
M A Y 1 9 8 9

WRL
Research Report 89/5

Spritely NFS:
Implementation and
Performance of
Cache-Consistency
Protocols

V. Srinivasan
Jeffrey C. Mogul

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Spritely NFS:
Implementation and Performance of

Cache-Consistency Protocols

V. Srinivasan

University of Wisconsin

Jeffrey C. Mogul

Digital Equipment Corporation
Western Research Laboratory

May, 1989

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

File caching is essential to good performance in a distributed system, espe-
cially as processor speeds and memory sizes continue to scale rapidly while
disk latencies do not. Stateless-server systems, such as NFS, cannot effec-
tively manage client file caches. Stateful systems, such as Sprite, can use ex-
plicit cache consistency protocols to achieve high performance, without some
of the inconsistencies possible in NFS.

By modifying NFS to use the Sprite cache consistency protocols, we isolate
the effects of the consistency mechanism from the other features of Sprite.
We find dramatic improvements on some, although not all, benchmarks, sug-
gesting that an explicit cache consistency protocol is necessary for both cor-
rectness and good performance.

This report is an expanded version of a paper that has
been submitted for publication elsewhere.

Copyright 1989
Digital Equipment Corporation

i

1. Introduction

Cache strategies are central to performance, reliability, and correctness of distributed file ser-
vices. Caching improves performance by avoiding unnecessary disk traffic, network traffic, and
server use, but caching implies the potential existence of multiple copies of the same data, and
keeping these multiple copies consistent is a challenge. This is especially true when the caches
are kept by the clients of a distributed file service, which might be attempting concurrent access
to the same file.

Several different cache-consistency strategies are used in existing systems. Two important
examples are the NFS [10] and Sprite [5] file system protocols. (‘‘Sprite’’ is the name of an
entire distributed operating system; we are concerned only with the Sprite file protocols.)

NFS adheres to a stateless-server model and uses a probabilistic, stateless consistency
1scheme . Sprite maintains server state, and uses an explicit consistency protocol. This protocol

allows Sprite to guarantee the semantics of concurrent access by several clients to the same file;
in addition, Sprite is alleged to provide better performance than NFS.

We were intrigued by the possibility that, by transplanting the Sprite consistency protocol into
the NFS file access protocol, we could transfer some of Sprite’s benefits to NFS without
seriously compromising the NFS model; this is discussed in detail in section 2. This experiment
also helps to isolate the effects of the cache consistency protocols from other differences be-
tween NFS and Sprite (for example, the different approaches to file name translation).

It proved to be relatively easy to modify the NFS implementation used in the Ultrix operat-
2ing system to use the Sprite consistency mechanism. We call this system ‘‘Spritely NFS .’’ In

section 3 we describe the specific changes to the NFS protocol, and in section 4 we describe how
these changes were implemented in Ultrix.

Performance measurements, presented in section 5, are somewhat ambiguous: depending on
the benchmark, Spritely NFS either dramatically outperforms NFS, or performs slightly worse.
Our expectation is that in actual use, Spritely NFS should perform moderately better than un-
modified NFS. In any event, Spritely NFS guarantees that no two clients will have inconsistent
cached copies of a file.

In section 6, we look at some of the issues left unresolved by our experiments. In particular,
introducing state into the Spritely NFS server requires more attention to crash recovery than is
necessary in unmodified NFS. We also discuss some improvements to Spritely NFS that may
further improve performance. Section 7 summarizes our experiments and attempts to draw some
generally applicable conclusions.

1The official NFS protocol specification [12], while requiring a stateless server, says nothing about cache consis-
tency. This specification provides insufficient guidance for producing a workable NFS implementation; the so-
called ‘‘reference port’’ implementation is what actually defines correct behavior of NFS clients and servers. The
reference port does imply a particular cache-consistency scheme.

2 sprite⋅ly adj. [obsolete spright (sprite), alteration of sprite]: marked by a gay lightness and vivacity: SPIRITED
syn see LIVELY [13]

1

SPRITELY NFS

2. Goals of the experiment

We hoped to answer two questions in our experiment:
1. Are the performance advantages claimed for Sprite really the result of the cache-

consistency mechanism, or are they attributable to differences in other features or
to implementation quality?

2. Would adding Sprite-like consistency protocols to NFS improve NFS performance,
and could this be done without significantly complicating the NFS implemen-
tation?

Implicit in these questions is the idea that the central difference between Sprite and NFS is their
different approach to cache consistency. Indeed, the protocols are similar in many ways, par-

ticularly because both are meant to provide a nearly transparent emulation of the Unix file
system, using servers accessed by remote procedure call (RPC). In both Sprite and NFS, por-
tions of a file may be cached in memory at the client (in contrast to the whole-file caching
scheme used in Andrew [2] or Cedar [11]).

2.1. NFS consistency model

NFS follows a stateless-server model; the server maintains no state information between RPC
requests. This simplifies the server implementation, avoids hard limits on the number of simul-
taneous clients, and makes server-crash recovery trivial.

Since the server has no record of which clients are currently using a file, however, it cannot
make guarantees about cache consistency. An NFS client periodically checks with the server to

3see if a file has been modified ; if so, the client invalidates its cache for that file. The interval
between checks is a compromise between performance (frequent checking loads the server and
delays the client) and consistency (insufficiently frequent checking may mean that a client uses
stale data from its cache).

Since one NFS client has no way of identifying other clients that may be concurrently access-
ing a file, all of its consistency checks must be made with the file server. The file server, be-
cause it is stateless, also does not know which clients are caching a file. Therefore, whenever a
client modifies a file, it must immediately communicate the change back to the server. In this
way, it limits the potential inconsistency between the server’s copy and its own cache to a short
period. This ‘‘write-through’’ policy also limits the amount of damage caused by a crash; since
an NFS server is required to write data onto disk (or other stable storage) before returning from
the remote procedure call, the amount of cached information that is vulnerable to loss during a
crash is quite limited.

The write-through policy has two distinct disadvantages. First, write-through limits the per-
formance benefits of client-side caching, since a server disk access is done for every write. A
surprising number of Unix files (in dynamic terms) have short lifetimes and are never shared by
multiple clients [8], and thus need not be kept anywhere but in the client-side cache of the host

3The interval between probes in Ultrix varies between 3 and 60 seconds, depending on the recent history of the
file.

2

SPRITELY NFS

where they are created. NFS, unfortunately, cannot distinguish between shared and unshared
files, and so must treat every file as if it were potentially shared. Both client and server waste
effort performing unnecessary write-through operations.

The second disadvantage of a strict write-through policy is that it forces applications to run
synchronously with the disk. While an application is waiting for the data to make its way over
the network, through the server queues, and onto the disk, it is blocked. The application there-
fore takes longer to complete than it would if disk writes were performed asynchronously, as
they are in the local Unix file system. Especially on single-user workstations, this time is
wasted.

Actual NFS client implementations do not always write data synchronously. Instead, a block
may be handed to a daemon process, which immediately writes it to the server; the original re-
questing process does not wait for the write to complete. This modification appears to be neces-
sary to obtain reasonable performance. It loosens the consistency guarantee, however, so an NFS
client synchronously finishes all pending write-throughs when a file is closed.

2.2. Sprite consistency model

Sprite follows a stateful-server model. Unlike NFS, Sprite has explicit open and close opera-
tions. Since the Unix open operation specifies if the application intends to write to the file, by
tracking open and close operations the Sprite file server knows not only which clients are cur-
rently using a file, but whether any of them are potentially writers.

This is important because files are seldom ‘‘write-shared’’; that is, seldom do two or more
clients simultaneously have a file open that one of them is writing. More typically, either all the
clients are doing read-only operations, or a single client ‘‘owns’’ the file while it is being
modified. (We refer to these as the ‘‘read-only’’ and ‘‘single-writer’’ cases, or together as ‘‘non-
write-shared.’’)

Because a non-write-shared file can be cached at the clients without any danger of inconsis-
tency, the Sprite server responds to each open request with an indication of whether it is safe to
cache the file. Clients can cache without the periodic consistency checks required in NFS; also,
a single-writer client need not do write-throughs, and may even keep the file in its cache for the
file’s entire lifetime. (If reliability is more important than performance, an application can use
explicit file-flush operations to cause write-through.)

If a file is write-shared, none of the clients (writers or readers) are allowed to cache it. For
writers, this reverts to the write-through policy of NFS, and provides the same single-copy con-
sistency between a writer and the server. For readers, this is stricter than the NFS mechanism;
each read operation goes directly to the server. Thus, the readers are guaranteed consistency
with the writers, provided that some other mechanism (such as file locking) serializes the reads
and writes. NFS cannot feasibly use such a strict reader-caching policy, since NFS cannot distin-
guish between the infrequent write-sharing situation when it is beneficial, and the normal non-
write-shared case when it is wasteful.

Of course, when multiple clients open a file, they do not all issue their opens simultaneously.
When a file that is shared read-only by several clients is subsequently opened for write, the

3

SPRITELY NFS

Sprite file server must notify not only the newly-arrived writer, but the existing readers as well,
that the file is no longer cachable. (Similarly, when a file is opened first by a single writer and
then by another client, the first writer must be told to stop caching its copy and to return all the
dirty pages to the server.) In order to perform this notification, the Sprite server must make
asynchronous calls to the client, or ‘‘callbacks.’’ Callbacks are the other major difference be-
tween the NFS and Sprite protocols (in addition to the explicit open and close operations).

There are other differences between Sprite and NFS that are not further considered in this
paper, although they do have a significant effect on performance. For example, Sprite and NFS
take distinctly different approaches to file name translation.

2.3. Potential advantages of Sprite

The two main advantages of Sprite over NFS are improved consistency and improved perfor-
mance. Sprite clients do not periodically probe the server to check for inconsistencies, and need
not perform write-through.

The Sprite consistency mechanism, unlike the periodic checks used in NFS, guarantees con-
sistency between clients accessing the same file. Thus, in some sense Sprite is more ‘‘correct’’
than NFS. We do not know how important this is in practice: since application writers know that
NFS does not provide true consistency, and especially since we believe that write-sharing is in-
frequent in any case, the lack of consistency in NFS may not be significant. (A more frequent
case is ‘‘sequential write-sharing,’’ where the writer closes a file before the reader opens it; NFS
provides consistency in this case, but only if the interval between close and open is longer than
the NFS consistency-probe period.) On the other hand, the weakness of NFS consistency may be
responsible for the lack of shared-database applications.

In addition to better consistency, Sprite should provide better performance. Sprite avoids the
cost of periodic consistency probes, in exchange for the cost of doing explicit open and close
operations. In Sprite, unlike Spritely NFS, the open operation is ‘‘piggybacked’’ on the file
name translation operation in a way that is not possible with NFS. Even so, in the case where a
file is opened, read quickly, and then closed, Sprite would require one more RPC operation than
NFS (because NFS would not need to do any consistency probes in such a brief interaction).

Fortunately, Sprite gets other benefits from its consistency protocol besides the reduction in
probing. Most important is the ability to do write-back instead of write-through. This improves
performance in two cases:

1. An application that alternates computation with disk output (such as the compila-
tion of several modules) can do both in parallel, since Sprite allows the client’s
writebacks to proceed asynchronously even across file closes.

2. An application that generates short-lived files (such as a compiler with its inter-
mediate files, or a sort program) need not ever pay the cost of writing them to disk.
The client can delay write-back long enough that the file may be deleted before the
file is ever written to the server. This becomes more interesting as memory chip
sizes, and consequently client file system cache sizes, increase.

These two cases are quite common for typical Unix workloads, and the performance improve-
ments can be dramatic.

4

SPRITELY NFS

If the application mix is right, use of the Sprite consistency mechanism should improve perfor-
mance over NFS by reducing client-to-server traffic and server disk I/O; the latter is especially
important because disk access times are not improving nearly as fast as processor and com-
munication speeds. This in turn should improve client response time, and also increase the num-
ber of clients that can actively use a single server (and thus that can actively share a single file
system).

One of the advantages of statelessness in NFS is that a given NFS server can handle an ar-
bitrarily large number of clients or files, since it keeps no per-client or per-file state. A Sprite
server, on the other hand, cannot serve an infinite number of clients or files, since it keeps infor-
mation about each recently-active file. That comparison may be illusory: while the NFS server
may be able to ‘‘handle’’ an arbitrary number of clients, the Sprite server should be able to
provide acceptable service to a larger number of simultaneously active clients.

2.4. Implications for crash recovery

Because NFS servers are stateless, server crash recovery in NFS is trivial: the server simply
restarts. Client crash recovery is also fairly simple, since all client data is written immediately

4(as soon as possible) to disk, and synchronously on close . Only crashes that occur between the
creation of data by an application (for example, keystrokes to a text editor) and the completion of
a file-write RPC cause data loss; this is actually better than the local file system reliability in
Unix, where a disk write may be delayed for as much as 30 seconds.

Sprite provides roughly the same protection against client crashes as does a local Unix file
system. (An application can always do explicit file flushes to provide crash-resistance, but few
existing Unix programs are written this carefully. Also, as in Unix, the write-delay period may
be adjusted to reduce the crash-vulnerability window.) Sprite server crash recovery is more
complex than in NFS, since the server must reconstruct the state it maintains about which files
are open by which clients. Server-crash recovery mechanisms have been implemented for
Sprite [14]; they rely on two properties of Sprite:

1. The clients together ‘‘know’’ the consistency state of the file, and the server can
reconstruct its state from the clients.

2. The consistency state of the file cannot change while the server is down, or until
the server is willing to allow it to change.

Most of the complexity in the recovery mechanism comes in detecting crashes and reboots,
rather than in rebuilding state. A reliable crash and reboot detection mechanism is, of course,
useful for other purposes besides recovering file server state.

4Actually, the reference port of NFS delays writes that do not extend to the end of a block, as a means of
optimizing improperly-buffered sequential writes.

5

SPRITELY NFS

2.5. Related work

A cache-consistency mechanism roughly intermediate between that of NFS and Sprite has
been implemented for the System V Remote File Sharing (RFS) system [1]. As in NFS, clients
write-through to the server, so the only possible inconsistency is between the server and readers.
RFS is not stateless; clients send open and close messages to the server, so the server is able to
send ‘‘invalidate’’ messages back to clients when their caches must be disabled. Unlike Sprite,
however, RFS waits until blocks are actually written before invalidating client caches. As in
both Sprite and NFS, version numbers are used to maintain client cache consistency when a file
is reopened after being closed. RFS provides the same consistency guarantees as Sprite, but
because RFS uses the same write policy as NFS, its performance should be closer to that of NFS.

Both Sprite and RFS use entire files as the unit for consistency. Kent [4] describes a system
that maintains consistency on individual file blocks; before a client writes a block, it must ac-
quire ownership of that block. Other clients invalidate cached copies of that block, and only one
client at a time can own a block. This system required special hardware to implement the consis-
tency protocol with sufficient performance.

The dogma of statelessness associated with NFS has been broached before. Juszczak [3]
shows that because the individual NFS operations are not really idempotent, certain kinds of
communication failure can result in incorrect behavior. By adding a small amount of state to the
NFS server, he managed to resolve this problem, and also to improve the performance of highly-
loaded servers.

3. Modifications to the NFS protocol

In this section we describe the modifications to the NFS protocol necessary to support the
Sprite consistency protocols. This is the ‘‘Spritely NFS’’ (SNFS) protocol; most of the com-
plexity in SNFS is in the implementation, described in section 4.

3.1. New client-to-server calls

In unmodified NFS [12], all RPC calls are initiated by the client. We added two new calls,
open and close, defined here in the same style as the original NFS specification:

NFSPROC_OPEN (file, mdev, writeMode)
returns (reply)

fhandle file;
unsigned mdev;
boolean writeMode;
openopres reply;

The file argument is a file handle, as provided by the lookup procedure. The mdev argument
is passed to the server for use in any future callbacks; it is used to help the client identify which
remotely-mounted file system a callback applies to. The writeMode argument, if ‘‘true,’’ in-
dicates that the client intends to write the file.

The reply for the open operation uses this structure:

6

SPRITELY NFS

typedef union switch (stat status) {
NFS_OK:

struct {
unsigned cacheVersion;
unsigned oldCacheVers;
boolean cacheEnabled;
fattr attributes;

}
default:

struct {}
} openopres;

The reply.cacheEnabled field tells the client whether it is allowed to cache data for this
file. The server keeps a version number for each file, which increases every time the file is
opened for writing. The version number may increase by an arbitrary positive increment, but
since the open call returns both the latest version number (reply.cacheVersion) and the
previous version number (reply.oldCacheVers), the client can check both these numbers
against the version number of its cached copy (if it has one). If the client has cached data from
either the current or the previous version of the file, this data can be retained; any other cached
data is invalid. The reply.attributes field has the same value that would have been
returned from a getattr (get file attributes) procedure; this avoids the need to make the getattr
call that NFS must make the first time a file is used.

NFSPROC_CLOSE (file, writeMode)
returns (reply)

fhandle file;
boolean writeMode;
closeopres reply;

This procedure is called to tell the server that the client is no longer using the specified file
handle. The writeMode argument should be the same as the one that was provided for the
corresponding open operation; it must be supplied since open could have been called several
times, with different modes, on a single file handle.

3.2. Server-to-client calls

Since a subsequent open operation may make a previously cachable file uncachable, an SNFS
server may have to notify a client to stop caching a file that has already been opened. Alter-
natively, if the file has been written into a client’s cache and subsequently closed (but not yet
deleted), the client must write the cached data back to the server.

Whenever an SNFS server needs to notify a client, it issues a callback operation. In this case,
the RPC call goes from the server to client, so the client must provide RPC service for this re-
quest:

7

SPRITELY NFS

NFSPROC_CALLBACK
(file, cbmode, mdev, attr)

returns ()
fhandle file;
unsigned mdev;
cbMode cbmode;
fattr attr;
cbackopres reply;

The callback operation identifies the file in question through the mdev and attr.fileid
values (these should be sufficient to allow the client to locate its internal data structures for the
file). The file handle is provided to the client for it to use while performing any required write
operations on this file, and to disambiguate stale cache entries. The cbmode argument specifies
the kind of callback being done:

typedef enum {
SNFS_CBWRITE = 1,
SNFS_CBINVAL = 2,
SNFS_WRINVAL = 3

} cbMode;

SNFS_CBWRITE indicates that any dirty blocks in the client’s cache should be written back to
the server. SNFS_CBINVAL indicates that any blocks in the client’s cache should be in-
validated (removed from the cache), and further caching should be disabled. SNFS_WRINVAL
specifies both write-back and invalidate.

If the callback involves a write-back, the client should not return from the callback RPC until
all the dirty blocks have been written back to the server. This has several implications:

1. The write operations generated by the client in response to the callback go to the
same server that is waiting for the termination of the callback. Thus, an SNFS
server must be multi-threaded to avoid deadlock (if there are N threads, only N-1
may be doing callbacks simultaneously, so that at least one thread can service the
write-backs).

2. Since the server makes a callback while servicing an open operation from another
client, it cannot wait forever for the callback (since the client doing the open will
time out). In general, the callback, together with any required write-backs, should
finish much sooner than the RPC times out, but this is not guaranteed (the network
might be slow, the server might be overloaded, or there might be many dirty
blocks). We believe that this is not a serious problem; the callback operation can
safely be reissued, so when the client doing the open operation times out and
retries, no harm is done.

If the client ‘‘serving’’ the callback is down, the SNFS can honor the new open operation, but it
should inform that client that the file may be in an inconsistent state. If the ‘‘dead’’ client comes
back to life after this point, it must be prevented from making further use of the file until it
obtains a new file handle and reopens the file.

8

SPRITELY NFS

4. Implementation

We implemented a prototype of Spritely NFS by modifying an existing NFS implementation,
that used in the Ultrix 2.2 operating system. By changing the names of entry points and global
variables, we made it possible to have both SNFS and unmodified NFS in the same kernel,
which in turn made it easy to compare the performance of the two protocols. With the exception
of a few utility programs, all the changes are confined to the kernel; for user code, there is no
visible difference between NFS and SNFS.

4.1. Layering

In a Unix system with more than one kind of file system (for example, NFS and local disks),
there must be a level of indirection to separate the filesystem-generic code from the individual
filesystem-specific code. In Ultrix, this is done through the ‘‘generic file system’’ (GFS) [9].
GFS manages the file system block buffer cache, and expects the underlying file systems to
present a consistent set of primitives for reading and writing file blocks. GFS implements an
abstract data type called a gnode, which is similar to the traditional Unix in-memory inode data
structure, but which supports filesystem-specific data and methods.

Our goal was to implement SNFS without modifying the GFS layer; we nearly succeeded (see
section 4.2.1). Our changes to GFS make it ‘‘more generic’’; they are not specific to SNFS. We
also found it profitable, for improved performance, to add a new function to the GFS buffer
cache management code (see section 4.2.5).

On the server side, the NFS (and SNFS) service code simply translates RPC requests into GFS
operations on the appropriate file system, normally the standard Unix local file system.

4.2. Client changes

4.2.1. Additional state information

The gnode data structure provides space for filesystem-specific data, some of which is already
used by NFS. We extended this to include several new fields, including several flag bits (such as
‘‘caching enabled’’), the file version number, and authorization information to use when doing a

5delayed write . No additional state tables are needed at the client.

One additional change is that, because a file may be reopened shortly after it is closed, SNFS
gnode information persists after a file is closed. This allows cached data to persist until a sub-
sequent use of the file, and it allows postponement of write-back, which may then be obviated if
the file is removed. GFS may recycle a closed gnode, but it calls a cleanup function of the
specific file system before doing so. The original GFS implementation assumed that this func-
tion never blocks. Since SNFS may have to make several RPC calls to clean up dirty blocks, we
had to modify this part of GFS to remove the non-blocking assumption.

5In unmodified NFS, file system operations such as read or write are always done in the context of the requesting
process, so the relevant ‘‘credentials’’ are always available. Since SNFS allows delayed writes, which are done in
the context of a daemon process, it must put aside a copy of the requesting process’s credentials.

9

SPRITELY NFS

4.2.2. New calls

Although there is no open operation in the unmodified NFS protocol, GFS does call code in
the NFS layer when a file is opened. NFS then does a getattr (get file attributes) operation; it is
this ‘‘attributes’’ information that allows NFS to determine, in the future, if the cached file data
is still valid.

An SNFS client, in contrast, does the explicit open operation at this point. This provides it
with the attributes information, the current cachability state of the file, and the version number
information. If the file had been opened before, and the version number has been changed by
another client (indicating that another client has been writing the file), all previously cached
blocks are invalidated.

6In unmodified NFS, when a file is closed any pending writes are completed synchronously ,
and all cached blocks are invalidated.

In SNFS, it is not necessary to finish any pending writes; the file may be deleted soon, so
these writes may be unnecessary. If the server wants the blocks for another client, it will send a
callback to the last writer. That SNFS client then notifies the server, via the close operation, that
the client is no longer using the file.

4.2.3. Cache strategy

Two kinds of information are cached on the client: file data blocks and file attributes. The file
data blocks are cached in the GFS buffer pool; each block is marked with the appropriate file ID
(and a hash table is used for fast mapping between files and their blocks). The file attributes are
stored in the gnode. All file system types keep these caches; the local-disk file system, of
course, has no consistency problem (ignoring crash recovery).

Unmodified NFS refreshes the attributes cache based on its age; in Ultrix, an adaptive
mechanism is used which allows longer residence for files that have not been recently modified.
In SNFS, the attributes cache need only be refreshed if the file is write-shared (not cachable). In
order to guarantee consistent attributes for write-shared files, SNFS never uses cached attributes
in this case. Also, the standard Unix read-ahead is disabled for write-shared files, since the read-
ahead block cannot be cached.

NFS uses the normal GFS buffer cache for file data blocks. If, upon refreshing the attributes
cache for a file, it discovers that the file modification timestamp has changed, it invalidates all
the cached data blocks for the file. Thus, the period of potential inconsistency for cached data is
the same as for cached attributes.

SNFS uses the explicit consistency protocol to determine if caching is allowed. As long as it
is allowed, there is no need to check the consistency of cached data. While caching is not al-
lowed, cache consistency is not an issue because data blocks are never entered in the GFS buffer
pool (actually, existing GFS interface functions always enter the block in the cache, but the

6Writes may be pending because unmodified NFS does some asynchronous writing to improve performance, and
because it buffers partial-block writes to the end of a file.

10

SPRITELY NFS

SNFS code immediately marks the buffer ‘‘invalid’’). When the cachability of a file changes as
the result of a callback, any cached data blocks are invalidated at that time.

4.2.4. Callback service

In unmodified NFS, all RPC calls are initiated by the client. In SNFS, the server makes RPC
callbacks to the client, so the client host must be able to service RPC requests. This is no
problem, since even diskless workstations have the NFS server code in their kernels. Thus, we
simply use the existing server mechanism, even on clients that do not actually export any file
systems.

We added one RPC procedure to support callbacks. This is implemented as part of the SNFS
server code, but conceptually it is part of the SNFS client. Callback handling is straightforward:
the information in the callback is used to locate the gnode for the specified file, and the action
specified in the callback is performed. Cache invalidation is done locally to the client; if the
server requests write-back, the client uses the usual SNFS RPC calls to write the blocks back to
the server.

Since the client may have closed the file before a write-back is requested, the callback service
code may have to revive the gnode temporarily. Note that the gnode never actually disappears as
long as there are dirty blocks associated with it, so it need not be recreated from scratch.

4.2.5. Delayed write policy

The local-disk file system used in Ultrix follows the traditional Unix policy of delaying file
data writes, unless the user process calls an explicit flush operation. Blocks are written back to
disk when the space is needed for other files. To bound the amount of damage caused by a
crash, all the delayed-write blocks in the buffer pool are written to disk periodically using the
sync system call (usually every 30 seconds, by /etc/update).

In the Sprite file system, dirty blocks are written back to the server when they reach 30
seconds in age; this is similar to, but somewhat less conservative than, the traditional Unix
policy. NFS seldom uses the delayed-write mechanism, because of the effect on consistency.
SNFS, on the other hand, uses the normal GFS delayed-write mechanism, so (mostly by default)
it follows the traditional Unix policy of syncing every 30 seconds.

Since it is relatively common for Unix applications to create a temporary file and then delete it
after a few seconds, Sprite and SNFS attempt to take advantage of this behavior by ‘‘cancelling’’
delayed writes when a file is deleted. (NFS cannot do this, since it is synchronous. The tradi-
tional Unix local-disk file system also does not do this, perhaps because until recently, buffer
pools have been so small that few writes would be avoided.)

We added a function to the GFS buffer management module that invalidates the delayed-write
blocks associated with a specific file, without writing them back to the server. This involves a
search of the buffer pool that is not efficiently supported by the traditional buffer pool data struc-
tures, especially as the cache size increases. Since large buffer caches otherwise improve perfor-
mance, we reorganized the GFS buffer pool data structures to make delayed-write invalidation
faster; this change also improved the performance of the sync system call.

11

SPRITELY NFS

4.3. Server state design

4.3.1. Server state table

An SNFS server, unlike an NFS server, must retain state about files between RPC calls. In
our implementation, the SNFS server maintains a state table, organized as a hash table with col-
lisions resolved by chaining, with one entry for each open file, and one entry for each file that is
closed but for which the last writer may still have cached blocks. The hash key is the NFS file
handle.

To avoid running out of kernel memory, we put a limit on the number of entries in this table.
This limits the number of simultaneously open files for this server, a limit that is not imposed by
an unmodified NFS server (but each entry requires only 68 bytes, so the limit can be liberal).
When we run low on entries, those recording closed files with outstanding dirty blocks may be
reclaimed by sending callbacks to the corresponding clients.

4.3.2. State table entries

Each entry in the state table contains the file handle for the corresponding file; this is used as
the lookup key. It also contains the file’s current version number, its current state (such as read-
only or write-shared), and a list of ‘‘client’’ information blocks for each client host that has the
file open.

A client information block contains the network address of the client host; this is used as an
identifier and also to address the callback RPCs. A client block also contains counts of the
number of readers and writers for this file at this client (more than one process there may have
the file open) and the client’s internal file system identifier, provided when the file was opened
and used for the callback RPC.

If the file is closed but the last writer may have dirty blocks in its cache, the state table entry
records a client block for that last writer.

4.3.3. Version number generation

The server assigns a version number to each file; the version number must increase each time
the file is opened for writing. This allows a client to determine, when it opens a file, if the
blocks it has in its cache are still valid. Ideally, this version number would be associated with
each file on stable storage (as is done in Sprite), but since we did not want to modify the under-
lying Unix local file system to store additional information, we chose to use a global counter to
generate version numbers.

This solution is suitable only for experimental use, as it poses several problems. First, the
counter can wrap around; this could be ‘‘cured’’ by simply invalidating all client caches at this
point. Second, the counter does not persist across server crashes; this could be cured by writing
it to stable storage, either on every increment or perhaps only at multiples of a specific value.
On crash recovery, the latest value of the stored counter would then be increased by that value to
ensure that no duplicates result.

12

SPRITELY NFS

4.3.4. State transitions

Each file may be in one of several states. There is some freedom in the choice of state assign-
ments; we chose one that is straightforward, although in retrospect it turned out to have some
drawbacks (see section 6.2).

In our implementation of SNFS, the states are:

CLOSED The file is not open by any client.
7CLOSED_DIRTY The file is not open, but the last writer may still have dirty blocks .

ONE_READER The file is open read-only by one client.

ONE_RDRDIRTY The file is open read-only by one client, which may have dirty blocks
cached from a previous open.

MULT_READERS The file is open read-only by two or more clients.

ONE_WRITER The file is open read-write by one client.

WRITE_SHARED The file is open by two or more clients, including at least one writer.

Table 1 shows the possible state transitions. Note that no transition occurs (and thus none is
shown) if a client that already has a file open for read-only issues another read-only open for that
file, or if a client that has a file open for read-write issues another open of any sort for that file.
Also, no transition occurs on a close operation except when it represents the last open reference
to a file, or when it represents the next to last reference to a file open by multiple readers.

During any operation that causes a state transition, the server locks the corresponding state
table entry so that all transitions occur serially. If a callback is necessary, the state table entry
remains locked; therefore, while servicing a callback a client cannot perform any open or close
operations on the specified file (or deadlock would result).

4.4. Server changes

The state table manager is implemented as a separate module. It takes care of initializing the
server state data structures, and has entry points to perform the state transitions necessary on file
open and close operations. Most of the code added to support SNFS is in this module.

The only changes to the original NFS server code were straightforward additions of new RPC
service functions. The open operation is similar to the existing getattr operation, except that it
calls the state table management code to record information about the new open, potentially
resulting in a callback. The close operation is even simpler, since it does nothing but notify the
state table manager.

7We actually represent CLOSED and CLOSED_DIRTY as subcases of one state; similarly for ONE_READER and
ONE_RDRDIRTY.

13

SPRITELY NFS

From To When Caching Callback
State State

CLOSED ONE_READER Open for read Enabled None

CLOSED ONE_WRITER Open for write Enabled None

CLOSED_DIRTY ONE_RDRDIRTY Open for read Enabled None
by last writer

CLOSED_DIRTY ONE_READER Open for read Enabled Write-back
not by last writer

CLOSED_DIRTY ONE_WRITER Open for write Enabled None
by last writer

CLOSED_DIRTY ONE_WRITER Open for write Enabled Write-back
not by last writer and invalidate

ONE_READER MULT_READERS Open for read Enabled None
by different client

ONE_RDRDIRTY MULT_READERS Open for read Enabled Write-back
not by last writer

ONE_READER or ONE_WRITER Open for write Enabled None
ONE_RDRDIRTY by same client

ONE_READER WRITE_SHARED Open for write Disabled Invalidate
by different client

MULT_READERS WRITE_SHARED Open for write Disabled Invalidate

ONE_RDRDIRTY WRITE_SHARED Open for write Disabled Write-back
by different client and invalidate

MULT_READERS MULT_READERS Open for read Enabled None

ONE_WRITER WRITE_SHARED Open for Disabled Write-back
read or write and invalidate
by different client

MULT_READERS ONE_READER Close by last Not affected None
but one reader

ONE_READER or CLOSED Final close Not affected None
WRITE_SHARED

ONE_RDRDIRTY CLOSED_DIRTY Final close Not affected None

ONE_WRITER CLOSED_DIRTY Final close Not affected None, this
client recorded
as last writer

ONE_WRITER ONE_RDRDIRTY Final close Not affected None, this
for write, client client recorded
still reading as last writer

Table 1: SNFS server state transitions

14

SPRITELY NFS

4.5. Code size

A crude measure of the complexity of the modifications we made is the change in source code
size. The unmodified NFS code we started with consisted of 9200 lines of commented C source
code in 15 files. The SNFS version consists of 11150 lines in 16 files, with most of the increase
coming from the SNFS server state manager. We believe that an implementation supporting
both NFS and SNFS protocols would be only a few hundred lines longer than our SNFS code.
(Note that our SNFS implementation does not yet include crash recovery code.)

Another measure of the code complexity is the size of the object code. The SNFS object code
is about 20% larger than the NFS object code, totalling about 35 Kbytes of VAX instructions.
Run-time data space requirements vary depending upon the limit imposed on the number of open
files; for example, up to 1000 simultaneously open files can be accommodated with about 70
Kbytes of data space.

5. Performance

In this section, we look at the performance differences between NFS and SNFS. We are con-
cerned with the case where there is no concurrent sharing of a file between two or more client
hosts, because this is by far the most common case. In the write-shared case, SNFS disables the
client cache and so performs much worse than NFS ---- but much more correctly.

5.1. Factors affecting performance

The performance differences between NFS and SNFS are the result of variation in several
factors:

• The parallelism available with delayed write instead of write-through.

• The writes averted when temporary files are deleted before being written back.

• The number of RPC calls required over the active lifetime of a file.

• The computational demands of protocol support.
We believe that the computational costs of the SNFS implementation are not significantly dif-
ferent from those of NFS. For the other factors, however, NFS and SNFS can differ con-
siderably, depending on the application mix.

For example, SNFS gains most from increased parallelism when only one job is running on
the client host, and it can alternate computation with write I/O (such as a compiler). File copying
can also benefit as long as the cache does not fill with dirty blocks, because the writes are often
postponed so as to overlap with a less I/O-intensive task. Less such I/O parallelism is available
if many applications are running in parallel on the client.

Similarly, SNFS gains by avoiding writes only if the application is generating a significant
volume of temporary files (and if these files fit easily into the client cache).

Finally, the relative number of RPC operations depends on the pattern of access to a file. For
example, a file that is read only once for a brief period (such as a source module) differs from a
file that is read over the course of several seconds (some text editors do this, for example). In the

15

SPRITELY NFS

‘‘read-quickly’’ case, NFS will require one fewer RPC than SNFS, since SNFS requires the ad-
ditional close operation (the SNFS open operation is equivalent to the getattr operation done at
file-open time by NFS).

In the ‘‘read-slowly’’ case, the relative RPC counts will be closer, since NFS must do consis-
tency probes every few seconds. Normally, the NFS model wins because most applications fol-
low the ‘‘read-quickly’’ pattern. As we point out in section 6.2, however, a minor modification
to our implementation of SNFS would probably provide significant performance gains over NFS
in the case where a file, such as a popular header file, is read repeatedly during the course of
some seconds. This pattern is actually quite common.

In addition to effects of the application mix, the relative performance of SNFS and NFS
depends on system parameters including the file cache size, RPC speed (composed of processor
and network costs), and disk access time. As the client’s file cache size increases, the relative
benefit of clever cache-management protocols increases as well. Also, when the gap between
processor speeds and disk access time widens (as it appears to be doing), cache-management
efficiency becomes more important. Finally, since NFS and SNFS differ somewhat in the num-
ber of RPC calls used, increases in RPC speed (relative to processor speed) reduce the relative
performance difference.

5.2. Andrew benchmark measurements and analysis

Our SNFS implementation was originally developed for Ultrix running on a MicroVAX-II
with a relatively small memory. Because we were interested in the effects of large caches, we
ported the code to the experimental Titan workstation; Titans are RISC processors running about
12-15 times as fast as a VAX-11/780, and supporting up to 128 Mbytes of main memory [6].
Identical machines were used for client and server, and the RA81 and RA82 disks used are
moderately high performance drives. The operating system running on the Titan is not exactly
Ultrix, but the NFS and other file system code is taken directly from Ultrix, with only a few lines
changed because of architectural differences. All our measurements were made on Titans.

It is relatively easy to benchmark the individual cases where one might expect SNFS perfor-
mance to differ from NFS performance. It is harder to measure an aggregate difference, since
the weighting for the individual differences depends so much on the application mix. We chose
to concentrate on the Andrew benchmark suite [2], since it covers many of the individual cases
and does give some idea of the aggregate performance. The Andrew benchmark spends a sig-
nificant amount of time doing compilation; since the cost of compilation depends upon the target
architecture, it is not possible to compare our figures directly to previously published results

8from the Andrew benchmark . We also benchmarked an external sort application, since this
emphasizes the differential performance on temporary files; see section 5.3.

8We used a slightly modified version of the original Andrew benchmark, due to John Ousterhout [7], that does
produce comparable numbers. This is done by using a portable compiler and loader that produce code for a fixed
target architecture, not for the architecture being tested. We hope that future benchmarking will be based on this
portable version.

16

SPRITELY NFS

The Andrew benchmark consists of 5 phases, applied to a tree of directories and files; the
following description is taken from [2]:

MakeDir Constructs a target subtree that is identical in structure to the source subtree.

Copy Copies every file from the source subtree to the target subtree.

ScanDir Recursively traverses the target subtree and examines the status of every file in
it; does not actually read the contents of any file.

ReadAll Scans every byte of every file in the target subtree once.

Make Compiles and links all the files in the target subtree.

Different phases highlight different differences between SNFS and NFS. The Copy phase
favors SNFS, since the delayed-write policy allows more parallelism between the read and write
I/O streams. The ScanDir and ReadAll phases favor NFS, since SNFS has about one additional
RPC to do for each file. The Make phase favors SNFS because it allows parallelism between file
writing and either file reading or computation.

Because the delayed-write policy of SNFS postpones some operations until after the comple-
tion of the benchmark, we ran the SNFS benchmarks several times in a row (rather than inter-
leaving them with NFS benchmark runs) so that NFS would not be charged for writes incurred
by SNFS.

We ran the benchmark in three configurations: one with all files on the local disk, one with
just the data files remotely mounted but temporary files kept locally, and the last with both data
and temporary files remotely mounted. The latter configuration should favor SNFS for the Make
phase, since it allows the ‘‘delete-before-writeback’’ optimization to take effect. In all con-
figurations, the ‘‘compiler’’ programs were on the same file system as the data, and other Unix
utility programs were on the local disk.

The results are shown in table 2. Each number shown is an average over 10 trials. The times
are measured with an accuracy of no better than a second or two, so slight variations should not
be taken seriously.

Elapsed time in seconds

Phase Local NFS, SNFS, NFS, SNFS,
/tmp /tmp /tmp /tmp
local local remote remote

MakeDir 4.7 4.6 4.6 4.5 4.3

Copy 24 48 35 48 37

ScanDir 43 52 55 52 55

ReadAll 37 50 53 51 53

Make 215 303 237 377 266

Total 322 457 384 532 415

Table 2: Results of Andrew benchmark

17

SPRITELY NFS

During our experiments, neither the client nor server machine were used for any other jobs
(although some housekeeping tasks occasionally run in the background). Both machines had
large file buffer caches (about 16M bytes on the client and 3.5M bytes on the server), large
enough that no data was ever removed from the caches due to replacement. This simplifies
analysis but does favor SNFS, which is better able to make use of a large cache than NFS.

The results shown in table 2 confirm our expectations. SNFS performs about 25% better on
the Copy phase, and 20% to 30% better on the Make phase (depending on whether /tmp is local
or remote). NFS performs about 5% better on the ScanDir and ReadAll phases. SNFS com-
pletes the entire benchmark 15% to 20% faster than NFS, because the complete benchmark
places most weight on the Make phase.

Remote Procedure Calls

Call NFS, SNFS, NFS, SNFS,
/tmp /tmp /tmp /tmp
local local remote remote

open 700 778

close 700 776

getattr 757 225 933 311

setattr 22 22 22 22

read 1130 699 1961 1033

write 868 590 1425 921

lookup 3345 3345 3543 3543

other 273 273 376 376

Total 6395 6554 8260 7760

Table 3: RPC calls for Andrew benchmark

For each of the NFS and SNFS configurations, we collected RPC operation counts, as shown
in table 3. (When /tmp is remotely mounted, the counts may be insignificantly off, since it is
hard to avoid using this directory for housekeeping activities.) With /tmp on a local disk, SNFS
requires slightly (2%) more RPC operations, but since SNFS substitutes open and close opera-
tions for the more expensive read and write operations, it probably comes out ahead in total cost.
With /tmp remotely mounted, SNFS requires 6% fewer total operations, and 42% fewer data
transfer operations.

Several entries in table 3 deserve explanation. When /tmp is mounted locally, one might
expect both protocols to issue the same number of write RPC calls. Because the Ultrix NFS
implementation delays partial-block writes, it is more sensitive than SNFS to the ‘‘natural’’ file
system block size used at the server. During our tests, we used a 4K byte block; NFS might have
performed slightly better had we used an 8K byte block size.

NFS also issues far more read RPC calls. This appears to be because there are many instances
where the client first writes a file, and then reads it. Although the original blocks persist in the
cache, when the NFS client opens the file for reading, it sees a more recent timestamp than it saw

18

SPRITELY NFS

previously (because the timestamp is generated at the server), and so it must assume that the file
has been modified. The SNFS client, in contrast, knows that it was the last writer of the file, and
uses its cached blocks.

Finally, we note that roughly half of the RPC calls are file name lookups (SNFS and NFS use
the same protocol for this). Clearly, any mechanism that reduced the number of lookups would
improve performance; we suspect that applying the Sprite consistency protocols to a cache of

9directory entries might be a good approach .

We were also interested in the effect of file system protocol on ‘‘server utilization,’’ the CPU
load placed on the server for a given application. Measurements of the Sprite operating system
suggest that the Sprite file system can support about four times as many clients as can a Unix
system with NFS running on identical hardware [5]. We measured the server CPU load
(roughly, the percentage of time not spent in the ‘‘idle’’ state) while running the Andrew
benchmark for NFS and SNFS; in both cases, /tmp was remotely mounted, so we effectively
simulated the load of a diskless workstation. We also measured the rate of RPC calls, as well as
individual rates for read and write calls. Graphs of the server load and call rates are shown in
figure 1 for the NFS benchmark, and in figure 2 for the SNFS benchmark. All the graphs in one
figure are for the same run, so one can see how the rates are correlated in time.

The load varied considerably over the course of the benchmark, and was strongly correlated
with the aggregate rate of RPC calls; it was not correlated with the rate of read or write calls.
Since SNFS, even when /tmp is remotely mounted, requires only slightly fewer operations than
NFS, the integral of CPU load over time was only slightly lower for SNFS. In fact, since the
SNFS benchmark completes significantly faster, the average server load during the benchmark is
slightly higher than for NFS; it also appears to be slightly burstier.

We believe that the advantage, in server CPU utilization, of Sprite over NFS is probably the
result of a more efficient RPC protocol and perhaps a more efficient file name translation
mechanism. We have no evidence to show that the SNFS cache consistency protocol itself, in
isolation from the write policy, leads to significantly different server CPU utilization on the
Andrew benchmark. On the other hand, table 3 shows that the server disk utilization with SNFS
is 30% to 35% lower.

5.3. Sort benchmark measurements and analysis

As noted earlier, one case where the cache consistency protocol does have a significant effect
is when a single client first writes, then reads a temporary file. We explored this case by
benchmarking the Unix sort program, which does an external sort and so makes heavy use of
temporary files.

We measured the performance of the sort program with its temporary files (kept on
/usr/tmp) on local disk, remote-mounted via NFS, and via SNFS. Table 4 shows the resulting
elapsed times for input files of three different sizes; the important parameter is the amount of
temporary storage used, which grows faster than the input file.

9The reference port of NFS includes a relatively ineffective cache that holds only directory names; we hear
rumors that some work has been done on leaf-name caching, and we are trying to track them down.

19

SPRITELY NFS

0 600120 240 360 480
time in seconds

0

50

5
10
15
20
25
30
35
40
45

N
FS

 R
ea

ds
 p

er
 s

ec
on

d

0 600120 240 360 480
time in seconds

0

50

5
10
15
20
25
30
35
40
45

N
FS

 W
ri

te
s

pe
r

se
co

nd

0 600120 240 360 480
time in seconds

0

100

20

40

60

80

N
FS

 C
al

ls
 p

er
 s

ec
on

d

0 600120 240 360 480
time in seconds

0

100

10
20
30
40
50
60
70
80
90

Pe
rc

en
t C

PU
 B

us
y

Figure 1: Server utilization and call rates for NFS

20

SPRITELY NFS

0 600120 240 360 480
time in seconds

0

50

5
10
15
20
25
30
35
40
45

SN
FS

 R
ea

ds
 p

er
 s

ec
on

d

0 600120 240 360 480
time in seconds

0

50

5
10
15
20
25
30
35
40
45

SN
FS

 W
ri

te
s

pe
r

se
co

nd

0 600120 240 360 480
time in seconds

0

100

20

40

60

80

SN
FS

 C
al

ls
 p

er
 s

ec
on

d

0 600120 240 360 480
time in seconds

0

100

10
20
30
40
50
60
70
80
90

Pe
rc

en
t C

PU
 B

us
y

Figure 2: Server utilization and call rates for SNFS

21

SPRITELY NFS

File Temp local NFS SNFS
size storage /usr/tmp /usr/tmp /usr/tmp

281 K 304 K 4 sec 8 sec 4 sec

1408 K 2170 K 33 sec 105 sec 48 sec

2816 K 7764 K 74 sec 234 sec 127 sec

Table 4: Results of Sort benchmark

Remote Procedure Calls

Call 1408 1408 2816 2816
Kbytes, Kbytes, Kbytes, Kbytes,

NFS SNFS NFS SNFS

open 35 68

close 35 67

getattr 93 37 150 70

read 681 33 1340 67

write 729 706 1452 1441

other 108 107 203 207

Total 1611 953 3145 1920

Table 5: RPC calls for Sort benchmark

SNFS dramatically outperforms NFS on this benchmark, completing approximately twice as
fast. In all three cases the client CPU utilization is higher for SNFS; in other words, I/O latency
is the bottleneck. Table 5 shows that SNFS does far fewer read RPC calls than does NFS, in-
dicating that the NFS cache-consistency mechanism is clearly at fault. (It is failing to read from
the cached copies of recently-written temporary files.) We believe that this accounts for a third
to a half of the performance difference, the rest attributable to the synchronous writeback-on-
close required in NFS.

Unlike the Andrew benchmark, on this benchmark the total CPU utilization is about 40%
lower for SNFS, probably because SNFS does about 40% fewer RPC calls. This is a significant
improvement; however, the Andrew benchmark may be more representative of real applications.

5.4. Avoiding file writes for temporary files

A delayed write policy means that data written to short-lived temporary files may never need
to be sent to the server. Unix systems normally run a process called /etc/update, which
writes back dirty blocks every 30 seconds. This is desirable for limiting the damage caused by a
crash, but the sort benchmark lasts long enough that one of these write-backs is likely to occur
even if few of the temporaries reach the age of 30 seconds.

22

SPRITELY NFS

File Temp local NFS SNFS
size storage /usr/tmp /usr/tmp /usr/tmp

1408 K 2170 K 32 sec 97 sec 29 sec

2816 K 7764 K 69 sec 246 sec 69 sec

Table 6: Sort benchmark,
infinite write-delay

Remote Procedure Calls

Version update? Reads Writes Others

NFS Yes 1340 1452 353

NFS No 1227 1451 368

SNFS Yes 67 1441 412

SNFS No 65 33 407

Table 7: RPC calls for Sort benchmark,
2816 Kbyte input file,

with infinite write-delay

To emphasize the benefits of delaying writes of temporary files, we ran the sort benchmark
with the /etc/update process disabled. The results, shown in table 6, show that for files
whose lifetime is short enough, SNFS matches or beats local-disk performance (even though
dirty blocks are not written, the local-disk file system still writes out structural information).
NFS performance is unchanged, within the limits of measurement error. Table 7 shows that
SNFS, in this situation, is doing almost no write RPC operations.

6. Future work

In this section we touch on several issues, in addition to crash recovery, that we have not yet
addressed in our implementation.

6.1. Coexistence of NFS and SNFS

SNFS can coexist quite easily with unmodified NFS. We have demonstrated that a single
client can remote-mount file systems using either protocol, and that a single server can provide
access to separate file systems using either protocol. It is slightly trickier to support simul-
taneous access via both NFS and SNFS to the same file system, since the NFS clients cannot
participate in the SNFS consistency protocol.

One approach is to treat any NFS access to a file already open under SNFS as implying an
SNFS open operation. If the file is open for reading under SNFS, as long as the NFS client
issues only read operations, this can be treated as if it were the MULT_READERS state. If the file
is open for writing under SNFS, or if the NFS client attempts a write operation, the server can
issue callbacks to the SNFS clients and put the file into the WRITE_SHARED state. In this state,

23

SPRITELY NFS

the SNFS clients effectively follow the NFS consistency model, but with an even stricter inter-
probe interval.

If a file is used first by an NFS client, it might appear necessary to perform a callback if an
SNFS client then causes the file to enter the write-shared state. This is not true, since the NFS
client will not cache dirty blocks. The hard problem is to know when the NFS client has stopped
using a file. We can do this by keeping, for a period no less than the longest NFS attributes-
probe interval, a record of each file accessed via NFS. Files that have not been accessed within
this interval may safely be declared closed, since an NFS client will not use its cached copy of
such a file without first checking with the server.

A server can easily tell if a client is using NFS or SNFS because the SNFS clients will always
perform an open operation before doing anything else to a file (we ignore the possibility of an
intervening crash.) Conversely, a client can tell if a server supports SNFS because an NFS serv-
er will reject an open operation. Thus, SNFS clients and SNFS servers will discover each other,
and other combinations will simply revert to the standard NFS protocol.

6.2. Delaying the SNFS close operation

Our current SNFS implementation sends an open operation to the server every time a process
opens a file. This is not necessary; since most files are reopened soon after they are closed, we
can avoid a lot of network traffic if the SNFS clients delayed close operations in anticipation of a
subsequent open operation. The client would keep a flag in the gnode structure indicating that a
‘‘closed’’ file has not yet been reported to the server; this would allow it to realize that a sub-
sequent open operation can be performed locally.

Delayed-close may create situations where the server perceives write-sharing to be taking
place, when in fact it is not. If a client with a delayed-close file receives a callback for that file,
the appropriate response is to close the file so that it can be cached by the new client host. The
first client cannot, however, simply issue a close operation during the callback, since this would
deadlock the server (in our current implementation, at least). Instead, the client could return a
special status code for the callback operation that would tell the server to treat the file as closed.

Delayed-close will also cause the server’s state table to fill up with apparently open files. It
appears to be necessary, therefore, to create a new callback mode that asks a client to relinquish a
closed file; the server would perform these as necessary to attempt to reclaim state table entries
that have not been used recently.

7. Summary and Conclusions

Our experiments have convinced us that the Sprite approach to consistency is superior to that
used in NFS. NFS cannot provide complete consistency without unacceptable performance.
Even with the weak consistency provided by most NFS implementations, performance is prob-
ably worse than that provided by the Sprite consistency protocol.

We found that adding the Sprite consistency protocol to NFS was possible without major dis-
ruption of the NFS implementation, and required only a few programmer-months. In order to

24

SPRITELY NFS

show that statelessness is not perfection, we would have to demonstrate that SNFS has the same
fault-tolerance as NFS; this would require implementation of the Sprite recovery protocol.

We did not find that SNFS outperformed NFS as much as Sprite was supposed to have outper-
formed NFS [5]. One reason may be that the NFS we used has been adjusted to place perfor-
mance ahead of consistency; perhaps this is the right choice. A more intriguing question is
whether the high rate of file lookup calls, as we detailed in table 3, swamps other file system
performance differences. NFS and SNFS use the same lookup mechanism; Sprite uses an en-
tirely different approach, which might account for its advantage, and might profitably be applied
to the NFS protocols.

Caching in file systems is becoming more crucial as processor speeds and memory sizes im-
prove faster than disk access times. We cannot afford to use inadequate cache mechanisms
simply because the good ones seem harder to implement.

8. Acknowledgements

Richard Swan prompted our interest in integrating Sprite concepts into a more quotidian
operating system. John Ousterhout, in his post-sabbatical semi-residence at our laboratory,
helped us understand Sprite and kept us honest. Richard Hyde and Chris Kent helped us
brainstorm our design, and Bob Rodriguez kindly took time off from his summer vacation to
help us understand the arcana of Ultrix. Chet Juszczak provided both encouragement and a
reality check. Bill Hamburgen, Mary Jo Doherty, and Joel McCormack helped to proofread the
final drafts. Our mistakes are our own, of course.

9. References

[1] M. J. Bach, M. W. Luppi, A. S. Melamed, and K. Yueh. A Remote-File Cache for RFS.
In Proc. Summer 1987 USENIX Conference, pages 275-280. Phoenix, AZ, June, 1987.

[2] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance

in a Distributed File System. ACM Transactions on Computer Systems 6(1):51-81, February,
1988.

[3] Chet Juszczak. Improving the Performance and Correctness of an NFS Server. In Proc.
Winter 1989 USENIX Conference, pages 53-63. San Diego, February, 1989.

[4] Christopher A. Kent. Cache Coherence in Distributed Systems. PhD thesis, Purdue
University, 1986. Also available as Digital Equipment Corporation Western Research
Laboratory Research Report 87/4.

[5] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite Net-
work File System. ACM Transactions on Computer Systems 6(1):134-154, February, 1988.

[6] Michael J. K. Nielsen. Titan System Manual. Research Report 86/1, Digital Equipment
Corporation Western Research Laboratory, September, 1986.

[7] John Ousterhout. Private communication. 1989.

25

SPRITELY NFS

[8] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In

Proc. 10th Symposium on Operating Systems Principles, pages 15-24. Orcas Island, WA,
December, 1985.

[9] R. Rodriguez, M. Koehler, and R. Hyde. The Generic File System. In Proc. Summer
1986 USENIX Conference, pages 260-269. USENIX, Atlanta, GA, June, 1986.

[10] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design
and Implementation of the Sun Network filesystem. In Proc. Summer 1985 USENIX
Conference, pages 119-130. Portland, OR, June, 1985.

[11] Michael D. Schroeder, David K. Gifford, and Roger M. Needham. A Caching File Sys-
tem For A Programmer’s Workstation. In Proc. 10th Symposium on Operating Systems
Principles, pages 25-34. Orcas Island, WA, December, 1985.

[12] Sun Microsystems, Inc. NFS: Network File System Protocol Specification. RFC 1094,
Network Information Center, SRI International, March, 1989.

[13] Webster’s New Collegiate Dictionary. G. & C. Merriam Company, Springfield, MA,
1979.

[14] Brent B. Welch. The Sprite Distributed File System. PhD thesis, Department of Electri-
cal Engineering and Computer Science, University of California -- Berkeley, 1989. In prepara-
tion.

Unix is a registered trademark of AT&T.
Ultrix, MicroVAX, and VAX are trademarks of Digital Equipment Corporation.

26

SPRITELY NFS

Table of Contents
1. Introduction 1
2. Goals of the experiment 2

2.1. NFS consistency model 2
2.2. Sprite consistency model 3
2.3. Potential advantages of Sprite 4
2.4. Implications for crash recovery 5
2.5. Related work 6

3. Modifications to the NFS protocol 6
3.1. New client-to-server calls 6
3.2. Server-to-client calls 7

4. Implementation 9
4.1. Layering 9
4.2. Client changes 9
4.3. Server state design 12
4.4. Server changes 13
4.5. Code size 15

5. Performance 15
5.1. Factors affecting performance 15
5.2. Andrew benchmark measurements and analysis 16
5.3. Sort benchmark measurements and analysis 19
5.4. Avoiding file writes for temporary files 22

6. Future work 23
6.1. Coexistence of NFS and SNFS 23
6.2. Delaying the SNFS close operation 24

7. Summary and Conclusions 24
8. Acknowledgements 25
9. References 25

iii

SPRITELY NFS

iv

SPRITELY NFS

List of Figures
Figure 1: Server utilization and call rates for NFS 20
Figure 2: Server utilization and call rates for SNFS 21

v

SPRITELY NFS

vi

SPRITELY NFS

List of Tables
Table 1: SNFS server state transitions 14
Table 2: Results of Andrew benchmark 17
Table 3: RPC calls for Andrew benchmark 18
Table 4: Results of Sort benchmark 22
Table 5: RPC calls for Sort benchmark 22
Table 6: Sort benchmark, infinite write-delay 23
Table 7: RPC calls for Sort benchmark, 2816 Kbyte input file, with infinite 23

write-delay

vii

