contacts from different cells overlap, they must be
the same type of contact and must coincide exactly: you may not have partial overlaps.
This rule is necessary in order to guarantee that Magic can generate CIF for fabrication.

You will make life a lot easier on yourself (and on Magic) if you spend a bit of time
to choose a clean hierarchical structure. In general, the less cell overlap the better. If
you use extensive overlaps you’ll find that the tools run very slowly and that it’s hard to
make modifications to the circuit.

- 5 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

6. Instance Identifiers

Instance identifiers are used to distinguish the different subcells within a single
parent. The cell definition names cannot be used for this purpose because there could be
many instances of a single definition. Magic will create default instance id’s for you
when you create new instances with the :get or :copy commands. The default id for an
instance will be the name of the definition with a unique integer added on. You can
change an id by selecting an instance (which must be a child of the edit cell) and invok-
ing the command

:identify newid

where newid is the identifier you would like the instance to have. Newid must not
already be used as an instance identifier of any subcell within the edit cell.

Any node or instance can be described uniquely by listing a path of instance
identifiers, starting from the root cell. The standard form of such names is similar to
Unix file names. For example, if id1 is the name of an instance within the root cell, id2
is an instance within id1, and node is a node name within id2, then id1/id2/node can be
used unambiguously to refer to the node. When you select a cell, Magic prints out the
complete path name of the instance.

Arrays are treated specially. When you use :identify to give an array an instance
identifier, each element of the array is given the instance identifier you specified, fol-
lowed by one or two array subscripts enclosed in square brackets, e.g, id3[2] or id4[3][7].
When the array is one-dimensional, there is a single subscript; when it is two-
dimensional, the first subscript is for the y-dimension and the second for the x-dimension.

7. Writing and Flushing Cells

When you make changes to your circuit in Magic, there is no immediate effect on
the disk files that hold the cells. You must explicitly save each cell that has changed,
using either the :save command or the :writeall command. Magic keeps track of the
cells that have changed since the last time they were saved on disk. If you try to leave
Magic without saving all the cells that have changed, the system will warn you and give
you a chance to return to Magic to save them. Magic never flushes cells behind your
back, and never throws away definitions that it has read in. Thus, if you edit a cell and
then use :load to edit another cell, the first cell is still saved in Magic even though it
doesn’t appear anywhere on the screen. If you then invoke :load a second time to go
back to the first cell, you’ll get the edited copy.

If you decide that you’d really like to discard the edits you’ve made to a cell and
recover the old version, there are two ways you can do it. The first way is using the flush
option in :writeall. The second way is to use the command

:flush [cellname]

If no cellname is given, then the edit cell is flushed. Otherwise, the cell named cellname
is flushed. The :flush command will expunge Magic’s internal copy of the cell and
replace it with the disk copy.

- 6 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

When you are editing large chips, Magic may claim that cells have changed even
though you haven’t modified them. Whenever you modify a cell, Magic makes changes
in the parents of the cell, and their parents, and so on up to the root of the hierarchy.
These changes record new design-rule violations, as well as timestamp and bounding box
information used by Magic to keep track of design changes and enable fast cell read-in.
Thus, whenever you change one cell you’ll generally need to write out new copies of its
parents and grandparents. If you don’t write out the parents, or if you edit a child ‘‘out of
context’’ (by itself, without the parents loaded), then you’ll incur extra overhead the next
time you try to edit the parents. ‘‘Timestamp mismatch’’ warnings are printed when
you’ve edited cells out of context and then later go back and read in the cell as part of its
parent. These aren’t serious problems; they just mean that Magic is doing extra work to
update information in the parent to reflect the child’s new state.

8. Search Paths

When many people are working on a large design, the design will probably be more
manageable if different pieces of it can be located in different directories of the file sys-
tem. Magic provides a simple mechanism for managing designs spread over several
directories. The system maintains a search path that tells which directories to search
when trying to read in cells. By default, the search path is ‘‘.’’, which means that Magic
looks only in the working directory. You can change the path using the command

:path [searchpath]

where searchpath is the new path that Magic should use. Searchpath consists of a list of
directories separated by colons. For example, the path ‘‘.:∼ ouster/x:a/b’’ means that if
Magic is trying to read in a cell named ‘‘foo’’, it will first look for a file named
‘‘foo.mag’’ in the current directory. If it doesn’t find the file there, it will look for a file
named ‘‘∼ ouster/x/foo.mag’’, and if that doesn’t exist, then it will try ‘‘a/b/foo.mag’’
last. To find out what the current path is, type :path with no arguments. In addition to
your path, this command will print out the system cell library path (where Magic looks
for cells if it can’t find them anywhere in your path), and the system search path (where
Magic looks for files like colormaps and technology files if it can’t find them in your
current directory).

If you’re working on a large design, you should use the search path mechanism to
spread your layout over several directories. A typical large chip will contain a few hun-
dred cells; if you try to place all of them in the same directory there will just be too
many things to manage. For example, place the datapath in one directory, the control
unit in another, the instruction buffer in a third, and so on. Try to keep the size of each
directory down to a few dozen files. You can place the :path command in a .magic file
in your home directory or the directory you normally run Magic from; this will save you
from having to retype it each time you start up (see the Magic man page to find out about
.magic files). If all you want to do is add another directory onto the end of the search
path, you can use the :addpath [directory] command.

Because there is only a single search path that is used everywhere in Magic, you
must be careful not to re-use the same cell name in different portions of the chip. A com-
mon problem with large designs is that different designers use the same name for

- 7 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

different cells. This works fine as long as the designers are working separately, but when
the two pieces of the design are put together using a search path, a single copy of the cell
(the one that is found first in the search path) gets used everywhere.

There’s another caveat in the use of search paths. Magic looks for system files in
˜cad, but sometimes it is helpful to put Magic’s system files elsewhere. If the
CAD_HOME shell environment variable is set, then Magic uses that as the location of
˜cad instead of the location in the password file. This overrides all uses of ˜cad within
magic, including the ˜cad seen in the search paths printed out by :path.

9. Additional Commands

This section describes a few additional cell-related commands that you may find
useful. One of them is the command

:select save file

This command takes the selection and writes it to disk as a new Magic cell in the file
file.mag. You can use this command to break up a big file into smaller ones, or to extract
pieces from an existing cell.

The command

:dump cellName [labelName]

does the opposite of select save: it copies the contents of cell cellName into the edit cell,
such that the lower-left corner of label labelName is at the lower-left corner of the box.
The new material will also be selected. This command is similar in form to the getcell
command except that it copies the contents of the cell instead of using the cell as a sub-
cell. There are several forms of dump; see the man page for details.

The main purpose of dump is to allow you to create a library of cells representing
commonly-used structures such as standard transistor shapes or special contact arrange-
ments. You can then define macros that invoke the dump command to place the cells.
The result is that a single keystroke is all you need to copy one of them into the edit cell.

As mentioned earlier, Magic normally displays the edit cell in brighter colors than
non-edit cells. This helps to distinguish what is editable from what is not, but may make
it hard for you to view non-edit paint since it appears paler. If you type the command

:see allSame

you’ll turn off this feature: all paint everywhere will be displayed in the bright colors.
The word allSame must be typed just that way, with one capital letter. If you’d like to
restore the different display styles, type the command

:see no allSame

You can also use the :see command to selectively disable display of various mask layers
in order to make the other ones easier to see. For details, read about :see in the Magic
man page.

- 8 -

Magic Tutorial #5: Multiple Windows

Robert N. Mayo

Computer Science Division
Electrical Engineeringand Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:center :closewindow, :openwindow, :over, :specialopen, :under, :windowpositions

Macros introduced in this tutorial:

o, O, ‘‘,’’

1. Introduction

A window is a rectangular viewport. You can think of it as a magnifying glass that
may be moved around on your chip. Magic initially displays a single window on the
screen. This tutorial will show you how to create new windows and how to move old
ones around. Multiple windows allow you to view several portions of a circuit at the
same time, or even portions of different circuits.

Some operations are easier with multiple windows. For example, let’s say that you
want to paint a very long line, say 3 units by 800 units. With a single window it is hard
to align the box accurately since the magnification is not great enough. With multiple
windows, one window can show the big picture while other windows show magnified
views of the areas where the box needs to be aligned. The box can then be positioned
accurately in these magnified windows.

- 1 -

Magic Tutorial #5: Multiple Windows September 19, 1990

2. Manipulating Windows

2.1. Opening and Closing Windows

Initially Magic displays one large window. The

:openwindow [cellname]

command opens another window and loads the given cell. To give this a try, start up
Magic with the commandmagic tut5a. Then point anywhere in a Magic window and
type the command:openwindow tut5b (make sure you’re pointing to a Magic window).
A new window will appear and it will contain the celltut5b. If you don’t give a
cellname argument to:openwindow, it will open a new window on the cell containing
the box, and will zoom in on the box. The macroo is predefined to:openwindow. Try
this out by placing the box around an area oftut5b and then typingo. Another window
will appear. You now have three windows, all of which display pieces of layout. There
are other kinds of windows in Magic besides layout windows: you’ll learn about them
later. Magic doesn’t care how many windows you have (within reason) nor how they
overlap.

To get rid of a window, point to it and type

:closewindow

or use the macroO. Point to a portion of the original window and close it.

2.2. Resizing and Moving Windows

If you have been experimenting with Magic while reading this you will have
noticed that windows opened by:openwindow are all the same size. If you’d prefer a
different arrangement you can resize your windows or move them around on the screen.
The techniques used for this are different, however, depending on what kind of display
you’re using. If you are using a workstation, then you are also running a window system
such as X11 or SunView. In this case Magic’s windows are moved and resized just like
the other windows you have displayed, and you can skip the rest of this section.

For displays like the AED family, which don’t have a built-in window package,
Magic implements its own window manager. To re-arrange windows on the screen you
can use techniques similar to those you learned for moving the box for painting opera-
tions. Point somewhere in the border area of a window, except for the lower left corner,
and press and hold the right button. The cursor will change to a shape like this:

This indicates that you have hold of the upper right corner of the window. Point to a new
location for this corner and release the button. The window will change shape so that the
corner moves. Now point to the border area and press and hold the left button. The cur-
sor will now look like:

- 2 -

Magic Tutorial #5: Multiple Windows September 19, 1990

This indicates that you have hold of the entire window by its lower left window. Move
the cursor and release the button. The window will move so that its lower left corner is
where you pointed.

The other button commands for positioning the box by any of its corners also work
for windows. Just remember to point to the border of a window before pushing the but-
tons.

The middle button can be used to grow a window up to full-screen size. To try this,
click the middle button over the caption of the window. The window will now fill the
entire screen. Click in the caption again and the window will shrink back to its former
size.

2.3. Shuffling Windows

By now you know how to open, close, and resize windows. This is sufficient for
most purposes, but sometimes you want to look at a window that is covered up by
another window. The:underneath and:over commands help with this.

The :underneath command moves the window that you are pointing at underneath
all of the other windows. The:over command moves the window on top of the rest.
Create a few windows that overlap and then use these commands to move them around.
You’ll see that overlapping windows behave just like sheets of paper: the ones on top
obscure portions of the ones underneath.

2.4. Scrolling Windows

Some of the windows have thick bars on the left and bottom borders. These are
calledscroll bars, and the slugs within them are calledelevators. The size and position
of an elevator indicates how much of the layout (or whatever is in the window) is
currently visible. If an elevator fills its scroll bar, then all of the layout is visible in that
window. If an elevator fills only a portion of the scroll bar, then only that portion of the
layout is visible. The position of the elevator indicates which part is visible− if it is near
the bottom, you are viewing the bottom part of the layout; if it is near the top, you are
viewing the top part of the layout. There are scroll bars for both the vertical direction
(the left scroll bar) and the horizontal direction (the bottom scroll bar).

Besides indicating how much is visible, the scroll bars can be used to change the
view of the window. Clicking the middle mouse button in a scroll bar moves the elevator
to that position. For example, if you are viewing the lower half of a chip (elevator near
the bottom) and you click the middle button near the top of the scroll bar, the elevator
will move up to that position and you will be viewing the top part of your chip. The little
squares with arrows in them at the ends of the scroll bars will scroll the view by one
screenful when the middle button is clicked on them. They are useful when you want to
move exactly one screenful. The:scroll command can also be used to scroll the view

- 3 -

Magic Tutorial #5: Multiple Windows September 19, 1990

(though we don’t think it’s as easy to use as the scroll bars). See the man page for infor-
mation on it.

If you only want to make a small adjustment in a window’s view, you can use the
command

:center

It will move the view in the window so that the point that used to be underneath the cur-
sor is now in the middle of the window. The macro, is predefined to:center.

The bull’s-eye in the lower left corner of a window is used to zoom the view in and
out. Clicking the left mouse button zooms the view out by a factor of 2, and clicking the
right mouse button zooms in by a factor of 2. Clicking the middle button here makes
everything in the window visible and is equivalent to the:view command.

2.5. Saving Window Configurations

After setting up a bunch of windows you may want to save the configuration (for
example, you may be partial to a set of 3 non-overlapping windows). To do this, type:

:windowpositions filename

A set of commands will be written to the file. This file can be used with the:source
command to recreate the window configuration later. (However, this only works well if
you stay on the same kind of display; if you create a file under X11 and then:source it
under SunView, you might not get the same positions since the coordinate systems may
vary.)

3. How Commands Work Inside of Windows

Each window has a caption at the top. Here is an example:

mychip EDITING shiftcell

This indicates that the window contains the root cellmychip, and that a subcell of it
called shiftcell is being edited. You may remember from the Tutorial #4 that at any
given time Magic is editing exactly one cell. If the edit cell is in another window then
the caption on this window will read:

mychip [NOT BEING EDITED]

Let’s do an example to see how commands are executed within windows. Close
any layout windows that you may have on the screen and open two new windows, each
containing the celltut5a. (Use the:closewindow and:openwindow tut5a commands to
do this.) Try moving the box around in one of the windows. Notice that the box also
moves in the other window. Windows containing the same root cell are equivalent as far
as the box is concerned: if it appears in one it will appear in all, and it can be manipu-
lated from them interchangeably. If you changetut5a by painting or erasing portions of
it you will see the changes in both windows. This is because both windows are looking
at the same thing: the celltut5a. Go ahead and try some painting and erasing until you
feel comfortable with it. Try positioning one corner of the box in one window and
another corner in another window. You’ll find it doesn’t matter which window you point
to, all Magic knows is that you are pointing totut5a.

- 4 -

Magic Tutorial #5: Multiple Windows September 19, 1990

These windows are independent in some respects, however. For example, you may
scroll one window around without affecting the other window. Use the scrollbars to give
this a try. You can also expand and unexpand cells independently in different windows.

We have seen how Magic behaves when both windows view a single cell. What
happens when windows view different cells? To try this out loadtut5b into one of the
windows (point to a window and type:load tut5b). You will see the captions on the
windows change — only one window contains the cell currently being edited. The box
cannot be positioned by placing one corner in one window and another corner in the
other window because that doesn’t really make sense (try it). However, the selection
commands work between windows: you can select information in one window and then
copy it into another (this only works if the window you’re copying into contains the edit
cell; if not, you’ll have to use the:edit command first).

The operation of many Magic commands is dependent upon which window you are
pointing at. If you are used to using Magic with only one window you may, at first, for-
get to point to the window that you want the operation performed upon. For instance, if
there are several windows on the screen you will have to point to one before executing a
command like:grid — otherwise you may not affect the window that you intended!

4. Special Windows

In addition to providing multiple windows on different areas of a layout, Magic pro-
vides several special types of windows that display things other than layouts. For exam-
ple, there are special window types to edit netlists and to adjust the colors displayed on
the screen. One of the special window types is described in the section below; others are
described in the other tutorials. The

:specialopen type [args]

command is used to create these sorts of windows. Thetype argument tells what sort of
window you want, andargs describe what you want loaded into that window. The
:openwindow cellname command is really just short for the command:specialopen lay-
out cellname.

Each different type of window (layout, color, etc.) has its own command set. If you
type :help in different window types, you’ll see that the commands are different. Some
of the commands, such as those to manipulate windows, are valid in all windows, but for
other commands you must make sure you’re pointing to the right kind of window or the
command may be misinterpreted. For example, the:extract command means one thing
in a layout window and something totally different in a netlist window.

5. Color Editing

Special windows of typecolor are used to edit the red, green, and blue intensities of
the colors displayed on the screen. To create a color editing window, invoke the com-
mand

:specialopen color [number]

Number is optional; if present, it gives the octal value of the color number whose inten-
sities are to be edited. Ifnumber isn’t given, 0 is used. Try opening a color window on
color 0.

- 5 -

Magic Tutorial #5: Multiple Windows September 19, 1990

A color editing window contains 6 ‘‘color bars’’, 12 ‘‘color pumps’’ (one on each
side of each bar), plus a large rectangle at the top of the window that displays a swatch of
the color being edited (called the ‘‘current color’’ from now on). The color bars display
the components of the current color in two different ways. The three bars on the left
display the current color in terms of its red, green, and blue intensities (these intensities
are the values actually sent to the display). The three bars on the right display the current
color in terms of hue, saturation, and value. Hue selects a color of the spectrum. Satura-
tion indicates how diluted the color is (high saturation corresponds to a pure color, low
saturation corresponds to a color that is diluted with gray, and a saturation of 0 results in
gray regardless of hue). Value indicates the overall brightness (a value of 0 corresponds
to black, regardless of hue or saturation).

There are several ways to modify the current color. First, try pressing any mouse
button while the cursor is over one of the color bars. The length of the bar, and the
current color, will be modified to reflect the mouse position. The color map in the
display is also changed, so the colors will change everywhere on the screen that the
current color is displayed. Color 0, which you should currently be editing, is the back-
ground color. You can also modify the current color by pressing a button while the cur-
sor is over one of the ‘‘color pumps’’ next to the bars. If you button a pump with ‘‘+’’ in
it, the value of the bar next to it will be incremented slightly, and if you button the ‘‘-’’
pump, the bar will be decremented slightly. The left button causes a change of about 1%
in the value of the bar, and the right button will pump the bar up or down by about 5%.
Try adjusting the bars by buttoning the bars and the pumps.

If you press a button while the cursor is over the current color box at the top of the
window, one of two things will happen. In either case, nothing happens until you release
the button. Before releasing the button, move the cursor so it is over a different color
somewhere on the screen. If you pressed the left button, then when the button is released
the color underneath the cursor becomes the new current color, and all future editing
operations will affect this color. Try using this feature to modify the color used for win-
dow borders. If you pressed the right button, then when the button is released the value
of the current color is copied from whatever color is present underneath the cursor.

There are only a few commands you can type in color windows, aside from those
that are valid in all windows. The command

:color [number]

will change the current color tonumber. If no number is given, this command will print
out the current color and its red, green, and blue intensities. The command

:save [techStyle displayStyle monitorType]

will save the current color map in a file namedtechStyle.displayStyle.monitorType.cmap,
wheretechStyle is the type of technology (e.g.,mos), displayStyle is the kind of display
specified by astyletype in the style section of a technology file (e.g.,7bit), andmonitor-
Type is the type of the current monitor (e.g.,std). If no arguments are given, the current
technology style, display style, and monitor type are used. The command

:load [techStyle displayStyle monitorType]

- 6 -

Magic Tutorial #5: Multiple Windows September 19, 1990

will load the color map from the file namedtechStyle.displayStyle.monitorType.cmap as
above. If no arguments are given, the current technology style, display style, and moni-
tor type are used. When loading color maps, Magic looks first in the current directory,
then in the system library.

- 7 -

Magic Tutorial #6: Design-Rule Checking

John Ousterhout

Computer Science Division
Electrical Engineeringand Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies

Commands introduced in this tutorial:

:drc

Macro introduced in this tutorial:

y

1. Continuous Design-Rule Checking

When you are editing a layout withMagic, the systemautomatically checks design
rules on your behalf. Every time you paint or erase, and every time you move a cell or
change an array structure, Magic rechecks the area you changed to be sure you haven’t
violated any of the layout rules. If you do violate rules, Magic will display little white
dots in the vicinity of the violation. This error paint will stay around until you fix the
problem; when the violation is corrected, theerror paint will go away automatically.
Error paint is written to disk with your cells and will re-appear the next time the cell is
read in. There is no way to get rid of it except to fix the violation.

Continuous design-rule checking means that you always have an up-to-date picture
of design-rule errors in your layout. There is never any need to run a massive check over
the whole design unless you change your design rules. When you make small changes to
an existing layout, you will find out immediately if you’ve introduced errors, without

- 1 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

having to completely recheck the entire layout.

To see how the checker works, run Magic on the celltut6a. This cell contains
several areas of metal (blue), some of which are too close to each other or too narrow.
Try painting and erasing metal to make the error paint go away and re-appear again.

2. Getting Information about Errors

In many cases, the reason for a design-rule violation will be obvious to you as soon
as you see the error paint. However, Magic provides several commands for you to use to
find violations and figure what’s wrong in case it isn’t obvious. All of the design-rule
checking commands have the form

:drc option

whereoption selects one of several commands understood by the design-rule checker. If
you’re not sure why error paint has suddenly appeared, place the box around the error
paint and invoke the command

:drc why

This command will recheck the area underneath the box, and print out the reasons for any
violations that were found. You can also use the macroy to do the same thing. Try this
on some of the errors intut6a. It’s a good idea to place the box right around the area of
the error paint::drc why rechecks the entire area under the box, so it may take a long
time if the box is very large.

If you’re working in a large cell, it may be hard to see the error paint. To help
locate the errors, select a cell and then use the command

:drc find [nth]

If you don’t provide thenth argument, the command will place the box around one of
the errors in the selected cell, and print out the reason for the error, just as if you had
typed :drc why. If you invoke the command repeatedly, it will step through all of the
errors in the selected cell. (remember, the ‘‘.’’ macro can be used to repeat the last long
command; this will save you from having to retype:drc find over and over again). Try
this out on the errors intut6a. If you type a number fornth, the command will go to the
nth error in the selected cell, instead of the next one. If you invoke this command with
no cell selected, it searches the edit cell.

A third drc command is provided to give you summary information about errors in
hierarchical designs. The command is

:drc count

This command will search every cell (visible or not) that lies underneath the box to see if
any have errors in them. For each cell with errors,:drc count will print out a count of
the number of error areas.

- 2 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

3. Errors in Hierarchical Layouts

The design-rule checker works on hierarchical layouts as well as single cells. There
are three overall rules that describe the way that Magic checks hierarchical designs:

[1] The paint in each cell must obey all the design rules by itself, without considering
the paint in any other cells, including its children.

[2] The combined paint of each cell and all of its descendants (subcells, sub-subcells,
etc.) must be consistent. If a subcell interacts with paint or with other subcells in a
way that introduces a design-rule violation, an error will appear in the parent. In
designs with many levels of hierarchy, this rule is applied separately to each cell
and its descendants.

[3] Each array must be consistent by itself, without considering any other subcells or
paint in its parent. If the neighboring elements of an array interact to produce a
design-rule violation, the violation will appear in the parent.

To see some examples of interaction errors, edit the celltut6b. This cell doesn’t
make sense electrically, butillustrates the features of the hierarchical checker. On the
left are two subcells that are too close together. In addition, the subcells are too close to
the red paint in the top-level cell. Move the subcells and/or modify the paint to make the
errors go away and reappear. On the right side oftut6b is an array whose elements
interact to produce a design-rule violation. Edit an element of the array to make the vio-
lation go away. When there are interaction errors between the elements of an array, the
errors always appear near one of the four corner elements of the array (since the array
spacing is uniform, Magic only checks interactions near the corners; if these elements
are correct, all the ones in the middle must be correct too).

It’s important to remember that each of the three overall rules must be satisfied
independently. This may sometimes result in errors where it doesn’t seem like there
should be any. Edit the celltut6c for some examples of this. On the left side of the cell
there is a sliver of paint in the parent that extends paint in a subcell. Although the overall
design is correct, the sliver of paint in the parent is not correct by itself, as required by
the first overall rule above. On the right side oftut6c is an array with spacing violations
between the array elements. Even though the paint in the parent masks some of the prob-
lems, the array is not consistent by itself so errors are flagged. The three overall rules are
more conservative than strictly necessary, but they reduce the amount of rechecking
Magic must do. For example, the array rule allows Magic to deduce the correctness of an
array by looking only at the corner elements; if paint from the parent had to be con-
sidered in checking arrays, it would be necessary to check the entire array since there
might be parent paint masking some errors but not all (as, for example, intut6c).

Error paint appears in different cells in the hierarchy, depending on what kind of
error was found. Errors resulting from paint in a single cell cause error paint to appear in
that cell. Errors resulting from interactions and arrays appear in the parent of the
interacting cells or array. Because of the way Magic makes interaction checks, errors can
sometimes ‘‘bubble up’’ through the hierarchy and appear in multiple cells. When two
cells overlap, Magic checks this area by copying all the paint in that area from both cells
(and their descendants) into a buffer and then checking the buffer. Magic is unable to tell
the difference between an error from one of the subcells and an error that comes about
because the two subcells overlap incorrectly. This means that errors in an interaction

- 3 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

area of a cell may also appear in the cell’s parent. Fixing the error in the subcell will
cause the error in the parent to go away also.

4. Turning the Checker Off

We hope that in most cases the checker will run so quickly and quietly that you
hardly know it’s there. However, there will probably be some situations where the
checker is irksome. This section describes several ways to keep the checker out of your
hair.

If you’re working on a cell with lots of design-rule violations the constant redisplay
caused by design-rule checking may get in your way more than it helps. This is particu-
larly true if you’re in the middle of a large series of changes and don’t care about
design-rule violations until the changes are finished. You can stop the redisplay using the
command

:see no errors

After this command is typed, design-rule errors will no longer be displayed on the screen.
The design-rule checker will continue to run and will store error information internally,
but it won’t bother you by displaying it on the screen. When you’re ready to see errors
again, type

:see errors

There can also be times when it’s not the redisplay that’s bothersome, but the
amount of CPU time the checker takes to recheck what you’ve changed. For example, if
a large subcell is moved to overlap another large subcell, the entire overlap area will
have to be rechecked, and this could take several minutes. If the prompt on the text
screen is a ‘‘]’’ character, it means that the command has completed but the checker
hasn’t caught up yet. You can invoke new commands while the checker is running, and
the checker will suspend itself long enough to process the new commands.

If the checker takes too long to interrupt itself and respond to your commands, you
have several options. First, you can hit the interrupt key (often ˆC) on the keyboard.
This will stop the checker immediately and wait for your next command. As soon as you
issue a command or push a mouse button, the checker will start up again. To turn the
checker off altogether, type the command

:drc off

From this point on, the checker will not run. Magic will record the areas that need
rechecking but won’t do the rechecks. If you save your file and quit Magic, the informa-
tion about areas to recheck will be saved on disk. The next time you read in the cell,
Magic will recheck those areas, unless you’ve still got the checker turned off. There is
nothing you can do to make Magic forget about areas to recheck;:drc off merely post-
pones the recheck operation to a later time.

Once you’ve turned the checker off, you have two ways to make sure everything
has been rechecked. The first is to type the command

:drc catchup

- 4 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

This command will run the checker and wait until everything has been rechecked and
errors are completely up to date. When the command completes, the checker will still be
enabled or disabled just as it was before the command. If you get tired of waiting for
:drc catchup, you can always hit the interrupt key to abort the command; the recheck
areas will be remembered for later. To turn the checker back on permanently, invoke the
command

:drc on

5. Porting Layouts from Other Systems

You should not need to read this section if you’ve created your layout from scratch
using Magic or have read it from CIF using Magic’s CIF or Calma reader. However, if
you are bringing into Magic a layout that was created using a different editor or an old
version of Magic that didn’t have continuous checking, read on. You may also need to
read this section if you’ve changed the design rules in the technology file.

In order to find out about errors in a design that wasn’t created with Magic, you
must force Magic to recheck everything in the design. Once this global recheck has been
done, Magic will use its continuous checker to deal with any changes you make to the
design; you should only need to do the global recheck once. To make the global recheck,
load your design, place the box around the entire design, and type

:drc check

This will cause Magic to act as if the entire area under the box had just been modified: it
will recheck that entire area. Furthermore, it will work its way down through the hierar-
chy; for every subcell found underneath the box, it will recheck that subcell over the area
of the box.

If you get nervous that a design-rule violation might somehow have been missed,
you can use:drc check to force any area to be rechecked at any time, even for cells that
were created with Magic. However, this should never be necessary unless you’ve
changed the design rules. If the number of errors in the layout ever changes because of a
:drc check, it is a bug in Magic and you should notify us immediately.

- 5 -

Magic Tutorial #7: Netlists and Routing

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #3: Advanced Painting (Wiring and Plowing)
Magic Tutorial #4: Cell Hierarchies
Magic Tutorial #5: Multiple Windows

Netlist commands introduced in this tutorial:

:extract, :flush, :ripup, :savenetlist, :trace, :writeall

Layout commands introduced in this tutorial:

:channel, :route

Macros introduced in this tutorial:

(none)

1. Introduction

This tutorial describes how to use Magic’s automatic routing tools to make inter-
connections between subcells in a design. In addition to the standard Magic router,
which is invoked by the route command and covered in this tutorial, two other routing
tools are available. A gate-array router Garouter permits user specified channel
definitions, terminals in the interior of cells, and route-throughs across cells. To learn
about the gate-array router read this first then ‘‘Magic Tutorial #12: Routing Gate
Arrays’’. Finally Magic provides an interactive maze-router that takes graphic hints, the
Irouter, that permits the user to control the overall path of routes while leaving the

- 1 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

tedious details to Magic. The Irouter is documented in ‘‘Magic Tutorial #10: The
Interactive Router’’.

The standard Magic router provides an obstacle-avoidance capability: if there is
mask material in the routing areas, the router can work under, over, or around that
material to complete the connections. This means that you can pre-route key signals by
hand and have Magic route the less important signals automatically. In addition, you can
route power and ground by hand (right now we don’t have any power-ground routing
tools, so you have to route them by hand).

The router only makes connections between subcells; to make point-to-point con-
nections between pieces of layout within a single cell you should use the wiring com-
mand described in ‘‘Magic Tutorial #3: Advanced Painting (Wiring and Plowing) ’’ or
the maze router described in ‘‘Magic Tutorial #10: The Interactive Router’’. If you only
need to make a few connections you are probably better off doing them manually.

The first step in routing is to tell Magic what should be connected to what. This
information is contained in a file called a netlist. Sections 2, 3, 4, and 5 describe how to
create and modify netlists using Magic’s interactive netlist editing tools. Once you’ve
created a netlist, the next step is to invoke the router. Section 6 shows how to do this,
and gives a brief summary of what goes on inside the routing tools. Unless your design
is very simple and has lots of free space, the routing probably won’t succeed the first
time. Section 7 describes the feedback provided by the routing tools. Sections 8 and 9
discuss how you can modify your design in light of this feedback to improve its routabil-
ity. You’ll probably need to iterate a few times until the routing is successful.

2. Terminals and Netlists

A netlist is a file that describes a set of desired connections. It contains one or more
nets. Each net names a set of terminals that should all be wired together. A terminal is
simply a label attached to a piece of mask material within a subcell; it is distinguishable
from ordinary labels within a subcell by its presence within a netlist file and by certain
characteristics common to terminals, as described below.

The first step in building a netlist is to label the terminals in your design. Figure 1
shows an example. Each label should be a line or rectangle running along the edge of the
cell (point terminals are not allowed). The router will make a connection to the cell
somewhere along a terminal’s length. If the label isn’t at the edge of the cell, Magic will
route recklessly across the cell to reach the terminal, taking the shortest path between the
terminal and a routing channel. It’s almost always a good idea to arrange for terminal
labels to be at cell edges. The label must be at least as wide as the minimum width of the
routing material; the wider you make the label, the more flexibility you give the router to
choose a good point to connect to the terminal.

Terminal labels must be attached to mask material that connects directly to one of
Magic’s two routing layers (Routing layers are defined in Magic’s technology file). For
example, in the SCMOS process where the routing layers are metal1 and metal2, diffu-
sion may not be used as a terminal since neither of the routing layers will connect
directly to it. On the other hand, a terminal may be attached to diffusion-metal1 contact,
since the metal1 routing layer will connect properly to it. Terminals can have arbitrary

- 2 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

Output

Input
Cell Boundary

Figure 1. An example of terminal labels. Each terminal should be labeled with a line or
rectangle along the edge of the cell.

names, except that they should not contain slashes (‘‘/’’) or the substring ‘‘feedthrough’’,
and should not end in ‘‘@’’, ‘‘$’’, or ‘‘ˆ’’. See Tutorial #2 for a complete description of
labeling conventions.

For an example of good and bad terminals, edit the cell tut7a. The cell doesn’t
make any electrical sense, but contains several good and bad terminals. All the terminals
with names like bad1 are incorrect or undesirable for one of the reasons given above, and
those with names like good4 are acceptable.

NETLIST MENU

Label

13

BusBit13

ShowNo Net

CleanupTerms

PrintVerify

Netlist

Find

Current Text

Pumps
Placer

Current Netlist

Figure 2. The netlist menu.

If you create two or more terminal labels with the same name in the same cell the
router will assume that they are electrically equivalent (connected together within the
cell). Because of this, when routing the net it will feel free to connect to whichever one
of the terminals is most convenient, and ignore the others. In some cases the router may
take advantage of electrically equivalent terminals by using feed throughs: entering a cell
at one terminal to make one connection, and exiting through an equivalent terminal on
the way to make another connection for the same net.

3. Menu for Label Editing

Magic provides a special menu facility to assist you in placing terminal labels and
editing netlists. To make the menu appear, invoke the Magic command

- 3 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

��
Button Action��

Left-click: prompt for more labels
Current Text

Right-click: advance to next label��
Left-click: place label

Placer
Right-click: change label text position��
Left-click: decrement number

Pumps
Right-click: increment number��
Search under box, highlight labels

Find
matching current text��
Left-click: prompt for new netlist name

Current Netlist
Right-click: use edit cell name as netlist name��
Check that wiring matches netlist (same as

Verify
typing :verify command)��
Print names of all terminals in selected net

Print
(same as typing :print command)��
Place feedback areas on screen to identify all terminals

Terms
in current netlist (same as :showterms command)��
Check current netlist for missing labels and nets
with less than two terminals (same as typingCleanup
:cleanup command)��

No Net Delete selected net (same as :dnet command)��
Highlight paint connected to material under box

Show
(same as typing :shownet command)���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table I. A summary of all the netlist menu button actions.

:specialopen netlist

A new window will appear in the lower-left corner of the screen, containing several rec-
tangular areas on a purple background. Each of the rectangular areas is called a button.
Clicking mouse buttons inside the menu buttons will invoke various commands to edit
labels and netlists. Figure 2 shows a diagram of the netlist menu and Table I summarizes
the meaning of button clicks in various menu items. The netlist menu can be grown,
shrunk, and moved just like any other window; see ‘‘Magic Tutorial #5: Multiple Win-
dows’’ for details. It also has its own private set of commands. To see what commands
you can type in the netlist menu, move the cursor over the menu and type

:help

You shouldn’t need to type commands in the netlist menu very often, since almost every-
thing you’ll need to do can be done using the menu. See Section 9 for a description of a
few of the commands you can type; the complete set is described in the manual page
magic(1). One of the best uses for the commands is so that you can define macros for
them and avoid having to go back and forth to the menu; look up the :send command in
the man page to see how to do this. The top half of the menu is for placing labels and the
bottom half is for editing netlists. This section describes the label facilities, and Section

- 4 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

4 describes the netlist facilities.

The label menu makes it easy for you to enter lots of labels, particularly when there
are many labels that are the same except for a number, e.g. bus1, bus2, bus3, etc. There
are four sections to the label menu: the current text, the placer, two pumps, and the Find
button. To place labels, first click the left mouse button over the current text rectangle.
Then type one or more labels on the keyboard, one per line. You can use this mechanism
to enter several labels at once. Type return twice to signal the end of the list. At this
point, the first of the labels you typed will appear in the current text rectangle.

To place a label, position the box over the area you want to label, then click the left
mouse button inside one of the squares of the placer area. A label will be created with
the current text. Where you click in the placer determines where the label text will
appear relative to the label box: for example, clicking the left-center square causes the
text to be centered just to the left of the box. You can place many copies of the same
label by moving the box and clicking the placer area again. You can re-orient the text of
a label by clicking the right mouse button inside the placer area. For example, if you
would like to move a label’s text so that it appears centered above the label, place the
box over the label and right-click the top-center placer square.

If you entered several labels at once, only the first appears in the current text area.
However, you can advance to the next label by right-clicking inside the current text area.
In this way you can place a long series of labels entirely with the mouse. Try using this
mechanism to add labels to tut7a.

The two small buttons underneath the right side of the current text area are called
pumps. To see how these work, enter a label name containing a number into the current
text area, for example, bus1. When you do this, the ‘‘1’’ appears in the left pump.
Right-clicking the pump causes the number to increment, and left-clicking the pump
causes the number to decrement. This makes it easy for you to enter a series of num-
bered signal names. If a name has two numbers in it, the second number will appear in
the second pump, and it can be incremented or decremented too. Try using the pumps to
place a series of numbered names.

The last entry in the label portion of the menu is the Find button. This can be used
to locate a label by searching for a given pattern. If you click the Find button, Magic
will use the current text as a pattern and search the area underneath the box for a label
whose name contains the pattern. Pattern-matching is done in the same way as in csh,
using the special characters ‘‘*’’, ‘‘?’’, ‘‘\’’, ‘‘[’’, and ‘‘]’’. Try this on tut7a: enter
‘‘good*’’ into the current text area, place the box around the whole cell, then click on the
‘‘Find’’ button. For each of the good labels, a feedback area will be created with white
stripes to highlight the area. The :feedback find command can be used to step through
the areas, and :feedback clear will erase the feedback information from the screen. The
:feedback command has many of the same options as :drc for getting information about
feedback areas; see the Magic manual page for details, or type :feedback help for a
synopsis of the options.

- 5 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

4. Netlist Editing

After placing terminal labels, the next step is to specify the connections between
them; this is called netlist editing. The bottom half of the netlist menu is used for editing
netlists. The first thing you must do is to specify the netlist you want to edit. Do this by
clicking in the current netlist box. If you left-click, Magic will prompt you for the netlist
name and you can type it at the keyboard. If you right-click, Magic will use the name of
the edit cell as the current netlist name. In either case, Magic will read the netlist from
disk if it exists and will create a new netlist if there isn’t currently a netlist file with the
given name. Netlist files are stored on disk with a ‘‘.net’’ extension, which is added by
Magic when it reads and writes files. You can change the current netlist by clicking the
current netlist button again. Startup Magic on the cell tut7b, open the netlist menu, and
set the current netlist to tut7b. Then expand the subcells in tut7b so that you can see
their terminals.

��
Button Action��
Left Select net, using nearest terminal to cursor.��

Toggle nearest terminal into or out of
Right

current net.��
Find nearest terminal, join its net with the

Middle
current net.���

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Table II. The actions of the mouse buttons when the terminal tool is in use.

Netlist editing is done with the netlist tool. If you haven’t already read ‘‘Tutorial
#3: Advanced Painting (Wiring and Plowing)’’, you should read it now, up through Sec-
tion 2.1. Tutorial #3 explained how to change the current tool by using the space macro
or by typing :tool. Switch tools to the netlist tool (the cursor will appear as a thick
square).

When the netlist tool is in use the left, right, and middle buttons invoke select, tog-
gle, and join operations respectively (see Table II). To see how they work, move the cur-
sor over the terminal right4 in the top subcell of tut7b and click the left mouse button
(you may have to zoom in a bit to see the labels; terminals are numbered in clockwise
order: right4 is the fourth terminal from the top on the right side). This causes the net
containing that terminal to be selected. Three hollow white squares will appear over the
layout, marking the terminals that are supposed to be wired together into right4’s net.
Left-click over the left3 terminal in the same subcell to select its net, then select the
right4 net again.

The right button is used to toggle terminals into or out of the current net. If you
right-click over a terminal that is in the current net, then it is removed from the current
net. If you right-click over a terminal that isn’t in the current net, it is added to the
current net. A single terminal can only be in one net at a time, so if a terminal is already
in a net when you toggle it into another net then Magic will remove it from the old net.
Toggle the terminal top4 in the bottom cell out of, then back into, the net containing
right4. Now toggle left3 in the bottom cell into this net. Magic warns you because it
had to remove left3 from another net in order to add it to right4’s net. Type u to undo
this change, then left-click on left3 to make sure it got restored to its old net by the undo.

- 6 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

All of the netlist-editing operations are undo-able.

The middle button is used to merge two nets together. If you middle-click over a
terminal, all the terminals in its net are added to the current net. Play around with the
three buttons to edit the netlist tut7b.

Note: the router does not make connections to terminals in the top level cell. It
only works with terminals in subcells, or sub-subcells, etc. Because of this, the netlist
editor does not permit you to select terminals in the top level cell. If you click over such
a terminal Magic prints an error message and refuses to make the selection.

If you left-click over a terminal that is not currently in a net, Magic creates a new
net automatically. If you didn’t really want to make a new net, you have several choices.
Either you can toggle the terminal out of its own net, you can undo the select operation,
or you can click the No Net button in the netlist menu (you can do this even while the
cursor is in the square shape). The No Net button removes all terminals from the current
net and destroys the net. It’s a bad idea to leave single-net terminals in the netlist: the
router will treat them as errors.

There are two ways to save netlists on disk; these are similar to the ways you can
save layout cells. If you type

:savenetlist [name]

with the cursor over the netlist menu, the current netlist will be saved on disk in the file
name.net. If no name is typed, the name of the current netlist is used. If you type the
command

:writeall

then Magic will step through all the netlists that have been modified since they were last
written, asking you if you’d like them to be written out. If you try to leave Magic
without saving all the modified netlists, Magic will warn you and give you a chance to
write them out.

If you make changes to a netlist and then decide you don’t want them, you can use
the :flush netlist command to throw away all of the changes and re-read the netlist from
its disk file. If you create netlists using a text editor or some other program, you can use
:flush after you’ve modified the netlist file in order to make sure that Magic is using the
most up-to-date version.

The Print button in the netlist menu will print out on the text screen the names of
all the terminals in the current net. Try this for some of the nets in tut7b. The official
name of a terminal looks a lot like a Unix file name, consisting of a bunch of fields
separated by slashes. Each field except the last is the id of a subcell, and the last field is
the name of the terminal. These hierarchical names provide unique names for each ter-
minal, even if the same terminal name is re-used in different cells or if there are multiple
copies of the same cell.

The Verify button will check the paint of the edit cell to be sure it implements the
connections specified in the current netlist. Feedback areas are created to show nets that
are incomplete or nets that are shorted together.

The Terms button will cause Magic to generate a feedback area over each of the
terminals in the current netlist, so that you can see which terminals are included in the

- 7 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

netlist. If you type the command :feedback clear in a layout window then the feedback
will be erased.

The Cleanup button is there as a convenience to help you cleanup your netlists. If
you click on it, Magic will scan through the current netlist to make sure it is reasonable.
Cleanup looks for two error conditions: terminal names that don’t correspond to any
labels in the design, and nets that don’t have at least two terminals. When it finds either
of these conditions it prints a message and gives you the chance to either delete the
offending terminal (if you type dterm), delete the offending net (dnet), skip the current
problem without modifying the netlist and continue looking for other problems (skip), or
abort the Cleanup command without making any more changes (abort).

The Show button provides an additional mechanism for displaying the paint in the
net. If you place the box over a piece of paint and click on Show, Magic will highlight
all of the paint in the net under the box. This is similar to pointing at the net and typing s
three times to select the net, except that Show doesn’t select the net (it uses a different
mechanism to highlight it), and Show will trace through all cells, expanded or not (the
selection mechanism only considers paint in expanded cells). Once you’ve used Show to
highlight a net, the only way to make the highlighting go away is to place the box over
empty space and invoke Show again. Show is an old command that pre-dates the selec-
tion interface, but we’ve left it in Magic because some people find it useful.

5. Netlist Files

Netlists are stored on disk in ordinary text files. You are welcome to edit those files
by hand or to write programs that generate the netlists automatically. For example, a net-
list might be generated by a schematic editor or by a high-level simulator. See the
manual page net(5) for a description of netlist file format.

6. Running the Router

Once you’ve created a netlist, it is relatively easy to invoke the router. First, place
the box around the area you’d like Magic to consider for routing. No terminals outside
this area will be considered, and Magic will not generate any paint more than a few units
outside this area (Magic may use the next routing grid line outside the area). Load tut7d,
:flush the netlist if you made any changes to it, set the box to the bounding box of the
cell, and then invoke the router using the command:

:route

When the command completes, the netlist should be routed. Click the Verify netlist but-
ton to make sure the connections were made correctly. Try deleting a piece from one of
the wires and verify again. Feedback areas should appear to indicate where the routing
was incorrect. Use the :feedback command to step through the areas and, eventually, to
delete the feedback (:feedback help gives a synopsis of the command options).

If the router is unable to complete the connections, it will report errors to you.
Errors may be reported in several ways. For some errors, such as non-existent terminal
names, messages will be printed. For other errors, cross-hatched feedback areas will be
created. Most of the feedback areas have messages similar to ‘‘Net shifter/bit[0]/phi1:

- 8 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

Can’t make bottom connection.’’ To see the message associated with a feedback area,
place the box over the feedback area and type :feedback why. In this case the message
means that for some reason the router was unable to connect the specified net (named by
one of its terminals) within one of the routing channel. The terms ‘‘bottom’’, ‘‘top’’, etc.
may be misnomers because Magic sometimes rotates channels before routing: the names
refer to the direction at the time the channel was routed, not the direction in the circuit.
However, the location of the feedback area indicates where the connection was supposed
to have been made.

You’ve probably noticed by now that the router sometimes generates unnecessary
wiring, such as inserting extra jogs and U-shapes in wires (look next to right3 in the top
cell). These jogs are particularly noticeable in small examples. However, the router
actually does better on larger examples: there will still be a bit of extra wire, but it’s
negligible in comparison to the total wire length on a large chip. Some of this wire is
necessary and important: it helps the router to avoid several problem situations that
would cause it to fail on more difficult examples. However, you can use the straighten
command described in ‘‘Magic Tutorial #3: Advanced Painting (Wiring and Plowing)’’
to remove unnecessary jogs. Please don’t judge the router by its behavior on small
examples. On the other hand, if it does awful things on big examples, we’d like to know
about it.

All of the wires placed by the router are of the same width, so the router won’t be
very useful for power and ground wiring.

When using the Magic router, you can wire power and ground by hand before run-
ning the router. The router will be able to work around your hand-placed connections to
make the connections in the netlist. If there are certain key signals that you want to wire
carefully by hand, you can do this too; the router will work around them. Signals that
you route by hand should not be in the netlist. Tutorial7b has an example of ‘‘hand
routing’’ in the form of a piece of metal in the middle of the circuit. Undo the routing,
and try modifying the metal and/or adding more hand routing of your own to see how it
affects the routing.

The Magic router has a number of options useful for getting information about the
routing and setting routing parameters. You need to invoke the route command once for
each option you want to specify; then type :route with no options to start up the router
with whatever parameters you’ve set. The viamin, option which invokes a routing post-
pass is, of course, invoked AFTER routing. Type :route netlist file to specify a netlist
for the routing without having to open up the netlist menu. The metal option lets you
toggle metal maximization on and off; if metal maximization is turned on, the router con-
verts routing from the alternate routing layer (‘‘poly’’) to the preferred routing layer
(‘‘metal’’) wherever possible. The vias option controls metal maximization by specify-
ing how many grid units of ‘‘metal’’ conversion make it worthwhile to place vias; setting
this to 5 means that metal maximization will add extra vias only if 5 or more grid units of
‘‘poly’’ can be converted to ‘‘metal’’. View the current technology’s router parameters
with the tech option. The jog, obstacle, and steady options let you view and change
parameters to control the channel router (this feature is for advanced users). The viamin
option invokes a via minimization algorithm which reduces the number of vias in a
routed layout. This can be used as a post-processing step to improve the quality of the
routing. This may be useful even when using another router to do the actual routing.

- 9 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

Finally, show all parameter values with the settings option. The options and their actions
are summarized in Table III.

���
Option Action���
end Print the channel router end constant
end real Set the channel router end constant���
help Print a summary of the router options���
jog Print the channel router minimum jog length
jog int Set the minimum jog length, measured in grid units���
metal Toggle metal maximization on or off���
netlist Print the name of the current net list
netlist file Set the current net list���
obstacle Print the channel router obstacle constant
obstacle real Set the obstacle constant���
settings Print a list of all router parameters���
steady Print the channel router steady net constant
steady int Set the steady net constant, measured in grid units���
tech Print router technology information���
vias Print the metal maximization via limit
vias int Set the via limit���
viamin Minimize vias in a routed layout.��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table III. A summary of all of Magic router options.

7. How the Router Works

In order to make the router produce the best possible results, it helps to know a little
bit about how it works. The router runs in three stages, called channel definition, global
routing, and channel routing. In the channel definition phase, Magic divides the area of
the edit cell into rectangular routing areas called channels. The channels cover all the
space under the box except the areas occupied by subcells. All of Magic’s routing goes
in the channel areas, except that stems (Section 8.2) may extend over subcells.

To see the channel structure that Magic chose, place the box in tut7d as if you were
going to route, then type the command

:channel

in the layout window. Magic will compute the channel structure and display it on the
screen as a collection of feedback areas. The channel structure is displayed as white rec-
tangles. Type :feedback clear when you’re through looking at them.

The second phase of routing is global routing. In the global routing phase, Magic
considers each net in turn and chooses the sequence of channels the net must pass
through in order to connect its terminals. The crossing points (places where the net
crosses from one channel to another) are chosen at this point, but not the exact path
through each channel.

- 10 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

In the third phase, each channel is considered separately. All the nets passing
through that channel are examined at once, and the exact path of each net is decided.
Once the routing paths have been determined, paint is added to the edit cell to implement
the routing.

The router is grid-based: all wires are placed on a uniform grid. For the standard
nMOS process the grid spacing is 7 units, and for the standard SCMOS process it is 8
units. If you type :grid 8 after routing tut7b, you’ll see that all of the routing lines up
with its lower and left sides on grid lines. Fortunately, you don’t have to make your cell
terminals line up on even grid boundaries. During the routing Magic generates stems that
connect your terminals up to grid lines at the edges of channels. Notice that there’s space
left by Magic between the subcells and the channels; this space is used by the stem gen-
erator.

8. What to do When the Router Fails

Don’t be surprised if the router is unable to make all the connections the first time
you try it on a large circuit. Unless you have extra routing space in your chip, you may
have to make slight re-arrangements to help the router out. The paragraphs below
describe things you can do to make life easier for the router. This section is not very well
developed, so we’d like to hear about techniques you use to improve routability. If you
discover new techniques, send us mail and we’ll add them to this section.

8.1. Channel Structure

One of the first things to check when the router fails is the channel structure. If
using the Magic router, type :channel to look at the channels. One common mistake is
to have some of the desired routing area covered by subcells; Magic only runs wires
where there are no subcells. Check to be sure that there are channels everywhere that
you’re expecting wires to run. If you place cells too close together, there may not be
enough room to have a channel between the cells; when this happens Magic will route
willy-nilly across the tops of cells to bring terminals out to channels, and will probably
generate shorts or design-rule violations. To solve the problem, move the cells farther
apart. If there are many skinny channels, it will be difficult for the router to produce
good routing. Try to re-arrange the cell structure to line up edges of nearby cells so that
there are as few channels as possible and they are as large as possible (before doing this
you’ll probably want to get rid of the existing routing by undo-ing or by flushing the edit
cell).

8.2. Stems

Another problem has to do with the stem generator. Stems are the pieces of wiring
that connect terminals up to grid points on the edges of channels. The current stem gen-
eration code doesn’t know about connectivity or design rules. It simply finds the nearest
routing grid point and wires out to that point, without considering any other terminals. If
a terminal is not on the edge of the cell, the stem runs straight across the cell to the
nearest channel, without any consideration for other material in the cell. If two terminals
are too close together, Magic may decide to route them both to the same grid point.
When this happens, you have two choices. Either you can move the cell so that the

- 11 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

terminals have different nearest grid points (for example, you can line its terminals up
with the grid lines), or if this doesn’t work you’ll have to modify the cell to make the ter-
minals farther apart.

The place where stems cause the most trouble is in PLAs, many of which have been
optimized to space the outputs as closely together as possible. In some cases the outputs
are closer together than the routing grid, which is an impossible situation for the stem
generator. In this case, we think the best approach is to change the PLA templates to
space the outputs farther apart. Either space them exactly the same as the router grid (in
which case you can line the PLAs up before routing so the terminals are already on the
grid), or space the outputs at least 1.5 grid units apart so the stem generator won’t have
troubles. Having tightly-spaced PLA outputs is false economy: it makes it more difficult
to design the PLAs and results in awful routing problems. Even if Magic could river-
route out from tightly-spaced terminals to grid lines (which it can’t), it would require N2

space to route out N lines; it takes less area to stretch the PLA.

8.3. Obstacles

The router tends to have special difficulties with obstacles running along the edges
of channels. When you’ve placed a power wire or other hand-routing along the edge of a
channel, the channel router will often run material under your wiring in the other routing
layer, thereby blocking both routing layers and making it impossible to complete the
routing. Where this occurs, you can increase the chances of successful routing by mov-
ing the hand-routing away from the channel edges. It’s especially important to keep
hand-routing away from terminals. The stem generator will not pay any attention to
hand-routing when it generates stems (it just makes a bee-line for the nearest grid point),
so it may accidentally short a terminal to nearby hand-routing.

Figure 3. When placing hand routing, it is best to place wires with their left and bottom
edges along grid lines, and contacts centered on the wires. In this fashion, the hand routing
will block as few routing grid lines as possible.

- 12 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

When placing hand-routing, you can get better routing results by following the
advice illustrated in Figure 3. First, display the routing grid. For example, if the router is
using a 8-unit grid (which is true for the standard SCMOS technology), type :grid 8.
Then place all your hand routing with its left and bottom edges along the grid lines.
Because of the way the routing tools work, this approach results in the least possible
amount of lost routing space.

9. More Netlist Commands

In addition to the netlist menu buttons and commands described in Section 4, there
are a number of other netlist commands you can invoke by typing in the netlist window.
Many of these commands are textual equivalents of the menu buttons. However, they
allow you to deal with terminals by typing the hierarchical name of the terminal rather
than by pointing to it. If you don’t know where a terminal is, or if you have deleted a
label from your design so that there’s nothing to point to, you’ll have to use the textual
commands. Commands that don’t just duplicate menu buttons are described below; see
the magic(1) manual page for details on the others.

The netlist command

:extract

will generate a net from existing wiring. It looks under the box for paint, then traces out
all the material in the edit cell that is connected electrically to that paint. Wherever the
material touches subcells it looks for terminals in the subcells, and all the terminals it
finds are placed into a new net. Warning: there is also an extract command for layout
windows, and it is totally different from the extract command in netlist windows. Make
sure you’ve got the cursor over the netlist window when you invoke this command!

The netlist editor provides two commands for ripping up existing routing (or other
material). They are

:ripup
:ripup netlist

The first command starts by finding any paint in the edit cell that lies underneath the box.
It then works outward from that paint to find all paint in the edit cell that is electrically
connected to the starting paint. All of this paint is erased. (:ripup isn’t really necessary,
since the same effect can be achieved by selecting all the paint in the net and deleting the
selection; it’s a hangover from olden days when there was no selection). The second
form of the command, :ripup netlist, is similar to the first except that it starts from each
of the terminals in the current netlist instead of the box. Any paint in the edit cell that is
electrically connected to a terminal is erased. The :ripup netlist command may be use-
ful to ripup existing routing before rerouting.

The command

:trace [name]

provides an additional facility for examining router feedback. It highlights all paint con-
nected to each terminal in the net containing name, much as the Show menu button does
for paint connected to anything under the box. The net to be highlighted may be

- 13 -

Magic Tutorial #7: Netlists and Routing September 19, 1990

specified by naming one of its terminals, for example, :trace shifter/bit[0]/phi1. Use the
trace command in conjunction with the nets specified in router feedback to see the par-
tially completed wiring for a net. Where no net is specified, the :trace command
highlights the currently selected net.

- 14 -

Magic Tutorial #8: Circuit Extraction

Walter Scott
(some updates by other folks, too)

Special Studies Program
Lawrence Livermore National Laboratory

PO Box 808, L-270
Livermore, CA 94550
wss@mordor.s1.gov

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies

Commands introduced in this tutorial:

:extract

Macros introduced in this tutorial:

none

Programs introduced in this tutorial:

ext2sim

ext2spice

extcheck

Changes since Magic version 4:

New form of:extract unique

Path length extraction with:extract length

Accurate resistance extraction with:extresis

Extraction of well connectivity and substrate nodes

Checking for global net connectedness inext2sim (1)

New programs:ext2spice (1) andextcheck (1)

- 1 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

1. Introduction

This tutorial covers the use of Magic’s circuit extractor. The extractor computes
from the layout the information needed to run simulation tools such ascrystal (1) and
esim (1). This information includes the sizes and shapes of transistors, and the connec-
tivity, resistance, and parasiticcapacitance of nodes. Both capacitance to substrate and
several kinds of internodal coupling capacitances are extracted.

Magic’s extractor is both incrementaland hierarchical: only partof the entire layout
must be re-extracted after each change, and the structure of the extracted circuit parallels
the structure of the layout being extracted. The extractor produces a separate.ext file for
each.mag file in a hierarchical design. This is in contrast to previous extractors, such as
Mextra, which produces a single.sim file that represents the flattened (fully-instantiated)
layout.

Sections 2 through 4 introduce Magic’s:extract command and some of its more
advanced features. Section 5 describes what information actually gets extracted, and
discusses limitations and inaccuracies. Section 6 talks about extraction styles. Although
the hierarchicalext (5) format fully describes the circuit implemented by a layout, very
few tools currently accept it. It is normally necessary to flatten the extracted circuit using
one of the programs discussed in Section 7, such asext2sim (1), ext2spice (1), or
extcheck (1).

2. Basic Extraction

You can use Magic’s extractor in one of several ways. Normally it is not necessary
to extract all cells in a layout. To extract only those cells that have changed since they
were extracted, use:

:load root
:extract

The extractor looks for a.ext file for every cell in the tree that descends from the cell
root. The .ext file is searched for in the same directory that contains the cell’s.mag file.
Any cells that have been modified since they were last extracted, and all of their parents,
are re-extracted. Cells having no.ext files are also re-extracted.

To try out the extractor on an example, copy all thetut8x cells to your current direc-
tory with the following shell commands:

cp ˜cad/lib/magic/tutorial/tut8*.mag .

Start magic on the celltut8a and type:extract. Magic will print the name of each cell
(tut8a, tut8b, tut8c, and tut8d) as it is extracted. Now type:extract a second time.
This time nothing gets printed, since Magic didn’t have to re-extract any cells. Now
delete the piece of poly labelled ‘‘delete me’’ and type :extract again. This time, only
the celltut8a is extracted as it is the only one that changed. If you make a change to cell
tut8b (do it) and then extract again, bothtut8b and tut8a will be re-extracted, since
tut8a is the parent oftut8b.

To force all cells in the subtree rooted at cellroot to be re-extracted, use
:extract all:

- 2 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

:load root
:extract all

Try this also ontut8a.

You can also use the:extract command to extract a single cell as follows:

:extract cell name

will extract just the selected (current) cell, and place the output in the filename. Select
the cell tut8b (tut8b_0) and type:extract cell differentFile to try this out. After this
command, the filedifferentFile.ext will contain the extracted circuit for the celltut8b.
The children oftut8b (in this case, the single celltut8d) will not be re-extracted by this
command. If more than one cell is selected, the upper-leftmost one is extracted.

You should be careful about using:extract cell, since even though you may only
make a change to a child cell, all of its parents may have to be re-extracted. To re-extract
all of the parents of the selected cell, you may use

:extract parents

Try this out with tut8b still selected. Magic will extract only the celltut8a, since it is
the only one that uses the celltut8b. To see what cells would be extracted by:extract
parents without actually extracting them, use

:extract showparents

Try this command as well.

3. Feedback: Errors and Warnings

When the extractor encounters problems, it leaves feedback in the form of stippled
white rectangular areas on the screen. Each area covers the portion of the layout that
caused the error. Each area also has an error message associated with it, which you can
see by using the:feedback command. Type:feedback help while in Magic for assis-
tance in using the:feedback command.

The extractor will always report extractionerrors. These are problems in the layout
that may cause the output of the extractor to be incorrect. The layout should be fixed to
eliminate extraction errors before attempting to simulate the circuit; otherwise, the results
of the simulation may not reflect reality.

Extraction errors can come from violations of transistor rules. There are two rules
about the formation of transistors: no transistor can be formed, and none can be des-
troyed, as a result of cell overlaps. For example, it is illegal to have poly in one cell
overlap diffusion in another cell, as that would form a transistor in the parent where none
was present in either child. It is also illegal to have a buried contact in one cell overlap a
transistor in another, as this would destroy the transistor. Violating these transistor rules
will cause design-rule violations as well as extraction errors. These errors only relate to
circuit extraction: the fabricated circuit may still work; it just won’t be extracted
correctly.

In general, it is an error for material of two types on the same plane to overlap or
abut if they don’t connect to each other. For example, in CMOS it is illegal for p-
diffusion and n-diffusion to overlap or abut.

- 3 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

In addition to errors, the extractor can givewarnings. If only warnings are present,
the extracted circuit can still be simulated. By default, only some types of warnings are
reported and displayed as feedback. To cause all warnings to be displayed, use

:extract warn all

The command

:extract warn warning

may be used to enable specific warnings selectively; see below. To cause no warnings to
be displayed, or to disable display of a particularwarning, use respectively

:extract warn no all or
:extract warn no warning

Three different kinds of warnings are generated. Thedup warning checks to see
whether you have twoelectrically unconnectednodes in the same cell labelled with the
same name. If so, you are warned because the two unconnected nodes will appear to be
connected in the resulting.ext file, which means that the extracted circuit would not
represent the actual layout. This is bad if you’re simulating the circuit to see if it will
work correctly: the simulator will think the two nodes are connected, but since there’s no
physical wire between them, the electrons won’t! When two unconnected nodes share
the same label (name), the extractor leaves feedback squares over each instance of the
shared name.

It’s an excellent idea to avoid labelling two unconnected nodes with the same name
within a cell. Instead, use the "correct" name for one of the nodes, and some mnemonic
but textually distinct name for the other nodes. For example, in a cell with multiple
power rails, you might useVdd! for one of the rails, and names likeVdd#1 for the oth-
ers. As an example, load the celltut8e. If the two nodes are connected in a higher-level
cell they will eventually be merged when the extracted circuit is flattened. If you want to
simulate a cell out of context, but still want the higher-level nodes to be hooked up, you
can always create a dummy parent cell that hooks them together, either with wire or by
using the same name for pieces of paint that lie over the terminals to be connected; see
the celltut8f for an example of this latter technique.

You can use the command

:extract unique

as an automatic means of labelling nodes in the manner described above. Run this com-
mand on the celltut8g. A second version of this command is provided for compatibility
with previous versions of Magic. Running

:extract unique #

will only append a unique numeric suffix to labels that end with a ‘‘#’’. Any other dupli-
cate nodenames that also don’t end in a ‘‘!’’ (the global nodename suffix as described in
Section 5) are flagged by feedback.

A second type of warning,fets, checks to see whether any transistors have fewer
diffusion terminals than the minimum for their types. For example, the transistor type
‘‘ dfet’’ is defined in thenmos technology file as requiring two diffusion terminals: a

- 4 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

source and a drain. If a capacitor with only one diffusion terminal is desired in this tech-
nology, the typedcap should be used instead. Thefets warning is a consistency check
for transistors whose diffusion terminals havebeen accidentally shortedtogether, or for
transistors with insufficiently many diffusion terminals.

The third warning,labels, is generated if you violate the following guideline for
placement of labels: Whenever geometry from two subcells abuts or overlaps, it’s a good
idea to make sure that there is a label attached to the geometry in each subcellin the area
of the overlap or along the line of abutment. Following this guideline isn’t necessary for
the extractor to work, but it will result in noticeably faster extraction.

By default, thedup and fets warnings are enabled, and thelabels warning is dis-
abled.

Load the celltut8h, expand all its children (tut8i andtut8j), and enable all extrac-
tor warnings with:extract warn all. Now extracttut8h and all of its children with
:extract, and examine the feedback for examples of fatal errors and warnings.

4. Advanced Circuit Extraction

4.1. Lengths

The Magic extractor has a rudimentary ability to compute wire lengths between
specific named points in a circuit. This feature is intended for use with technologies
where the wire length between two points ismore important than thetotal capacitance on
the net; this may occur, for example, when extracting circuits with very long wires being
driven at high speeds (e.g., bipolar circuits). Currently, you must indicate to Magic
which pairs of points are to have distances computed. You do this by providing two lists:
one ofdrivers and one ofreceivers. The extractor computes the distance between each
driver and each receiver that it is connected to.

Load the celltut8k. There are five labels: two are drivers (driver1 and driver2)
and three are receivers (receiverA, receiverB, andreceiverC). Type the commands:

:extract length driver driver1 driver2
:extract length receiver receiverA receiverB receiverC

Now enable extraction of lengths with:extract do length and then extract the cell
(:extract). If you examinetut8k.ext, you will see severaldistance lines, corresponding
to the driver-receiver distances described above. These distances are through the center-
lines of wires connecting the two labels; where multiple paths exist, the shortest is used.

Normally the driver and receiver tables will be built by using:source to read a file
of :extract length driver and :extract length receiver commands. Once these tables
are created in Magic, they remain until you leave Magic or type the command

:extract length clear

which wipes out both tables.

Because extraction of wire lengths isnot performed hierarchically, itshould only be
done in the root cell of a design. Also, because it’s not hierarchical, it can take a long
time for long, complex wires such as power and ground nets. This feature is still experi-
mental and subject to change.

- 5 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

4.2. Resistance

Magic provides for more accurate resistance extraction using the:extresis com-
mand. :extresis provides a detailedresistance/capacitance descriptionfor nets where
parasitic resistance is likely to significantly affect circuit timing.

4.2.1. Tutorial Introduction

To try out the resistance extractor, load in the celltut8r. Extract it using:extract,
pause magic, and run ext2sim on the cell with the command

ext2sim tut8r

This should producetut8r.sim, tut8r.nodes, andtut8r.al. Restart magic and type

:extresis tolerance 10
:extresis

This will extract interconnect resistances for any net where the interconnect delay is at
least one-tenth of the transistor delay. Magic should give the messages:

:extresis tolerance 10
:extresis
Adding net2; Tnew = 0.428038ns,Told = 0.3798ns
Adding net1; Tnew = 0.529005ns,Told = 0.4122ns
Total Nets: 7
Nets extracted: 2 (0.285714)
Nets output: 2 (0.285714)

These may vary slightly depending on your technology parameters. TheAdding [net]
lines describe which networks for which magic produced resistor networks.Tnew is the
estimated delay on the net including the resistor parasitics, whileTold is the delay
without parasitics. The next line describes where magic thinks the slowest node in the net
is. The final 3 lines give a brief summary of the total number of nets, the nets requiring
extraction, and the number for which resistors were added to the output.

Running the resistance extractor also produced the filecell.res.ext. To produce a
.sim file containing resistors, quit magic and type:

cat tut8r.ext tut8r.res.ext >tut8r.2.ext
ext2sim -R -t! -t# tut8r.2

Comparing the two files,tut8r.sim and tut8r.2.sim, shows that the latter has the nodes
net1 and net2 split into several parts, with resistors added to connect the new nodes
together.

4.2.2. General Notes on using the resistance extractor

To use :extresis, the circuit must first be extracted using:extract and flattened
using ext2sim. When ext2sim is run, do not use the-t# and-t! flags (i.e. don’t trim the
trailing "#" and "!" characters) or the-R flag because:extresis needs the.sim and .ext
names to correspond exactly, and it needs the lumped resistance values that the extractor
produces. Also, do not delete or rename the.nodes file; :extresis needs this to run. Once
the .sim and.nodes files have been produced, type the command:extresis while running

- 6 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

magic on the root cell. As the resistance extractor runs, it will identify which nets (if
any) for which it is producing RC networks, and will identify what it thinks is the
"slowest" point in the network. When it completes, it will print a brief summary of how
many nets it extracted and how many required supplemental networks. The resistance
networks are placed in the fileroot.res.ext. To produce a.sim file with the supplemental
resistors, typecat root.ext root.res.ext >newname.ext, and then rerunext2sim on the
new file. During this secondext2sim run, the-t flag may be used.

Like extraction of wire lengths, resistance extraction isnot performed hierarchi-
cally; it should only be done in the root cell of a design and can take a long time for com-
plex wires.

4.2.3. Options, Features, Caveats and Bugs

The following is a list of command line options and the arguments that they take.

tolerance [value] - This controls how large the resistance in a network must be
before it is added to the output description.value is defined as the minimum ratio of
transistor resistance to interconnect resistance that requires a resistance network. The
default value is 1; values less than 1 will cause fewer resistors to be output and will make
the program run faster, while values greater than 1 will produce more a larger, more
accurate description but will run slower.

all - Causes all nets in the circuit to be extracted; no comparison between transistor
size and lumped resistance is performed. This option is not recommended for large
designs.

simplify [on/off] - Turns on/off the resistance network simplification routines.
Magic normally simplifies the resistance network it extracts by removing small resistors;
specifying this flag turns this feature off.

extout [on/off] - Turns on and off the writing of the root.res.ext file. The default
value is on.

lumped [on/off] - Turns on the writing of root.res.lump. This file contains an
updated value of the lumped resistance for each net that:extresis extracts.

silent [on/off] - This option suppresses printing of the name and location of nets for
which resistors are produced.

skip mask - Specifies a list of layers that the resistance extractor is to ignore.

help - Print brief list of options.

Attribute labels may also be used to specify certain extractor options. For a descrip-
tion of attributes and how they work, see tutorial 2. Following is a description of
:extresis attributes.

res:skip@ - Causes this net to be skipped. This is useful for avoiding extraction of
power supplies or other DC signals that are not labeled Vdd or GND.

res:force@ - Forces extraction of this net regardless of its lumped resistance value.
Nets with both skip and force labels attached will cause the extractor to complain.

res:min=[value]@ - Sets the smallest resistor size for this net. The default value is
the resistance of the largest driving transistor divided by the tolerance described above.

- 7 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

res:drive@ - Nets with no driving transistors will normally not be extracted. This
option allows the designer to specify from where in the net the signal is driven. This is
primarily useful when extracting subcells, where the transistors driving a given signal
may be located in a different cell.

4.2.4. Technology File Changes

Certain changes must be made in the extract section of the technology file to sup-
port resistance extraction. These include thefetresist and contact lines, plus a small
change to the fet line. Full details can be found in Magic Maintainer’s Manual #2. The
only thing to note is that, contrary to the documentation, thegccap andgscap parts of the
fet line MUST be set; the resistance extractor uses them to calculate RC time constants
for the circuit.

5. Extraction Details and Limitations

This section explores in greater depth what gets extracted by Magic, as well as the
limitations of the circuit extractor. A detailed explanation of the format of the.ext files
output by Magic may be found in the manual pageext (5). ‘‘Magic Maintainer’s
Manual #2: The Technology File’’ describes how extraction parameters are specified for
the extractor.

1

2

3

N

C

R/2 R/2

R/2

R/2

Figure 1. Each node extracted by Magic has a lumped resistanceR and a lumped capaci-
tanceC to the substrate. These lumped values can be interpreted as in the diagram above, in
which each device connected to the node is attached to one of the points1, 2, ...,N.

5.1. Nodes

Magic approximates the pieces of interconnect between transistors as ‘‘nodes’’. A
node is like an equipotential region, but also includes a lumped resistance and capaci-
tance to substrate. Figure 1 shows how these lumped values are intended to be inter-
preted by the analysis programs that use the extracted circuit.

Each node in an extracted circuit has a name, which is either one of the labels
attached to the geometry in the node ifany exist, or automaticallygenerated by the
extractor. These latter names are always of the formp_x_y#, where p, x, and y are
integers,e.g., 3_104_17#. If a label ending in the character ‘‘!’’ is attached to a node, the
node is considered to be a ‘‘global’’. Post-processing programs such asext2sim (1) will
check to ensure that nodes in different cells that are labelled with the same global name
are electricallyconnected.

- 8 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

Nodes may have attributes attached to them as well as names. Node attributes are
labels ending in the special character ‘‘@’’, and provide a mechanism for passing infor-
mation to analysis programs such ascrystal (1). The man pageext (5) provides additional
information about node attributes.

5.2. Resistance

Magic extracts a lumped resistance for each node, rather than a point-to-point resis-
tance between each pair of devices connected to that node. The result is that all such
point-to-point resistances are approximated by the worst-case resistance between any two
points in that node.

By default, node resistances are approximated rather than computed exactly. For a
node comprised entirely of a single type of material, Magic will compute the node’s total
perimeter and area. It then solves a quadratic equation to find the width and height of a
simple rectangle with this same perimeter and area, and approximates the resistance of
the node as the resistance of this ‘‘equivalent’’ rectangle. The resistance is always taken
in the longer dimension of the rectangle. When a node contains more than a single type
of material, Magic computes an equivalent rectangle for each type, and then sums the
resistances as though the rectangles were laid end-to-end.

This approximation for resistance does not take into account any branching, so it
can be significantly in error for nodes that have side branches. Figure 2 gives an exam-
ple. For global signal trees such as clocks or power, Magic’s estimate of resistance will
likely be several times higher than the actual resistance between two points.

(a) (b)

2 211

Figure 2. Magic approximates the resistance of a node by assuming that it is a simple wire.
The length and width of the wire are estimated from the node’s perimeter and area. (a) For
non-branching nodes, this approximation is a good one. (b) The computed resistance for
this node is the same as for (a) because the side branches are counted, yet the actual resis-
tance between points 1 and 2 is significantly less than in (a).

The approximated resistance also does not lend itself well to hierarchical adjust-
ments, as does capacitance.To allow programs likeext2sim to incorporate hierarchical
adjustments into a resistance approximation, each node in the.ext file also contains a per-
imeter and area for each ‘‘resistance class’’ that was defined in the technology file (see
‘‘Maintainer’s Manual #2: The Technology File,’’ andext (5)). When flattening a circuit,
ext2sim uses this information along with adjustments to perimeter and area to produce
the value it actually uses for node resistance.

- 9 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

If you wish to disable the extraction of resistances and node perimeters and areas,
use the command

:extract no resistance

which will cause all node resistances, perimeters, and areas in the.ext file to be zero. To
re-enable extraction of resistance, use the command

:extract do resistance.

Sometimes it’s important that resistances be computed more accurately than is pos-
sible using the lumped approximation above. Magic’s:extresist command does this by
computing explicit two-terminal resistors and modifying the circuit network to include
them so it reflects more exactly the topology of the layout. See the section onAdvanced
Extraction for more details on explicit resistance extraction with:extresist.

diff-space perim

diff-buried perim
buried

diffusion

Figure 3. Each type of edge has capacitance to substrate per unit length. Here, the
diffusion-space perimeter of 13 units has one value per unit length, and the diffusion-buried
perimeter of 3 units another. In addition, each type of material has capacitance per unit
area.

5.3. Capacitance

Capacitance to substrate comes from two different sources. Each type of material
has a capacitance tosubstrate per unit area. Each type of edge (i.e, each pair of types)
has a capacitance tosubstrate per unit length. See Figure 3. The computation of capaci-
tance may be disabled with

:extract no capacitance

which causes all substratecapacitance values in the.ext file to be zero. It may be re-
enabled with

:extract do capacitance.

Internodal capacitancecomes from three sources, as shown in Figure 4. When
materials of two different types overlap,the capacitance tosubstrate of the one on top (as
determined by the technology) is replaced by aninternodal capacitance tothe one on the
bottom. Its computation may be disabled with

- 10 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

:extract no coupling

which will also cause the extractor to run 30% to 50% faster. Extraction of coupling
capacitances can be re-enabled with

:extract do coupling.

sidewall

sidewall overlapoverlap (oxide)

(poly)

(metal)(metal)

Figure 4. Magic extracts three kinds of internodal coupling capacitance. This figure is a
cross-section (side view, not a top view) of a set of masks that shows all three kinds of
capacitance.Overlap capacitance is parallel-plate capacitance between two different kinds
of material when they overlap.Sidewall capacitance is parallel-plate capacitance between
the vertical edges of two pieces of the same kind of material.Sidewall overlap capacitance
is orthogonal-plate capacitance between the vertical edge of one piece of material and the
horizontal surface of another piece of material that overlaps the first edge.

Whenever material from two subcells overlaps or abuts, the extractor computes
adjustments to substratecapacitance, coupling capacitance, andnode perimeter and area.
Often, these adjustments make little difference to the type of analysis you are perform-
ing, as when you wish only to compare netlists. Even when running Crystal for timing
analysis, the adjustments can make less than a 5% difference in the timing of critical
paths in designs with only a small amount of inter-cell overlap. To disable the computa-
tion of these adjustments, use

- 11 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

6

1

2

2

2

4
6

2

6

poly

diff

(a) (b)

(c)

Figure 5.
(a) When transistors are rectangular, it is possible to computeL /W exactly. Heregateper-
im = 4, srcperim = 6, drainperim = 6, and L /W = 2/6. (b) The L /W of non-branching
transistors can be approximated. Heregateperim = 4, srcperim = 6, drainperim = 10. By
averagingsrcperim anddrainperim we getL /W = 2/8. (c) TheL /W of branching transis-
tors is not well approximated. Heregateperim = 16, srcperim = 2, drainperim = 2.
Magic’s estimate ofL /W is 8/2, whereas in fact because of current spreading,W is effec-
tively larger than 2 andL effectively smaller than 8, soL /W is overestimated.

:extract no adjustment

which will result in approximately 50% faster extraction. This speedup is not entirely
additive with the speedup resulting from:extract no coupling. To re-enable computa-
tion of adjustments, use:extract do adjustment.

5.4. Transistors

Like the resistances of nodes, the lengths and widths of transistors are approxi-
mated. Magic computes the contribution to the total perimeter by each of the terminals
of the transistor. See Figure 5. For rectangular transistors, this yields an exactL /W . For
non-branching, non-rectangular transistors, it is still possible to approximateL /W fairly
well, but substantial inaccuracies can be introduced if the channel of a transistor contains
branches. Since most transistors are rectangular, however, Magic’s approximation works
well in practice.

In addition to having gate, source, and drain terminals, MOSFET transistors also
have a substrate terminal. By default, this terminal is connected to a global node that
depends on the transistor’s type. For example, p-channel transistors might have a sub-
strate terminal ofVdd!, while n-channel transistors would have one ofGND!. However,
when a transistor is surrounded by explicit ‘‘well’’ material (as defined in the technology
file), Magic will override the default substrate terminal with the node to which the well

- 12 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

��
Type Loc A P Subs Gate Source Drain

fet nfet 59 1 60 2 8 12 GND! Mid2 4N3 Out 4 0 Vss#0 4 0

fet nfet 36 1 37 2 8 12 Float Mid1 4N2 Mid2 4 0 Vss#0 4 0

fet nfet 4 1 5 2 8 12 Vss#0 In 4N1 Mid1 4 0 Vss#0 4 0

fet pfet 59 25 60 26 8 12 Vdd! Mid2 4P3 Vdd#0 4 0 Out 4 0

fet pfet 36 25 37 26 8 12 VBias Mid1 4P2 Vdd#0 4 0 Mid2 4 0

fet pfet 4 25 5 26 8 12 Vdd#0 In 4P1 Vdd#0 4 0 Mid1 4 0��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 1. The transistor section oftut8l.ext.

material is connected. This has several advantages: it allows simulation of analog cir-
cuits in which wells are biased to different potentials, and it provides a form of checking
to ensure that wells in a CMOS process are explicitly tied to the appropriate DC voltage.

Transistor substrate nodes are discovered by the extractor only if the transistor and
the overlapping well layer are in the same cell. If they appear in different cells, the
transistor’s substrate terminal will be set to the default for the type of transistor.

Load the celltut8l, extract it, and look at the filetut8l.ext. Table 1 shows the lines
for the six transistors in the file. You’ll notice that the substrate terminals (theSubs
column) for all transistors are different. Since each transistor in this design has a dif-
ferent gate attribute attached to it (shown in bold in the table,e.g., N1, P2, etc), we’ll use
them in the following discussion.

The simplest two transistors areN3 and P3, which don’t appear in any explicitly
drawn wells. The substrate terminals for these areGND! and Vdd! respectively, since
that’s what the technology file says is the default for the two types of transistors.N1 and
P1 are standard transistors that lie in wells tied to the ground and power rails, labelled in
this cell asVss#0 and Vdd#0 respectively. (They’re not labelledGND! and Vdd! so
you’ll see the difference betweenN1 andN3). P2 lies in a well that is tied to a different
bias voltage,VBias, such as might occur in an analog design. Finally,N2 is in a well
that isn’t tied to any wire. The substrate node appears asFloat because that’s the label
that was attached to the well surroundingN2.

The ability to extract transistor substrate nodes allows you to perform a simple
check for whether or not transistors are in properly connected (e.g., grounded) wells. In a
p-well CMOS process, for example, you might set the default substrate node for n-
channel transistors to be some distinguished global node other than ground,e.g., NSub-
strateNode!. You could then extract the circuit, flatten it usingext2spice (1) (which
preserves substrate nodes, unlikeext2sim (1) which ignores them), and look at the sub-
strate node fields of all the n-channel transistors: if there were any whose substrate nodes
weren’t connected toGND!, then these transistors appear either outside of any explicit
well (their substrate nodes will be the default ofNSubstrateNode), or in a well that isn’t
tied toGND! with a substrate contact.

6. Extraction styles

Magic usually knows several different ways to extract a circuit from a given layout.
Each of these ways is called astyle. Different styles can be used to handle different
fabrication facilities, which may differ in the parameters they have for parasitic

- 13 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

capacitance andresistance. For a scalable technology, such as the defaultscmos, there
can be a different extraction style for each scale factor. The exact number and nature of
the extraction styles is described in the technology file that Magic reads when it starts.
At any given time, there is one current extraction style.

To print a list of the extraction styles available, type the command

:extract style.

The scmos technology currently has the styleslambda=1.5, lambda=1.0, and
lambda=0.6, though this changes over time as technology evolves. To change the
extraction style tostyle, use the command

:extract style style

Each style has a specific scale factor between Magic units and physical units (e.g.,
microns); you can’t use a particular style with a different scale factor. To change the
scalefactor, you’ll have to edit the appropriate style in theextract section of the technol-
ogy file. This process is described in ‘‘Magic Maintainer’s Manual #2: The Technology
File.’’

7. Flattening Extracted Circuits

Unfortunately, very few tools exist to take advantage of theext (5) format files pro-
duced by Magic’s extractor. To use these files for simulation or timing analysis, you will
most likely need to convert them to a flattened format, such assim (5) or spice (5).

There are several programs for flatteningext (5) files. Ext2sim (1) producessim (5)
files suitable for use withcrystal (1), esim (1), or rsim (1). Ext2spice (1) is used to pro-
ducespice (5) files for usewith the circuit-level simulatorspice (1). Finally,extcheck (1)
can be used to perform connectivity checking and will summarize the number of
flattened nodes, transistors, capacitors, and resistors in a circuit. All of these programs
make use of a library known asextflat (3), so the conventions for each and the checks
they perform are virtually identical. The documentation forextcheck covers the options
common to all of these programs.

To see howext2sim works, load the celltut8n and expand all thetutm subcells.
Notice how theGND! bus is completely wired, but theVdd! bus is in three disconnected
pieces. Now extract everything with:extract, then exit Magic and runext2sim tut8n.
You’ll see the following sort of output:

- 14 -

Magic Tutorial #8: Circuit Extraction September 19, 1990

*** Global name Vdd! not fully connected:
One portion contains the names:

left/Vdd!
The other portion contains the names:

center/Vdd!
I’m merging the two pieces into a single node, but you
should be sure eventually to connect them in the layout.

*** Global name Vdd! not fully connected:
One portion contains the names:

left/Vdd!
center/Vdd!

The other portion contains the names:
right/Vdd!

I’m merging the two pieces into a single node, but you
should be sure eventually to connect them in the layout.

Memory used: 56k

The warning messages are telling you that the global nameVdd! isn’t completely wired
in the layout. The flattener warns you, but goes ahead and connects the pieces together
anyway to allow you to simulate the circuit as though it had been completely wired. The
output of ext2sim will be three files: tut8n.sim, tut8n.al, and tut8n.nodes; see
ext2sim (1) or sim (5) for more information on the contents of these files. ‘‘Magic
Tutorial #11: Using RSIM with Magic’’ explains how to use the output ofext2sim
with the switch-level simulator,rsim (1).

- 15 -

Magic Tutorial #9: Format Conversion for CIF and Calma

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies

Commands covered in this tutorial:

:calma, :cif

Macros covered in this tutorial:

None.

1. Basics

CIF (Caltech Intermediate Form) and Calma Stream Format are standard layout
description languages used to transfer mask-level layouts between organizations and
design tools. This tutorial describes how Magic can be used to read and write files in CIF
and Stream formats. The version of CIF that Magic supports is CIF 2.0; it is the most
popular layout language in the university design community. The Calma format that
Magic supports is GDS II Stream format, version 3.0, corresponding to GDS II Release
5.1. This is probably the most popular layout description language for the industrial
design community.

To write out a CIF file, place the cursor over a layout window and type the com-
mand

- 1 -

Magic Tutorial #9: Format Conversion for CIF and Calma September 19, 1990

:cif

This will generate a CIF file called name.cif, where name is the name of the root cell in
the window. The CIF file will contain a description of the entire cell hierarchy in that
window. If you wish to use a name different from the root cell, type the command

:cif write file

This will store the CIF in file.cif. Start Magic up to edit tut9a and generate CIF for that
cell. The CIF file will be in ASCII format, so you can use Unix commands like more
and vi to see what it contains.

To read a CIF file into Magic, place the cursor over a layout window and type the
command

:cif read file

This will read the file file.cif (which must be in CIF format), generate Magic cells for the
hierarchy described in the file, make the entire hierarchy a subcell of the edit cell, and
run the design-rule checker to verify everything read from the file. Information in the
top-level cell (usually just a call on the ‘‘main’’ cell of the layout) will be placed into the
edit cell. Start Magic up afresh and read in tut9a.cif, which you created above. It will be
easier if you always read CIF when Magic has just been started up: if some of the cells
already exist, the CIF reader will not overwrite them, but will instead use numbers for
cell names.

To read and write Stream-format files, use the commands :calma read and :calma,
respectively. These commands have the same effect as the CIF commands, except that
they operate on files with .strm extensions. Stream is a binary format, so you can’t
examine .strm files with a text editor.

Stream files do not identify a top-level cell, so you won’t see anything on the screen
after you’ve used the :calma read command. You’ll have to use the :load command to
look at the cells you read. However, if Magic was used to write the Calma file being
read, the library name reported by the :calma read command is the same as the name of
the root cell for that library.

Also, Calma format places some limitations on the names of cells: they can only
contain alphanumeric characters, ‘‘$’’, and ‘‘_’’, and can be at most 32 characters long.
If the name of a cell does not meet these limitations, :calma write converts it to a unique
name of the form ___n, where n is a small integer. To avoid any possible conflicts, you
should avoid using names like these for your own cells.

You shouldn’t need to know much more than what’s above in order to read and
write CIF and Stream. The sections below describe the different styles of CIF/Calma
that Magic can generate and the limitations of the CIF/Calma facilities (you may have
noticed that when you wrote and read CIF above you didn’t quite get back what you
started with; Section 3 describes the differences that can occur). Although the discus-
sion mentions only CIF, the same features and problems apply to Calma.

- 2 -

Magic Tutorial #9: Format Conversion for CIF and Calma September 19, 1990

2. Styles

Magic usually knows several different ways to generate CIF/Calma from a given
layout. Each of these ways is called a style. Different styles can be used to handle dif-
ferent fabrication facilities, which may differ in the names they use for layers or in the
exact mask set required for fabrication. Different styles can be also used to write out
CIF/Calma with slightly different feature sizes or design rules. CIF/Calma styles are
described in the technology file that Magic reads when it starts up; the exact number and
nature of the styles is determined by whoever wrote your technology file. There are
separate styles for reading and writing CIF/Calma; at any given time, there is one current
input style and one current output style.

The standard SCMOS technology file provides an example of how different styles
can be used. Start up Magic with the SCMOS technology (magic -Tscmos). Then type
the commands

:cif ostyle
:cif istyle

The first command will print out a list of all the styles in which Magic can write
CIF/Calma (in this technology) and the second command prints out the styles in which
Magic can read CIF/Calma. You use the :cif command to change the current styles, but
the styles are used for both CIF and Calma format conversion. The SCMOS technology
file provides several output styles. The initial (default) style for writing CIF is
lambda=1.0(gen). This style generates mask layers for the MOSIS scalable CMOS pro-
cess, where each Magic unit corresponds to 1 micron and both well polarities are gen-
erated. See the technology manual for more information on the various styles that are
available. You can change the output style with the command

:cif ostyle newStyle

where newStyle is the new style you’d like to use for output. After this command, any
future CIF or Calma files will be generated with the new style. The :cif istyle command
can be used in the same way to see the available styles for reading CIF and to change the
current style.

Each style has a specific scalefactor; you can’t use a particular style with a different
scalefactor. To change the scalefactor, you’ll have to edit the appropriate style in the
cifinput or cifoutput section of the technology file. This process is described in ‘‘Magic
Maintainer’s Manual #2: The Technology File.’’

3. Rounding

The units used for coordinates in Magic are generally different from those in CIF
files. In Magic, most technology files use lambda-based units, where one unit is typically
half the minimum feature size. In CIF files, the units are centimicrons (hundredths of a
micron). When reading CIF and Calma files, an integer scalefactor is used to convert
from centimicrons to Magic units. If the CIF file contains coordinates that don’t scale
exactly to integer Magic units, Magic rounds the coordinates up or down to the closest
integer Magic units. A CIF coordinate exactly halfway between two Magic units is
rounded down. The final authority on rounding is the procedure CIFScaleCoord in the

- 3 -

Magic Tutorial #9: Format Conversion for CIF and Calma September 19, 1990

file cif/CIFreadutils.c When rounding occurs, the resulting Magic file will not match the
CIF file exactly.

Technology files usually specify geometrical operations such as bloating, shrinking,
and-ing, and or-ing to be performed on CIF geometries when they are read into Magic.
These geometrical operations are all performed in the CIF coordinate system (centimi-
crons) so there is no rounding or loss of accuracy in the operations. Rounding occurs
only AFTER the geometrical operations, at the last possible instant before entering paint
into the Magic database.

4. Non-Manhattan Geometries

Magic only supports Manhattan features. When CIF or Calma files contain non-
Manhattan features, they are approximated with Manhattan ones. The approximations
occur for wires (if the centerline contains non-Manhattan segments) and polygons (if the
outline contains non-Manhattan segments). In these cases, the non-Manhattan segments
are replaced with one or more horizontal and vertical segments before the figure is pro-
cessed. Conversion is done by inserting a one-unit stairstep on a 45-degree angle until a
point is reached where a horizontal or vertical line can reach the segment’s endpoint.
Some examples are illustrated in the figure below: in each case, the figure on the left is
the one specified in the CIF file, and the figure on the right is what results in Magic.

CIF Wire Resulting Magic Shape

CIF Polygon Resulting Magic Shape

The shape of the Magic stairstep depends on the order in which vertices appear in the
CIF or Calma file. The stairstep is made by first incrementing or decrementing the x-
coordinate, then incrementing or decrementing the y-coordinate, then x, then y, and so
on. For example, in the figure above, the polygon was specified in counter-clockwise
order; if it had been specified in clockwise order the result would have been slightly dif-
ferent.

- 4 -

Magic Tutorial #9: Format Conversion for CIF and Calma September 19, 1990

An additional approximation occurs for wires. The CIF wire figure assumes that
round caps will be generated at each end of the wire. In Magic, square caps are gen-
erated instead. The top example of the figure above illustrates this approximation.

5. Other Problems with Reading and Writing CIF

You may have noticed that when you wrote out CIF for tut9a and read it back in
again, you didn’t get back quite what you started with. Although the differences
shouldn’t cause any serious problems, this section describes what they are so you’ll know
what to expect. There are three areas where there may be discrepancies: labels, arrays,
and contacts. These are illustrated in tut9b. Load this cell, then generate CIF, then read
the CIF back in again. When the CIF is read in, you’ll get a couple of warning messages
because Magic won’t allow the CIF to overwrite existing cells: it uses new numbered
cells instead (this is why you should normally read CIF with a ‘‘clean slate’’; in this case
it’s convenient to have both the original and reconstructed infromation present at the
same time; just ignore the warnings). The information from the CIF cell appears as a
subcell named 1 right on top of the old contents of tut9b; select 1, move it below tut9b,
and expand it so you can compare its contents to tut9b.

The first problem area is that CIF normally allows only point labels. By default,
where you have line or box labels in Magic, CIF labels are generated at the center of the
Magic labels. The label in in tut9y is an example of a line label that gets smashed in the
CIF processing. The command

:cif arealabels yes

sets a switch telling Magic to use an extension to cif to output area-labels. This is not the
default since many programs that take CIF as input do not understand this extension.

If you are reading a CIF file created by a tool other than Magic, there is an addi-
tional problems with labels. The CIF label construct (‘‘94 label x y layer’’) has an
optional layer field that indicates the layer to which a label is attached. If reading a CIF
file generated by Magic, this field is always present and so a label’s layer is unambigu-
ous. However, if the field is absent, Magic must decide which layer to use. It does this
by looking to see what Magic layers lie beneath the label after the CIF has been read in.
When there are several layers, it chooses the one appearing LATEST in the types section
of the technology file. Usually, it’s possible to ensure that the right layer is used by plac-
ing signal layers (such as metal, diffusion, and poly) later in the types section than layers
such as pwell or nplus. However, sometimes Magic will still pick the wrong layer, and it
will be up to you to move the label to the right layer yourself.

The second problem is with arrays. CIF has no standard array construct, so when
Magic outputs arrays it does it as a collection of cell instances. When the CIF file is read
back in, each array element comes back as a separate subcell. The array of tut9y cells is
an example of this. Most designs only have a few arrays that are large enough to matter;
where this is the case, you should go back after reading the CIF and replace the multiple
instances with a single array. Calma format does have an array construct, so it doesn’t
have this problem.

The third discrepancy is that where there are large contact areas, when CIF is read
and written the area of the contact may be reduced slightly. This happened to the large

- 5 -

Magic Tutorial #9: Format Conversion for CIF and Calma September 19, 1990

poly contact in tut9b. The shrink doesn’t reduce the effective area of the contact; it just
reduces the area drawn in Magic. To see what’s happening here, place the box around
tut9b and 1, expand everything, then type

:cif see CCP

This causes feedback to be displayed showing CIF layer ‘‘CCP’’ (contact cut to poly).
You may have to zoom in a bit to distinguish the individual via holes. Magic generates
lots of small contact vias over the area of the contact, and if contacts aren’t exact multi-
ples of the hole size and spacing then extra space is left around the edges. When the CIF
is read back in, this extra space isn’t turned back into contact. The circuit that is read in
is functionally identical to the original circuit, even though the Magic contact appears
slightly smaller.

There is an additional problem with generating CIF having to do with the cell
hierarchy. When Magic generates CIF, it performs geometric operations such as
‘‘grow’’ and ‘‘shrink’’on the mask layers. Some of these operations are not guaranteed
to work perfectly on hierarchical designs. Magic detects when there are problems and
creates feedback areas to mark the trouble spots. When you write CIF, Magic will warn
you that there were troubles. These should almost never happen if you generate CIF
from designs that don’t have any design-rule errors. If they do occur, you can get around
them by writing cif with the following command

:cif flat fileName

This command creates an internal version of the design with hierarchy removed, before
outputing CIF as in cif write. An alternative approach that does not require flattening is
to modify the technology file in use. Read ‘‘Magic Maintainers Manual #2: The Tech-
nology File’’, if you want to try this approach.

- 6 -

Magic Tutorial #10: The Interactive Router

Michael Arnold

O Division
Lawrence Livermore National Laboratory

Livermore, CA 94550

This tutorial corresponds to Magic version 6, and Irouter version 0.6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies

Commands covered in this tutorial:

:iroute

Macros covered in this tutorial:

Cntl-R, Cntl-N

1. Introduction

The Magic interactive router,Irouter, provides an interactive interface to Magic’s
internal maze router. It is intended as an aid to manual routing. Routing is done one
connection at a time, the user specifying a starting point and destination areas prior to
each connection. The user determines the order in which signals are routed and how
multi-point nets are decomposed into point-to-area connections. In addition parameters
and special Magichint layers permit the user to control the nature of the routes. Typi-
cally the user determines the overall path of a connection, and leaves the details of satis-
fying the design-rules, and detouring around or over minor obstacles, to the router.

The interactive router is not designed for fully automatic routing: interactions
between nets are not considered, and net decomposition is not automatic. Thus netlists
are generally not suitable input for the Irouter. However it can be convenient to obtain
endpoint information from netlists. TheNet2ir program uses netlist information to gen-
erate commands to the Irouter with appropriate endpoints for specified signals. Typically
a user might setup parameters and hints to river-route a set of connections, and then

- 1 -

Magic Tutorial #10: The Interactive Router September 19, 1990

generate Irouter commands with the appropriate endpoints via Net2ir. For details on
Net2ir see the manual pagenet2ir(1).

This tutorial provides detailed information on the use of the Irouter. On-line help,
Irouter subcommands, Irouter parameters, and hint-layers are explained.

2. Getting Started - ‘Cntl-R’, ‘Cntl-N’, ‘:iroute’ and ‘:iroute help’

To make a connection with the Irouter, place the cursor over one end of the desired
connection (thestart-point) and the box at the other end (thedestination-area). Then
type

Cntl-R

Note that the box must be big enough to allow the route to terminate entirely within it. A
design-rule correct connection between the cursor and the box should appear. The macro

Cntl-R

and the long commands

:iroute
:iroute route

are all equivalent. They invoke the Irouter to connect the cursor with the interior of the
box. Note that the last connection is always left selected. This allows further terminals
to be connected to the route with the second Irouter macro,Cntl-N. Try typing

Cntl-N

A connection between the cursor and the previous route should appear. In generalCntl-
N routes from the cursor to the selection.

There are a number of commands to set parameters and otherwise interact with the
Irouter. These commands have the general form

:iroute subcommand [arguments]

For a list of subcommands and a short description of each, type

:iroute help

Usage information on a subcommand can be obtained by typing

:iroute help [subcommand]

As with Magic in general, unique abbreviations of subcommands and most of their argu-
ments are permitted. Case is generally ignored.

3. :Undo and Cntl-C

As with other Magic commands, the results of:iroute can be undone with:undo,
and if the Irouter is taking too long it can be interrupted withCntl-C. This makes it easy
to refine the results of the Irouter by trial and error. If you don’t like the results of a
route, undo it, tweak the Irouter parameters or hints you are using and try again. If the
Irouter is taking too long, you can very likely speed things up by interrupting it, resetting
performance related parameters, and trying again. The details of parameters and hints
are described later in this document.

- 2 -

Magic Tutorial #10: The Interactive Router September 19, 1990

4. More about Making Connections - ‘:iroute route’

Start points for routes can be specified via the cursor, labels, or coordinates. Desti-
nation areas can be specified via the box, labels, coordinates or the selection. In addition
start and destination layers can be specified explicitly. For the syntax of all these options
type

:iroute help route

When a start point lies on top of existing geometry it is assumed that a connection to that
material is desired. If this is not the case, the desired starting layer must be explicitly
specified. When routing to the selection it is assumed that connection to the selected
material is desired. By default, routes to the box may terminate on any active route layer.
If you are having trouble connecting to a large region, it may be because the connection
point or area is too far in the interior of the region. Try moving it toward the edge.
(Alternately see the discussion of thepenetration parameter in the wizard section below.)

5. Hints

Magic has three built-in layers for graphical control of the Irouter,fence (f), mag-
net (mag), androtate (r). These layers can be painted and erased just like other Magic
layers. The effect each has on the Irouter is described below.

5.1. The Fence Layer

The Irouter won’t cross fence boundaries. Thus the fence layer is useful both for
carving out routing-regions and for blocking routing in given areas. It is frequently use-
ful to indicate the broad path of one or a series of routes with fence. In addition to guid-
ing the route, the use of fences can greatly speed up the router by limiting the search.

5.2. The Magnet Layer

Magnets attract the route. They can be used to pull routes in a given direction, e.g.,
towards one edge of a channel. Over use of magnets can make routing slow. In particu-
lar magnets that are long and far away from the actual route can cause performance prob-
lems. (If you are having problems with magnets and performance, see also the discus-
sion of thepenalty parameter in the wizard section below.)

5.3. The Rotate Layer

The Irouter associates different weights with horizontal and vertical routes (see the
layer-parameter section below).This is so that a preferred routing direction can be esta-
blished for each layer. When two good route-layers are available (as in a two-layer-
metal process) interference between routes can be minimized by assigning opposite pre-
ferred directions to the layers.

The rotate layer locally inverts the preferred directions. An example use of the
rotate layer might involve anL-shaped bus. The natural preferred directions on one leg
of the L are the opposite from the other, and thus one leg needs to be marked with the
rotate layer.

- 3 -

Magic Tutorial #10: The Interactive Router September 19, 1990

6. Subcells

As with painting and other operations in Magic, the Irouter’s output is written to the
cell being edited. What the router sees, that is which features act as obstacles, is deter-
mined by the window the route is issued to (or other designated reference window - see
the wizard section.) The contents of subcells expanded in the route window are visible to
the Irouter, but it only sees the bounding boxes of unexpanded subcells. These bounding
boxes appear on a specialSUBCELL pseudo-layer. The spacing parameters to the
SUBCELL layer determine exactly how the Irouter treats unexpanded subcells. (See the
section on spacing parameters below.) By default, the spacings to theSUBCELL layer
are large enough to guarantee that no design-rules will be violated, regardless of the con-
tents of unexpanded subcells. Routes can be terminated at unexpanded subcells in the
same fashion that connections to other pre-existing features are made.

7. Layer Parameters - ‘:iroute layers’

Route-layers, specified in themzrouter section of the technology file, are the layers
potentially available to the Irouter for routing. Thelayer subcommand gives access to
parameters associated with these route-layers. Many of the parameters are weights for
factors in the Irouter cost-function. The Irouter strives for the cheapest possible route.
Thus the balance between the factors in the cost-function determines the character of the
routes: which layers are used in which directions, and the number of contacts and jogs
can be controlled in this way. But be careful! Changes in these parameters can also pro-
foundly influence performance. Other parameters determine which of the route-layers
are actually available for routing and the width of routes on each layer. It is a good idea
to inactivate route-layers not being used anyway, as this speeds up routing.

The layers subcommand takes a variable number of arguments.

:iroute layers

prints a table with one row for each route-layer giving all parameter values.

:iroute layers type

prints all parameters associated with route-layertype.

:iroute layers type parameter

prints the value ofparameter for layer type. If type is ‘*’, the value ofparameter is
printed for all layers.

:iroute layers type parameter value

setsparameter to value on layer type. If type is ‘*’, parameter is set tovalue on all
layers.

:iroute layers type * value1 value2 ... valuen

sets a row in the parameter table.

:iroute layers * parameter value1 ... valuen

sets a column in the table.

There are six layer parameters.

- 4 -

Magic Tutorial #10: The Interactive Router September 19, 1990

active
Takes the value ofYES (the default) orNO. Only active layers are used by the
Irouter.

width
Width of routing created by the Irouter on the given layer. The default is the
minimum width permitted by the design rules.

hcost
Cost per unit-length for horizontal segments on this layer.

vcost
Cost per unit-length for vertical segments.

jogcost
Cost per jog (transition from horizontal to vertical segment).

hintcost
Cost per unit-area between actual route and magnet segment.

8. Contact Parameters - ‘:iroute contacts’

The contacts subcommand gives access to a table of parameters for contact-types
used in routing, one row of parameters per type. The syntax is identical to that of the
layers subcommand described above, and parameters are printed and set in the same
way.

There are three contact-parameters.

active
Takes the value ofYES (the default) orNO. Only active contact types are used by
the Irouter.

width
Diameter of contacts of this type created by the Irouter. The default is the minimum
width permitted by the design-rules.

cost
Cost per contact charged by the Irouter cost-function.

9. Spacing Parameters - ‘:iroute spacing’

The spacing parameters specify minimum spacings between the route-types (route-
layers and route-contacts) and arbitrary Magic types. These spacings are the design-rules
used internally by the Irouter during routing. Default values are derived from thedrc
section of the technology file. These values can be overridden in themzrouter section of
the technology file. (See theMagic Maintainers Manual on Technology Files for
details.) Spacings can be examined and changed at any time with thespacing subcom-
mand. Spacing values can benil, 0, or positive integers. A value ofnil means there is no
spacing constraint between the route-layer and the given type. A value of0 means the
route-layer may not overlap the given type. If a positive value is specified, the Irouter
will maintain the given spacing between new routing on the specified route-layer and
pre-existing features of the specified type (except when connecting to the type at an end-
point of the new route).

- 5 -

Magic Tutorial #10: The Interactive Router September 19, 1990

Thespacing subcommand takes several forms.

:iroute spacing

prints spacings for all route-types. (Nil spacings are omitted.)

:irouter spacing route-type

prints spacings forroute-type. (Nil spacings are omitted.)

:iroute spacing route-type type

prints the spacing betweenroute-type andtype.

:iroute spacing route-type type value

sets the spacing betweenroute-type andtype to value.

The spacings associated with each route-type are the ones that are observed when
the Irouter places that route-type. To change the spacing between two route-types, two
spacing parameters must be changed: the spacing to the first type when routing on the
second, and the spacing to the second type when routing on the first.

Spacings to theSUBCELL pseudo-type give the minimum spacing between a
route-type and unexpanded subcells. TheSUBCELL spacing for a given route-layer
defaults to the maximum spacing to the route-layer required by the design-rules (in the
drc section of the technology file). This ensures that no design-rules will be violated
regardless of the contents of the subcell. If subcell designs are constrained in a fashion
that permits closer spacings to some layers, theSUBCELL spacings can be changed to
take advantage of this.

10. Search Parameters ‘:search’

The Mzrouter search is windowed. Early in the search only partial paths near the
start point are considered; as the search progresses the window is moved towards the
goal. This prevents combinatorial explosion during the search, but still permits the
exploration of alternatives at all stages. Thesearch subcommand permits access to two
parameters controlling the windowed search,rate, andwidth. Therate parameter deter-
mines how fast the window is shifted towards the goal, and thewidth parameter gives
the width of the window. The units are comparable with those used in the cost parame-
ters. If the router is taking too long to complete, try increasingrate. If the router is
choosing poor routes, try decreasingrate. The window width should probably be at least
twice the rate.

The subcommand has this form:

:iroute search [parameter] [value]

If value is omitted, the current value is printed, ifparameter is omitted as well, both
parameter values are printed.

11. Messages - ‘:iroute verbosity’

The number of messages printed by the Irouter is controlled by

:iroute verbosity value

- 6 -

Magic Tutorial #10: The Interactive Router September 19, 1990

If verbosity is set to0, only errors and warnings are printed. A value of1 (the default)
results in short messages. A value of2 causes statistics to be printed.

12. Version - ‘:iroute version’

The subcommand

:iroute version

prints the Irouter version in use.

13. Saving and Restoring Parameters - ‘:iroute save’

The command

:iroute save file.ir

saves away the current settings of all the Irouter parameters in filefile.ir. Parameters can
be reset to these values at any time with the command

:source file.ir

This feature can be used to setup parameter-sets appropriate to different routing contexts.
Note that the extension.ir is recommended for Irouter parameter-files.

14. Wizard Parameters - ‘:iroute wizard’

Miscellaneous parameters that are probably not of interest to the casual user are
accessed via thewizard subcommand. The parameters are as follows:

bloom
Takes on a non-negative integer value. This controls the amount of compulsory
searching from a focus, before the next focus is picked based on the cost-function
and window position. In practice1 (the default value) seems to be the best value.
This parameter may be removed in the future.

boundsIncrement
Takes on the valueAUTOMATIC or a positive integer. Determines in what size
chunks the layout is preprocessed for routing. This preprocessing (blockage genera-
tion) takes a significant fraction of the routing time, thus performance may well be
improved by experimenting with this parameter.

estimate
Takes on a boolean value. IfON (the default) an estimation plane is generated prior
to each route that permits cost-to-completion estimates to factor in subcells and
fence regions. This can be very important to efficient routing. Its rarely useful to
turn estimation off.

expandDests
Takes on a boolean value. IfON (not the default) destination areas are expanded to
include all of any nodes they overlap. This is particularly useful if the Irouter is
being invoked from a script, since it is difficult to determine optimal destination
areas automatically.

penalty
Takes on a rational value (default is 1024.0). It is not strictly true that the router

- 7 -

Magic Tutorial #10: The Interactive Router September 19, 1990

searches only within its window. Paths behind the window are also considered, but
with cost penalized by the product of their distance to the window and the penalty
factor. It was originally thought that small penalties might be desirable, but experi-
ence, so far, has shown that large penalties work better. In particular it is important
that the ratio between the actual cost of a route and the initial estimate is less than
the value ofpenalty, otherwise the search can explode (take practically forever). If
you suspect this is happening, you can setverbosity to 2 to check, or just increase
the value ofpenalty. In summary it appears that the value of penalty doesn’t matter
much as long as it is large (but not so large as to cause overflows). It will probably
be removed in the future.

penetration
This parameter takes the valueAUTOMATIC or a positive integer. It determines
how far into a blocked area the router will penetrate to make a connection. Note
however the router will in no case violate spacing constraints to nodes not involved
in the route.

window
This parameter takes the valueCOMMAND (the default) or a window id (small
integers). It determines the reference window for routes. The router sees the world
as it appears in the reference window, e.g., it sees the contents of subcells expanded
in the reference window. Ifwindow is set toCOMMAND the reference window is
the one that contained the cursor when the route was invoked. To set the reference
window to a fixed window, place the cursor in that window and type:

:iroute wizard window .

15. References

[1] M.H. Arnold and W.S. Scott, ‘‘An Interactive Maze Router with Hints’’,Proceed-
ings of the 25th Design Automation Conference, June 1988, pp. 672-676.

- 8 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic

Michael Chow
Mark Horowitz

Computer Systems Laboratory
Center for Integrated Systems

Stanford University
Stanford, CA 94305

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies
Magic Tutorial #8: Circuit Extraction

Commands introduced in this tutorial:

:getnode, :rsim, :simcmd, :startrsim

Macros introduced in this tutorial:

none

1. Introduction

This tutorial explains how to use Magic’s interface to the switch-level circuit simu-
lators, RSIM and IRSIM. The interface is the same for both these simulators and, except
where noted, RSIM refers to IRSIM as well. This interface eliminates the tedium of
mapping node names to objects in the layout and typing node names as RSIM input. It
allows the user to select nodes using the mouse and apply RSIM commands to them or to
display the node values determined by RSIM in the layout itself. You should already be
familiar with using both RSIM and Magic’s circuit extractor. Section 2 describes how to
prepare the files necessary to simulate a circuit. Section 3 describes how to run RSIM
interactively under Magic.Section 4 explains how to determine the node names that

- 1 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic September 19, 1990

RSIM uses. Lastly, section 5 explains how to use the RSIM tool in Magic to simulate a
circuit.

2. Preparations for Simulation

Magic uses the RSIM input file when it simulates the circuit. Before proceeding
any further, make sure you have the correct versions of the programsext2sim andrsim
installed on your system. Important changes have been made to these programs to sup-
port simulation within Magic. To try out this tool on an example, copy all thetut11x
cells to your current directory with the following command:

cp ˜cad/lib/magic/tutorial/tut11* .

The tut11a cell is a simple 4-bit counter using the Magic scmos technology file. Start
Magic on the celltut11a, and extract the entire cell using the command:

:extract all

When this command completes, several.ext files will be created in your current directory
by the extractor. The next step is to flatten the hierarchy into a single representation.
Return to the Unix c-shell by quitting Magic.

The programext2sim is used to flatten the hierarchy. Run this program from the c-
shell by typing:

ext2sim -L -R -c 20 tut11a

This program will create the filetut11a.sim in your current directory.

If you are running IRSIM, thetut11a.sim can be used directly as input to the simu-
lator and you should skip the next step. Instead, if you will be using RSIM, the last step
is to create the binary representation of the flattened hierarchy by using the program
presim. To do this, type:

presim tut11a.sim tut11a.rsm ˜cad/lib/scmos150.prm -nostack -nodrops

The third file is the parameter file used by presim for this circuit. The convention at
Stanford is to use the suffix.rsm when naming the RSIM input file. The filetut11a.rsm
can also be used as input for running RSIM alone.

3. Using RSIM

Re-run Magic again to edit the celltut11a. We’ll first learn how to run RSIM in
interactive mode under Magic. To simulate the circuit of tut11a, using IRSIM type the
command:

:rsim scmos150.prm tut11a.sim

To simulate the circuit of tut11a, using RSIM type the command:

:rsim tut11a.rsm

You should see the RSIM header displayed, followed by the standard RSIM prompt
(rsim> or irsim>, depending on the simulator) in place of the usual Magic prompt; this
means keyboard input is now directed to RSIM. This mode is very similar to running
RSIM alone; one difference is that the user can escape RSIM and then return to Magic.
Also, the mouse has no effect whenRSIM is runinteractively under Magic.

- 2 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic September 19, 1990

Only one instance of RSIM may be running at any time under Magic. The simula-
tion running need not correspond to the Magic layout; however, as we shall see later,
they must correspond for the RSIM tool to work. All commands typed to the RSIM
prompt should be RSIM commands. We’ll first run RSIM, then escape to Magic, and
then return back to RSIM. Type the RSIM command

@ tut11a.cmd

to initialize the simulation. (Note there is a " " after the @.) Now typec to clock the cir-
cuit. You should see some information about some nodes displayed, followed by the
time. Set two of the nodes to a logic "1" by typingh RESET_B hold. Step the clock
again by typingc, and RSIM should show that these two nodes now have the value "1."

You can return to Magic without quitting RSIM and then later return to RSIM in the
same state in which it was left. Escape to Magic by typing:

.

(a single period) to the RSIM prompt. Next, type a few Magic commands to show you’re
really back in Magic (signified by the Magic prompt).

You can return to RSIM by typing the Magic commandrsim without any argu-
ments. Type:

:rsim

The RSIM prompt will be displayed again, and you are now back in RSIM in the state
you left it in. Experiment with RSIM by typing some commands. To quit RSIM and
return to Magic, type:

q

in response to the RSIM prompt. You’ll know you’re back in Magic when the Magic
prompt is redisplayed. If you should interrupt RSIM (typing a control-C), you’ll prob-
ably kill it and then have to restart it. RSIM running standalone will also be killed if you
interrupt it. If you interrupt IRSIM (typing a control-C), the simulator will abort what-
ever it’s doing (a long simulation run, for example) and return to the command inter-
preter by prompting again withirsim>.

4. Node Names

It’s easy to determine node names under Magic. First, locate the red square region
in the middle right side of the circuit. Move the cursor over this region and select it by
typing s. To find out the name for this node, type:

:getnode

Magic should print that the node name isRESET_B. The commandgetnode prints the
names of all nodes in the current selection. Move the cursor over the square blue region
in the upper right corner and add this node to the current selection by typingS. Type
:getnode again, and Magic should print the names of two nodes; the blue node is named
hold. You can also print aliases for the selected nodes. Turn on name-aliasing by typing:

:getnode alias on

Select the red node again, and type:getnode. Several names will be printed; the last

- 3 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic September 19, 1990

name printed is the one RSIM uses, so you should use this name for RSIM. Note thatget-
node is not guaranteed to print all aliases for a node. Only those alises generated when
the RSIM node name is computed are printed. However, most of the alaiases will usually
be printed. Printing aliases is also useful to monitor the name search, sincegetnode can
take several seconds on large nodes. Turn off aliasing by typing:

:getnode alias off

getnode works by extracting a single node. Consequently, it can take a long time to
compute the name for large nodes, such asVdd or GND. Select the horizontal blue strip
on top of the circuit and run:getnode on this. You’ll find that this will take about six
seconds forgetnode to figure out that this isVdd. You can interruptgetnode by typing
ˆC (control-C), andgetnode will return the "best" name found so far. There is no way to
tell if this is an alias or the name RSIM expects unlessgetnode is allowed to complete.
To prevent these long name searches, you can tellgetnode to quit its search when certain
names are encountered. Type:

:getnode abort Vdd

Select the blue strip on top of the circuit and type:getnode. You’ll notice that the name
was found very quickly this time, andgetnode tells you it aborted the search ofVdd. The
name returned may be an alias instead of the the one RSIM expects. In this example, the
abort option togetnode will abort the name search on any name found where the last
component of the node name isVdd. That is, getnode will stop if a name such as
"miasma/crock/Vdd" or "hooha/Vdd" is found.

You can abort the search on more than one name; now type:getnode abort GND.
Select the bottom horizontal blue strip in the layout, and type:getnode. The search will
end almost immediately, since this node isGND. getnode will now abort any node name
search when eitherVdd or GND is found. The search can be aborted on any name; just
supply the name as an argument togetnode abort. Remember that only the last part of
the name counts when aborting the name search. To cancel all name aborts and resume
normal name searches, type:

:getnode abort

getnode will no longer abort the search on any names, and it will churn away unless
interrupted by the user.

5. RSIM Tool

You can also use the mouse to help you run RSIM under Magic. Instead of typing
node names, you can just select nodes with the mouse, tell RSIM what to do with these
nodes, and let Magic do the rest. Change tools by typing:

:tool rsim

or hit the space bar until the cursor changes to a pointing hand. The RSIM tool is active
when the cursor is this hand. The left and right mouse buttons have the same have the
same function as the box tool. You use these buttons along with the select command to
select the nodes. The middle button is different from the box tool. Clicking the middle
button will cause all nodes in the selection to have their logical values displayed in the
layout and printed in the text window. We need to have RSIM running in order to use

- 4 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic September 19, 1990

this tool. Start RSIM by typing:

:startrsim tut11a.rsm

The .rsm file you simulate must correspond to the root cell of the layout. If not, Magic
will generate node names that RSIM will not understand and things won’t work properly.
If any paint is changed in the circuit, the circuit must be re-extracted and a new.rsm file
must be created to reflect the changes in the circuit.

Magic will print the RSIM header, but you return to Magic instead of remaining in
RSIM. This is an alternate way of starting up RSIM, and it is equivalent to the command
rsim tut11a.rsm and typing a period (.) to the RSIM prompt, escaping to Magic. We
need to initialize RSIM, so get to RSIM by typing:rsim and you’ll see the RSIM prompt
again. As before, type@ tut11a.cmd to the RSIM prompt to initialize everything. Type
a period (.) to return to Magic. We are now ready to use the RSIM tool.

As mentioned earlier,tut11a is a 4-bit counter. We’ll reset the counter and then
step it using the RSIM tool. Locate the square blue area on the top right corner of the cir-
cuit. Place the cursor over this region and select it. Now click the middle button, and the
RSIM value for this node will be printed in both the text window and in the layout.
Magic/RSIM will report that the node is namedhold and that its current value isX. You
may not be able to see the node value in the layout if you are zoomed out too far. Zoom
in closer about this node if necessary. Try selecting other nodes, singly or in groups and
click the middle button to display their values. This is an easy way to probe nodes when
debugging a circuit.

Selecthold again (the blue square). This node must be a "1" before resetting the
circuit. Make sure this is the only node in the current selection. Type:

:simcmd h

to set it to a "1." Step the clock by typing:

:simcmd c

Click the middle button and you will see that the node has been set to a "1." The Magic
commandsimcmd will take the selected nodes and use them as RSIM input. These uses
of simcmd are like typing the RSIM commandsh hold followed by c. The arguments
given to simcmd are normal RSIM commands, andsimcmd will apply the specified
RSIM command to each node in the current selection. Try RSIM commands on this node
(such as? or d) by using the command as an argument tosimcmd.

You can enter RSIM interactively atany time by simply typing:rsim. To continue
using the RSIM tool, escape to Magic by typing a period (.) to the RSIM prompt.

The nodeRESET_B must be set to a "0." This node is the red square area at the
middle right of the circuit. Place the cursor over this node and select it. Type the Magic
commands:simcmd l followed by :simcmd c to set the selected node to a "0." Click the
middle mouse button to check that this node is now "0." Step the clock once more to
ensure the counter is reset. Do this using the:simcmd c command.

The outputs of this counter are the four vertical purple strips at the bottom of the
circuit. Zoom in if necessary, select each of these nodes, and click the middle button to
check that all are "0." Each of these four nodes is labeledbit_x. If they are all not "0",
check the circuit to make surehold=1 and RESET_B=0. Assuming these nodes are at

- 5 -

Magic Tutorial #11: Using IRSIM and RSIM with Magic September 19, 1990

their correct value, you can now simulate the counter. SetRESET_B to a "1" by selecting
it (the red square) and then typing:simcmd h. Step the clock by typing:simcmd c.
Using the same procedure, set the nodehold (the blue square) to a "0."

We’ll watch the output bits of this counter as it runs. Place the box around all four
outputs (purple strips at the bottom) and zoom in so their labels are visible. Select one of
the outputs by placing the cursor over it and typings. Add the other three outputs to the
selection by placing the cursor over each and typingS. These four nodes should be the
only ones in the selection. Click the middle mouse button to display the node values.
Step the clock by typing:simcmd c. Click the middle button again to check the nodes.
Repeat stepping the clock and displaying the outputs several times, and you’ll see the
outputs sequence as a counter. If you also follow the text on the screen, you’ll also see
that the outputs are also being watched.

You may have noticed that the results are printed very quickly if the middle button
is clicked a second time without changing the selection. This is because the node names
do not have to be recomputed if the selection remains unchanged. Thus, you can increase
the performance of this tool by minimizing selection changes. This can be accomplished
by adding other nodes to the current selection that you are intending to check.

To erase all the RSIM value labels from the layout, clear the selection by typing:

:select clear

and then click the middle mouse button. The RSIM labels do not affect the cell modified
flag, nor will they be written in the.mag file. When you’re finished using RSIM, resume
RSIM by typing :rsim and then quit it by typing aq to the RSIM prompt. Quitting
Magic before quitting RSIM will also quit RSIM.

We’ve used a few macros to lessen the typing necessary for the RSIM tool. The
ones commonly used are:

:macro h "simcmd h"
:macro l "simcmd l"
:macro k "simcmd c"

- 6 -

Magic Maintainer’s Manual #1: Hints for System Maintainers

John Ousterhout
Walter Scott

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

All of them.

Commands covered in this tutorial:

:*profile, :*runstats, :*seeflags, :*watch

Macros covered in this tutorial:

None.

1. Introduction

This document provides some information to help would-be Magic maintainers
learn about the system. It is not at all complete, and like most infrequently-used docu-
mentation, will probably become less and less correct over time as the system evolves
but this tutorial doesn’t. So, take what you read here with a grain of salt. We believe
that everything in this tutorial was up-to-date as of the 1990 DECWRL/Livermore Magic
release. Before doing anything to the internals of Magic, you should read at least the
first, and perhaps all four, of the papers on Magic that appeared together in the 1984
Design Automation Conference. In addition, the following portions of magic have their
own papers:

extractor 1985 Design Automation Conference, page 286.

channel router 1985 Chapel Hill Conference on VLSI, page 145.

- 1 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

irouter and mzrouter 1988 Design Automation Conference, page 672.

resistance extractor 1987 Design Automation Conference, page 570.

2. Installing Magic

If you’ve received Magic on the 1990 DECWRL/Livermore Magic tape, then it
shouldn’t take much work to get it running. You should first pick a location for Magic’s
directory tree. Normally ∼ cad is chosen, but you might want to pick some other location
to start. If you do pick another location, set your shell environment variable
CAD_HOME to that location and mentally translate the ∼ cad references in this docu-
ment to the location you chose. After reading the tape in, there will be a DECstation
3100 binary version of Magic in ∼ cad/bin and a set of library subdirectories in
∼ cad/lib/magic. If this isn’t so, then at the very least you’ll need to get a Magic system
library set up in ∼ cad/lib/magic/sys: this directory contains information like technology
files and colormaps and Magic can’t run at all without it.

If you’re running on a DECstation 3100 you shouldn’t need to do anything besides
what’s mentioned above. Just run X11 and then run Magic. If you are running on some
other workstation, you’ll need to read the next section on how to make a new binary.
The rest of this section concerns serial-line displays, so if you are using any sort of
workstation with a built-in display there is no need to read the next couple of paragraphs.

If you’re running on a mainframe with a serial-line color display, you’ll probably
need to do some additional setup. If the display is an AED512 or similar display, it will
be attached to the mainframe via an RS232 port. Magic needs to be able to read from
this port, and there are two ways to do this. The first is simply to have no login process
for that port and have your system administrator change the protection to allow all
processes to read from the port and write to it. The second way is to have users log in on
the display and run a process that changes the protection of the display. There is a pro-
gram called Sleeper that we distribute with Magic; if it’s run from an AED port it will
set everything up so Magic can use the port. Sleeper is clumsy to use, so we recommend
that you use the first solution (no login process).

When you’re running on mainframes, Magic will need to know which color display
port to use from each terminal port. Users can type this information as command-line
switches but it’s clumsy. To simplify things, Magic checks the file ∼ cad/lib/displays
when it starts up. The displays file tells which color display port to use for which text
terminal port and also tells what kind of display is attached. Once this file is set up, users
can run Magic without worrying about the system configuration. See the manual page
for displays (5).

One last note: if you’re running on an AED display, you’ll need to set communica-
tion switches 3-4-5 to up-down-up.

3. Source Directory Structure

There are approximately 45 source subdirectories in Magic. Most of these consist
of modules of source code for the system, for example database, main, and utils. See
Section 4 of this document for brief descriptions of what’s in each source directory.
Besides the source code, the other subdirectories are:

- 2 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

doc Contains sources for all the documentation, including man
pages, tutorials, and maintenance manuals. Subdirectories of
doc, e.g. doc/scmos, contain the technology manuals. The
Makefile in each directory can be used to run off the documenta-
tion. The tutorials, maintenance manuals, and technology
manuals all use the Berkeley Grn/Ditroff package, which means
that you can’t run them off without Grn/Ditroff unless you
change the sources.

include Contains installed (i.e. ‘‘safe’’) versions of all the header files
(*.h) from all the modules.

lib Contains installed (i.e. ‘‘safe’’) versions of each of the compiled
and linked modules (*.o).

installed Most sites don’t use this directory. If you want it to be used, you
can modify the script ∼ cad/src/magic/:instclean. If used, it
contains one subdirectory for each of the source code direc-
tories. Each subdirectory contains ‘‘safe’’ versions of the
source files for that module. These files correspond to the
installed .o files in lib .

magic This directory is where the modules of Magic are combined
together to form an executable version of the system.

contributed This directory contains Magic source code or programs that
were contributed by other people. None of it has been tested by
any member of the Magic team.

cadlib This is a symbolic link to the directory where Magic stores cell
libraries and official installed versions of technology files and
color maps. Normally, cadlib is a symbolic link to
∼ cad/lib/magic.

Magic is a relatively large system: there are around 575 source files, 250,000 lines
of C code. In order to make all of this manageable, we’ve organized the sources in a
two-level structure. Each module has its own subdirectory, and you can make changes to
the module and recompile it by working within that subdirectory. In addition to the
information in the subdirectory, there is an ‘‘installed’’ version of each module, which
consists of the files in the lib , include, and installed subdirectories. The installed version
of each module is supposed to be stable and reliable. At Berkeley, when a module is
changed it is tested carefully without re-installing it, and is only re-installed when it is in
good condition. Note that ‘‘installed’’ doesn’t mean that Magic users see the module; it
only means that other Magic maintainers will see it. Each of the makefiles invokes the
script :instclean to do the module installation. This optionally will copy files to the
installed directory.

By keeping modules separate, it’s possible for several maintainers to work at once
as long as they are modifying different source subdirectories. Each maintainer works
with the uninstalled version of a module, and links that with the installed versions of all
other modules. Thus, for example, one maintainer can modify database/DBcell.cand
another can modify dbwind/DBWundo.c at the same time.

- 3 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

4. Making Magic

The top-level Makefile (∼ cad/src/magic/Makefile) provides many options. Before
using the Makefile, be sure to set your CAD_HOME shell environment variable to the
location of your top-level cad directory (if it is not the standard ∼ cad).

The most useful Makefile options are:

make config Configure the Magic system for a particular type of display
or operating system. This just runs the :config shell script
to set up a couple of files. The curious may examine the
script directly. If your configuration isn’t handled by this
script, then you can use it simply as a guide as to what to
do. Much of the configuration is done with compilation
flags. See a later section of this manual for a full listing of
them.

make magic Make a version of Magic. All sub-modules are remade, if
needed, and then the final magic binary is produced.

make everything Same as "make magic". Both options make auxilary pro-
grams like ext2sim.

make force Force recompilation. Like a "make everything", except
that object files are first removed to force recompilation.

make clean Delete files that can be remade, such as binaries.

make install Install the Magic binaries in ∼ cad (or $CAD_HOME if you
have that set).

Putting together a runnable Magic system proceeds in two steps after a source file
has been modified. First, the source file is compiled, and all the files in its module are
linked together into a single file xyz.o, where xyz is the name of the module. Then all of
the modules are linked together to form an executable version of Magic. The command
make in each source directory will compile and link the module locally; make install
will compile and link it, and also install it in the include, lib , and installed directories.
All makefiles are set up to use the compiler flags found in
∼ cad/src/magic/misc/DFLAGS and ∼ cad/src/magic/misc/CFLAGS. A list of flags
appears later in this manual.

The command make in the subdirectory magic will produce a runnable version of
Magic in that directory, using the installed versions of all modules. To work with the
uninstalled version of a module, create another subdirectory identical to magic, and
modify the Makefile so that it uses uninstalled versions of the relevant modules. For
example, the Magic team uses subdirectories hamachitest, mayotest, mhatest, ouster-
test, and wsstestthat we use to test new versions of modules before installing them. If
you want to remake the entire system, type ‘‘make magic’’ in the top-level directory
(∼ cad/src/magic).

One last thing -- there are some customizations you may want to make to Magic. If
magic core dumps, it sends mail to somebody. That somebody is set in the
MAIL_COMMAND definition in the file misc/niceabort.c. You may want to change it.
Also in the same file is CRASHDIR which says where core dumps should be placed.
Paths used by magic are located in misc/paths.h. You shouldn’t need to change them,

- 4 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

though, because the CAD_HOME shell environment variable controls what Magic uses
for the location of ∼ cad.

5. Summary of Magic Modules

This section contains brief summaries of what is in each of the Magic source sub-
directories.

calma Contains code to read and write Calma Stream-format files. It
uses many of the procedures in the cif module.

cif Contains code to process the CIF sections of technology files,
and to generate CIF files from Magic.

cmwind Contains code to implement special windows for editing color
maps.

commands The procedures in this module contain the top-level command
routines for layout commands (commands that are valid in all
windows are handled in the windows module). These routines
generally just parse the commands, check for errors, and call
other routines to carry out the actions.

database This is the largest and most important Magic module. It imple-
ments the hierarchical corner-stitched database, and reads and
writes Magic files.

dbwind Provides display functions specific to layout windows, including
managing the box, redisplaying layout, and displaying
highlights and feedback.

debug There’s not much in this module, just a few routines used for
debugging purposes.

drc This module contains the incremental design-rule checker. It
contains code to read the drc sections of technology files, record
areas to be rechecked, and recheck those areas in a hierarchical
fashion.

ext2sim The ext2sim directory isn’t part of Magic itself. It’s a self-
contained program that flattens the hierarchical .ext files gen-
erated by Magic’s extractor into a single file in .sim format. See
the manual page ext2sim (1).

ext2spice This is another self-contained program. It converts .ext files
into single file in spice format. See the manual page
ext2spice (1).

extflat Contains code that is used by the extract module and the ext2...
programs. The module produces a library that is linked in with
the above programs.

extract Contains code to read the extract sections of technology files,
and to generate hierarchical circuit descriptions (.ext files) from
Magic layouts.

- 5 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

fsleeper Like ext2sim, this directory is a self-contained program that
allows a graphics terminal attached to one machine to be used
with Magic running on a different machine. See the manual
page fsleeper (1).

garouter Contains the gate array router from Lawrence Livermore
National Labs.

gcr Contains the channel router, which is an extension of Rivest’s
greedy router that can handle switchboxes and obstacles in the
channels.

graphics This is the lowest-level graphics module. It contains driver rou-
tines for X11 as well as less-used drivers for the AED family of
displays and for Sun Windows. The code here does basic clip-
ping and drawing. If you want to make Magic run on a new
kind of display, this is the only module that should have to
change.

grouter The files in this module implement the global router, which
computes the sequence of channels that each net is to pass
through.

irouter Contains the interactive router written by Michael Arnold at
Lawrence Livermore National Labs. This router allows the user
to route nets interactively, using special hint layers to control
the routing.

macros Implements simple keyboard macros.

magicusage Like ext2sim, this is also a self-contained program. It searches
through a layout to find all the files that are used in it. See mag-
icusage(1).

main This module contains the main program for Magic, which parses
command-line parameters, initializes the world, and then
transfers control to textio.

misc A few small things that didn’t belong anyplace else.

mpack Contains routines that implement the Tpack tile-packing inter-
face using the Magic database. (not supported)

mzrouter Contains maze routing routines that are used by the irouter and
garouter modules.

net2ir Contains a program to convert a netlist into irouter commands.

netlist Netlist manipulation routines.

netmenu Implements netlists and the special netlist-editing windows.

parser Contains the code that parses command lines into arguments.

plot The internals of the :plot command.

plow This module contains the code to support the :plow and
:straighten commands.

- 6 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

prleak Also not part of Magic itself. Prleak is a self-contained program
intended for use in debugging Magic’s memory allocator. It
analyzes a trace of mallocs/frees to look for memory leaks. See
the manual page prleak (8) for information on what the program
does.

resis Resis is a module that does better resistance extraction via the
:extresis command. Courtesy of Don Stark of Stanford.

router Contains the top-level routing code, including procedures to
read the router sections of technology files, chop free space up
into channels, analyze obstacles, and paint back the results pro-
duced by the channel router.

select This module contains files that manage the selection. The rou-
tines here provide facilities for making a selection, enumerating
what’s in the selection, and manipulating the selection in several
ways, such as moving it or copying it.

signals Handles signals such as the interrupt key and control-Z.

sim Provides an interactive interface to the simulator rsim. Courtesy
of Mike Chow of Stanford.

tech This module contains the top-level technology file reading code,
and the current technology files. The code does little except to
read technology file lines, parse them into arguments, and pass
them off to clients in other modules (such as drc or database).

textio The top-level command interpreter. This module grabs com-
mands from the keyboard or mouse and sends them to the win-
dow module for processing. Also provides routines for message
and error printout, and to manage the prompt on the screen.

tiles Implements basic corner-stitched tile planes. This module was
separated from databasein order to allow other clients to use
tile planes without using the other database facilities too.

undo The undo module provides the overall framework for undo and
redo operations, in that it stores lists of actions. However, all
the specific actions are managed by clients such as databaseor
netmenu.

utils This module implements a whole bunch of utility procedures,
including a geometry package for dealing with rectangles and
points and transformations, a heap package, a hash table pack-
age, a stack package, a revised memory allocator, and lots of
other stuff.

windows This is the overall window manager. It keeps track of windows
and calls clients (like dbwind and cmwind) to process
window-specific operations such as redisplaying or processing
commands. Commands that are valid in all windows, such as
resizing or moving windows, are implemented here.

- 7 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

wiring The files in this directory implement the :wire command. There
are routines to select wiring material, add wire legs, and place
contacts.

6. Portability Issues

Magic runs on a variety of machines. Running "make config" in the top-level
source directory sets the compiletime options. If you are porting Magic, you should
modify the configuration section at the end of file "misc/magic.h" to suit your machine,
by testing compiler flags. No changes should be made that would hamper Magic’s opera-
tion on other machines.

7. Compilation Switches

Over the years Magic has acquired a number of compilation switches. While it’s
undesirable to have so many, it seems unavoidable since people use Magic on such a
wide variety of machines. The file ∼ cad/src/magic/misc/DFLAGS should contain the
compile switches that you wish to use at your site. All makefiles for Magic reference the
common DFLAGS file. The switches in this release are shown below.

These flags are normally setup by running the "make config" script in
∼ cad/src/magic. Some of them are turned on in "magic.h" when a particular machine
configuration is detected.

7.0.1. Machine/OS Compiletime Options

The following switches should be defined automatically by the compiler.

vax
For VAX machines.

mips
For mips processors, such as the DECstation 3100.

MIPSEL
For little-endian mips processors, such as the DECstation 3100.

MIPSEB
For big-endian mips processors.

pyramid
For Pyramid machines.

sun
For Sun machines.

mc68000
For machines which have a version of the 68000 as the processor.

sparc
Sparc-based machines.

lint
Used to bypass things that lint complains about. Don’t turn this on. Lint turns
it on itself.

- 8 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

If needed, you should put the following switches in the DFLAGS file.

macII
For the MacII.

SUNVIEW
Used when including Magic’s SunView graphics drivers.

SUN120
For the Sun120 machine.

BSD4_2
Used in the utils module to patch around a broken version of flsbuf() that is
needed in the VAX version of Unix 4.2 BSD systems. This is rarely needed,
since almost all version of Unix now have this bug fixed.

FASYNC
Hack for some versions of Sun2 software (old stuff).

NO_VARARGS
Hack for machines without a VARARGS package.

SYSV
For Unix System V.

Flags defined, if needed, in "magic.h" based on other flags.

BIG_ENDIAN
Indicates big endian byte ordering is being used.

LITTLE_ENDIAN
Indicates little endian byte ordering is being used.

NEED_MONCNTL
Hack for machines without a moncontrol procedure.

NEED_VFPRINTF
Hack for machines without a vfprintf procedure.

SIG_RETURNS_INT
Defined in magic.h for systems that expect a signal handler to return an integer
rather than a void.

7.0.2. Graphics Driver Compiletime Options

X10
Used in the graphics module for the X10 driver.

X11
Used in the graphics module for the X11 driver.

OLD_R2_FONTS
Used when X11 is release 2. Magic normally assumes release 3.

AED
Used in the graphics module when compiling for AED displays.

GTCO
Used in the graphics module when using a GTCO bitpad with an AED display.

- 9 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

7.0.3. Compiletime Options for Module Inclusion

NO_CALMA
Flag to eliminate the calma module, to reduce the size of Magic.

NO_CIF
Flag to eliminate the cif module, to reduce the size of Magic.

NO_EXT
Flag to eliminate the ext module, to reduce the size of Magic.

NO_PLOT
Flag to eliminate the plot module, to reduce the size of Magic.

NO_ROUTE
Flag to eliminate the router modules, to reduce the size of Magic.

NO_SIM
Flag to eliminate the sim module, to reduce the size of Magic.

7.0.4. Debugging Compiletime Options

CELLDEBUG
Debugging flag for the database module.

COUNTWIDTHCALLS
Debugging flag for the plow module.

DEBUGWIDTH
Debugging flag for the plow module.

DRCRULESHISTO
Debugging/tuning flag for the drc module.

FREEDEBUG
Memory allocation debugging flag.

MALLOCMEASURE
Memory allocation debugging flag.

MALLOCTRACE
Memory allocation debugging flag.

NOMACROS
Memory allocation debugging flag.

PAINTDEBUG
Debugging flag for the database painting routines.

PARANOID
Flag to enable consistency checking. With a system the complexity of Magic,
you should always leave this flag turned on.

8. Technology and Other Support Files

Besides the source code files, there are a number of other files that must be managed
by Magic maintainers, including color maps, technology files, and other stuff. Below is a
listing of those files and where they are located.

- 10 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

8.1. Technology Files

See ‘‘Magic Maintainer’s Manual #2: The Technology File’’ for information on the
contents of technology files. The sources for technology files are contained in the sub-
directory tech, in files like scmos.techand nmos.tech. The technology files that Magic
actually uses at runtime are kept in the directory cadlib/sys; make install in tech will
copy the sources to cadlib/sys. Technology file formats have evolved rapidly during
Magic’s life, so we use version numbers to allow multiple formats of technology files to
exist at once. The installed versions of technology files have names like nmos.tech26,
where 26 is a version number. The current version is defined in the Makefile for tech,
and should be incremented if you ever change the format of technology files; if you
install a new format without changing the version number, pre-existing versions of Magic
won’t be able to read the files. After incrementing the version number, you’ll also have
to re-make the tech module since the version number is referenced by the code that reads
the files.

8.2. Display Styles

The display style file sources are contained in the source directory graphics. See
‘‘Magic Maintainer’s Manual #3: The Display Style and Glyph Files’’ and the manual
page dstyle (5) for a description of their contents. Make install in graphics will copy the
files to cadlib/sys, which is where Magic looks for them when it executes.

8.3. Glyph Files

Glyph files are described in Maintainer’s Manual #3 and the manual page
glyphs (5); they define patterns that appear in the cursor. The sources for glyph files
appear in two places: some of them are in graphics, in files like color.glyphs, and some
others are defined in windows/windowXX.glyphs. When you make install in those
directories, the glyphs are copied to cadlib/sys, which is where Magic looks for them
when it executes.

8.4. Color Maps

The color map sources are also contained in the source directory graphics. Color
maps have names like mos.7bit.std.cmap, where mosis the name of the technology style
to which the color map applies, 7bit is the display style, and std is a type of monitor. If
monitors have radically different phosphors, they may require different color maps to
achieve the same affects. Right now we only support the std kind of monitor. When
Magic executes, it looks for color maps in cadlib/sys; make install in graphics will
copy them there. Although color map files are textual, you shouldn’t edit them by hand;
use Magic’s color map editing window instead.

9. New Display Drivers

The most common kind of change that will be made to Magic is probably to adapt it
for new kinds of color displays. Each display driver contains a standard collection of
procedures to perform basic functions such as placing text, drawing filled rectangles, or
changing the shape of the cursor. A table (defined in graphics/grMain.c) holds the
addresses of the routines for the current display driver. At initialization time this table is

- 11 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

filled in with the addresses of the routines for the particular display being used. All
graphics calls pass through the table.

If you have a display other than an AED or an X11 workstation, the first thing you
should do is check the directory contributed. Each of the subdirectories in contributed
contains additional code that was contributed by some site outside of Berkeley. Each sub-
directory should contain a file named ReadMe (or something similar), which explains
how to install and use the code. If you have any troubles with one of the these drivers,
you’ll have to contact the people that contributed the driver; we here at Berkeley don’t
know anything about them. If the contributors wish to be contacted, they will identify
themselves in the ReadMefile.

If you need to build a new display driver, we recommend starting with the routines
for either the AED (all the files in graphics with names like grAed1.c), or the Sun
(names like grSunW1.c). For stand-alone displays, the AED routines are probably the
easiest to work from; for integrated workstations with pre-existing window packages, the
Sun routines may be easiest. Copy the files into a new set for your display, change the
names of the routines, and modify them to perform the equivalent functions on your
display. Write an initialization routine like aedSetDisplay, and add information to the
display type tables in graphics/grMain.c. At this point you should be all set. There
shouldn’t be any need to modify anything outside of the graphics module.

10. Debugging and Wizard Commands

Magic seems to work fine under the latest version of dbx, such as the dbx found on
the DECstation 3100. The Makefiles are set up to compile all files with the -g switch,
which creates debugging information in dbx’s format.

Because of the size of Magic and the way Unix handles debugging symbols, it’s
slow to compile a complete version of Magic with debugging information for everything,
and the executable file ends up being enormous. To solve this problem the Makefiles are
set up to strip off debugging information before installing. Thus, you have to link with
uninstalled versions to get debugging information. In most cases, debugging information
is only needed for a few modules at a time, namely the modules you’re currently modify-
ing. The database module is set up to install with debugging symbols, since it seems to
be involved in almost all debugging.

If you try to use older versions of dbx, you’ll discover that Magic has too many pro-
cedures for the default table sizes; dbx runs out of space and dies. The solution is either
to recompile dbx with larger tables or throw away pieces of Magic to reduce the number
of procedures (we recommend the first alternative).

There are a number of commands that we implemented in Magic to assist in debug-
ging. These commands are called wizard commands, and aren’t visible to normal Magic
users. They all start with ‘‘* ’’. To get terse online help for the wizard commands, type
:help wizard to Magic. The wizard commands aren’t documented very well. Some of
the more useful ones are:

*watch plane
This causes Magic to display on the screen the corner-stitched tile structure for one
of the planes of the edit cell. For example, *watch subcell will display the structure

- 12 -

Magic Maintainer’s Manual #1: Hints for System Maintainers September 19, 1990

of the subcell tile plane, including the address of the record for each tile and the
values of its corner stitches. Without this command it would have been virtually
impossible to debug the database module.

*profile on |off
If you’re using the Unix profiling tools to figure out where the cycles are going, this
command can be used to turn profiling off for everything except the particular
operation you want to measure. This command doesn’t work on many systems,
because the operating system doesn’t support selective enabling and disabling of
profiling.

*runstats
This command prints out the CPU time usage since the last invocation of this com-
mand, and also the total since starting Magic.

*seeflagsflag
If you’re working on the router, this command allows you to see the various channel
router flags by displaying them as feedback areas. The cursor should first be placed
over the channel whose flags you want to see.

- 13 -

Magic Maintainer’s Manual #2: The Technology File

Walter Scott

Special Studies Program
Lawrence Livermore National Laboratory

PO Box 808, L-270
Livermore, CA 94550
wss@mordor.s1.gov

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by various folks.)

This tutorial corresponds to Magic version 6; technology suffix ‘‘.tech26’’

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #6: Design-Rule Checking

You should also read at least the first, and probably all four, of the papers on Magic
that appeared in the ACM IEEE 21st Design Automation Conference, and the paper
‘‘Magic’s Circuit Extractor’’, which appeared in the ACM IEEE 22nd Design Auto-
mation Conference. The overview paper from the DAC was also reprinted in IEEE
Design and Test magazine in the February 1985 issue. The circuit extractor paper
also appeared in the February 1986 issue of IEEE Design and Test magazine.

Commands covered in this tutorial:

:*watch

Macros covered in this tutorial:

none

Changes since Magic version 4:

- 1 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

Support for stacked contacts and more than two metal layers, causing slight changes
in the semantics of contact definitions

Support for new Magic maze router, Mzrouter (see Tutorial #10)

Support for new gate-array router, Garouter (see Tutorial #12)

Support for extractor extensions (see Tutorial #8)

Chunk sizes can now be specified explicitly for DRC and CIF output

Unlike CIF, calma scalefactors needn’t be multiples of 2 any more

1. Introduction

Magic is a technology independent layout editor. All technology-specific
information—mask layers, design rules, etc.—comes from a technology file. There is a
different technology file for each technology supported by Magic. You can run Magic
with a different technology by specifying the -Ttechfile flag on the command line you use
to start Magic, where techfile is the name of a file of the form techname.techn in either
the current directory, or the library directory ∼ cad/lib/magic/sys. (The n is a numeric
suffix to identify the version of the technology file, which is currently 26).

This tutorial describes the contents of a technology file, and gives hints for building
a new one. It assumes that your current working directory is the Magic source directory,
either ∼ cad/src/magicor ${CAD_HOME}/src/magic .

A technology file is organized into sections, each of which begins with a line con-
taining a single keyword and ends with a line containing the single word end. If you
examine one of the Magic technology files in the directory ∼ cad/src/magic/tech, e.g,
scmos.tech, you can see that it contains the following sections: tech, planes, types,
styles, contact, compose, connect, cifoutput , cifinput , mzrouter, drc, extract, wiring ,
router, plowing , and plot. These sections must appear in this order in all technology
files. Every technology file must have all of the sections, although the sections need not
have any lines between the section header and the end line.

A technology file can contain comments, which are blocks of text beginning with
the characters ‘‘/* ’’ and ending with the characters ‘‘*/ ’’. Comments are ignored when
processing a technology file. In scmos.techyou can see several lines just before the con-
nect section (near the beginning of the technology file) that are of the form ‘‘#define...’’.
These lines are definitions of macros that may be used in subsequent lines in the technol-
ogy file.

The form of comments and macro definitions should look familiar to ‘‘C’’ program-
mers, for good reason: the ‘‘C’’ macro preprocessor is used to expand macros and elim-
inate comments. Technology files cannot be read directly by Magic in their ‘‘raw’’ form;
the ‘‘C’’ preprocessor is run to produce a Magic-readable version of the technology file.
The last section in this tutorial describes how to install technology files.

Each section in a technology file consists of a series of lines. Each line consists of a
series of words, separated by spaces or tabs. If a line ends with the character ‘‘\’’, the
‘‘\’’ is ignored and the following newline is treated as an ordinary blank. For example,

- 2 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

width allDiff 2 \
‘‘Diffusion width must be at least 2’’

is treated as though it had all appeared on a single line with no intervening ‘‘\’’. The rest
of this part of the tutorial will describe each of the technology file sections in turn.

2. Tech section

Magic stores the technology of a cell in the cell’s file on disk. When reading a cell
back in to Magic from disk, the cell’s technology must match the name of the current
technology, which appears as a single word in the tech section of the technology file.
See Table 1 for an example.

�������
tech
scmos

end��������
�
�
�

�
�
�
�

Table 1. Tech section

It may seem that storing the technology name as part of the technology file is redun-
dant, since the name of the file is probably the same as the name of the technology. (e.g.,
‘‘scmos.tech26’’ for technology scmos, or ‘‘nmos.tech26’’ for technology nmos). This
feature is leftover from olden days when slight variants of a technology would be created
by having a new technology file with a different file name but the same ‘‘official’’ name
given in the tech section. This has the advantage that cells designed with one variant
could be edited with any of the other files implementing the same technology without
having to modify the technology names in the .mag files. The disadvantage of this
approach, however, is that it defeats Magic technology-defaulting mechanism: if no
explicit technology is specified when Magic starts up, it reads the technology from the
.mag file being edited and looks for a technology file by this name. If there are several
variants of the same technology, Magic will pick the one with the desired technology file
name. Anyhow, we recommend that the internal names of technologies should always
match the file names.

3. Planes, types, and contact sections

The planes, types, and contact sections are used to define the layers used in the
technology. Magic uses a new data structure, called corner-stitching, to represent lay-
outs. Corner-stitching represents mask information as a collection of non-overlapping
rectangular tiles. Each tile has a type that corresponds to a single Magic layer. An indi-
vidual corner-stitched data structure is referred to as a plane.

Magic allows you to see the corner-stitched planes it uses to store a layout. We’ll
use this facility to see how several corner-stitched planes are used to store the layers of a
layout. Enter Magic to edit the cell m2a. Type the command :*watch active demo.

- 3 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

You are now looking at the active plane. Each of the boxes outlined in black is a tile.
(The arrows are stitches, but are unimportant to this discussion.) You can see that some
tiles contain layers (polysilicon, ndiffusion, ndcontact, polycontact, and ntransistor),
while others contain empty space. Corner-stitching is unusual in that it represents empty
space explicitly. Each tile contains exactly one type of material, or space.

You have probably noticed that metal1 does not seem to have a tile associated with
it, but instead appears right in the middle of a space tile. This is because metal1 is stored
on a different plane, the metal1 plane. Type the command :*watch metal1 demo. Now
you can see that there are metal1 tiles, but the polysilicon, diffusion, and transistor tiles
have disappeared. The two contacts, polycontact and ndcontact, still appear to be tiles.

The reason Magic uses several planes to store mask information is that corner-
stitching can only represent non-overlapping rectangles. If a layout were to consist of
only a single layer, such as polysilicon, then only two types of tiles would be necessary:
polysilicon and space. As more layers are added, overlaps can be represented by creating
a special tile type for each kind of overlap area. For example, when polysilicon overlaps
ndiffusion, the overlap area is marked with the tile type ntransistor.

Although some overlaps correspond to actual electrical constructs (e.g., transistors),
other overlaps have little electrical significance. For example, metal1 can overlap
polysilicon without changing the connectivity of the circuit or creating any new devices.
The only consequence of the overlap is possibly a change in parasitic capacitance. To
create new tile types for all possible overlapping combinations of metal1 with polysili-
con, diffusion, transistors, etc. would be wasteful, since these new overlapping combina-
tions would have no electrical significance.

Instead, Magic partitions the layers into separate planes. Layers whose overlaps
have electrical significance must be stored in a single plane. For example, polysilicon,
diffusion, and their overlaps (transistors) are all stored in the active plane. Metal1 does
not interact with any of these tile types, so it is stored in its own plane, the metal1 plane.
Similarly, in the scmos technology, metal2 doesn’t interact with either metal1 or the
active layers, so is stored in yet another plane, metal2.

Contacts between layers in one plane and layers in another are a special case and are
represented on both planes. This explains why the pcontact and ndcontact tiles appeared
on both the active plane and on the metal1 plane. Later in this section, when the con-
tacts section of the technology file is introduced, we’ll see how to define contacts and the
layers they connect.

The planessection of the technology file specifies how many planes will be used to
store tiles in a given technology, and gives each plane a name. Each line in this section
defines a plane by giving a comma-separated list of the names by which it is known.
Any name may be used in referring to the plane in later sections, or in commands like the
:*watch command you used earlier. Table 2 gives the planes section from the scmos
technology file.

Magic uses six other planes internally. The subcell plane is used for storing cell
instances rather than storing mask layers. The designRuleCheckand designRuleError
planes are used by the design rule checker to store areas to be reverified, and areas con-
taining design rule violations, respectively. Finally, the mhint , fhint , and rhint planes
are used for by the interactive router (the :iroute command) for designer-specified

- 4 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

����������������������
planes
well,w

active,diffusion,polysilicon,a

metal1,m1

metal2,m2

oxide,ox

end������������������������
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 2. Planessection

graphic hints.

There is a limit on the maximum number of planes in a technology, including the
internal planes. This limit is currently 15. To increase the limit, it is necessary to change
MAXPLANES in the file database/database.hand then recompile all of Magic as
described in ‘‘Maintainer’s Manual #1’’. Each additional plane involves additional
storage space in every cell and some additional processing time for searches, so we
recommend that you keep the number of planes as small as you can do cleanly.

��
types
active polysilicon,red,poly,p

active ndiffusion,green,ndiff

active pdiffusion,brown,pdiff

metal1 metal1,m1,blue

metal2 metal2,m2,purple

well pwell,pw

well nwell,nw

active polycontact,pcontact,pc

active ndcontact,ndc

active pdcontact,pdc

metal1 m2contact,m2c,via,v

active ntransistor,nfet

active ptransistor,pfet

active psubstratepcontact,ppcontact,ppcont,psc,ppc,pwc,pwcontact

active nsubstratencontact,nncontact,nncont,nsc,nnc,nwc,nwcontact

active psubstratepdiff,psd,ppdiff,ppd,pohmic

active nsubstratendiff,nsd,nndiff,nnd,nohmic

metal2 pad

oxide glass

end���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3. Typessection

- 5 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

The typessection identifies the technology-specific tile types used by Magic. Table
3 gives this section for the scmos technology file. Each line in this section is of the fol-
lowing form:

plane names

Each type defined in this section is allowed to appear on exactly one of the planes
defined in the planessection, namely that given by the plane field above. For contacts
types such as pcontact, the plane listed is considered to be the contact’s home plane.
Other tile types will be used to represent the contact on the other planes it connects; this
is described later in this section.

The names field is a comma-separated list of names. The first name in the list is the
‘‘long’’ name for the type; it appears in the .mag file and whenever error messages
involving that type are printed. Any unique abbreviation of any of a type’s names is
sufficient to refer to that type, both from within the technology file and in any commands
such as :paint or :erase.

������������������������������
Tile type Plane��
space all������������������������������
error_p, EP designRuleError������������������������������
error_s, ES designRuleError������������������������������
error_ps, EPS designRuleError������������������������������
checkpaint, CP designRuleCheck������������������������������
checksubcell, CS designRuleCheck������������������������������
magnet, mag mhint������������������������������
fence, f fhint������������������������������
rotate, r rhint��������������������������������

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

Table 4. Built-in Magic types.

Magic has certain built-in types as shown in Table 4. Empty space (space) is spe-
cial in that it can appear on any plane. The types error_p , error_s, and error_ps record
design rule violations. The types checkpaint and checksubcellrecord areas still to be
design-rule checked. Magnet, fence, and rotate are the types used by designers to indi-
cate hints for the irouter.

There is a limit on the maximum number of types in a technology, including all the
built-in types. Currently, the limit is 80 tile types. To increase the limit, you’ll have to
change TT_MAXTYPES in the file database/database.hand then recompile all of
Magic as described in ‘‘Maintainer’s Manual #1’’. A number of macros in database.h
also depend on the value of TT_MAXTYPES /32. They are currently set up assuming
that TT_MAXTYPES is between 65 and 96; if TT_MAXTYPES is changed to lie out-
side this region they should be changed. See the comments in database.hfor more infor-
mation. Because there are a number of tables whose size is determined by the square of
TT_MAXTYPES , it is very expensive to increase TT_MAXTYPES much beyond the

- 6 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

current limit.

���������������������������������������
contact
pcontact poly metal1

ndcontact ndiff metal1

pdcontact pdiff metal1

ppcontact ppdiff metal1

nncontact nndiff metal1

m2contact metal2 metal1

pad metal1 metal2 glass

end��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 5. Contact section

As mentioned above, contacts in Magic are represented on each plane containing
material connected by the contact. Also mentioned above, though, each tile type defined
in the types section appears on exactly one plane. This seeming conflict is resolved by
having Magic automatically generate new tile types for each of the planes on which a
contact appears. The contact section lets Magic know which types are contacts, and the
adjacent planes and component types to which they are connected.

Each line in the contact section begins with a tile type, base, which is thereby
defined to be a contact. This type is also referred to as a contact’s base type. The
remainder of each line is a list of two or three non-contact tile types that are connected by
the contact. These tile types are referred to as the component types of the contact, and
are the layers that would be present if there were no electrical connection (i.e., no via
hole). In Table 5, for example, the type pcontact is the base type of a contact connecting
the component layers polysilicon on the active plane with metal1 on the metal1 plane.

The home plane of one of the component types should be the same as that of the
base type (active in the case of pcontact), and the other type(s) must be on planes adja-
cent to that of the base. (If two planes appear on subsequent lines in the planessection,
then they are considered to be adjacent. Hence the active plane is adjacent to the well
and metal1 planes, but not to the metal2 plane.)

The above scheme allows you to define contacts that connect at most three layers
together. For example, if the scmos technology supported stacked contacts (it doesn’t),
you could define a contact (the type pm12c) that connected polysilicon, metal1, and
metal2 as:

- 7 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

pcontact

automatically generated (pcontact/metal)

active plane

metal1 plane

Figure 1. A different tile type is used to represent a contact on each plane that it connects.
Here, a contact between poly on the active plane and metal1 on the metal1 plane is stored
as two tile types. One, pcontact, is specified in the technology file as residing on the active
plane; the other is automatically-generated for the metal1 plane.

contact pm12c polysilicon metal1 metal2

but it wouldn’t be possible to define directly a contact that connected four layers, such as
pwell, ndiffusion, metal1, and metal2. To define this latter type of contact, you’d have to
define two different contact tile types, wndc and nm12c, and use two contact lines, each
of which connects only three layers.

contact wndc pwell ndiffusion metal1
contact nm12c ndiffusion metal1 metal2

Magic will automatically generate the appropriate paint and erase rules to allow painting,
for example, nm12c over wndc to give the four-layer stacked contact. In order for
Magic to do this, however, you must be certain never to define two types of contacts with
identical component types. This is the reason why, in the scmos technology file, the pad
contact is shown as connecting three layers (metal1, metal2, and glass) instead of just
metal1 and metal2 as it used to with version 4 of Magic.

Each contact has an image tiletype on all the planes it connects. Normally, this
means that Magic has to generate a new tiletype for all the planes of a contact other than
its base plane. In the first example, this means that a new tile type will be generated to
represent pcontact on the metal1 plane. The type used to represent the contact on the
active plane is pcontact itself. Figure 1 depicts the situation graphically. In later sec-
tions of the technology file, it is sometimes useful to refer separately to the various
images of contact. A special notation using a ‘‘/’’ is used for this. If a tile type aaa/bbb
is specified in the technology file, this refers to the image of contact aaa on plane bbb.
For example, pcontact/metal1refers to the image of the pcontact that lies on the metal1
plane, and pcontact/active refers to the image on the active plane, which is the same as
pcontact.

- 8 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

Sometimes, however, there is already an existing contact that has the required con-
nectivity to be an image of a new contact. For example, the pad type connects metal1,
metal2, and glass. Its home plane is metal2, which implies that we need images on the
metal1 and oxide planes that have the required connectivity. There’s no existing contact
between glassand metal2, so the image on the oxide plane must be generated automati-
cally by Magic. However, there is already a contact that connects the component types
metal1 and metal2, namely m2c, so this is used as the image of pad on the metal1
plane.

4. Specifying Type-lists

In several places in the technology file you’ll need to specify groups of tile types.
For example, in the connectsection you’ll specify groups of tiles that are mutually con-
nected. These are called type-lists and there are several ways to specify them. The sim-
plest form for a type-list is a comma-separated list of tile types, for example

poly,ndiff,pcontact,ndc

The null list (no tiles at all) is indicated by zero, i.e.,

0

There must not be any spaces in the type-list. Type-lists may also use tildes (‘‘∼ ’’) to
select all tiles but a specified set, and parentheses for grouping. For example,

∼ (pcontact,ndc)

selects all tile types but pcontact and ndc. When a contact name appears in a type-list, it
selects all images of the contact unless a ‘‘/’’ is used to indicate a particular one. The
example above will not select any of the images of pcontact or ndc. Slashes can also be
used in conjunction with parentheses and tildes. For example,

∼ (pcontact,ndc)/active,metal1

selects all of the tile types on the active plane except for pcontact and ndc, and also
selects metal1. Tildes have higher operator precedence than slashes, and commas have
lowest precedence of all.

Note: in the CIF sections of the technology file, only simple comma-separated
names are permitted; tildes and parentheses are not understood. However, everywhere
else in the technology file the full generality can be used. Sorry for this inconsistency...

5. Styles section

Magic can be run on several different types of graphical displays. Although it
would have been possible to incorporate display-specific information into the technology
file, a different technology file would have been required for each display type. Instead,
the technology file gives one or more display-independent styles for each type that is to
be displayed, and uses a per-display-type styles file to map to colors and stipplings
specific to the display being used. The styles file is described in Magic Maintainer’s
Manual #3: ‘‘Styles and Colors’’, so we will not describe it further here.

- 9 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

����������������
styles
styles

styletype mos

poly 1

ndiff 2

pdiff 4

nfet 6

nfet 7

pfet 8

pfet 9

metal1 20

metal2 21

pcontact 1

pcontact 20

pcontact 32

ndcontact 2

ndcontact 20

ndcontact 32

pdcontact 4

pdcontact 20

pdcontact 32

m2contact 20

m2contact 21

m2contact 33

end������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 6. Part of the stylessection

Table 6 shows part of the styles section from the scmos technology file. The first
line specifies the type of style file for use with this technology, which in this example is
mos. Each subsequent line consists of a tile type and a style number (an integer between
1 and 63). The style number is nothing more than a reference between the technology
file and the styles file. Notice that a given tile type can have several styles (e.g., pcontact
uses styles #1, #20, and #32), and that a given style may be used to display several dif-
ferent tiles (e.g., style #2 is used in ndiff and ndcontact). If a tile type should not be
displayed, it has no entry in the stylessection.

6. Compose section

The semantics of Magic’s paint operation are defined by a collection of rules of the
form, ‘‘given material HAVE on plane PLANE, if we paint PAINT, then we get Z’’, plus a
similar set of rules for the erase operation. The default paint and erase rules are simple.
Assume that we are given material HAVE on plane PLANE, and are painting or erasing

- 10 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

�����������������������������������
compose
compose nfet poly ndiff

compose pfet poly pdiff

paint pwell nwell nwell

paint nwell pwell pwell

paint pdc/active pwell ndc/active

paint pdc/m1 pwell ndc/m1

paint pfet pwell nfet

paint pdiff pwell ndiff

paint nsd pwell psd

paint nsc/active pwell psc/active

paint nsc/m1 pwell psc/m1

paint ndc/active nwell pdc/active

paint ndc/m1 nwell pdc/m1

paint nfet nwell pfet

paint ndiff nwell pdiff

paint psd nwell nsd

paint psc/active nwell nsc/active

paint psc/m1 nwell nsc/m1

end�������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 7. Composesection

material PAINT.

(1) You get what you paint. If the home plane of PAINT is PLANE, or PAINT is space,
you get PAINT; otherwise, nothing changes and you get HAVE.

(2) You can erase all or nothing. Erasing space or PAINT from PAINT will give space;
erasing anything else has no effect.

These rules apply for contacts as well. Painting the base type of a contact paints the
base type on its home plane, and each image type on its home plane. Erasing the base
type of a contact erases both the base type and the image types.

It is sometimes desirable for certain tile types to behave as though they were ‘‘com-
posed’’ of other, more fundamental ones. For example, painting poly over ndiffusion in
scmos produces ntransistor, instead of ndiffusion. Also, painting either poly or ndiffu-
sion over ntransistor leaves ntransistor, erasing poly from ntransistor leaves ndiffusion,
and erasing ndiffusion leaves poly. The semantics for ntransistor are a result of the fol-
lowing rule in the composesection of the scmos technology file:

composentransistor poly ndiff

Sometimes, not all of the ‘‘component’’ layers of a type are layers known to magic.
As an example, in the nmos technology, there are two types of transistors:
enhancement-fetand depletion-fet. Although both contain polysilicon and diffusion,
depletion-fet can be thought of as also containing implant, which is not a tile type. So

- 11 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

while we can’t construct depletion-fet by painting poly and then diffusion, we’d still like
it to behave as though it contained both materials. Painting poly or diffusion over a
depletion-fet should not change it, and erasing either poly or diffusion should give the
other. These semantics are the result of the following rule:

decomposedfet poly diff

The general syntax of both types of composition rules, composeand decompose, is:

compose type a1 b1 a2 b2 ...
decomposetype a1 b1 a2 b2 ...

The idea is that each of the pairs a1 b1, a2 b2, etc comprise type. In the case of a com-
poserule, painting any a atop its corresponding b will give type, as well as vice-versa. In
both composeand decomposerules, erasing a from type gives b, erasing b from type
gives a, and painting either a or b over type leaves type unchanged.

Contacts are implicitly composed of their component types, so the result obtained
when painting a type PAINT over a contact type CONTACT will by default depend only
on the component types of CONTACT. If painting PAINT doesn’t affect the component
types of the contact, then it is considered not to affect the contact itself either. If painting
PAINT does affect any of the component types, then the result is as though the contact
had been replaced by its component types in the layout before type PAINT was painted.
Similar rules hold for erasing.

A pcontact has component types poly and metal1. Since painting poly doesn’t
affect either poly or metal1, it doesn’t affect a pcontact either. Painting ndiffusion does
affect poly−−it turns it into an ntransistor−−. Hence, painting ndiffusion over a pcontact
breaks up the contact, leaving ntransistor on the active plane and metal1 on the metal1
plane.

The composeand decomposerules are normally sufficient to specify the desired
semantics of painting or erasing. In unusual cases, however, it may be necessary to pro-
vide Magic with explicit paint or erase rules. For example, to specify that painting
pwell over pdiffusion switches its type to ndiffusion, the technology file contains the
rule:

paint pdiffusion pwell ndiffusion

This rule could not have been written as a decomposerule; erasing ndiffusion from pwell
does not yield pdiffusion, nor does erasing pdiffusion from ndiffusion yield pwell. The
general syntax for these explicit rules is:

paint have t result [p]
erasehave t result [p]

Here, have is the type already present, on plane p if it is specified; otherwise, on the
home plane of have. Type t is being painted or erased, and the result is type result.
Table 7 gives the composesection for scmos.

It’s easiest to think of the paint and erase rules as being built up in four passes. The
first pass generates the default rules for all non-contact types, and the second pass
replaces these as specified by the compose, decompose, etc. rules, also for non-contact
types. At this point, the behavior of the component types of contacts has been

- 12 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

completely determined, so the third pass can generate the default rules for all contact
types, and the fourth pass can modify these as per any compose, etc. rules for contacts.

��
connect
#define allMetal2 m2,m2c/m2,pad/m2

#define allMetal1 m1,m2c/m1,pc/m1,ndc/m1,pdc/m1,ppcont/m1,nncont/m1,pad/m1

#define allPoly poly,pc/a,nfet,pfet

allMetal2 allMetal2

allMetal1 allMetal1

allPoly allPoly

ndiff ndc

pdiff pdc

nwell,nnc,nsd nwell,nnc,nsd

pwell,ppc,psd pwell,ppc,psd

nnc pdc

ppc ndc

end��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 8. Connectsection

7. Connect section

For circuit extraction, routing, and some of the net-list operations, Magic needs to
know what types are electrically connected. Magic’s model of electrical connectivity
used is based on signal propagation. Two types should be marked as connected if a sig-
nal will always pass between the two types, in either direction. For the most part, this
will mean that all non-space types within a plane should be marked as connected. The
exceptions to this rule are devices (transistors). A transistor should be considered electri-
cally connected to adjacent polysilicon, but not to adjacent diffusion. This models the
fact that polysilicon connects to the gate of the transistor, but that the transistor acts as a
switch between the diffusion areas on either side of the channel of the transistor.

The lines in the connectsection of a technology file, as shown in Table 8, each con-
tain a pair of type-lists in the format described in Section 4. Each type in the first list
connects to each type in the second list. This does not imply that the types in the first list
are themselves connected to each other, or that the types in the second list are connected
to each other.

Because connectivity is a symmetric relationship, only one of the two possible ord-
ers of two tile types need be specified. Tiles of the same type are always considered to
be connected. Contacts are treated specially; they should be specified as connecting to
material in all planes spanned by the contact. For example, pcontact is shown as con-
necting to several types in the active plane, as well as several types in the metal1 plane.
The connectivity of a contact should usually be that of its component types, so pcontact
should connect to everything connected to poly, and to everything connected to metal1.

- 13 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

�������������������������
cifoutput
style lambda=1.0(gen)

scalefactor 100

layer CWN nwell

bloat-or pdiff,pdc,pfet * 600

bloat-or nsc,nnd * 300

grow 300

shrink 300

calma 42 1

layer CWP pwell

bloat-or ndiff,ndc,nfet * 600

bloat-or psc,ppd * 300

grow 300

shrink 300

calma 41 1

layer CMS allMetal2

labels m2

calma 51 1

layer CAA allDiff

labels ndiff,pdiff

calma 43 1

layer CCA ndc,pdc

squares 200

calma 48 1

layer CCA nncont,ppcont

squares 200

calma 48 1

layer CCP pc

squares 200

calma 47 1

end

���������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 9. Part of the cifoutput section for style lambda=1.0(gen) only

8. Cifoutput section

The layers stored by Magic do not always correspond to physical mask layers. For
example, there is no physical layer corresponding to ntransistor; instead, the actual cir-
cuit must be built up by overlapping poly and diffusion over pwell. When writing CIF
(Caltech Intermediate Form) or Calma GDS-II files, Magic generates the actual
geometries that will appear on the masks used to fabricate the circuit. The cifoutput sec-
tion of the technology file describes how to generate mask layers from Magic’s abstract

- 14 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

layers.

8.1. CIF styles

The technology file can contain several different specifications of how to generate
CIF. Each of these is called a CIF style. Different styles may be used for fabrication at
different feature sizes, or for totally different purposes. For example, some of the Magic
technology files contain a style ‘‘plot’’ that generates CIF pseudo-layers that have
exactly the same shapes as the Magic layers. This style is used for generating plots that
look just like what appears on the color display; it makes no sense for fabrication. Lines
of the form

style name

are used to end the description of the previous style and start the description of a new
style. The Magic command :cif ostyle name is typed by users to change the current style
used for output. The first style in the technology file is used by default for CIF output if
the designer doesn’t issue a :cif style command. If the first line of the cifoutput section
isn’t a style line, then Magic uses an initial style name of default.

8.2. Scaling

Each style must contain a line of the form

scalefactorscale [reducer]

that tells how to scale Magic coordinates into CIF coordinates. The argument scale indi-
cates how many hundredths of a micron correspond to one Magic unit. Because of cer-
tain numerical problems with the CIF representation, scale must always be an even
number (except as described below).

The second parameter, reducer, is optional. If it is specified, it may be either the
keyword calmaonly, or an integer. If reducer is calmaonly, then this output style can
only be used to generate Calma (GDS-II) output, not CIF, but the restriction that scale
must always be an even number is relaxed; scale can be any positive integer.

If reducer is an integer, it is used to increase the readability and decrease the size of
CIF files. Each CIF coordinate is divided by reducer before being written to the CIF file,
then a uniform upward scalefactor of reducer is specified once for the whole file. This
has no effect on the CIF except to make the individual CIF numbers smaller and thereby
reduce the sizes of CIF files. Reducer must be a positive integer, and must evenly divide
into every other dimension specified in any statement for this style. Reducer must also
divide one-half of scale. If this sounds confusing, the easiest thing is to leave reducer
unspecified, in which case the value 1 is used.

In addition to specifying a scale factor, each style can specify the size in which
chunks will be processed when generating CIF hierarchically. This is particularly impor-
tant when the average design size is much larger than the maximum bloat or shrink (e.g,
more than 3 orders of magnitude difference). The step size is specified by a line of the
following form:

stepsizestepsize

where stepsize is in Magic units. For example, if you plan to generate CIF for designs

- 15 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

that will typically be 100,000 Magic units on a side, it might make sense for stepsize to
be 10000 or more.

8.3. Layer descriptions

The main body of information for each CIF style is a set of layer descriptions. Each
layer description consists of one or more lines describing how to generate the CIF for a
single layer. The first line of each description is one of

layer name [layers]
or

templayer name [layers]

These statements are identical, except that templayers are not output in the CIF file.
They are used only to build up intermediate results used in generating the ‘‘real’’ layers.
In each case, name is the CIF name to be used for the layer. If layers is specified, it con-
sists of a comma-separated list of Magic layers and previously-defined CIF layers in this
style; these layers form the initial contents of the new CIF layer (note: the layer lists in
this section are less general than what was described in Section 4; tildes and parentheses
are not allowed). If layers is not specified, then the new CIF layer is initially empty. The
following statements are used to modify the contents of a CIF layer before it is output.

After the layer or templayer statement come several statements specifying
geometrical operations to apply in building the CIF layer. Each statement takes the
current contents of the layer, applies some operation to it, and produces the new contents
of the layer. The last geometrical operation for the layer determines what is actually out-
put in the CIF file. The geometrical operations are:

or layers
and layers

and-not layers
grow amount

shrink amount
bloat-or layers layers2 amount layers2 amount ...

bloat-max layers layers2 amount layers2 amount ...
bloat-min layers layers2 amount layers2 amount ...

squaressize
squaresborder size separation

The operation or takes all the layers (which may be either Magic layers or previously-
defined CIF layers), and or’s them with the material already in the CIF layer. The opera-
tion and is similar to or, except that it and’s the layers with the material in the CIF layer
(in other words, any CIF material that doesn’t lie under material in layers is removed
from the CIF layer). And-not finds all areas covered by layers and erases current CIF
material from those areas. Grow and shrink will uniformly grow or shrink the current
CIF layer by amount units, where amount is specified in CIF units, not Magic units.

The three bloat operations provide selective forms of growing. In these statements,
all the layers must be Magic layers. Each operation examines all the tiles in layers, and
grows the tiles by a different distance on each side, depending on the rest of the line.
Each pair layers2 amount specifies some tile types and a distance (in CIF units). Where a

- 16 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

bloat-min A * 100 C,E 200bloat-max A * 100 C,E 200bloat-or A * 100 C,E 200

A

B

D

C

E

BB

E

C

D

B

AB

E

C

D

B

A

Figure 2. The three different forms of bloat behave slightly differently when two different
bloat distances apply along the same side of a tile. In each of the above examples, the CIF
that would be generated is shown in bold outline. If bloat-or is specified, a jagged edge
may be generated, as on the left. If bloat-max is used, the largest bloat distance for each
side is applied uniformly to the side, as in the center. If bloat-min is used, the smallest
bloat distance for each side is applied uniformly to the side, as on the right.

tile of type layers abuts a tile of type layers2, the first tile is grown on that side by
amount. The result is or’ed with the current contents of the CIF plane. The layer ‘‘* ’’
may be used as layers2 to indicate all tile types. Where tiles only have a single type of
neighbor on each side, all three forms of bloat are identical. Where the neighbors are
different, the three forms are slightly different, as illustrated in Figure 2. Note: all the
layers specified in any given bloat operation must lie on a single Magic plane. For
bloat-or all distances must be positive. In bloat-max and bloat-min the distances may
be negative to provide a selective form of shrinking.

In retrospect, it’s not clear that bloat-max and bloat-min are very useful operations.
The problem is that they operate on tiles, not regions. This can cause unexpected
behavior on concave regions. For example, if the region being bloated is in the shape of
a ‘‘T’’, a single bloat factor will be applied to the underside of the horizontal bar. If you
use bloat-max or bloat-min, you should probably specify design-rules that require the
shapes being bloated to be convex.

border

size

separation

Figure 3. The squaresoperator chops each tile up into squares, as determined by the bord-
er, size, and separation parameters. In the example, the bold lines show the CIF that would
be generated by a squaresoperation. The squares of material are always centered so that
the borders on opposite sides are the same.

The last geometric operation is called squares. It examines each tile on the CIF
plane, and replaces that tile with one or more squares of material. Each square is size
CIF units across, and squares are separated by separation units. A border of at least
border units is left around the edge of the original tile, if possible. This operation is used
to generate contact vias, as in Figure 3. If only one argument is given in the squares

- 17 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

statement, then separation defaults to size and border defaults to size/2. If a tile doesn’t
hold an integral number of squares, extra space is left around the edges of the tile and the
squares are centered in the tile. If the tile is so small that not even a single square can fit
and still leave enough border, then the border is reduced. If a square won’t fit in the tile,
even with no border, then no material is generated. The squaresoperation must be used
with some care, in conjunction with the design rules. For example, if there are several
adjacent skinny tiles, there may not be enough room in any of the tiles for a square, so no
material will be generated at all. Whenever you use the squaresoperator, you should
use design rules to prohibit adjacent contact tiles, and you should always use the
no_overlap rule to prevent unpleasant hierarchical interactions. The problems with
hierarchy are discussed in Section 8.6 below, and design rules are discussed in Section
10.

8.4. Labels

There is an additional statement permitted in the cifoutput section as part of a layer
description:

labelsMagiclayers

This statement tells Magic that labels attached to Magic layers Magiclayers are to be
associated with the current CIF layer. Each Magic layer should only appear in one such
statement for any given CIF style. If a Magic layer doesn’t appear in any labels state-
ment, then it is not attached to a specific layer when output in CIF.

8.5. Calma (GDS II Stream format) layers

Each layer description in the cifoutput section may also contain one of the follow-
ing statements:

calma calmaNumber calmaType

This statement tells Magic which layer number and data type to use when the calma
command outputs Calma GDS II Stream format for this CIF layer. Both calmaNumber
and calmaType should be positive integers, between 0 and 63. Each CIF layer should
have a different calmaNumber. If there is no calma line for a given CIF layer, then that
layer will not be output by the :calma command.

(a) (b) (c)

Figure 4. If the operator grow 100 is applied to the shapes in (a), the merged shape in (b)
results. If the operator shrink 100 is applied to (b), the result is (c). However, if the two
original shapes in (a) belong to different cells, and if CIF is generated separately in each
cell, the result will be the same as in (a). Magic handles this by outputting additional infor-
mation in the parent of the subcells to fill in the gap between the shapes.

- 18 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

8.6. Hierarchy

Hierarchical designs make life especially difficult for the CIF generator. The CIF
corresponding to a collection of subcells may not necessarily be the same as the sum of
the CIF’s of the individual cells. For example, if a layer is generated by growing and
then shrinking, nearby features from different cells may merge together so that they don’t
shrink back to their original shapes (see Figure 4). If Magic generates CIF separately for
each cell, the interactions between cells will not be reflected properly. The CIF generator
attempts to avoid these problems. Although it generates CIF in a hierarchical representa-
tion that matches the Magic cell structure, it tries to ensure that the resulting CIF patterns
are exactly the same as if the entire Magic design had been flattened into a single cell and
then CIF were generated from the flattened design. It does this by looking in each cell
for places where subcells are close enough to interact with each other or with paint in the
parent. Where this happens, Magic flattens the interaction area and generates CIF for it;
then Magic flattens each of the subcells separately and generates CIF for them. Finally,
it compares the CIF from the subcells with the CIF from the flattened parent. Where
there is a difference, Magic outputs extra CIF in the parent to compensate.

Magic’s hierarchical approach only works if the overall CIF for the parent ends up
covering at least as much area as the CIFs for the individual components, so all compen-
sation can be done by adding extra CIF to the parent. In mathematical terms, this
requires each geometric operation to obey the rule

Op(A ∪ B) ⊇ Op(A) ∪ Op(B)

The operations and, or, grow, and shrink all obey this rule. Unfortunately, the and-not,
bloat, and squaresoperations do not. For example, if there are two partially-overlapping
tiles in different cells, the squares generated from one of the cells may fall in the separa-
tions between squares in the other cell, resulting in much larger areas of material than
expected. There are two ways around this problem. One way is to use the design rules to
prohibit problem situations from arising. This applies mainly to the squaresoperator.
Tiles from which squares are made should never be allowed to overlap other such tiles in
different cells unless the overlap is exact, so each cell will generate squares in the same
place. You can use the exact_overlapdesign rule for this.

The second approach is to leave things up to the designer. When generating CIF,
Magic issues warnings where there is less material in the children than the parent. The
designer can locate these problems and eliminate the interactions that cause the trouble.
Warning: Magic does not check the squaresoperations for hierarchical consistency, so
you absolutely must use exact_overlap design rule checks! Right now, the cifoutput
section of the technology is one of the trickiest things in the whole file, particularly since
errors here may not show up until your chip comes back and doesn’t work. Be extremely
careful when writing this part!

9. Cifinput section

In addition to writing CIF, Magic can also read in CIF files using the :cif read file
command. The cifinput section of the technology file describes how to convert from CIF
mask layers to Magic tile types. In addition, it provides information to the Calma reader
to allow it to read in Calma GDS II Stream format files. The cifinput section is very

- 19 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

������������������
cifinput
style lambda=1.0(gen)

scalefactor 100

layer m1 CMF

labels CMF

layer ndiff CSN

and CAA

layer nsd CWN

and CSN

and CAA

layer nfet CPG

and CAA

and CSN

layer ndc CCA

grow 100

and CAA

and CWP

and CSN

and CMF

layer nncont CCA

grow 100

and CAA

and CSN

and CWN

and CMF

calma CAA 1 *

calma CCA 2 *

calma CMF 4 *

calma CPG 7 *

calma CSN 8 *

calma CWN 11 *

calma CWP 12 *

end

�������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 10. Part of the cifinput section. The order of the layers is important, since
each Magic layer overrides the previous ones just as if they were painted by hand.

similar to the cifoutput section. It can contain several styles, with a line of the form

style name

used to end the description of the previous style (if any), and start a new CIF input style
called name. If no initial style name is given, the name default is assigned. Each style
must have a statement of the form

- 20 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

scalefactorcentimicrons

to indicate how many hundredths of a micron correspond to one unit in Magic.

Like the cifoutput section, each style consists of a number of layer descriptions. A
layer description contains one or more lines describing a series of geometric operations
to be performed on CIF layers. The result of all these operations is painted on a particu-
lar Magic layer just as if the user had painted that information by hand. A layer descrip-
tion begins with a statement of the form

layer magicLayer [layers]

In the layer statement, magicLayer is the Magic layer that will be painted after perform-
ing the geometric operations, and layers is an optional list of CIF layers. If layers is
specified, it is the initial value for the layer being built up. If layers isn’t specified, the
layer starts off empty. As in the cifoutput section, each line after the layer statement
gives a geometric operation that is applied to the previous contents of the layer being
built in order to generate new contents for the layer. The result of the last geometric
operation is painted into the Magic database.

The geometric operations that are allowed in the cifinput section are a subset of
those permitted in the cifoutput section:

or layers
and layers

and-not layers
grow amount

shrink amount

In these commands the layers must all be CIF layers, and the amounts are all CIF dis-
tances (centimicrons). As with the cifoutput section, layers can only be specified in sim-
ple comma-separated lists: tildes and slashes are not permitted.

When CIF files are read, all the mask information is read for a cell before perform-
ing any of the geometric processing. After the cell has been completely read in, the
Magic layers are produced and painted in the order they appear in the technology file. In
general, the order that the layers are processed is important since each layer will usually
override the previous ones. For example, in the scmos tech file shown in Table 10 the
commands for ndiff will result in the ndiff layer being generated not only where there is
only ndiffusion but also where there are ntransistors and ndcontacts. The descriptions for
ntransistor and ndcontact appear later in the section, so those layers will replace the
ndiff material that was originally painted.

Labels are handled in the cifinput section just like in the cifoutput section. A line
of the form

labels layers

means that the current Magic layer is to receive all CIF labels on layers. This is actually
just an initial layer assignment for the labels. Once a CIF cell has been read in, Magic
scans the label list and re-assigns labels if necessary. In the example of Table 10, if a
label is attached to the CIF layer CPG then it will be assigned to the Magic layer poly.
However, the polysilicon may actually be part of a poly-metal contact, which is Magic

- 21 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

layer pcontact. After all the mask information has been processed, Magic checks the
material underneath the layer, and adjusts the label’s layer to match that material (pcon-
tact in this case). This is the same as what would happen if a designer painted poly over
an area, attached a label to the material, then painted pcontact over the area.

No hierarchical mask processing is done for CIF input. Each cell is read in and its
layers are processed independently from all other cells; Magic assumes that there will
not be any unpleasant interactions between cells as happens in CIF output (and so far, at
least, this seems to be a valid assumption).

If Magic encounters a CIF layer name that doesn’t appear in any of the lines for the
current CIF input style, it issues a warning message and ignores the information associ-
ated with the layer. If you would like Magic to ignore certain layers without issuing any
warning messages, insert a line of the form

ignore cifLayers

where cifLayers is a comma-separated list of one or more CIF layer names.

Calma layers are specified via calma lines, which should appear at the end of the
cifinput section. They are of the form:

calma cifLayer calmaLayers calmaTypes

The cifLayer is one of the CIF types mentioned in the cifinput section. Both cal-
maLayers and calmaTypes are one or more comma-separated integers between 0 and 63.
The interpretation of a calma line is that any Calma geometry whose layer is any of the
layers in calmaLayers, and whose type is any of the types in calmaTypes, should be
treated as the CIF layer cifLayer. Either or both of calmaLayers and calmaTypes may be
the character * instead of a comma-separated list of integers; this character means all
layers or types respectively. It is commonly used for calmaTypes to indicate that the
Calma type of a piece of geometry should be ignored.

Just as for CIF, Magic also issues warnings if it encounters unknown Calma layers
while reading Stream files. If there are layers that you’d like Magic to ignore without
issuing warnings, assign them to a dummy CIF layer and ignore the CIF layer.

10. Mzrouter section

This section defines the layers and contacts available to the Magic maze router,
mzrouter, and assigns default costs for each type. Default widths and spacings are
derived from the drc section of the technology file (described below) but can be overrid-
den in this section. Other mzrouter parameters, for example, search rate and width, can
also be specified in this section. The syntax and function of the lines in the mzrouter
section of the technology file are specified in the subsections below. Each set of
specifications should be headed by a style line. Routelayer and routecontact
specifications should precede references to them.

10.1. Styles

The mzrouter is currently used in two contexts, interactively via the iroute com-
mand, and as a subroutine to the garouter for stem generation. To permit distinct param-
eters for these two uses, the lines in the mzrouter section are grouped into styles. The

- 22 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

���
mzrouter
style irouter
layer m2 32 64 256 1

layer m1 64 32 256 1

layer poly 128 128 512 1

contact m2contact metal1 metal2 1024

contact pcontact metal1 poly 2056

notactive poly pcontact

style garouter
layer m2 32 64 256 1

layer m1 64 32 256 1

contact m2contact metal1 metal2 1024

end���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 11. Mzrouter section for the scmos technology.

lines pertaining to the irouter should be preceded by

style irouter

and those pertaining to the garouter should be preceded by the specification

style garouter

Other styles can be specified, but are currently not used. Table 11 shows the mzrouter
section from the scmos technology.

10.2. Layers

Layer lines define the route-layers available to the maze router in that style. They
have the following form:

layer type hCost vCost jogCost hintCost

Here type is the name of the tiletype of the layer and hCost, vCost, jogCost and hintCost,
are non-negative integers specifying the cost per unit horizontal distance, cost per unit
vertical distance, cost per jog, and cost per unit area of deviation from magnets, respec-
tively. Route layers for any given style must lie in distinct planes.

10.3. Contacts

Contact lines specify the route-contacts available to the mzrouter in the current
style. They have the following form:

contact type routeLayer1 routeLayer2 cost

Here type is the tiletype of the contact, routeLayer1 and routeLayer2 are the two layers
connected by the contact, and cost is a nonnegative integer specifying the cost per con-
tact.

- 23 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

10.4. Notactive

It maybe desirable to have a layer or contact available to the maze router, but
default to off, i.e., not be used by the mzrouter until explicitly made active. Route-types
(route-layers or route-contacts) can be made to default to off with the following
specification:

notactive route-type ... [route-typen]

10.5. Search

The search rate, width , and penalty parameters can be set with a specification of
the form:

searchrate width penalty

Here rate and width are positive integers. And penalty is a positive rational (it may
include a decimal point). See the irouter tutorial for a discussion of these parameters.
(Note that penalty is a ‘‘wizardly’’ parameter, i.e., it is interactively set and examined
via iroute wizard not iroute search). If no search line is given for a style, the overall
mzrouter defaults are used.

10.6. Width

Appropriate widths for route-types are normally derived from the drc section of the
technology file. These can be overridden with width specifications of the following
form:

width route-type width

Here width is a positive integer.

10.7. Spacing

Minimum spacings between routing on a route-type and other types are derived
from the design rules. These values can be overridden by explicit spacing specifications
in the mzrouter section. Spacing specifications have the following form:

spacingroutetype type1 spacing1 ... [typen spacingn]

Spacing values must be nonnegative integers or NIL . The special type SUBCELL can
be used to specify minimum spacing to unexpanded subcells.

11. Drc section

The design rules used by Magic’s design rule checker come entirely from the tech-
nology file. We’ll look first at two simple kinds of rules, width and and spacing. Most
of the rules in the drc section are one or the other of these kinds of rules.

- 24 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

��
#define allDiff ndiff,pdiff,ndc/a,pdc/a,ppcont/a,nncont/a,pfet,nfet,psd,nsd

#define extPoly poly,pcontact

#define extM1 metal1,pcontact/m1,ndc/m1,ppcont/m1,pdc/m1,nncont/m1

#define extM2 metal2,m2contact/m2���
�
�
�
�

�
�
�
�
�

Table 12a. Abbreviations for sets of tile types.

��
width pwell 6 ‘‘P-Well width must be at least 6 (MOSIS rule #1.1)’’

width nwell 6 ‘‘N-Well width must be at least 6 (MOSIS rule #1.1)’’

width allDiff 2 ‘‘Diffusion width must be at least 2 (MOSIS rule #2.1)’’

width allPoly 2 ‘‘Polysilicon width must be at least 2 (MOSIS rule #3.1)’’���
�
�
�
�

�
�
�
�
�

Table 12b. Some width rules in the drc section.

11.1. Width rules

The minimum width of a collection of types, taken together, is expressed by a width
rule. Such a rule has the form:

width type-list width error

where type-list is a set of tile types (see Section 4 for syntax), width is an integer, and
error is a string, enclosed in double quotes, that can be printed by the command :drc
why if the rule is violated. A width rule requires that all regions containing any types in
the set types must be wider than w in both dimensions. For example, in Table 12b, the
rule

width nwell 6 ‘‘N-Well width must be at least 6 (MOSIS rule #1.1)’’

means that nwells must be at least 6 units wide whenever they appear. The type-list field
may contain more than a single type, as in the following rule:

width allDiff 2 ‘‘Diffusion width must be at least 2 (MOSIS rule #2.1)’’

which means that all regions consisting of the types containing any kind of diffusion be
at least 2 units wide. Because many of the rules in the drc section refer to the same sets
of layers, the #definefacility of the C preprocessor is used to define a number of macros
for these sets of layers. Table 12a gives a complete list.

All of the layers named in any one width rule must lie on the same plane. However,
if some of the layers are contacts, Magic will substitute a different contact image if the
named image isn’t on the same plane as the other layers.

- 25 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

���
spacing allPoly allPoly 2 touching_ok \

‘‘Polysilicon spacing must be at least 2 (MOSIS rule #3.2)’’

spacing pfet nncont,nnd 3 touching_illegal \
‘‘Transistors must be separated from substrate contacts by 3 (MOSIS rule #4.1)’’

spacing pc allDiff 1 touching_illegal \
‘‘Poly contact must be 1 unit from diffusion (MOSIS rule #5B.6)’’���

�
�
�
�
�
�

��
�
�
�
�
�
�

Table 12c. Some spacing rules in the drc section.

Euclidean distance Manhattan distance

Figure 5. For design rule checking, the Manhattan distance between two horizontally or
vertically aligned points is just the normal Euclidean distance. If they are not so aligned,
then the Manhattan distance is the length of the longest side of the right triangle forming the
diagonal line between the points.

11.2. Spacing rules

The second simple kind of design rule is a spacing rule. It comes in two flavors:
touching_ok, and touching_illegal, both with the following syntax:

spacingtypes1 types2 distance flavor error

The first flavor, touching_ok, does not prohibit types1 and types2 from being immedi-
ately adjacent. It merely requires that any type in the set types1 must be separated by a
‘‘Manhattan’’ distance of at least distance units from any type in the set types2 that is not
immediately adjacent to the first type. See Figure 5 for an explanation of Manhattan dis-
tance for design rules. As an example, consider the metal1 separation rule:

spacingallPoly allPoly 2 touching_ok \
‘‘Polysilicon spacing must be at least 2 (MOSIS rule #3.2)’’

This rule is symmetric (types1 is equal to types2), and requires, for example, that a pcon-
tact be separated by at least 2 units from a piece of polysilicon. However, this rule does
not prevent the pcontact from touching a piece of poly. In touching_ok rules, all of the
layers in both types1 and types2 must be stored on the same plane (Magic will substitute
different contact images if necessary).

- 26 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

BA

t1 t2 t2

Figure 6. The touching_ok rules cancels spacing checks if the material is touching. This
means that even distant material won’t be checked for spacing. If the rule applied at edge A
is a touching_ok rule between material t1 and t2, then no check will be made between the t1
material and the t2 material on the far right side of the diagram. If this check was desired, it
could be accomplished in this case by a edge4waycheck from edge B. This would not
work in general, though, because that check could also be masked by material of type t2,
causing the touching_ok rule to be invoked.

TOUCHING_OK SPACING RULES DO NOT WORK FOR VERY LARGE
SPACINGS (RELATIVE TO THE TYPES INVOLVED). SEE FIGURE 6 FOR AN
EXPLANATION. If the spacing to be checked is greater than the width of one of the
types involved plus either its self-spacing or spacing to a second involved type,
touching_ok spacingmay not work properly: a violation can be masked by an interven-
ing touching type. In such cases the rule should be written using the edge4wayconstruct
described below.

The second flavor of spacing rule, touching_illegal, disallows adjacency. It is used
for rules where types1 and types2 can never touch, as in the following:

spacingpc allDiff 1 touching_illegal \
‘‘Poly contact must be 1 unit from diffusion (MOSIS rule #5B.6)’’

Pcontacts and any type of diffusion must be at least 1 unit apart; they cannot touch. In
touching_illegal rules types1 and types2 may not have any types in common: it would
be rather strange not to permit a type to touch itself. In touching_illegal rules, types1
and types2 may be spread across multiple planes; Magic will find violations between
material on different planes.

11.3. Edge rules

The width and spacing rules just described are actually translated by Magic into an
underlying, edge-based rule format. This underlying format can handle rules more gen-
eral than simple widths and spacings, and is accessible to the writer of a technology file
via edgerules. These rules are applied at boundaries between material of two different
types, in any of four directions as shown in Figure 7. The design rule table contains a
separate list of rules for each possible combination of materials on the two sides of an
edge.

- 27 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

t1 t1

t1

t1

t2

t2 t2

t2

d d

d d

Figure 7. Design rules are applied at the edges between tiles in the same plane. A rule is
specified in terms of type t1 and type t2, the materials on either side of the edge. Each rule
may be applied in any of four directions, as shown by the arrows. The simplest rules re-
quire that only certain mask types can appear within distance d on t2’s side of the edge.

In its simplest form, a rule specifies a distance and a set of mask types: only the
given types are permitted within that distance on type2’s side of the edge. This area is
referred to as the constraint region. Unfortunately, this simple scheme will miss errors in
corner regions, such as the case shown in Figure 8. To eliminate these problems, the full
rule format allows the constraint region to be extended past the ends of the edge under
some circumstances. See Figure 9 for an illustration of the corner rules and how they
work. Table 13 gives a complete description of the information in each design rule.

poly

poly

spacepoly

OKTypes = not poly

(a) (b)

Figure 8. If only the simple rules from Figure 7 are used, errors may go unnoticed in
corner regions. For example, the polysilicon spacing rule in (a) will fail to detect the error
in (b).

Edge rules are specified in the technology file using the following syntax:

edgetypes1 types2 d OKTypes cornerTypes cornerDist error [plane]

Both types1 and types2 are type-lists. An edge rule is generated for each pair consisting
of a type from types1 and a type from types2. All the types in types1, types2, and corner-
Types must lie on a single plane. See Figure 9 for an example edge rule. It is sometimes

- 28 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

useful to specify a null list, i.e., 0, for OKTypes or CornerTypes. Null OKTypes means
no edges between types1 and types2 are OK. Null CornerTypes means no corner exten-
sions are to be checked (corner extensions are explained below).

2

not poly

d

t2t1

B cornerTypes
cornerTypes

not poly not poly

poly

A

(a)

poly space

2

not poly

(b)

(c)

poly

(d)

OKTypes

Figure 9. The complete design rule format is illustrated in (a). Whenever an edge has
type1 on its left side and type2 on its right side, the area A is checked to be sure that only
OKTypes are present. If the material just above and to the left of the edge is one of corner-
Types, then area B is also checked to be sure that it contains only OKTypes. A similar
corner check is made at the bottom of the edge. Figure (b) shows a polysilicon spacing rule,
(c) shows a situation where corner extension is performed on both ends of the edge, and (d)
shows a situation where corner extension is made only at the bottom of the edge. If the rule
described in (d) were to be written as an edgerule, it would look like:

edgepoly space 2 ∼ poly ∼ poly 2 \
"Poly-poly separation must be at least 2"

Some of the edge rules in Magic have the property that if a rule is violated between
two pieces of geometry, the violation can be discovered looking from either piece of
geometry toward the other. To capitalize on this, Magic normally applies an edge rule
only in two of the four possible directions: bottom-to-top and left-to-right, reducing the
work it has to do by a factor of two. Also, the corner extension is only performed to one
side of the edge: to the top for a left-to-right rule, and to the left for a bottom-to-top rule.
All of the width and spacing rules translate neatly into edge rules.

However, you’ll probably find it easiest when you’re writing edge rules to insist that
they be checked in all directions. To do this, write the rule the same way except use the
keyword edge4wayinstead of edge:

- 29 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

���
Parameter Meaning��
type1 Material on first side of edge.���
type2 Material on second side of edge.���
d Distance to check on second side of edge.���
OKTypes List of layers that are permitted within

d units on second side of edge.
(OKTypes=0 means never OK)���

cornerTypes List of layers that cause corner extension.
(cornerTypes=0 means no corner extension)���

cornerDist Amount to extend constraint area when
cornerTypes matches.���

plane Plane on which to check constraint region (defaults
to same plane as type1 and type2 and
cornerTypes).��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 13. The parts of an edge-based rule.

edge4waynfet ndiff 2 ndiff,ndc ndiff 2 \
‘‘Diffusion must overhang transistor by at least 2’’

Not only are edge4wayrules checked in all four directions, but the corner extension is
performed on both sides of the edge. For example, when checking a rule from left-to-
right, the corner extension is performed both to the top and to the bottom. Edge4way
rules take twice as much time to check as edgerules, so it’s to your advantage to use
edgerules wherever you can.

���
edge4way ppcont,ppd ndiff,ndc,nfet 3 ndiff,ndc,nfet ndiff,ndc,nfet 3 \

‘‘Ndiff must be 3 wide if it abuts ppcont or ppd (MOSIS rule #??)’’

edge4way allPoly ∼ (allPoly)/active 3 ∼ pc/active ∼ (allPoly)/active 3 \

‘‘Poly contact must be at least 3 from other poly (MOSIS rule #5B.4,5)’’

edge4way allPoly ∼ (allPoly)/active 1 ∼ m2c/metal2 ∼ (allPoly)/active 1 \

‘‘Via must be on a flat surface (MOSIS rule #8.4,5)’’ metal2���
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 12d. Some edge rules in the drc section.

Normally, an edge rule is checked completely within a single plane: both the edge
that triggers the rule and the constraint area to check fall in the same plane. However,
the plane argument can be specified in an edge rule to force Magic to perform the con-
straint check on a plane different from the one containing the triggering edge. In this
case, OKTypes must all be tile types in plane. This feature is used, for example, to
ensure that polysilicon and diffusion edges don’t lie underneath metal2 contacts:

- 30 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

edge4wayallPoly ∼ (allPoly)/active 1 ∼ m2c/metal2 ∼ (allPoly)/active 1 \
‘‘Via must be on a flat surface (MOSIS rule #8.4,5)’’ metal2

11.4. Overlap Rules

In order for CIF generation and circuit extraction to work properly, certain kinds of
overlaps between subcells must be prohibited. The design-rule checker provides two
kinds of rules for restricting overlaps. They are

exact_overlaptype-list
no_overlaptype-list1 type-list2

In the exact_overlaprule, type-list indicates one or more tile types. If a cell contains a
tile of one of these types and that tile is overlapped by another tile of the same type from
a different cell, then the overlap must be exact: the tile in each cell must cover exactly
the same area. Abutment between tiles from different cells is considered to be a partial
overlap, so it is prohibited too. This rule is used to ensure that the CIF squaresoperator
will work correctly, as described in Section 8.6. See Table 12e for the exact_overlap
rule from the standard scmos technology file.

������������������������������������
exact_overlap m2c,ndc,pdc,pc,ppcont,nncont

no_overlap pfet,nfet pfet,nfet��������������������������������������
�

��
�

Table 12e. Exact_overlap rule in the drc section.

The no_overlap rule makes illegal any overlap between a tile in type-list1 and a tile
in type-list2. You should rarely, if ever, need to specify no_overlap rules, since Magic
automatically prohibits many kinds of overlaps between subcells. After reading the tech-
nology file, Magic examines the paint table and applies the following rule: if two tile
types A and B are such that the result of painting A over B is neither A nor B, or the
result of painting B over A isn’t the same as the result of painting A over B, then A and B
are not allowed to overlap. Such overlaps are prohibited because they change the struc-
ture of the circuit. Overlaps are supposed only to connect things without making struc-
tural changes. Thus, for example, poly can overlap pcontact without violating the above
rules, but poly may not overlap diffusion because the result is efet, which is neither poly
nor diffusion. The only no_overlap rules you should need to specify are rules to keep
transistors from overlapping other transistors of the same type.

11.5. Background checker step size

Magic’s background design-rule checker breaks large cells up into smaller pieces,
checking each piece independently. For very large designs, the number of pieces can get
to be enormous. If designs are large but sparse, the performance of the design-rule
checker can be improved tremendously by telling it to use a larger step size for breaking
up cells. This is done as follows:

- 31 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

stepsizestepsize

which causes each cell to be processed in square pieces of at most stepsize by stepsize
units. It is generally a good idea to pick a large stepsize, but one that is small enough so
each piece will contain no more than 100 to 1000 rectangles.

12. Extract section

The extract section of a technology file contains the parameters used by Magic’s
circuit extractor. Each line in this section begins with a keyword that determines the
interpretation of the remainder of the line. Table 14 gives an example extract section.

This section is like the cifinput and cifoutput sections in that it supports multiple
extraction styles. Each style is preceded by a line of the form

- 32 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

style stylename

All subsequent lines up to the next style line or the end of the section are interpreted as
belonging to extraction style stylename. If there is no initial style line, the first style will
be named ‘‘default’’.

The keywords areacap, perimcap, and resist define the capacitance to substrate
and the sheet resistivity of each of the Magic layers in a layout. All capacitances that
appear in the extract section are specified as an integral number of attofarads (per unit
area or perimeter), and all resistances as an integral number of milliohms per square.

The areacapkeyword is followed by a list of types and a capacitance to substrate,
as follows:

areacaptypes C

Each of the types listed in types has a capacitance to substrate of C attofarads per square
lambda. Each type can appear in at most one areacapline. If a type does not appear in
any areacap line, it is considered to have zero capacitance to substrate per unit area.
Since most analysis tools compute transistor gate capacitance directly from the area of
the transistor’s gate, Magic should produce node capacitances that do not include gate
capacitances. To ensure this, all transistors should have zero areacapvalues.

The perimcap keyword is followed by two type-lists and a capacitance to substrate,
as follows:

perimcap intypes outtypes C

Each edge that has one of the types in intypes on its inside, and one of the types in out-
types on its outside, has a capacitance to substrate of C attofarads per lambda. This can
also be used as an approximation of the effects due to the sidewalls of diffused areas. As
for areacap, each unique combination of an intype and an outtype may appear at most
once in a perimcap line. Also as for areacap, if a combination of intype and outtype
does not appear in any perimcap line, its perimeter capacitance per unit length is zero.

The resist keyword is followed by a type-list and a resistance as follows:

resist types R

The sheet resistivity of each of the types in types is R milliohms per square.

Each resist line in fact defines a ‘‘resistance class’’. When the extractor outputs the
area and perimeter of nodes in the .ext file, it does so for each resistance class. Nor-
mally, each resistance class consists of all types with the same resistance. However, if
you wish to obtain the perimeter and area of each type separately in the .ext file, you
should make each into its own resistance class by using a separate resist line for each
type.

In addition to sheet resistivities, there are two other ways of specifying resistances.
Neither is used by the normal Magic extractor, but both are used by the resistance extrac-
tor. Contacts have a resistance that is inversely proportional to the number of via holes
in the contact, which is proportional (albeit with quantization) to the area of the contact.
The contact keyword allows the resistance for a single via hole to be specified:

- 33 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

���������������������������������������
extract
style lambda=0.7

lambda 70

step 100

sidehalo 4

resist poly,pfet,nfet 60000

resist pc/a 50000

resist pdiff,ppd 120000

resist ndiff,nnd 120000

resist m2contact/m1 1200

resist metal1 200

resist metal2,pad/m1 60

resist ppc/a,pdc/a 100000

resist nnc/a,ndc/a 100000

resist nwell,pwell 3000000

areacap poly 33

areacap metal1 17

areacap metal2,pad/m1 11

areacap ndiff,nsd 350

areacap pdiff,psd 200

areacap ndc/a,nsc/a 367

areacap pdc/a,psc/a 217

areacap pcontact/a 50

perimc allMetal1 space 56

perimc allMetal2 space 55

overlap metal1 pdiff,ndiff,psd,nsd 33

overlap metal2 pdiff,ndiff,psd,nsd 17 metal1

overlap metal1 poly 33

overlap metal2 poly 17 metal1

overlap metal2 metal1 33

sideoverlap allMetal1 space allDiff 64

sideoverlap allMetal2 space allDiff 60

sideoverlap allMetal1 space poly 64

sideoverlap allMetal2 space poly 60

sideoverlap allMetal2 space allMetal1 70

fet pfet pdiff,pdc/a 2 pfet Vdd! nwell 0 0

fet nfet ndiff,ndc/a 2 nfet GND! pwell 0 0

end���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 14. Extract section

- 34 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

contact types size R

where types is a comma-separated list of types, size is in lambda, and R is in milliohms.
Size is interpreted as a hole-size quantum; the number of holes in a contact is equal to its
width divided by size times its length divided by size, with both quotients rounded down
to the nearest integer. The resistance of a contact is R divided by the number of holes.

Transistors also have resistance information associated with them. However, a
transistor’s resistance may vary depending on a number of variables, so a single parame-
ter is generally insufficient to describe it. The fetresist line allows sheet resistivities to
be given for a variety of different configurations:

fetresist fettypes region R

where fettypes is a comma-separated list of transistor types (as defined in fet lines
below), region is a string used to distinguish between resistance values for a fet if more
than one is provided (the special region value of ‘‘linear’’ is required for the resistance
extractor), and R is the on-resistance of the transistor in ohms per square (not milliohms;
there would otherwise be too many zeroes).

Magic also extracts internodal coupling capacitances, as illustrated in Figure 10.
The keywords overlap, sidewall, sideoverlap, and sidehalo provide the parameters
needed to do this.

Overlap capacitance is between pairs of tile types, and is described by the overlap
keyword as follows:

overlap toptypes bottomtypes cap [shieldtypes]

where toptypes, bottomtypes, and optionally shieldtypes are type-lists and cap is a capaci-
tance in attofarads per square lambda. The extractor searches for tiles whose types are in
toptypes that overlap tiles whose types are in bottomtypes, and that belong to different
electrical nodes. (The planes of toptypes and bottomtypes must be disjoint). When such
an overlap is found, the capacitance to substrate of the node of the tile in toptypes is
deducted for the area of the overlap, and replaced by a capacitance to the node of the tile
in bottomtypes.

If shieldtypes are specified, overlaps between toptypes and bottomtypes that also
overlap a type in shieldtypes are not counted. The types in shieldtypes must appear on a
different plane (or planes) than any of the types in toptypes or bottomtypes.

Parallel wire capacitance is between pairs of edges, and is described by the sidewall
keyword:

- 35 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

sidewall

sidewall overlapoverlap (oxide)

(poly)

(metal)(metal)

Figure 10. Magic extracts three kinds of internodal coupling capacitance. This figure is a
side view of a set of masks that shows all three kinds of capacitance. Overlap capacitance
is parallel-plate capacitance between two different kinds of material when they overlap.
Parallel wire capacitance is fringing-field capacitance between the parallel vertical edges of
two pieces of material. Sidewall overlap capacitance is fringing-field capacitance between
the vertical edge of one piece of material and the horizontal surface of another piece of ma-
terial that overlaps the vertical edge.

fartypes

neartypes

outtypes

intypes
tinside

tfar

Figure 11. Parallel wire capacitance is between pairs of edges. The capacitance applies
between the tiles tinside and tfar above, where tinside’s type is one of intypes, and tfar’s
type is one of fartypes.

sidewall intypes outtypes neartypes fartypes cap

where intypes, outtypes, neartypes, and fartypes are all type-lists, described in Figure 11.
Cap is half the capacitance in attofarads per lambda when the edges are 1 lambda apart.
Parallel wire coupling capacitance is computed as being inversely proportional to the dis-
tance between two edges: at 2 lambda separation, it is equal to the value cap; at 4 lambda
separation, it is half of cap. This approximation is not very good, in that it tends to
overestimate the coupling capacitance between wires that are farther apart.

To reduce the amount of searching done by Magic, there is a threshold distance
beyond which the effects of parallel wire coupling capacitance are ignored. This is set as
follows:

sidehalodistance

where distance is the maximum distance between two edges at which Magic considers
them to have parallel wire coupling capacitance. If this number is not set explicitly in

- 36 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

the technology file, it defaults to 0, with the result that no parallel wire coupling
capacitance is computed.

Sidewall overlap capacitance is between material on the inside of an edge and over-
lapping material of a different type. It is described by the sideoverlapkeyword:

sideoverlapintypes outtypes ovtypes cap

where intypes, outtypes, and ovtypes are type-lists and cap is capacitance in attofarads
per lambda. This is the capacitance associated with an edge with a type in intypes on its
inside and a type in outtypes on its outside, that overlaps a tile whose type is in ovtypes.
See Figure 10.

Transistors are represented in Magic by explicit tiletypes. The extraction of a fet
(with gate, sources, and drains) from a collection of transistor tiles is governed by the
information in a fet line. This line has the following format:

fet types dtypes min-nterms name snode [stypes] gscap gccap

Types is a list of those tiletypes that make up this type of transistor. Normally, there will
be only one type in this list, since Magic usually represents each type of transistor with a
different tiletype.

Dtypes is a list of those tiletypes that connect to the diffusion terminals of the fet.
Each transistor of this type must have at least min-nterms distinct diffusion terminals;
otherwise, the extractor will generate an error message. For example, an efet in the
scmos technology must have a source and drain in addition to its gate; min-nterms for
this type of fet is 2. The tiletypes connecting to the gate of the fet are the same as those
specified in the connectsection as connecting to the fet tiletype itself.

Name is a string used to identify this type of transistor to simulation programs.

The substrate terminal of a transistor is determined in one of two ways. If stypes (a
comma-separated list of tile types) is given, and a particular transistor overlaps one of
those types, the substrate terminal will be connected to the node of the overlapped
material. Otherwise, the substrate terminal will be connected to the node with the global
name of snode (which must be a global name, i.e., end in an exclamation point).

Gscap is the capacitance between the transistor’s gate and its diffusion terminals, in
attofarads per lambda. Finally, gccap is the capacitance between the gate and the chan-
nel, in attofarads per square lambda. Currently, gscap and gccap are unused by the
extractor.

Often the units in the extracted circuit for a cell will always be multiples of certain
basic units larger than centimicrons for distance, attofarads for capacitance, or milliohms
for resistance. To allow larger units to be used in the .ext file for this technology, thereby
reducing the file’s size, the extract section may specify a scale for any of the three units,
as follows:

cscalec
lambda l
rscaler

In the above, c is the number of attofarads per unit capacitance appearing in the .ext files,
l is the number of centimicrons per unit length, and r is the number of milliohms per unit

- 37 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

resistance. All three must be integers; r should divide evenly all the resistance-per-
square values specified as part of resist lines, and c should divide evenly all the
capacitance-per-unit values.

Magic’s extractor breaks up large cells into chunks for hierarchical extraction, to
avoid having to process too much of a cell all at once and possibly run out of memory.
The size of these chunks is determined by the stepkeyword:

stepstep

This specifies that chunks of step units by step units will be processed during hierarchical
extraction. The default is 100 units. Be careful about changing step; if it is too small
then the overhead of hierarchical processing will increase, and if it is too large then more
area will be processed during hierarchical extraction than necessary. It should rarely be
necessary to change step unless the minimum feature size changes dramatically; if so, a
value of about 50 times the minimum feature size appears to work fairly well.

�����������������������������
wiring
contact pdcontact 4 metal1 0 pdiff 0

contact ndcontact 4 metal1 0 ndiff 0

contact pcontact 4 metal1 0 poly 0

contact m2contact 4 metal1 0 metal2 0

end�������������������������������
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 15. Wiring section

13. Wiring section

The wiring section provides information used by the :wire switch command to gen-
erate contacts. See Table 15 for the wiring section from the scmos technology file. Each
line in the section has the syntax

contact type minSize layer1 surround1 layer2 surround2

Type is the name of a contact layer, and layer1 and layer2 are the two wiring layers that
it connects. MinSize is the minimum size of contacts of this type. If Surround1 is non-
zero, then additional material of type layer1 will be painted for surround1 units around
contacts of type. If surround2 is non-zero, it indicates an overlap distance for layer2.

During :wire switch commands, Magic scans the wiring information to find a con-
tact whose layer1 and layer2 correspond to the previous and desired new wiring materi-
als (or vice versa). If a match is found, a contact is generated according to type, minSize,
surround1, and surround2.

- 38 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

14. Router section

The router section of a technology file provides information used to guide the
automatic routing tools. The section contains four lines. See Table 16 for an example
router section.

��������������������������������
router
layer1 metal1 3 allMetal1 3

layer2 metal2 3 allMetal2 4 allPoly,allDiff 1

contactsm2contact 4

gridspacing8

end����������������������������������
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 16. Router section

The first two lines have the keywords layer1 and layer2 and the following format:

layer1 wireType wireWidth type-list distance type-list distance ...

They define the two layers used for routing. After the layer1 or layer2 keyword are two
fields giving the name of the material to be used for routing that layer and the width to
use for its wires. The remaining fields are used by Magic to avoid routing over existing
material in the channels. Each pair of fields contains a list of types and a distance. The
distance indicates how far away the given types must be from routing on that layer.
Layer1 and layer2 are not symmetrical: wherever possible, Magic will try to route on
layer1 in preference to layer2. Thus, in a single-metal process, metal should always be
used for layer1.

The third line provides information about contacts. It has the format

contactscontactType size [surround1 surround2]

The tile type contactType will be used to make contacts between layer1 and layer2. Con-
tacts will be size units square. In order to avoid placing contacts too close to hand-routed
material, Magic assumes that both the layer1 and layer2 rules will apply to contacts. If
surround1 and surround2 are present, they specify overlap distances around contacts for
layer1 and layer2: additional layer1 material will be painted for surround1 units around
each contact, and additional layer2 material will be painted for surround2 units around
contacts.

The last line of the routing section indicates the size of the grid on which to route.
It has the format

gridspacing distance

The distance must be chosen large enough that contacts and/or wires on adjacent grid
lines will not generate any design rule violations.

- 39 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

����������������������������
plowing

fixed pfet,nfet,glass,pad

covered pfet,nfet

drag pfet,nfet

end�����������������������������
�
�
�
�
�

�
�
�
�
�
�

Table 17. Plowing section

15. Plowing section

The plowing section of a technology file identifies those types of tiles whose sizes
and shapes should not be changed as a result of plowing. Typically, these types will be
transistors and buried contacts. The section currently contains three kinds of lines:

fixed types
coveredtypes
drag types

where types is a type-list. Table 17 gives this section for the scmos technology file.

In a fixed line, each of types is considered to be fixed-size; regions consisting of
tiles of these types are not deformed by plowing. Contact types are always considered to
be fixed-size, so need not be included in types.

In a covered line, each of types will remain ‘‘covered’’ by plowing. If a face of a
covered type is covered with a given type before plowing, it will remain so afterwards.
For example, if a face of a transistor is covered by diffusion, the diffusion won’t be
allowed to slide along the transistor and expose the channel to empty space. Usually,
you should make all fixed-width types covered as well, except for contacts.

In a drag line, whenever material of a type in types moves, it will drag with it any
minimum-width material on its trailing side. This can be used, for example, to insure
that when a transistor moves, the poly-overlap forming its gate gets dragged along in its
entirety, instead of becoming elongated.

16. Plot section

The plot section of the technology file contains information used by Magic to gen-
erate hardcopy plots of layouts. Plots can be generated in different styles, which
correspond to different printing mechanisms. For each style of printing, there is a
separate subsection within the plot section. Each subsection is preceded by a line of the
form

- 40 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

���
plot
style gremlin

poly,efet,dfet,bc,pcontact/active 18

diff,efet,dfet,bc,ndc/active 22

metal1,ndc/metal1,pcontact/metal1 11

pcontact/metal1,ndc/metal1,bc

style versatec

poly,efet,dfet,bc,pcontact/active 0808 0404 0202 0101 \

8080 4040 2020 1010 \

0808 0404 0202 0101 \

8080 4040 2020 1010

diff,efet,dfet,bc,ndc/active 0000 4242 6666 0000 \

0000 2424 6666 0000 \

0000 4242 6666 0000 \

0000 2424 6666 0000

metal1,ndc/metal1,pcontact/metal1 8080 0000 0000 0000 \

0808 0000 0000 0000 \

8080 0000 0000 0000 \

0808 0000 0000 0000

pcontact/metal1,ndc/metal1,bc X

style colorversatec

poly,efet,dfet,bc,pcontact/active magenta 0808 0404 0202 0101 \

8080 4040 2020 1010 \

0808 0404 0202 0101 \

8080 4040 2020 1010

diff,efet,dfet,bc,ndc/active yellow 0000 4242 6666 0000 \

0000 2424 6666 0000 \

0000 4242 6666 0000 \

0000 2424 6666 0000

metal1,ndc/metal1,pcontact/metal1 cyan 8080 0000 0000 0000 \

0808 0000 0000 0000 \

8080 0000 0000 0000 \

0808 0000 0000 0000

pcontact/metal1,ndc/metal1,bc X

end��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 17. Sample plot section (for an NMOS process)

style styleName

Right now, only gremlin, versatec, and colorversatecstyles are supported.

Within the gremlin subsection, lines must have one of three forms:

- 41 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

type-list stippleNumber
type-list X
type-list B

The first form of line associates a Gremlin stipple number with all Magic layers in type-
list. When Gremlin files are generated, all areas covered by type-list will appear as stip-
pled areas filled with stipple stippleNumber and bordered with thin solid lines. The
second form is designed for contacts. It causes each tile in type-list to be outlined with a
medium-thickness line with an additional medium-thickness ‘‘X’’ drawn between oppo-
site corners. The B specification is identical to X except that only the border is drawn,
without the diagonal ‘‘X’’.

Within the versatecsubsection, lines may also be in either of three forms:

type-list pat0 pat1 ... pat15
type-list X
type-list B

In the first case, the material of types type-list is rendered with a stipple pattern given by
16 hexadecimal numbers. Each number contains four hex digits; the result is a 16-by-16
bit pattern of 1’s and 0’s. A one means that the corresponding bit of the output file is set
and a zero means that the bit is not modified when this layer is rendered (thus the patterns
from different type-lists will OR together). Pat0 specifies the top line of the stipple pat-
tern; within each pattern, the most significant bit corresponds to the leftmost bit within
the line of the stipple pattern. Stippled areas area also bordered by thin solid lines. The
second and third forms (X and B) are similar to the second and third forms for gremlin
lines: Magic outlines tiles in type-list with medium-thickness lines and also draws crosses
through the tiles if X is given.

The colorversatec subsection is just like the versatec section except the stipple
lines can also specify a color:

type-list color pat0 pat1 ... pat15

where color is one of black, cyan, magenta, or yellow. This color is the dye that will be
used for the stipple in the plot. Multicolored stipples may be obtained by listing the same
type-list and stipple patterns two or more times, each with a different color.

For versatecplotting there are a number of parameters that can be set directly by
users, such as the printer width. These parameters allow users to reconfigure the system
for different kinds of plotters and different spooling mechanisms. See the manual page
for details. You may want to modify your system .magic file to set up default parameters
for your printer.

17. Installing a Technology File

As mentioned earlier, ‘‘raw’’ technology files cannot be read directly by Magic.
The C preprocessor must first be used to eliminate comments and expand macros in a
technology file before it gets installed. As a consequence, the full power of the C prepro-
cessor is available to the writer of a technology file. Not only may macro definitions be
made with #define, but ‘‘conditional compilation’’ using #ifdef and the ability to use

- 42 -

Magic Maintainer’s Manual #2: The Technology File September 19, 1990

other files via the #include mechanism are possible.

Technology files are installed as a file of the name techname.techn. The numeric
version suffix n (currently 26) is added to the final .tech when the file is installed, and
allows multiple versions of the technology file to coexist in the same directory. There is
a shell script, tech/:techinstall, to do all the necessary processing to install a new tech-
nology file.

Technology files can be installed in any directory. When Magic is run, it searches
for a technology file first in the current directory and next in the system library directory,
∼ cad/lib/magic/sys. To install a new technology file whose source is techname.tech,
run:

tech/:techinstall techname.techvers dir

where dir is the directory in which the technology file is to be installed, and vers is the
proper version suffix to insure that this technology file is readable by the latest version of
Magic. See the Makefile in tech for the string VERSION, which defines the current ver-
sion number.

- 43 -

Magic Maintainer’s Manual #3:

Display Styles, Color Maps, and Glyphs

Robert N. Mayo
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 6.

Tutorials to read first:

All of them.

Commands covered in this tutorial:

none

Macros covered in this tutorial:

none

1. Introduction

This document gives overall information about the files that tell Magic how to
display information on the screen. There are three types of files that contain display
information: display styles files, color-map files, and glyph files.

2. Display Styles

Display styles files describe how to draw rectangular areas and text. A single file
contains a large number of display styles. Each display style contains two kinds of infor-
mation: a) how to modify pixels (which bits of the pixel should be changed and what
their new value(s) should be); and b) which pixels to modify. Part b) consists of things
like ‘‘fill the entire area,’’ or ‘‘modify only those pixels in the area that are given by a
particular stipple pattern,’’ or ‘‘draw a dashed-line around the area’s outline.’’ In the case
of text, ‘‘which pixels to modify’’ is determined by the font for the text, which is not part

- 1 -

Magic Maintainer’s Manual #3 September 19, 1990

of the display style, so the display style information for this is ignored. See the manual
page dstyle (5)for details on the format of display styles files.

Display styles are designed to take into account both the characteristics of certain
technologies and the characteristics of certain displays. For example, a bipolar process
may require information to be displayed very differently than a MOS process, and a
black-and-white display will be used much differently than a color display. Thus there
can be many different display styles files, each corresponding to a particular class of
technologies and a class of displays. The names of styles files reflect these classes: each
display styles file has a name of the form x.y.dstyle5, where x is the technology class
(given by the styletype line in the stylessection of the technology file), and y is the class
of display. Each display driver knows its display class; the driver initialization routine
sets an internal Magic variable with the display class to use. Right now we have two
display styles files: mos.7bit.dstyle5and mos.bw.dstyle5. Both files contain enough
different styles to handle a variety of MOS processes, including both nMOS and CMOS
(hence the mosfield). Mos.7bit.dstyle5is designed for color displays with at least seven
bits of color per pixel, while mos.bw.dstyle5is for black-and-white displays (stipple pat-
terns are used instead of colors).

3. Color Maps

The display styles file tells how to modify pixels, but this doesn’t completely
specify the color that will be displayed on the screen (unless the screen is black-and-
white). For color displays, the pixel values are used to index into a color map, which
contains the red, green, and blue intensity values to use for each pixel value. The values
for color maps are stored in color-map files and can be edited using the color-map-editing
window in Magic. See cmap (5)for details on the format of color-map files.

Each display styles file uses a separate color map. Unfortunately, some monitors
have slightly different phosphors than others; this will result in different colors if the
same intensity values are used for them. To compensate for monitor differences, Magic
supports multiple color maps for each display style, depending on the monitor being
used. The monitor type can be specified with the -m command line switch to Magic,
with std as the default. Color-map files have names of the form x.y.z.cmap1, where x
and y have the same meaning as for display styles and z is the monitor type. Over the last
few years monitor phosphors appear to have standardized quite a bit, so almost all moni-
tors now work well with the std monitor type. The color map mos.7bit.std.cmap1is the
standard one used at Berkeley.

4. Transparent and Opaque Layers

One of the key decisions in defining a set of display styles for a color display is how
to use the bits of a pixel (this section doesn’t apply to black-and-white displays). One
option is to use a separate bit of each pixel (called a bit plane) for each mask layer. The
advantage of this is that each possible combination of layer overlaps results in a different
pixel value, and hence a different color (if you wish). Thus, for example, if metal and
poly are represented with different bit planes, poly-without-metal, metal-without-poly,
poly-and-metal, and neither-poly-nor-metal will each cause a different value to be stored
in the pixel. A different color can be used to display each of these combinations. Typi-
cally, the colors are chosen to present an illusion of transparency: the poly-and-metal

- 2 -

Magic Maintainer’s Manual #3 September 19, 1990

color is chosen to make it appear as if metal were a transparent colored foil placed on top
of poly. You can see this effect if you paint polysilicon, metal1, and metal2 on top of
each other in our standard technologies.

The problem with transparent layers is that they require many bits per pixel. Most
color displays don’t have enough planes to use a different one for each mask layer.
Another option is to use a group of planes together. For example, three bits of a pixel
can be used to store seven mask layers plus background, with each mask layer
corresponding to one of the combinations of the three bits. The problem with this
scheme is that there is no way to represent overlaps: where there is an overlap, one of
the layers must be displayed at the expense of the others. We call this scheme an opaque
one since when it is used it appears as if each layer is an opaque foil, with the foils lying
on top of each other in some priority order. This makes it harder to see what’s going on
when there are several mask layers in an area.

The display styles files we’ve designed for Magic use a combination of these tech-
niques to get as much transparency as possible. For example, our mos.7bit.dstyle5file
uses three bits of the pixel in an opaque scheme to represent polysilicon, diffusion, and
various combinations of them such as transistors. Two additional bits are used, one each,
for the two metal layers, so they are transparent with respect to each other and the poly-
diff combinations. Thus, although only one poly-diff combination can appear at each
point, it’s possible to see the overlaps between each of these combinations and each com-
bination of metal1 and metal2. Furthermore, all of these styles are overridden if the sixth
bit of the pixel is set. In this case the low order five bits no longer correspond to mask
layers; they are used for opaque layers for things like labels and cell bounding boxes,
and override any mask information. Thus, for example, when metal1 is displayed it only
affects one bit plane, but when labels are displayed, the entire low-order six bits of the
pixel are modified. It’s important that the opaque layers like labels are drawn after the
transparent things that they blot out; this is guaranteed by giving them higher style
numbers in the display styles files.

Finally, the seventh bit of the pixel is used for highlights like the box and the selec-
tion. All 64 entries in the color map corresponding to pixel values with this bit set con-
tain the same value, namely pure white. This makes the highlights appear opaque with
respect to everything else. However, since they have their own bit plane which is com-
pletely independent of anything else, they can be drawn and erased without having to
redraw any of the mask information underneath. This is why the box can be moved rela-
tively quickly. On the other hand, if Magic erases a label it must redraw all the mask
information in the area because the label shared pixel bits with the mask information.

Thus, the scheme we’ve been using for Magic is a hierarchical combination of tran-
sparent and opaque layers. This scheme is defined almost entirely by the styles file, so
you can try other schemes if you wish. However, you’re likely to have problems if you
try anything too radically different; we haven’t tried any schemes but the one currently
being used so there are probably some code dependencies on it.

For more information on transparent and opaque layers, see the paper ‘‘The User
Interface and Implementation of an IC Layout Editor,’’ which appeared in IEEE Tran-
sactions on CAD in July 1984.

- 3 -

Magic Maintainer’s Manual #3 September 19, 1990

5. Glyphs

Glyphs are small rectangular bit patterns that are used in two places in Magic. The
primary use for glyphs is for programmable cursors, such as the shapes that show you
which corner of the box you’re moving and the various tools described in Tutorial #3.
Each programmable cursor is stored as a glyph describing the pattern to be displayed in
the cursor. The second use of glyphs is by the window package: the little arrow icons
appearing at the ends of scroll bars are stored as glyphs, as is the zoom box in the lower-
left corner of the window. We may eventually use glyphs in a menu interface (but don’t
hold your breath).

Glyphs are stored in ASCII glyph files, each of which can hold one or more glyph
patterns. Each glyph is represented as a pattern of characters representing the pixels in
the glyph. Each character selects a display style from the current display styles file; the
display style indicates the color to use for that pixel. See the manual page glyphs (5) for
details on the syntax of glyphs files.

The window glyphs are stored in files of the form windowsXX.glyphs. The XX
indicates how wide the glyphs are, and is set by the graphics driver for a particular
display. We started out with a windows7.glyphsand a windows11.glyphs. Since then,
display resolution has increased greatly so we have also created a windows14.glyphsand
a windows22.glyphs. The positions of the various glyphs in these files is important, and
is defined in the window module of Magic.

Programmable cursors are stored in files named x.glyphs, where x is determined by
the device driver for the display. Displays capable of supporting full-color cursors use
color.glyphs; displays that can only support monochrome cursors used bw.glyphs. The
order of the various glyphs in these files is important. It is defined by the files styles.hin
the misc module of Magic.

- 4 -

Magic Maintainer’s Manual #4:

Using Magic Under X Windows

Don Stark

Computer Systems Laboratory
Stanford, University
Stanford, CA 94305

This tutorial corresponds to Magic version 6.

Tutorials and man pages to read first:

Magic Tutorial #1: Getting Started
X(1)

Commands covered in this tutorial:

none

Macros covered in this tutorial:

none

1. Introduction

This document provides information on Magic’s X drivers that may be of help to
system maintainers.

2. Compiling the Correct X Driver for your system.

Unfortunately, it is not possible to link with both the X10 and X11 libraries, so you
will have to compile Magic differently depending on the version of X that you are run-
ning.

2.1. Compiling for X11

- 1 -

Magic Maintainer’s Manual #4 September 19, 1990

1. Add the flag -DX11 to misc/DFLAGS
2. Add -lX11 to magic/LIBS
3. Change the SRCS line in graphics/Makefile to ${BASE_SRCS} ${X11_SRCS}
4. Change the OBJS line to ${BASE_OBJS} ${X11_OBJS}
5. Change the POBJS line to ${BASE_POBJS} ${X11_POBJS}
6. Change the HELPER_SRCS line ${X11HELPER_SRCS}
7. Change the HELPER_SRCS line ${X11HELPER_PROG}
8. Compile the module graphics.o
9. Relink magic

2.2. Compiling for X10

1. Add the flag -DX10 to misc/DFLAGS
2. Add -lX10 to magic/LIBS
3. Change the SRCS line in graphics/Makefile to ${BASE_SRCS} ${X10_SRCS}
4. Change the OBJS line to ${BASE_SRCS} ${X10_OBJS}
5. Change the POBJS line to ${BASE_SRCS} ${X10_POBJS}
6. Change the HELPER_SRCS line ${X10HELPER_SRCS}
7. Change the HELPER_SRCS line ${X10HELPER_PROG}
8. Compile the module graphics.o
9. Relink magic

3. Troubleshooting the X Drivers

The following is a list of problems sometimes encountered in running Magic under
X and some suggestions about how to get around the problem.

3.1. X11 Driver

Fonts We have tried to pick a set of fonts that most machines running
X11 Revision 3 will have, but there is nothing to guarantee that
a given machine will have a font. If you’re getting "unable to
load font" messages, you will need to change the fonts that
Magic uses. The simplest way to do this is to specify them in
your .Xdefaults file as described in section 2.1. To change the
default values that Magic uses, change the "fontnames" array in
the file grX11su3.c of the graphics module. The program
xlsfonts will tell you what fonts are available on your machine.

Strange Color Effects Magic often co-exists rather uneasily with other X applications
because it is picky about which colors it is allocated. If possi-
ble, it tries to allocate the colors it requires out of the display’s
default colormap because this perturbs other applications the
least. If this fails, however, Magic makes its own colormap.
When this colormap gets installed is a function of the window
manager; most window managers install it when the cursor is in
the magic window. Unfortunately, there is no way to guarantee
that the window manager installs the magic colormap correctly;
if you get erratic colormap behavior, try using a lower number

- 2 -

Magic Maintainer’s Manual #4 September 19, 1990

of planes or reducing the number of colors that other applica-
tions use.

When magic’s colormap is being used, other windows may
change color, possibly to some unusable combination such as
black on black or white on white. This problem can sometimes
be ameliorated by changing the constants
X_COLORMAP_BASE and X_COLORMAP_RESERVED in
grX11su2.c; a more complete description of what these con-
stants do is included in that file. Values for these constants that
are incompatible with your machine will sometimes generate
Xerrors in XQueryColors.

Failure to prompt user for window position
Whether or not the designer is prompted for a window’s location
is dependent on the window manager. Certain window
managers, notablytwm, do not always do this.

3.2. X10 Driver

In general, the Version 10 driver is less reliable than the X11 one. If you have the
choice, you are better off running under X11.

grX2.GrXSetCMap: Failed to get color cells
Magic gives this error when it can’t get sufficient colors to run.
This can be caused by running Magic on a machine with an
insufficient number of planes (8 planes are generally required to
run a 7 bit dstyles file), or by having too many colors already
used by other applications. Try using only black and white
xterms, xclocks, etc., and see if the problem goes away.

Couldn´t get 7 planes; allocating by color
Certain X10 servers, most notably the VaxstationII-GPX, allo-
cate colors in such a way that Magic can never get the 7 color
planes that it wants. When this happens, Magic instead allo-
cates 128 colors. This is better than nothing, but not by much;
strange colors often result when layers overlap.

4. Acknowledgments

Many people share the credit (and the blame) for the Magic X drivers. The original
X10 port was done by Mark Linton and Doug Pan at Stanford University. Walter Scott
and Eric Lunow of Lawrence Livermore National Laboratories modified the driver and
the windows module so that magic windows act like normal X windows. Meanwhile,
Dave Durfee and Markus G. Wloka of Brown University improved the reliability of the
Stanford X10 driver and added support for a variable number of planes. Marco Papa of
USC converted the Brown X10 driver to X11. Concurrently, someone at the University
of Washington converted the Stanford X10 driver to X11. The X11 driver in this distribu-
tion is predominantly a merge of the UW driver with the multiwindow features of the
LLNL driver. Some of the ideas for supporting differing plane counts were borrowed
from the USC/Brown work. Thanks to the Digital Equipment Corporation Western

- 3 -

Magic Maintainer’s Manual #4 September 19, 1990

Research Laboratory (DECWRL) for use of their computer facilities, and to Mike Chow
of Apple Computer for the Macintosh II-specific changes.

- 4 -

Magic Technology Manual #1: NMOS

John Ousterhout

Computer Science Division
Electrical Engineeringand Computer Sciences

University of California
Berkeley, CA 94720

(Warning: Process details often change. Contact MOSIS
or your fab line to verify information in this document.)

1. Introduction

This document describes Magic’s NMOS technology. It includes information about
the layers, design rules, routing, CIF generation, and extraction. This technology is
available by the namenmos (run Magic with the shell commandmagic -T nmos). The
design rules described here are for the standard Mead and Conway NMOS process with
butting contacts omitted and buried contacts added. There is a single layer each of metal
and polysilicon. If you’ve been reading the Mead and Conway text, or if you’ve already
done circuit layout with a different editing system, don’t forget that these are not the
layers that actually end up on masks. Contacts and transistors are drawn in a stylized
form that omits implants, vias, and buried windows.

2. Layers and Design Rules

2.1. Metal

3

3

There is only one layer of metal, and it is drawn in blue. Magic accepts the names
metal or blue for this layer. Metal must always be at least 3 units wide and must be

- 1 -

Magic Technology Manual #1: NMOS September 19, 1990

separated from other metal by at least 3 units.

2.2. Polysilicon

2

2

Polysilicon is drawn in red, and can be referred to in Magic as eitherpolysilicon or
red. It has a minimum width of 2 units and a minimum spacing of 2 units.

2.3. Diffusion

2

3

Diffusion is drawn in green, and can be referred to in Magic as eitherdiffusion or
green. It has a minimum width of 2 units and a minimum spacing of 3 units.

2.4. Contacts to Metal
4

4

4

polysilicon

diffusion

4

Contacts between metal and polysilicon, and between metal and diffusion, have
similar forms. Poly-metal contacts can be referred to aspmc or poly_metal_contact;
they are drawn to look like metal running on top of poly, with an ‘‘X’’ over the area of
the contact. Diffusion-metal contacts are similar, except that they look like metal run-
ning on top of diffusion, and have namesdmc and diff_metal_contact. Contacts are
drawn differently in Magic than they will appear in the CIF: you donot draw the via
hole. Instead, you draw the outer area of the metal pad around the contact, which must

- 2 -

Magic Technology Manual #1: NMOS September 19, 1990

be at least 4 units on each side. Magic will fill in the appropriate via when CIF is gen-
erated. If you draw contacts larger than 4 units on a side, Magic will fill in as many 2-
by-2 CIF via holes (with 2-unit spacings) as it can. Contacts areas must be rectangular in
shape: contacts of the same type may not abut.

An additional kind of contact, calledglass_contact, is used to generate holes in the
overglass layer for use in bonding to pads. This layer is drawn as gray stripes over blue,
and includes both metal and the overglass hole.

2.5. Transistors

Diffusion

Polysilicon

2 2

2

2

1

Efet or Dfet

Dfet or Dcap

Efet

3

There are three transistor structures in the NMOS technology. Enhancement
transistors are known by the namesefet and enhancement_fet, and are drawn to look
like red over green, with green stripes. Youget efet automatically whenyou paint poly
over diffusion or vice versa. Depletion transistors are known by the namesdfet and
depletion_fet, and are drawn the same way, except with yellow stripes. A third type of
material is calleddepletion_capacitor or dcap. It is displayed with yellow crosses over
the transistor area, and is identical to dfet except that there are no overhang design rules
for it since it is assumed to be used only as a capacitor. You do not drawn any implants
in Magic, but just use a different material for the transistor. Magic will generate the
implants automatically. Alltransistors must be at least 2 units on each side, and there
must be a poly or diffusion overhang for 2 units on each side of efet or dfet (this is not
required for dcap). Poly must be separated from diffusion by at least one unit except
where it is forming a transistor. Dfet and dcap must be at least 3 units from efet in order
to keep the implant from contaminating the enhancement transistor.

- 3 -

Magic Technology Manual #1: NMOS September 19, 1990

2.6. Buried Contacts

3

Poly

Polysilicon

Diffusion

2

2

Dfet

3

Buried contacts go by the namesbc and buried_contact. They are drawn in a
brownish color (the same as transistors), except with solid black squares over their area.
As with other contacts, you draw just the area where the two connecting materials (poly
and diffusion) overlap; Magic will generate the CIF buried window, which is actually
larger than the overlap area. Buried contacts come in two forms. The normal form is 2
units on a side, and no poly or diffusion overhang is required. The second form is used
only next to depletion transistors, and is a 3-by-2 structure abutting the depletion transis-
tor. This form is a little controversial,since it results inlarger-than-normal variations in
the size of the depletion transistor. As a consequence, Magic reports design-rule viola-
tions wherever buried contacts abut depletion transistors less than 4 units long. In butting
bc-dfet structure, you should measure the transistor length from the bc-dfet boundary.

WARNING: there is one additional rule for buried contacts that is NOT enforced
by Magic. Where diffusion enters a buried contact, there must be no unrelated polysili-
con for 3 units on that side of the buried contact. This rule is necessary because the
buried window extends outward from the buried contact by one unit on the diffusion side,
and polysilicon must be far enough away to avoid shorting to the diffusion through the
buried window. Unfortunately, there is no way to check this rule in Magic without being
extremely conservative (the rule would have to require no poly whatsoever on the diffu-
sion side, even if the poly was connected to the buried contact). So, for now, this rule is
not checked. Be careful!

- 4 -

Magic Technology Manual #1: NMOS September 19, 1990

2.7. Transistor Spacings
Diffusion

1

1

Efet
Dfet

Dcap

4

Efet

Transistors must be spaced at least 1 unit from any contact to metal, in order to keep
the contact from shorting the transistor. In addition, buried contacts must be at least 4
units from enhancement transistors in the diffusion direction. This rule applies only to
the side of buried contact where diffusion leaves the contact.

2.8. Hierarchical Constraints

The design-rule checker enforces several constraints on how subcells may overlap.
The general rule is that overlaps may be used to connect portions of cells, but the over-
laps must not change the structure of the circuit. Thus, for example, it is acceptable for
poly in one cell to overlap poly-metal contact in another cell, but it is not acceptable for
poly in one cell to overlap diffusion in another (thereby forming a transistor).

For contacts, there are additional restrictions. A contact in one cell may not overlap
a contact in any other cell unless the two contacts have same type and they occupy
exactly the same area. Partial overlaps are not permitted, nor are abutting contacts of the
same type (contacts of different types may abut, as long as the abutment doesn’t violate
any other design rules). The contact restrictions are necessary to guarantee that CIF can
be generated correctly in a hierarchical fashion.

3. Routing

If you use Magic’s automatic routing tools on an NMOS design, the routing will be
run in metal and polysilicon, with metal as the primary layer. The routing will be placed
on a 7-unit grid.

4. Reading and Writing CIF

There is only one CIF output style available in the NMOS technology:lambda=2.
The CIF layers in this style, and their meanings, are:

- 5 -

Magic Technology Manual #1: NMOS September 19, 1990

��
Name Meaning��
NP polysilicon
ND diffusion
NM metal

depletion implant: generated around depletion
NI

transistors and depletion contacts
contact via: generated as small squares inside

NC
poly-metal contacts and diffusion-metal contacts

NB buried window: generated around buried contacts
NG overglass via: generated for overglass contacts���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

To see exactly where each CIF layer is generated for a particular design, use the:cif see
command. There is also just one CIF input style. It is calledlambda=2 and can be used
to read files written by Magic in thelambda=2 style, or files written by Caesar using the
standard NMOS technology with a scale factor of 200.

5. Extraction

Transistors of typeefet or dfet in the NMOS technology must have at least two dif-
fusion terminals. A diffusion terminal is a contiguous region along the perimeter of the
transistor channel that connects to diffusion, as shown below:

terminal 1 terminal 3

terminal 2

terminal 2

terminal 1

fet

diffpoly

3 diff terminals

2 diff terminals

A transistor may have more than two diffusion terminals, in which case it is modeled as a
collection of two-terminal transistors. If only one diffusion terminal is present, the the
extractor flags this as an error and outputs a transistor with the source and drain shorted
together.

Transistors of the special typedcap may have as few as one diffusion terminal.
Although their normal use is as capacitors, the extractor will output them as though they

- 6 -

Magic Technology Manual #1: NMOS September 19, 1990

were adfet. It is up to simulation programsto compute thecapacitance of adcap from
the area and perimeter of its channel.

The NMOS technology file currently contains little information on parasitic cou-
pling capacitances. As a result, overlapcapacitance, and sidewall overlap capacitance
will always be zero.

- 7 -

Magic Technology Manual #2: Scalable CMOS

Shih-Lien Lu

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90291

John Ousterhout

Computer Science Division
Electrical Engineeringand Computer Sciences

University of California
Berkeley, CA 94720

1. Introduction

NOTE: This manual is no longer maintained by the Magic team, as MOSIS has
taken over responsibility for it. For the latest copy, send an electronic mail message to
"mosis@mosis.edu" with the following lines:

REQUEST: INFORMATION
TOPIC: SCMOS_MANUAL.INF
NET-ADDRESS: <put your e-mail address here>
REQUEST: END

The Net-Address line is optional -- leave it out if you aren’t sure of your e-mail address.
In almost all cases MOSIS can figure out your return address.

The latest technology file is also available. Send a message similar to the above
message, but request topic SCMOS.TECH instead of SCMOS_MANUAL.

- 1 -

Other Reports In This Series

September, 1990

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

- 1 -

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

- 2 -

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

‘‘Spritely NFS: Implementation and Performance of Jeffrey Y.F. Tang and J. Leon Yang.

Cache-Consistency Protocols.’’ WRL Research Report 90/1, January 1990.

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

‘‘Available Instruction-Level Parallelism for Super- Tracy Larrabee.

scalar and Superpipelined Machines.’’ WRL Research Report 90/2, February 1990.

Norman P. Jouppi and David W. Wall.
‘‘Two Papers on Test Pattern Generation.’’WRL Research Report 89/7, July 1989.
Tracy Larrabee.

‘‘A Unified Vector/Scalar Floating-Point WRL Research Report 90/3, March 1990.

Architecture.’’
‘‘Virtual Memory vs. The File System.’’Norman P. Jouppi, Jonathan Bertoni, and David
Michael N. Nelson.W. Wall.
WRL Research Report 90/4, March 1990.WRL Research Report 89/8, July 1989.

‘‘Efficient Use of Workstations for Passive Monitor-‘‘Architectural and Organizational Tradeoffs in the
ing of Local Area Networks.’’Design of the MultiTitan CPU.’’

Jeffrey C. Mogul.Norman P. Jouppi.
WRL Research Report 90/5, July 1990.WRL Research Report 89/9, July 1989.

‘‘A One-Dimensional Thermal Model for the VAX‘‘Integration and Packaging Plateaus of Processor
9000 Multi Chip Units.’’Performance.’’

John S. Fitch.Norman P. Jouppi.
WRL Research Report 90/6, July 1990.WRL Research Report 89/10, July 1989.

‘‘1990 DECWRL/Livermore Magic Release.’’‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,sor with High Ratio of Sustained to Peak

Don Stark, Gordon T. Hamachi.Performance.’’
WRL Research Report 90/7, September 1990.Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine
Parallelism and Its Effect on Performance.’’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’
Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.

WRL Research Report 89/14, September 1989.

- 3 -

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

