SRC Technical Note
2001-001

February 27, 2001

Cloudburst: A Compressing, Log-Structured Virtual Disk for
Flash Memory

Gretta Bartels and Timothy Mann

COMPAQ

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://research.compag.com/SRC/

Copyright 2001 Compag Computer Corporation. All rights reserved

Abstract

Cloudburst is a compressing, log-structured virtud disk implemented in flash memory under the Linux operating
system. Exidting Linux filesystems (preferably with certain modifications) can run on top of Cloudburs.
Unfortunately, more extensive filesystem modifications would be needed to make the results fully satisfactory than
we had redlized at first, and we did not complete them. Nevertheless, the Cloudburst design has some interesting
agpects that may be of useto future effortsin flash file systems.

I ntroduction

This note reports on Cloudburst, adevice driver that enables persstent file storage on handheld computers with
flash memory, such asthe Itsy pocket computer [1]. Cloudburst is a compressing, log-structured virtua disk,
implemented as a Linux block device driver. It was built as a summer intern project in the summer of 2000.
Implementing Cloudburst as avirtud disk alowed us to avoid the complexities of building a complete new
filesystem with integrated compresson and flash support; ingtead, we can run a conventiond Linux filesystem on
top of the compressing virtud disk.

Unfortunately, however, a compressing virtud disk unavoidably differs from ared disk in one important way: the
amount of available storage space varies greetly depending on the compressibility of the datathat is currently

ldnl

sored. A red disk isafixed-sze array of blocks, with the property that any block can be overwritten a any time
with any data, barring physicd faluresinthe disk. Let us cdl the latter property arbitrary writability. A
compressing virtud disk must also gppear to be afixed-sze array of blocks, Snce that is the interface that
conventiond filesystems require. The array's virtua sze must be larger than the physicd sze of the underlying
media (say, at least twice aslarge if we hope for an average compression ratio of about 2:1), Snce otherwise the
filesystem would have no way to make use of the gpace saved by compression. But doing this makes it
impossible to achieve arbitrary writability; if the filesystem writes data that does not compress as wdl aswas
hoped for, then the physical medium will fill up before dl the virtua blocks have been used.

Conventiond Linux (and most other) filesystems rely on arbitrary writability at adeep level. Firdt, conventiona
filesystems alocate blocks within the disk's address range to files and other structures, modify cached copies of
the blocks in memory, and write them back to disk later. Failure of such adelayed writeback is a serious
problem that may require manua intervention for recovery. With a compressing virtua disk, however, overwriting
ablock can fall if the new data does not compress aswell asthe old data. This condition is particularly likely to
occur in our gpplication; on a handheld device with limited flash space, the flash islikely to be nearly full much of
the time. Second, conventiond filesystems do not inform the disk of which blocks are currently in use and which
are free gpace. A red disk does not need thisinformation, but our log-structured, compressing virtuad disk needs
it for two reasons. the log cleaner is more efficient and runs less often if it can avoid copying datathat is no longer
in use, and discarding such data leaves more room to store vaid data, effectively giving us much better
compression.

We found it easy to modify Linux's ext2 filesystem to ded with the second problem. We smply added a delete
primitive dongsde the exiging Linux block driver read and write primitives, and added a cdl to delete from
ext2's block freeing routine. We had in fact dready made this change to ext2 and the driver interface in order to
solve a performance problem with the FTL (Flash Trandation Layer) implementation on the Itsy [1].

However, we did not find asmple way to ded with the first problem. Here is a sketch of how it could be done.
We add areserve primitive to the driver interface. Calling this asks the driver to reserve enough space to
overwrite a given block with new data, assuming worgt-case compression. The call returns an error if thereis not
enough space | eft; otherwise, the spaceis reserved until the next write or delete of the same block is received.
Thefilesysem would then cal reserve before dirtying any block in the buffer cache (or otherwise committing to
being able to write some block in the future). An additiond refinement is needed to keep the system from getting
stuck when it runs out of space. The only way to free up space isto delete afile, but afile cannot be deleted
without writing to its directory. This can be solved by having the driver set aside afew blocks of emergency
space to be used only by deletions. Say the emergency space is e blocks. An extra argument to reserve identifies
whether or not the writeisin service of afile ddetion that will free up soace. If it isnot a ddetion, then reserve
returns an error if there aree blocks or fewer left; if it is, then reservereturns an error only there are no blocks
left. The latter case should not occur if the filesystem is prompt about actually deleting blocks after reserving
space for deletion.

We have not attempted to implement the scheme just described, but it is clearly not atrivia changeto ext2 (or
other Linux filesystems), and it would have to be implemented separately for each filesystem that isto run on top
of Cloudburst. This makes the Cloudburst approach look considerably less attractive than it might appear at first.
We suspect that this problem would be somewhat easier to solve (though it till might require nontrivia changes)
when adding compression to afully integrated log-structured flash filesystem; for example, in the current effort to
add compression to JFFS [2].

Thus, overdl, we do not consider the Cloudburst approach to have been a success. However, we are issuing this

2011

technica note because we believe that the detailed design has some interesting aspects that could be of useto
future effortsin flash file systems. In the remainder of this note, we first briefly discuss related work, then proceed
to the details of Cloudburgt's implementation.

Related Work

Many different combinations of compression, log-structuring, flash-friendliness, and virtua disks have been tried
before. To the best of our knowledge, the combination of al four featuresis unique to Cloudburst.

Log-gructuring was introduced in Rosenblum's classic paper on the Sprite log-structured filesystem [3]. Burrows
et al. observed that compression meshes well with log-structuring, and demonstrated a compressing verson of
Sprite LFS[4]. De Jongeet al. applied log-structuring to the implementation of avirtud disk [5]. The
industry-standard Flash Trandaion Layer implements avirtud disk in flash, but without log-structuring or
compression [6]. The Itsy implementation of FTL added the delete primitive to its interface [1]. Kawaguchi et al.
reported on alog-structured virtud disk in flash, but without compression or the delete primitive [7]. Axis
Communications has implemented JFFS, alog-gructured filesystem in flash without compression [2]. At this
writing, David Woodhouse is reportedly in the process of adding compression to JFFS.

Flash Memory

Flash memory has characterigtics that make it different from most other forms of persstent storage. (Specific
numbers in this note apply to the flash parts used in the Itsy, which come from the AMD Am29LV or Am29DL
series, but they are typical of current CMOS NOR flash technology.) To its advantage, reading flash is nearly as
fast asreading RAM. However, writing is relaively dow, and once written, flash cannot smply be overwritten
with other dataas RAM or disk can. Each bit in aflash memory hasaninitid erase sate; say, 1. Each individud
bit may beflipped to O & any time. But to flip bits back from 0 to 1, an entire sector of the flash must be erased
simultaneoudy, changing dl of its bitsto 1. Sectors are large, often 256 KB or 512 KB, and it takes along time
to erase a sector, typically 0.7 seconds.

For this reason, rewriting smal blocks of datain-place on flash memory is very inefficient. For example, suppose
we are trying to store an array of 1024 512-byte blocks in a sector of flash. Suppose we need to update one of
the blocks, and that some of the bitsin the block will flip from O to 1 when we do the update. To do the update,
we need to:

Reed the entire 512 KB sector into memory from flash
Update the block in memory

Erase the sector

Rewrite the entire sector from memory to flash

dpoODdDPE

Besides being time- and memory-consuming, this approach aso leaves a sizable window of opportunity for data
loss, should the system lose power. Furthermore, each sector of flash may only be erased about 100,000 times.
After that, it no longer guarantees data integrity.

Cloudburst Rationale

We designed Cloudburgt to be:

* |og structured, because writing blocks in-place on flash is very inefficient

3011

= compressing, because flash is generdly quite small, and file systems expand to fill dl available space
« avirtud disk, because implementing complete file sysemsis tricky and time-consuming. By working a a
lower level, we hoped to support many different file systems.

The virtud disk abstraction is alayer between the file system and the storage medium. To thefile system, the
virtud (or logicd) disk actslike anorma, magnetic disk: it reads and writes blocks of afixed s9ze. However,
under the covers, the virtua disk can tore the data on the physica storage medium in whatever way it chooses.

In the case of Cloudburst, we store the dataiin alog, writing blocks sequentialy on the flash. Because thereis no
minimum write granularity on the flash, we can compress the blocks as we write them to the log without losing
space due to fragmentation.

In the following sections we give details of the Cloudburst data structures and agorithms.
Recover ability

It isessentid that power loss or a system crash while Cloudburst isin the middle of updating the flash should not
lose previoudy written data or otherwise corrupt Cloudburdt's data structures. Because typicd flash chips
(including those that the Itsy uses) can be organized in either 8-bit or 16-bit wide units, we do not assume that
anything larger than a single byte can be written atomicdly. In generd, our strategy for writing is to write the data
firgt, then write a separate bit indicating that the write is done. At boot-time recovery, we aso check for
incomplete writes and resolve them by writing a bit that marks the data as invaid. We have assumed that an
incomplete write cannot leave a bit in an indeterminate state where it sometimes reads as 0 and sometimes as 1.

Segments

Asin any log-structured system, Cloudburgt treets the entire physica sorage medium as alarge log, built by
breeking the medium into segments of afixed Sze and arranging the segmentsinto alist. Changes to blocks do
not overwrite the old, superseded block contents; instead, the new datais gppended to thetail of thelog. To
avoid having the log grow until it fills the disk, the system uses a cleaner. Conceptualy, the cleaner periodicaly
chooses a segment that contains some superseded blocks, copies dl the non-superseded blocks from that
segment to thetall of the log, and then removes the dleaned segment from its place in the log and reinsarts it a the
end, as new free gpace. As arefinement, the log may have two tails, one for new data (much of which islikdy to
be superseded soon) and one for copied data (which may be more likely to be retained permanently), but that
point is not important for the present discussion.

In Cloudburst, each segment is an integral number of erase unitslong (typicdly 1), o that a ssgment can be
erased after it is cleaned. The data structure in a segment looks like this:

Thei d fidd a the front of the segment is reserved for future use. It could be used to hold information that will
help the cleaner choose the best segment to clean, such as when the datain the segment was first written, when
the datawas |ast cleaned and recompressed, and the number of times the sector(s) in the segment have been
erased (for wear-leveling purposes).

The compressed disk blocks are discussed further below. Since they each contain alength field, compressed disk

4011

blocks can be packed one right after the other in the segment. As more blocks are packed into the segment, they
are added to the end of the data area, moving the boundary of thef r ee areato theright.

The free portion of asegment is entirdy filled with 1's. (For smplicity, we assume the type of flash where erased
bits read as 1; the data structure could easily be generalized to work with flash that erasesto 0's))

Compressed Disk Blocks

Each compressad disk block is subdivided as shown below. Here "1b" means one bit, while "1B" means one
8-bit byte. There is a 5-byte header, followed by at most 512 bytes of data.

O R S S S S o m e e e e e e eeeeaaoos +

| val | ver | run | conp | clen | VBN | cdata
+- - - - - +-- - - - +o- - - - E R [S +- - - - - g +

2b 2b 1b 3b 1B 3B max 512B

Theval fied containstwo bits indicating the sate of this block. If they are 11, then the block has not yet been
completely written (in fact, it may not even have been sarted), and there are no blocks beyond this one in the
segment. If they are 01, then the block has been completely written and is currently valid. If they are 00, then
either the block was completely written and has been superseded, or the block was incompletely written at the
time of a system crash and has been marked invalid by a subsequent recovery. (10 could have been used for the
latter case, but there is no red need to distinguish such blocks from superseded blocks.)

Thenext fidd, ver, contains two bitsindicating a virtud block verson number. The verson number is
incremented on each write of agiven virtua block, wrapping back to O when it overflows. The version number
alows the boot time recovery code to disambiguate the case where two blocks have the same virtua block
number (VBN). This case can occur if anew version of ablock iswritten and the system then crashes before the
old version is superseded. Two bits are sufficient because the two block versions never differ by more than 1.
(Note: it might have worked aswell to omit thever field and have the boot time recovery code choose one of
the two compressed blocks arbitrarily. If the block was being moved by the cleaner when the system crashed,
the old and new versons must contain the same uncompressed data. If the block was being newly written when
the system crashed, choosing the older version is acceptable, ance it leaves the system in the same state it would
have been in had the crash occurred a few microseconds sooner, before the new version was written to flash.)

Ther un fidd contains a bit indicating the beginning of acompresson run. If the bit is s, this block isthe first
block in acompression run.

Next come three bits to indicate the compression scheme. Thisdlows usto use eight different compression
schemes (plus no compression, encoded with the cl en fidd) in the running system. Thus, blocks can be
compressed better asthey live longer, or according to the type of datain them. The compression schemes are
discussed further below.

Thecl en fidd gives the length of the block'scdat a fidd. The meaning of thecl en field is shown below.

50 11

‘cl en \Interpretati on

0 This block is uncompressed. We tried to compressit using the schemelised inthe conp schene fidd
and the block did not shrink. The totd length of this block (including the 5-byte header) is 517.

This block is uncompressed because we have not yet tried to compressit. The segment cleaner should
attempt to compressthis block later. The total length of this block (including the 5-byte header) is 517.

This block is compressed and the tota length of the compressed block istwice thevaueinthecl en
field, plus 5 bytes for the header. If the actud length of the compressed data was odd, we pad it with
2-255 |one byte of Oxff to makeit even. (Note: thistrick wastes one byte of gpace about 50% of thetime, s0
we should probably have alocated one more bit to cl en ingtead.) If length of the compressed data was
1 or 2, we pad it with two or three bytes of Oxff to make the length 4.

The vaN field of the headers provides 24 hits for the virtua block number. 24 bits is enough for 224 * 29= 8 GB
of virtual storage. Since compression ratios are not likely to be better than 4:1 on average, we could support up
to 2 GB of physicd flash with this system.

Findly, the remaining 2 to 512 bytes are the data. The data is compressed when possible, but if the compressor
yields ablock that isthe same size or larger than the uncompressed data, we store uncompressed data.

Virtual to Physical Block Map

The map taking virtud to physica blocksresdesin RAM and is regenerated at boot time. A physicd to virtua
map is not necessary, as each physica block containsits own VBN.

Because the block map must be adle to hold many more mappings than will usudly be needed, we organizeitina
two-level hierarchy. In the current implementation, the top level contains 219 pointers to pages in the next level.
Each second-level page contains 214 entries, for atotal coverage of al 224 virtua block numbers

It would be fairly sraightforward to modify these parameters, or even to add another mapping level. This might
be needed to use RAM more efficiently or to accommodate different amounts and types of flash. The vaues
given here are an example, chosen for the flash used in the Itsy mode we were working with (32 MB totd, 512
KB in each of 64 sectors).

The map entry layout is shown below. Each entry istwo bytes.

e oo +

| vb | sector | run nunber
F Fom e e e oo +

1b 6b 9b

Thefird bit, vb, isavdid bit. If the bit is not s&t, the block isnot in use. Blocks that are not in use read as dl
zeros. The sector field indicates which sector holds the block. The run number indicates which compression run
holds the block. (Compression runs are explained further in the next section.) The size of the compression run
fidd ssems ample for our purposes and should even scale to larger flash memories.

Each second-leve page in the block map takes 32 KB of memory. We expect that under norma usage

conditions, only afew of these pages will actudly be dlocated. File sysems with very good compression will
have more block map pages alocated.

60 11

Block Compression
Choosing Among Compression Schemes

Severd factors are important in evauating compression schemes, including compression ratio, compression
Speed, temporary space needed during compression, decompression speed, and temporary space needed during
decompression. For a given scheme, each factor will vary according to workload. The factors tend to trade off;
getting a better compression ratio requires a s ower compression agorithm, and perhaps a dower decompression
dgorithm aswdl.

In our application, speed isimportant for two reasons. Firgt, dow compression and decompression agorithms
would tend to make the system appear duggish to the user. Second and more importantly, running the CPU on a
battery-powered device consumes scarce energy from the battery. We can amdliorate these problems by using
multiple compresson dgorithms: afast one when initidly writing data, and a dower one tha provides a better
compression ratio when cleaning. Also, whenever possible, we can postpone cleaning until the device is
recharging in its cradle and ample energy is available.

Compresson ratio isimportant for two reasons as wdl. First, our devices flash islimited in size, and we would
like to store as much datain it as possible. Second, if we compress the data better, we will not have to erase and
clean the flash as often; this can make the system fagter, save energy, and make the flash last longer.

We ds0 place one specid requirement on the compresson agorithm: it must be incrementd, in the sense that it
supports building the "compression runs' described in the next subsection. An incremental compressor accepts a
sequence of 512-byte blocks and compresses each in turn, returning the result before needing to read the next
block. The compressor is expected to learn from the early blocks in the sequence and do a better job of
compressing the later ones if they have amilar datistical properties. The decompressor can decompress any
prefix of the sequence of compressed blocks, but of course cannot start decompressing in the middle of the
sequence. The compressor can be reset after any block, starting anew sequence that can be decompressed from
its beginning. The compressor implementation must support multiple independent sequences in progress a the
same time, each with its own Sate.

Thus, the amount of temporary space required during compression is also important to us. A compresson
agorithm that isincrementa, but must retain alarge amount of state from one input block to the next, would
consume agreet ded of scarce RAM to hold the states of dl the runsthat are in progress at any given time
(typicdly two or three).

For our initid implementation, we chose to support two compression schemes: null (no compression) and LZSS
[8l1, [9]. By default, we use null compression when writing new data and LZSS when cleaning. As described
above, our data structures provide a 3-bit field to identify the compression scheme, dlowing for more schemesto
be added in the future.

Compresson Runs
512-byte blocks are much too smdl to get good compression of typicd file system data. Therefore, we compress
most blocks in runs with other neighboring blocks to improve the compression ratio. One consequence of this

choice is that decompression is no longer a per-block operation; we have to decompress from the beginning of a
run of blocksto read the desired one. However, compression remains a per-block operation; because our

7o

compressor isincrementd (as described above), we can add new blocks to an existing compression run as they
arive.

There are saverd direct consequences for keeping blocksin compression runs.

If the blocks are at dl related, later blocks will be better compressed.

To read ablock, the entire run must be decompressed from the beginning.

All blocksin arun must be compressed with the same agorithm.

The segment cleaner should do its best to sort blocks into appropriate runs, perhaps even placing more
frequently-read blocks toward the beginning of arun, to optimize performance.

PO

How should we pack compression runs into segments? One idea would be to make each segment one large
compression run. But this seems likely to make the runs too big; it could take along time to extract blocks that
fdl late in the segment. Another ideawould be to daticaly subdivide the segments into smadler pieces and put one
run in each. However, this would lead to an undesirable amount of internd fragmentation; on average, about half
ablock (256 bytes) would tend to be wasted between the end of each run and the beginning of the next. Instead,
we adlow arun to begin a any byte offset within a segment, and we keep a separate table mapping run number to
byte offset for each segment.

Next, how many blocks should go into each run? Runs should not be alowed to go on too long, because read
timeisrelated to run length. However, runs can't be too small, or compression ratios will be poor. The best length
to use for arun might depend on the data being compressed. In our current implementation, we amply sart a
new run every N blocks, where N is atunable parameter, typicaly set to 8, 16, or 32. Further study would likely
yield better heurigtics, especidly for usein the cleaner.

The Run Offsat Table

There may be at most 22 runs per segment, since nine bits are alocated to run number in the block map. This
seems more than adequate, provided that segments are 512 KB or 1 MB long. Each run has a byte offset of (for

now) 19 bits. If we store each offset in three bytes, the run offset table takes 2 * 29* 3= 96 KB to store. If this
seems too large, we could pack the entries more tightly and save 5 bits per entry, or we could dynamicaly
alocate the parts of the table that we don't expect to use.

User-Specified Compression Settings

User processes with good knowledge about the type of data they write might be able to provide useful hintsto
thevirtua disk. The user might want to specify whether data should be compressed now, later, or never, and
which compression dgorithm to use. We did not implement mechanismsto alow for this, but we consder in this
section how it might be done.

Idedlly, these hints would be supplied within the cal to write, but Snce we do not have the freedom to change the
file system interface, the best that seems possible is to communicate hints through another interface. The user
supplies hints viaan ioctl, gpecifying a particular flash minor device number. Once theioctl is cdled, dl writesto
that minor device follow the user's suggestion if possible. If the user process wants to ensure a good mapping
between writes and write policies, it should call sync before calling theioctl. A drawback of this approach is that
it isimpossble to associate different hints with different files, so if multiple files are being written at once (perhaps
by different gpplications) and should be compressed using different settings, they cannot al be accommodated.

8o 11

The System in Operation
Boot time
At boot time, Cloudburst must rebuild al its in-memory data structures by scanning the flash.

The system scans each segment, building the block map and the run offset table. Within each segment, it reads
the headers of the first block, makes an entry in the table, and usescl en to skip down to the next block. When it
reaches ablock with avalid field of 11, it has reached the end of the successfully written portion of this ssgment.
There may be one partialy written block; the next 517 bytes are scanned for vaues other than Oxff, and if any are
found the length of the garbage block iswritten to the beginning of the block it is marked as superseded.
Superseded blocks (with avaid field of 00) are ignored. Blocks with the same VBN are mediated by the verson
field, and the block with the lower verson is marked as superseded.

The current write pointer is set to the end of any partidly written segment, or to the beginning of an empty
segment. If there are no empty segments, the cleaner must be run right away. If the pointer points to the middle of
acompression run chunk, the blocks written to the chunk so far must be decompressed and recompressed so
that the current compression state can be recovered.

Reads

On aread, the system looks in the block map, using the VBN as an index. The system then begins reading at the
beginning of the compresson run chunk containing the desired block, decompressing asit goes dong. When it
reaches the desired block, it decompresses the block and returnsit.

When the compression scheme alows it, we should cache decompression state. Odds are good that the next
desired block is aso the next block in this chunk, so we can reuse the decompression state.

If the system issues aread to a VBN with an invalid block map entry, ablock of al O'sisreturned.
Writes

On awrite, the system compresses the block using the accumulated compression state. If the compressed block
will fit in the current chunk, write it. If not, start the next chunk by clearing the compression sate and
recompressing the block. Then write the block to the beginning of the next chunk.

Towriteablock, al of the data except the first header byte containing the vaid bits must be written firgt, and then
the byte with the vaid bits must be written in a separate cal after the other write completes. That way, even if the
system shuts down in the middle of awrite, no garbage data will live on after boot time.

After awrite, we update the write pointer to point to the end of the written block. If the block previoudy existed
in the system, the version should be the previous version plus 1. Otherwise, the version is zero. Next, the
mapping in the block map is updated to the new location and version. Findly, the previous version of the block (if
any) isinvdidated by clearing the vdid bits.

Asan optimization, if ablock of al O'siswritten, no data need be written to flash. Instead, we can Smply
invaidate the exiding verson of the block (if any).

901

Deletes

In addition to the standard read and write, our virtua disk aso has a delete function. In the absence of a ddlete
function, the only way for the disk to discover that ablock is now usdessis for the file system to recycle the
virtud block number. Therefore, without a delete function, the number of dlocated physica blocks must
monotonicaly increase over time, and space that ought to be free may not be reclaimed for along time. To delete
ablock, we invaidate the block on the flash and in the block map.

Segment cleaning

The segment cleaner runs periodicaly. Idedly, the ssgment cleaner runs when the system is not otherwise busy,
but if space becomes low then the cleaner runsimmediately. Thereis some target amount of free space dways
kept clean.

To minimize the amount of erasing done, the ssgment cleaner normally chooses the segment with the most
invalidated data. However, wear leveing is also a consderation; since each sector can be erased only 100,000
times, we should occasonaly move long-lived data to another sector in order to make equal use of the available
erase cycles on al sectors. We think that it will work well to smply choose, with some low probability,
sometimes to clean the segment that has been erased the fewest timesingtead of the segment with the most
invaidated data. However, we have not done the necessary mathematica analysisto judtify this conclusion or to
determine the best probability to use.

We have implemented a smple version of the segment cleaner that runs through the vaid blocks in order and
rewrites them to their new location. The usua read and write procedures are used. When dl of the datain a
segment has been invalidated, the segment’s sector(s) are erased.

A more sophigticated cleaner (which we have not implemented) would be choosier about which blocks it moves.
Rather than running down a segment copying each block in turn, it could choose blocks on the basis of their
content, their virtual block numbers, or their observed access patterns. Such a cleaner would not produce clean
segments as quickly, but it should tend to do a better job of compacting data. This type of cleaner should only be
run during periods when there is plenty of energy available and the processor is otherwise idle; for example, when
the device is recharging in a docking cradle. This cleaner could also spend more time compressing blocks,
perhaps even sdlecting among severa schemes to find the one that provides the best compression for a particular
block. The smple cleaner is more gppropriate during periods of activity when space suddenly runs short.

Both cleaners need to have separate write pointers, so that unexpected writes from the file system do not
interleave with cleaner writes. If the smple deaner isrunning, the blocks that have survived long enough to be
moved are probably longer-lived than most new blocks and deserve to be packed together. If the sophisticated
cleaner is running, then it will invest a sgnificant number of cyclesin determining the best block order.
Acknowledgements

We are grateful to Mike Burrows for explaining several compression dgorithmsto us and for providing many
good suggestions on Cloudburst's cleaner dgorithms. Mike dso gave us hepful comments on the presentation of
this note, as did Chandu Thekkath.

References

10011

[1] Jod F. Bartlett, Lawrence S. Brakmo, Keith I. Farkas, William R. Hamburgen, Timothy Mann, Marc A.
Viredaz, Carl A. Wadspurger, and Deborah A. Wallach. "The Itsy Pocket Computer”. Compag Western
Research Laboratory, Research Report 2000/6, October 2000.

[2] JFFS (Journding FHash File System) Home Page. Axis Communications,
http://devel oper.axis.com/software/jffs/

[3] Mendd Rosenblum and John K. Ousterhout. " The design and implementation of alog-gructured file system”.

ACM Transactions on Computer Systems, February 1992, volume 10, number 1, pages 26-52.

[4] Michael Burrows, Charles Jerian, Butler Lampson, and Timothy Mann. "On-line Data Compression in a
Log-gructured File System”. Proc. 5th Intl Conference on Architectura Support for Programming Languages
and Operating Systems, October 1992, pages 2-9. Also available as Research Report 85, Systems Research
Center, Digitd Equipment Corporation, April 15, 1992.

[5] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hseh. "The logica disk: A new approach to
improving file sygems'. Proc. 14th Symposium on Operating Systems Principles, December 1989, pages 15-28.

[6] See the M-Systems Corporation web site, hitp:/Amwww.m-sys.conv.

[7] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. "A flash-memory based file sysem”. USENIX
1995 Technica Conference.

[8] Mark Nelson and Jean-Loup Galilly. The Data Compression Book. M & T Books, 2nd Edition (1996),
pages 215-253.

[9] J A. Storer and T. G. Szymanski. "Data Compression Via Textud Substitution”, Journa of the ACM, 1982,
volume 29, number 4, pages 928-951.

Non

