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Abstract

Effective management of a local area network (LAN) requires not only a
protocol to manage the active entities, but also a means to monitor the LAN
channel. This is especially true in shared-channel LANs, such as Ethernet,
where the behavior of the LAN as a whole may be impractical to deduce
from the states of the individual hosts.  Passive monitoring can be done using
either a dedicated system or a general-purpose system.  Dedicated monitors
have been favored for several reasons, but recent workstations, when care-
fully programmed, are sufficiently powerful to serve this function.  Using a
workstation offers high-performance graphics and a more flexible environ-
ment for collecting and presenting LAN behavior.

This research report is a preprint of a paper to appear in the Proceedings of
the ACM SIGCOMM ’90 Symposium on Communications Architectures and Protocols.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery.  To copy otherwise, or to republish, requires a fee
and/or specific permission.
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1. Introduction

Now that computer networking is nearly ubiquitous, network management is a critical
problem. Computer networks are complex, asynchronous, heterogeneous systems, and so are
both failure-prone and extremely hard to diagnose.  Even when operating correctly, they are hard
to understand.  Because good network protocols are robust in the face of partial failures,
problems in a network may manifest themselves not as overt failures, but as performance
degradations.

Effective management of a local area network (LAN) requires not only a protocol to manage
the active entities, but also a means to monitor the LAN channel.  This is especially true in
shared-channel LANs, such as Ethernet, where the behavior of the LAN as a whole may be im-
practical to deduce from the states of the individual hosts.  The gross behavior of a network is a
complex function of the behavior of the individual components, including both active com-
ponents (such as end-hosts, routers, and bridges) and passive components (primarily, the access
method of the data link itself).  Only by monitoring the channel itself can one successfully
measure channel loading and traffic patterns, or detect incorrect behavior of active nodes.

1Timing relationships, in particular, can be measured precisely only by non-intrusive means .

Several vendors now offer dedicated systems for passive monitoring of popular LANs.  (Such
systems include, among others, the Network General ‘‘Sniffer’’, the Novell ‘‘LANtern’’, the
Hewlett-Packard HP4971S, and the LANWatch program from FTP Software).  A dedicated
monitor can be designed using special-purpose hardware and software to provide the requisite
performance for monitoring thousands of events per second.  On the other hand, special-purpose
solutions tend to be expensive (because the market is smaller) and inflexible.  Most of the exist-
ing products are based on IBM-PC technology; while this allows the use of some additional
software, it is hard to integrate these monitors with other tools.

1.1. Why use a workstation?

Computer workstations have been riding a steep curve of rising performance at approximately
constant cost.  Unlike special-purpose hardware, workstations benefit from a larger market,
which drives performance up and price down.  Unlike dedicated monitoring software, worksta-
tions provide integrated software environments that support multiple concurrent tasks, easy inter-
connection of tools, and powerful user interfaces.  Particularly, workstations have high-
resolution, high-performance graphics systems, allowing extremely effective presentation of
complex information.  Workstations also provide a convenient program development environ-
ment, which in turn encourages the development of special-purpose software tools that might
otherwise be too hard to obtain.

Finally, workstations are ubiquitous, unlike dedicated monitoring systems.  Almost by defini-
tion one is assured of the availability of a workstation on a LAN; rather than having to locate,
move, and install a dedicated monitor when trouble strikes, or perhaps even wait for one to be

1Future LAN technologies, such as those with mesh organizations [17], may not permit non-intrusive monitoring;
this requires further research.
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purchased, a system manager can use any available workstation for LAN monitoring, if the ap-
propriate software exists.

Vendors of high-performance workstations are beginning to provide network monitoring
software. Although dedicated monitors for the moment may provide the broadest set of tools,
soon workstations will overtake the dedicated systems. The price/performance ratio already
favors workstations, and the economics of marketing suggests that small vendors will have an
easier time selling inexpensive software than expensive dedicated systems.

This paper describes the design of several network monitoring programs for use on worksta-
tions. We are particularly concerned with techniques to achieve good performance and accurate
results. We do not mean to compare our performance and accuracy to that of other systems, but
rather to show how we obtained the best possible results in our own framework.  We also present
some preliminary results of research into efficient ways of displaying network connectivity,
based on recent work in graph-drawing algorithms.

1.2. Previous work

Use of workstations for network monitoring goes back to the first personal computer, the
Xerox Alto [19]. At least three programs were written for the Alto to monitor the Experimental
Ethernet [14]:

• EtherWatch: was a standalone program that displayed Ethernet packets in octal, as
they were received.  A filter could be set to select only those packets matching a
particular value at a specified offset, or those to or from a specific host.

• PeekPup: was specific to the Pup protocol family [2]. It was not a real-time
program; the user would specify a host address, and the program would buffer the
last 200 packets to or from that host.  When the user believed that a useful trace had
been gathered, the program was terminated and the trace written to a text file, con-
taining the Pup packet header fields in a human-readable format, Because this
program, unlike EtherWatch, did not display the packets as received, it was able to
capture most of the relevant traffic.

• Etherload: displayed a bar whose height represented the current average load on
the Ethernet; the averaging period could be selected by the user.

Only the last of these programs made serious use of the graphics capability of the workstation.
Although figures in a paper on Ethernet performance [16] shows graphs of network load versus
time, a histogram of packet sizes, and a source-destination traffic matrix, apparently these were
never implemented as real-time displays.

In the early 1980’s, as Altos migrated to a few universities, their software inspired similar
programs for other platforms.  At MIT, the PC/IP package for IBM PC-style computers included
a program similar to EtherWatch and PeekPup; this program later became a commercial product
called LANWatch [8]. At Stanford, several generations of standalone packet-tracing programs
were developed, first for the original Sun workstation [1] and then for the V-system [5]. At least
one of these programs used the graphics display, to plot a matrix showing which hosts were
communicating.
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Although the programs listed above ran on workstation hardware, none ran as a user-level
process under a multitasking operating system.  The rise of Unix -based workstations gave birth

to several lineages of passive monitoring programs.

One line started with the etherfind program [18], a packet-tracing program that prints the
headers of packets as they go by on the network. Etherfind allows the user to select packets
based on a variety of predicates. Etherfind was also the initial basis for tcpdump [11]; the two
programs have since evolved while cross-fertilizing each other.

The output of a packet-tracing program may be filtered through an analysis program.  Such a
program could produce graphical output; while this technique may be too inefficient for real-
time displays, it works nicely for off-line processing.  For example, see the plots of TCP se-
quence numbers versus time in [10]. One can also apply artificial-intelligence techniques to
analysis of traces [9].

Another approach to passive monitoring is to gather statistical information instead of packet
traces. This is the goal of statspy [3, 4], which maintains a variety of ‘‘statistical objects’’
specified by use of a special configuration language.  For example, one could collect counts
describing a matrix of source and destination hosts, and the traffic between communicating pairs.

Combining the collection of statistical information with a graphical display provides the func-
tion of the Alto EtherLoad program. For example, the traffic [18] program displays bar graphs
representing the current Ethernet load, optionally broken down by host or packet type, and fil-
tered according to a limited set of criteria.

2. Tapping the network

The key to the flexibility of workstation-based network monitoring is to be able to write ap-
plications as user code, rather than as part of the operating system kernel.  To support this, the
operating system must provide a powerful, efficient mechanism by which user programs can see
packets from the network.  (Other researchers [20] have instead implemented counters in the
kernel for specific events; this can be quite efficient but is not flexible enough to support most
applications.)

Such a ‘‘wire-tapping’’ facility should provide:

• ‘‘Promiscuous-mode’’ support: Normally, a network interface provides only
packets destined to its own host so as not to overload the workstation with useless
packet interrupts.  Many LAN interfaces, however, can be put into a ‘‘promiscuous
mode’’ in which every packet on the network is passed to the host software. Since
this is not the normal mode, the kernel must provide a means for a monitoring
program to select it.

• Filtering: An application process may not be interested in every packet on the net-
work; for example, it might need only the TCP packets or only the packets between
a specific set of hosts.  Although the wire-tap cannot be expected to do arbitrary
filtering, by eliminating large classes of uninteresting packets it can significantly in-
crease performance.
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• Demultiplexing: Workstations, unlike dedicated or PC-based systems, are mul-
titasking; one might want to run several monitoring applications at once.  The access
mechanism should support this by efficiently demultiplexing packets, based on filter
predicates, to the appropriate applications [15].

• High-bandwidth transfers: A monitor should be able to keep up with the peak
traffic rates on the network.  Usually, monitoring applications are concerned with
the packet headers, rather than the entire packet contents, so it is most important to
provide the headers at high bandwidth.  This can be done by allowing the applica-
tion to request only a prefix of the packets, thus allocating the available processing
bandwidth to the useful information.  It is also important to provide the fastest pos-
sible channel from kernel space to user space.

• Buffering: A workstation is not a real-time system; there will be times when pack-
ets arrive and the monitoring application is not immediately scheduled to run.  To
avoid lost packets, the kernel must queue them.  While the capacity of the system
over periods of seconds or more is determined by the average rate at which it is able
to empty the queue, the system’s capacity for handling brief bursts of packets is
determined solely by the effective queue size.  This in turn depends on the correct
management of memory resources.

• Device independence: Modern operating systems exist to abstract away the ir-
relevant details of the underlying hardware without hiding too much function or per-
formance. Network monitoring is no different; the application writer should not be
concerned with which network interface chipset is in use, and monitoring applica-
tions should be portable between hardware implementations.

2.1. The packet filter

Our choice of access mechanism was driven by these criteria (and by our ability to modify the
mechanism to meet them).  We use a Unix-based system incorporating the ‘‘packet filter’’ [15],
first developed at Carnegie-Mellon University in 1980.  This is not the only possible mechanism;
for example, Sun Microsystems Inc. provides in their operating system the ‘‘Network Interface
Tap’’ (NIT) [18]. The NIT is similar in many ways to the packet filter (at one point, they had
source code in common, although the programming interfaces of the two mechanisms have
diverged considerably).

Figure 1 shows how the packet filter is related to other parts of the system.  Packets received
from the network are passed through the packet filter and distributed to user processes; code to
implement network monitoring applications lives in each process.

The packet filter described in [15] had evolved for use as a protocol prototyping facility, and
had to be modified to support network monitoring.  It already provided filtering, demultiplexing,
device independence, and most of the necessary support for high-performance monitoring.  Sub-
sequent modifications (all invoked by the application using ioctl system calls) include:

• Promiscuous-mode support: Not all packet-filter applications are network
monitors; some might be confused by receiving packets not destined for the local
host. To avoid confusion, an application must specifically request receipt of packets
that would have not have been received by a normally-configured interface.

4



EFFICIENT USE OF WORKSTATIONS FOR PASSIVE MONITORING OF LOCAL AREA NETWORKS

Device Driver
Packet Filter

Kernel

Network

Protocol
Prototype

User Processes

Network
Monitor

Network
Monitor

Figure 1: Relationship between packet filter
and other system components

Putting a LAN interface into promiscuous mode immediately exposes the worksta-
tion to a potentially overwhelming load of interrupts.  Since we do not want to do
this unless a monitoring application is actually running, the packet filter keeps track
of how many applications have requested receipt of promiscuously-received pack-
ets, and puts the interface into promiscuous mode only while at least one such ap-
plication is running.

• Packet truncation: In network monitoring, unlike protocol implementation, ap-
plications usually are concerned only with the first few bytes of each packet.  Such
applications can specify a ‘‘truncation’’ length; packets longer than this will be trun-
cated before delivery to the application.

• Queue-length control: Different kinds of applications have different requirements
for burst-handling.  If one is tracing a connection to find a protocol bug, or trying to
measure the precise load on a heavily-loaded network, it is important to avoid drop-
ping packets.  In other cases, occasional dropped packets may be harmless.  Since
longer queues imply larger memory requirements, it is important for the application
to be able to balance these considerations and choose the most appropriate queue
length. The packet filter allows each application to select its queue length, up to an
arbitrary limit of 255 packets; the system manager may restrict unprivileged users to
lower limits, to avoid overcommitting memory resources.

• Precise information: A packet filter application can request that each packet is
preceded by a header record that contains the length of the packet (before trun-
cation), the number of packets missed by the interface (because no buffer was avail-
able), the number dropped by the kernel (because the queue was full), flags indicat-
ing if the packet was received as a broadcast, multicast, or promiscuously; and the
time that the packet was received by the kernel.  This last field is most interesting,
because (since user processes may be suspended for fairly long intervals) it is other-
wise impossible to attach accurate timestamps to the packets.  Without good time-
stamps, accurate calculation of LAN loading is impossible.

The current version of the packet filter is integrated with the Ultrix kernel, and is now avail-
able as part of the standard Ultrix system.
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2.2. Performance issues

The performance of a network monitor is most simply defined as its ability to not lose packets,
while still providing sufficient CPU cycles to process, store, or visualize the network traffic.
Packet-handling ability can be characterized by several measures:

• The longest loss-free burst length (number of back-to-back packets)

• The loss-free packet reception rate

• The maximum packet reception rate
The situation is complicated because all of these measures can be either bandwidth-limited or
packet-rate limited.  For example, a given system might be able to handle more packets per burst
for longer packets than for shorter ones (because with short packets, the time between arrivals is
shorter); the same system might be able to handle more short packets per second than long ones
(because less data-copying is required for short packets).  Although one can often assume a
bimodal distribution of packet sizes on a LAN, a monitoring system should be able to handle
anomalous situations: both high bandwidths and high packet rates.

The maximum loss-free packet reception rate is usually lower than the maximum packet
reception rate, because most LANs carry packets of varying size.  A system is most vulnerable to
losing a packet following the reception of a burst of short ones, since it might take a while to
reenable the LAN interface.  Because some applications do not need to see every packet in order
to be useful, one might expect that once the network load exceeds a monitoring system’s max-
imum loss-free rate, it still continues to function.  This is not easy to guarantee, since the system
could find itself spending all its time processing network interrupts, leaving no time for the ap-
plication; the useful packet rate drops to zero in this case.  The easiest way out of this trap is a
fast CPU; otherwise, clever programming might provide some fairness.

The packet reception rate is determined by several bottlenecks:  interrupt handling, context
switching (between user processes, but also between kernel and user contexts as the result of
system calls), and data copying (to move packet data from kernel space to user space).

All these bottlenecks are of course amenable to careful software implementation, but several
tricks serve to redefine the problems in such a way as to significantly reduce them.  First, the use
of packet truncation can reduce the amount of data copying by an order of magnitude or more,
since, usually, the bulk of the bytes transmitted over a LAN are data bytes.  Second, the use of
kernel-level filtering can reduce the number of packets delivered to an application that is only
interested in a subset of the traffic.

More important is the use of ‘‘batching’’ to amortize the cost of interrupts and context
switches. Most well-designed device drivers already do this for interrupts: once the interrupt
service routine has processed one packet, it checks to see if other packets have been received by
the interface before re-enabling interrupts.  This avoids having to pay the cost of restoring the
processor state and then immediately saving it again, as well as the cost of dispatching control,
simply to return to the current subroutine. Even on a high-end workstation (the DECStation
5000/200, based on the MIPS R3000 CPU [13], running Ultrix), we have measured about 9
uSec. from the time that an interface asserts its interrupt signal to the execution of the first in-
struction in the interrupt service routine.
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The same trick can be applied to the software interface between the operating system kernel
and the user process.  The packet filter driver provides the option of reading queued packets in
‘‘batches’’: if more than one packet is queued in the kernel, and the user’s buffer is large enough,
all the queued packets are copied into the buffer in one system call.  This eliminates the overhead
of N-1 system calls when N packets are queued.  It actually performs better as the load increases;
as the queue gets closer to being full, the overhead per packet decreases.  Figure 2 depicts per-
packet overheads without batching; figure 3 shows how these are reduced when batching is used.

Network Kernel
Monitor
process

Read

Read

Read

Figure 2: Delivery without received-packet batching

Network Kernel
Monitor
process

Read

Figure 3: Delivery with received-packet batching

If the hardware is fast enough, the maximum loss-free burst length depends mostly upon the
amount of the kernel-space buffering available.  As long as the buffer does not fill, it is not
necessary to stop processing interrupts and schedule the application process in order to avoid
discarding packets.  Since applications can run arbitrarily slowly, once the kernel queue fills it is
much harder to handle the rest of a burst.

Remarkably, though, it is possible to handle a burst that is far longer than the maximum queue
length! This is because the queue can be drained from one end into the user-space buffer ‘‘in
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parallel’’ with being filled at the other from the LAN, if there are spare CPU cycles available
after processing interrupts.  Since the data-copying part of the system call interface is coded so as
not to lock out insertion of new queue items (the critical sections that require locking can be
extremely short), the packet filter can handle a burst of packets up to the size of the user-space
buffer.

When packet truncation is used, a lot of packet headers can be copied into a user-space buffer
of moderate size (one thousand Ethernet headers, with associated overhead information, require
only 36K bytes of buffer).  With a queue limited to 32 entries, we have measured as many as 58
packets received in one loss-free batch; potentially, an entire burst of thousands of packets could
be received in one batch.  Of course, if the application is busy processing one set of packets
when another large burst arrives, the fill/drain parallelism may not be available in time to avoid
lost packets.

3. Efficient and correct calculation of network loading

One of the simplest and most useful indications of the performance of a multi-access network
is its ‘‘load average.’’  This is the percentage of the time that the channel is in use, over a
suitably chosen period of time.  (If this sampling interval is too short, the apparent load will often
be 100%, since during the transmission of a packet the channel is continuously in use.)  Figure 4
plots several minutes of load averages on a typical Ethernet; each tick represents a one-second
averaging interval (horizontal scale divisions are 60 seconds apart).

Figure 4: Plot of Ethernet load versus time

On its face, this is not a difficult problem: to calculate the load average over a particular inter-
val, one simply measures the number and lengths of packets that are on the channel during the
interval, calculates the total channel occupancy, and divides that by the interval length (see
figure 5).  It is not as simple as that.

3.1. Sources of Inaccuracy

Inaccuracy in this calculation can arise from several sources intrinsic to the problem:

• ‘‘Invisible’’ channel occupancy: On contention-access LANs such as Ethernet,
sometimes the channel is occupied without actually carrying useful data. Some of
these costs are fixed (e.g., the inter-packet gap) and therefore calculable; one that is
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Per-Packet Overhead = 192 bits
96 bits for Inter-frame spacing
64 bits for Preamble
32 bits for Frame Check Sequence

7bit-rate = 10 bits/sec.

Duration of packet = (packet bits + Overhead)/bit-rate

Figure 5: Computation of Ethernet load

not is the time spent resolving collisions.  Packet fragments resulting from collisions
or other errors may, in principle, be counted just as are normal packets; in practice,
many Ethernet interfaces hide these packet fragments from the host software.  This
is one disadvantage of using a workstation: the hardware is not always designed to
support network monitoring.

When a contention-access LAN is lightly loaded, invisible packets do not often oc-
cur. Inaccuracy is worst when the load (and hence the contention) is high; unfor-
tunately, this is the situation where accurate information is most necessary.

• Lost packets: Any packets dropped by the system due to queue overflow are
clearly not going to be counted accurately.  The best solution is to engineer a
monitoring system capable of handling the full load.  Failing that, it is possible to
estimate the unmeasured load based on the number of packets dropped, and the
number of bytes they contained (the packet filter provides the former but not the
latter).

Inaccuracy can also arise from a poor choice of algorithm:

• Inaccurate timestamping: In a real-time system, one can reliably estimate the time
that passes from the instant that the packet leaves the channel to the instant that a
network monitoring process sees the packet. Not so in a workstation, which is a
time-sharing system; since the application process runs at the whim of the scheduler,
it may be seconds between the reception of a packet and its processing by the ap-
plication. Again, the effect is worse with increasing load: if the application is doing
the timestamping, and it doesn’t run for a while because the kernel is handling lots
of interrupts, packets received over several sampling intervals would all be assigned
to one interval.

This means that packets must be timestamped by the kernel, at a consistent point
during the interrupt service routine; otherwise, it is impossible to reliably assign a
packet to the correct sampling interval.

• Poor choice of sample interval: In a time-sharing system, it may be hard to
guarantee that an application process gets scheduled on a regular basis.  Thus, if the
times marking the divisions between sampling intervals are chosen asynchronously
by the application (either by software interrupts, or by polling a clock), they will
tend not to fall at precisely regular intervals (again, worsening with increasing load).
The application can correct for this by checking the clock and thus using the actual
interval length, instead of the nominal one, in load calculations.  This is not entirely
satisfactory; since the calculated load average depends upon the length of the
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averaging interval, the apparent average may vary independently of the underlying
load. (That is, as the interval shrinks both the peak values and the variance get
larger.) It may also be impossible to avoid involuntary suspensions, and thus un-
measured time intervals, between checking the clock and reading the counters.

Arbitrary choice of the divisions between intervals also makes it nearly impossible
to calculate true peak load averages; the packets making up a peak may be split into
two intervals, thus hiding the existence of a peak (see figure 6).  The only way to
detect true peaks is to calculate a running load average that is valid at all instants,
rather than calculating the load average at fixed intervals.  The same argument ap-
plies to the calculation of the instantaneous packet rate, and the instantaneous rate at
which bytes are being transferred.

The algorithm we developed was motivated, in particular, by these two problems.

Real
peak

Averaging
interval

Sampled
peak

Time

Lo
ad

Figure 6: Poor choice of interval hides actual peak

3.2. An accurate algorithm

In this section we describe the ‘‘loadring’’ algorithm, so called because it uses a ring buffer to
maintain recent history of network events.  This algorithm depends upon kernel-provided time-
stamps on each packet; it solves the ‘‘choice of sample interval’’ problem by using these time-
stamps to mark interval boundaries, and by using the stored history to maintain a correct running
average. The algorithm also accurately computes instantaneous packet rates and bytes-
transferred rates.

The algorithm is most easily understood as maintaining invariants on several data structures.
The primary data structure is a ring buffer of packet information records: each record contains
the timestamp and length of a packet.  The records are contained in the ring buffer in the order
they are received.

The ring buffer contains only those records about packets received during the preceding T
seconds, where T is the averaging interval.  The algorithm preserves this invariant whenever a
packet record R is added to the ring, by removing all packet records with timestamps more than
T seconds older than that of record R. Because the time base comes from the timestamps on
packets being added to the ring, not from a clock read by the application, accurate load average
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and rate values may be calculated even though the application might be suspended for much
longer than T seconds.

The other data structure is a set of counters in addition to the ring buffer.  The invariant on
these counters is that they reflect the total number of bytes and packets currently represented in
the ring buffer.  Each time a packet is added to the ring, the algorithm increments the counters
correspondingly; each time a packet is removed from the ring, it decrements the counters.

The counters accurately keep track of the load during the averaging interval.  Thus, the
counters themselves may be sampled at more or less arbitrary intervals without skewing the
results. If one wants to track actual peak rates, it is simple enough to maintain a second set of
values that are updated whenever a counter surpasses the previous maximum.

If one wants to simultaneously maintain load averages over several different averaging
periods, several periods may be represented in a single ring buffer. In addition to the usual two
pointers into the buffer (one for the beginning and one for the end), there would N-1 pointers
representing additional intervals.  An additional set of counters would be associated with each of
these pointers; as packets age, they cross the boundaries represented by these pointers and their
values are subtracted from the counter for the smaller interval. This extension requires storage
proportional to the longest interval, and processing proportional to the number of intervals (al-
though certain overheads may be amortizable).

3.3. Subtle issues

Although the algorithm as described works properly when packets arrive at a reasonable rate,
care must be taken to ensure that it continues to work when the rate is either too high or too low.

The ring buffer must contain sufficient slots to hold the maximum number of packets that
could possibly be received in the averaging period.  An Ethernet can carry up to 14880 packets
per second, under extremely contrived conditions.  This should be increased slightly to account
for the resolution of the timestamps (if the resolution is, say, 10 milliseconds, then up to 1.01 real
seconds could pass between two timestamps separated by 1.00 apparent seconds).

If packets arrive very infrequently, there may not be enough ‘‘addition’’ events to cause the
removal of stale entries from the ring buffer; a packet will persist in the ring until at least the
arrival of the following packet. If packets are arriving less often than the counters are being
sampled, the counters would erroneously indicate a non-zero load during those intervals when no
packets arrive at all.  To prevent this, one must check the timestamps of entries in the ring, and
the discard stale entries, whenever the counters are read.

It is important to choose an averaging interval that is much larger than the time it takes to
transmit one maximal-length packet.  Otherwise, the apparent peak loads will be misleadingly
high. For example, if the interval is shorter than the transmission time, then whenever a maximal
packet is received the calculated load will be more than 100%.  Using intervals on the order of
tenths of seconds, or more, is sufficient for practical purposes.
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3.4. Performance

The loadring algorithm takes more CPU time and more memory than an algorithm that simply
maintains a counter which is cleared at the start of each interval.  The memory cost is easy to
quantify: at 12 bytes per entry, 178560 bytes are required for a one-second averaging interval.
This is not onerous for a modern workstation.

If, however, one wants to break the load down by host, maintaining a separate ring buffer for
each host, then the memory requirements would be excessive.  To avoid this, we developed the
‘‘augmented loadring’’ algorithm.  Only one ring buffer is maintained, but a separate set of
counters is maintained for each host; the appropriate counters are updated as the packet records
are added and removed from the ring buffer.  Because packets must be matched with counters at
removal time, the ring buffer entries must contain an identification field, increasing their size to
16 bytes per entry.

Processing costs depend on CPU speed, and somewhat on clever coding and compiler op-
timization. We profiled the routine that updates the ring buffer, compiled for the DECStation
5000/200 (MIPS R3000).  The average invocation took 120 instructions, and about 20

2usec./packet . The minimum inter-arrival time on an Ethernet is 67 usec., but the other process-
ing required averages about 104 usec./packet, so this system cannot keep up with the maximum
packet rate.  The load-ring algorithm is not the primary bottleneck; even with packet-batching,
the system call overhead still dominates.

Fortunately, it is rare to find an Ethernet loaded entirely with tiny packets; since the loadring
algorithm has fixed overhead per packet, it actually does quite well in practice.  Measuring an
Ethernet with synthetic loads, we have observed loads as high as 86.5% and data rates as high as
8.3 Mbits/sec.  without any lost packets. With the loss of only a very few packets, we have
measured packet rates of about 2000 packets/sec., and at somewhat higher loss rates, 4850
packets/sec.

3.5. Visualization

It requires relatively little additional CPU time to graph the load, in real time, on the worksta-
tion screen.  Figure 4 shows one possible display, plotting aggregate load versus time.  By using
the augmented load ring algorithm and splitting the packets according to some criterion (such as
packet type or host address), one can produce graphs such as in Figures 7 and 8. Further, by
using the filtering function of the packet filter, one can efficiently restrict the packet stream to
graph only certain types of traffic, such as NFS or routing protocol upates.

2This measurement applies to the non-augmented loadring algorithm; the augmented algorithm requires 207
instructions and 25 usec./packet, although this could be reduced by making the code less general.
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Figure 7: Ethernet load by packet type

This display shows only the five busiest hosts

Figure 8: Ethernet load by source host

4. Automatic displays of traffic patterns

One interesting application for a network monitor is to display the traffic patterns on a LAN:
which hosts are communicating with which, and how vigorously.  This information can be useful
in debugging certain problems (which client is reading lots of bytes from a file server?  Which
server is this host bootloading from?). It can also help in capacity planning and network con-
figuration.

4.1. Collecting a traffic matrix

The first step in displaying traffic patterns is to collect the data.  The augmented loadring
algorithm is a good start; we use it to maintain load-average counters for each pair of com-
municating hosts.  One difficulty is the choice of a data structure to hold all these counters; on a
large LAN, where there may be several thousand hosts, there are several million pairs of hosts;
representing this in a two-dimensional array would require a lot of memory.

Instead, we can take advantage of the sparsity of the traffic patterns in any large network; the
number of communicating pairs is roughly linear with the number of hosts, rather than propor-
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tional to the square.  We maintain the pair-records as entries in a hash table, to allow rapid access
to specific entries.

Because host addresses can be quite bulky (48 bits for Ethernet hosts; potentially longer for
ISO protocols) they are inconvenient for use as hash-table keys. Instead, we use a secondary
hash table to map bulky host addresses into a compact set of integers.  Each source-destination
pair can then be represented as a 32-bit value made up of two 16-bit host identification integers,
allowing up to 65535 hosts on a LAN.  We can then hash on this 32-bit value.  It is important
that the hash function yields different values for the two combinations of a pair of host addresses,
or else we will almost guarantee a 50% hash collision rate (most communication being bidirec-
tional).

Each host is described by a record that contains its address, its compact identifier, and a pair of
flags indicating if it has ever been seen as a source or destination.  Each pair is described by a
record pointing to the two hosts involved and containing a counter maintained by the loadring
algorithm. From each host record starts a linked list of all the pairs for which that host is the
source host, and a list of the pairs for which the host is the destination.  Thus, it is easy to
enumerate all the hosts that are sources (using the flag bits), and also easy to enumerate all the
peers of a particular host (using the linked lists).

This algorithm takes about 329 instructions, and about 69 usec. per packet processed.  It also
requires 16 bytes of storage per active host, 52 bytes per communicating pair, and storage for the
loadring buffer and several hash tables.  Neither the processing nor the memory requirements are
particularly severe.

4.2. Automatic graph layout

Once the traffic data is available, the next problem is how to display it.  This is an open ques-
tion; it is hard to say if any single depiction could be useful in all situations.

One possibility is to display the matrix as a two-dimensional array (see figure 9).  Each host is
associated with a row and a column; at each intersection, a pixel is plotted indicating the level of
traffic between the corresponding source and destination.  One approach is to use a monochrome
pixel, set if there is any traffic at all between the hosts; for an example, see [16]. We have
explored using color to indicate the relative traffic rates; ‘‘hot’’ colors (such as red) mean busier
conversations. One might also vary the size of the pixel with increasing traffic.

The array approach has the advantage of simplicity and efficiency; it also reveals popular
sources and destinations through the obvious concentrations of pixels on certain lines.  However,
it fails to reveal certain interesting patterns.  It also is hard to see which specific hosts are in-
volved; when more than about 100 hosts are displayed, even the largest workstation screen lacks
the resolution to tag the rows and columns with host names or addresses.

A more intriguing possibility is to treat the data as representing a graph; that is, a collection of
nodes (hosts) and edges (hosts that communicate directly).  The graph edges may be weighted
according to the traffic level between the incident nodes.  This allows the use of the entire area of
the screen for displaying the host names, and a variety of schemes (color, width) to depict traffic
levels.
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Figure 9: Traffic matrix on an Ethernet

The question then becomes how best to lay out the graph in two dimensions.  We want to do
this in software, not by hand, so that the structure of the traffic patterns is revealed to the user.
This is an open question in graph theory; not only is it hard to choose a good criterion for judg-
ing the layout, but in many cases the resulting problem is NP-complete or NP-hard [7]. Since the
graphs generated by traffic analysis are cyclic and non-planar, they are even less amenable to
layout than simpler classes of graphs that arise in other applications.

Fortunately, a heuristic method has been developed that works moderately well on general
undirected graphs [6, 12]. (The traffic analysis yields a directed graph, but we collapse it into an
undirected graph by combining the pairs of directed edges.)  This method uses an analogy of
springs and particles: the nodes are particles, and each node is connected to every other node by
a spring whose preferred length is proportional to the shortest-path distance through the graph
between the two nodes.  Any placement of the particles may deform the springs; the computa-
tional task is to find a placement which minimizes the energy associated with this deformation.
(The physical system would tend to ‘‘relax’’ towards such a placement.)  The published al-
gorithms use Newton’s method to advance towards a solution, moving one particle at a time until
the energy imbalance is sufficiently reduced.
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The method does quite well at extracting symmetries from a graph; for example, if eight nodes
are connected as a hypercube of degree 3, the resulting layout is the projection of a cube onto
two dimensions----even though the algorithm knows nothing about projections from 3-space. The
algorithm works less well when the graph contains little symmetry, or if it contains more than a
few dozen nodes.

Real LANs, of course, contain hundreds of nodes, and often involve asymmetrical traffic pat-
terns. One common pattern arises from the client-server model: a few hosts are servers, and each
communicates with a large cluster of clients.  Clients tend to communicate with a small set of
servers, and few other hosts.  The basic method tends to obscure this structure; we are exploring
modified edge-weighting heuristics that seem to reveal it. For example, if an the edge weight is
multiplied by the degrees of the two incident nodes, then servers (high-degree nodes) are forced
further apart from each other.  If, however, the LAN is being used for symmetrical traffic, such
as a distributed algorithm involving many hosts, the unmodified algorithm may be satisfactory.

The basic algorithm also fails when faced with a disjoint graph; this is easily solved by ar-
bitrarily assigning a carefully chosen distance to nodes between which no path exists.  This is a
significant advantage of the method over the two-dimensional traffic matrix, which is not good
for discovering disjoint (or nearly disjoint) communities of hosts.

We are also exploring a variety of techniques to improve the running time and convergence of
the solution algorithm.  Newton’s method fails to converge in some cases, oscillating between
two equally good local minima.  Even if it converges, it may find a placement nowhere near the
global optimum.

Finally, computing convergence can be quite costly: each time a node is moved, O(N) steps
are required to find the new position and recompute the energy imbalance. Since moving a node
can worsen the imbalance, one may have to move each of the N nodes more than once.  (In fact,
one can get into infinite loops as the system revisits a set of nodes in a fixed order.)

We are experimenting with various heuristics which ensure convergence, at the expense of
perhaps finding poorer solutions.  We have applied a caching paradigm to reduce the amount of
recomputation necessary at each step.  We are exploring various ways to decide which nodes are
unlikely to enter a low-energy state, which allows us to ignore them and solve the rest of the
system as best as possible.  We are also exploring the use of simulated-annealing techniques to
avoid getting stuck in local minima, and hierarchical decomposition techniques to make use of
easily-extracted structural information.

Our efforts so far have yielded a program that can produce reasonably informative pictures
from the traffic on a LAN with about 75 hosts, and compute the placement with about five
seconds of CPU time (see figure 10; this is the same data as plotted in figure 9). If the display
needs to be updated less than once every ten seconds, it should be possible to recompute the
placement sufficiently often (and it should not be necessary to recompute the placement on every
update). We also believe that it will help to start each round with the placement from the pre-
vious round (we now start with a random placement), although we have not tried this yet.

The spring-based method is also applicable to automatic display of the connectivity in an in-
ternetwork. In this case, the nodes are routers and the edges represent links or subnetworks (or,
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both routers and networks are represented by nodes, and the links represent interfaces).  Since
the method works even if some of the nodes are given fixed positions, a user can place some of
the routers on the display (say, at geographically meaningful positions) and let the system place
the others.
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Figure 10: Automatic layout of traffic flow on an Ethernet

5. Summary

Workstations are powerful tools for network monitoring, because they combine fast CPUs,
large memories, high-performance graphics, and sophisticated operating systems.  With some
care applied to the design of an access mechanism allowing normal programs promiscuous ac-
cess to the network, a modern workstation can process packets fast enough to support most
monitoring applications.

Although many network monitors have been built as special-purpose hardware or software
systems, this approach lacks the flexibility and rich environment of general-purpose worksta-
tions, which have more than adequate performance for the task.  The lesson to draw is that one
should not compromise the design of a network monitor in order to squeeze out the last drop of
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speed; general-purpose systems are getting faster so rapidly that it no longer makes sense to be
locked in to a special-purpose system.

We have looked especially at the problem of calculating the load on multi-access networks
such as Ethernet.  A relatively inexpensive algorithm is capable of accurately calculating the load
even in a non-real-time environment, and is easily extended to break down the load by packet
type, host, or host-pair.

We have also explored the problem of automatically displaying the traffic patterns on a LAN;
a method exists that extracts quite a lot of structure from a complicated network, yet can be
computed in a reasonable amount of time.  Additional work along these lines should reduce cal-
culation costs and may improve the quality of the display.
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