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Cloudburst:
A Compressing, Log-Structured Logical Disk for Flash Memory

Gretta Bartels
Univerdty of Washington

1 Introduction

This summer, | worked with Tim Mann on building Cloudburst, a device driver that
enables persgtent file sorage on handheld computers with flash memory, such asthe
Itsy. Cloudburst is a compressing, log-structured logical disk. Currently, handheld
computers with flash generdly have read-only file systems, or read-write file systems
with no compresson.

2 Flash Memory

Flash memory has characterigtics that make it different from most other forms of
perdstent storage. To its advantage, reading and writing flash is nearly asfast as
reading and writing DRAM. However, flash can not generaly be rewritten. Each bit
in aflash memory has an erase state -- say, 1. When the flash is erased, dl of the bits
in the flash are set to 1. Each individud bit may be flipped to O a& any time. But to flip
back from 0 to 1, an entire sector of the flash must be erased smultaneoudy. Sectors
arelarge, often 256 KB or 512 KB, and it takes along time to erase a sector, nearly
a second.

For this reason, rewriting smal blocks of data in-place on flash memory isvery
inefficient. For example, suppose we are trying to store an array of 1024 512-byte
blocksin a sector of flash. Suppose we need to update one of the blocks, and that
some of the bitsin the block will flip from 0 to 1 when we do the update. To do the
update, well need to:

Read the entire haf-MB sector into memory from flash
Update the block in memory

Erase the sector

Rewrite the entire sector from memory to flash

E O\

Besides being time- and memory-consuming, this approach dso leaves aszable
window of opportunity for dataloss, should the system lose power. Furthermore,
each sector of flash may only be erased about 100,000 times. After that, it no longer
Quarantees deta integrity.

3 Cloudburs Rationale
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We designed Cloudburst to be:

» |og structured, because writing blocks in-place on flash is very inefficient

» compressing, because flash is generdly quite small, and file systems expand to
fill dl available gpace

» alogicd disk, because implementing complete file sysemsis tricky and
unnecessary. By working at alower leve, we can support many different file
systems.

Thelogica disk abstraction is alayer between the file system and the Storage
medium. To the file system, the logicd (or virtud) disk actslike anormd, magnetic
disk: it reads and writes blocks of afixed size. However, under the covers, the
logical disk can store the data on the storage medium however it chooses.

In the case of Cloudburst, we store the datain alog, writing blocks sequentialy on
the flash. Because there is no minimum write granularity on the flash, we can
compress the blocks as we write them to the log without losing space due to
fragmentation.

4 Related Work

Many different combinations of compression, log-structure, logica disks, and
flash-friendliness have been tried before. To the best of our knowledge, the
combination of al four has never been tried.

5 Acknowledgments

| would like to thank Tim Mann, my hogt, for being so helpful, available, and
knowledgeable about the task at hand. Thanks aso to Mike Burrows for explaining
various compression dgorithms and coming up with so many greet ideasfor
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6 About the Author

I'm athird-year student in the PhD program in computer science a the University of
Washington. Hank Levy ismy advisor at UW. In my most recent project before
coming to SRC, | designed and implemented a highly scalable failure detection and
reporting protocol for large clustersin a LAN environment.
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Towards the Vantage Project:
Camera calibration and structure recovery from a single image

Jonathan Deutscher
Oxford University

The Vantage Project proposes to deploy many cameras around SRC and to track
people as they move from the field of view of one camerato another. It should be
possible to use this information to andyse the movements of people and identify
individuas

Thistracking (in particular the hand-off between cameras as a person moves
between their fidds of view) will be eesier if we can make inferences about the red
location of aperson in the world based on that person's position in a cameras image
plane. It would aso be helpful to know the 3D gtructure of the scene to guide the
tracking and enforce the congtraint that the person iswalking on the floor, not up the
wall.

The problem can be divided into three areas:

Camera Calibration

A video camera can be gpproximated as a projection from the 3D world onto a 2D
image plane, and acdibrated camerais one for which that projection matrix is
known. Current methods for automatic calibration and structure recovery require
stereo images, hand-registration of features or the observation of known objects. We
used a method that uses the Manhattan assumption (that most of the linesin a scene
are aligned dong three perpendicular axes) to automaticaly recover the camera
cdibration from asingleimage.

I mage Segmentation

Once the camera has been calibrated we want to segment the pixelsin the image into
different regions that correspond to some kind of structure in the world. Using our
Manhattan assumption we can assume that most of the surfaces in the scene are
planar and that they are separated by extended linesin one of the three primary
directions. Once the camerais cdibrated we can detect these extented linesin the
image and use them to define an initia set of regions. We then reduce this set by
merging the most Smilar neighbouring regions until aminimum region differenceis
reached.

Structure Recovery

Once the image has been segmented we assume that each segment represents a
planar surface in the world. We begin by heuristicaly identifying the floor region and
assuming that the camera has been ingdled roughly upright we can compute the
orientation of this floor region. We then compute the world coordinates of every
pixe in the floor segment by performing smple line plane intersections. Using these
world coordinates we can discern the boundaries of the floor which should assist
greatly in tracking people for the Vantage Project.
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Annotation Inference Techniques

Michad Y. Levin
Univer gty of Pennsylvania
milevin@cis.upenn.edu

Cormac Flanagan K. Rustan M. Leino
Compaq SRC Compaq SRC
cor mac.flanagan@compag.com rustan.leino@compag.com

1 Introduction

Houdini is a gatic program checking tool that helps uncover potentia run-time errors
in Java programs. Among other kinds of errors, it can detect array bound overflows,
null dereferences, and division by zero. Houdini is based on an earlier program
checker developed at SRC caled ESC/Java. While ESC/Java expects the methods
initsinput programs to be annotated with a sufficient number of pre and post
conditions, Houdini drops this requirement and attempts to perform useful analysis
even when given unannotated input programs.

Initidly, Houdini was prototyped using a shdll script thet iteratively modified the text
of the input program and repeatedly called ESC/Java. This prototype was useful in
verifying the Houdini approach, but was quite inefficient. Our project godswere to
redesign Houdini's architecture to be more independent of ESC/Java and to develop
Houdini-specific optimization techniques. The rest of this document describes the
origina implementation of Houdini and severd optimizations introduced by our
project.

2 Initial Houdini Prototype

Theinitia verson of Houdini works in two stages. Firg, it guesses a st of
preconditions and postconditions for every method in the input program and inserts
them directly in the program. Then, it uses ESC/Javato figure out which of the
guessed annotations are incorrect. ESC/Java works by converting each annotated
method into aformula caled verification condition and sending it to the theorem
prover Smplify which, in turn, returns alist of incorrect annotations. Houdini then
removes these incorrect annotations from the program. Since removing one
annotation may cause subsegquent annotations to become invalid, Houdini repeatsthis
process until it settles on an gppropriate st of annotations. At this point Houdini
invokes ESC/Java one find time in order to check the program with respect to the
inferred set of annotations. The diagram in figure 1 shows the architecture of this
initid vergon of Houdini.

3 Guarded Verification Conditions

One inefficiency of the above approach is that it involves repeated generation of
verification conditions from the same methods. Instead we can cregte a specid kind
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of verification condition, caled aguarded verification condition (GVC), just once
when Houdini is gtarted. We introduce a unique guard variable for each annotation
guessed by Houdini. The GV C of amethod has the property that when we substitute
true for aguard varidble in the GV C, the resulting formulais equivaent to the
verification condition produced ESC/Java when the corresponding annotation is
present in the program. In addition, when we subgtitute

Figure 1: Original Houdini Architecture

fdse for aguard varigble, the resulting formulais equivaent to the verification
condition generated when the corresponding annotation is not present in the

program.

To implement the above idea, we first modified ESC/Javato produce guarded
veification condition. The new Houdini implementation maintains atruth vaue
assignment for each guard variable depending on whether the corresponding
annotations has been refuted so far. At each iteration, the implementation

¢ aubdtitutes for the guard variables according to the truth assgnment
* peforms basic smplifications on the obtained formula
¢ and sends the optimized verification condition directly to Smplify

The new architecture uses ESC/Javaonly initsinitid stage of generating GVCs and
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in the fina stage of checking the program with respect to the inferred set of
annotations. Therest of Houdini is autonomous. Eliminating the need in parang Java
methods and generating verification conditions repesatedly resulted in a subgtantia
performance increase. The new design is described by the diagram in figure 2.

4 Optimizations

Our implementation of Houdini employs many other optimizations. A lot of them are
too detailed to be introduced in this short document. We focus only on two main
optimizetionsin this section.

4.1 Fine Grained Optimization

The basc smplifications mentioned in the previous section are locd; they do not
explait the knowledge about verification conditions gained by Houdini over severd
iterations of subgtituting and sending them to Simplify. For example, suppose & some
point after subgtituting for guards a verification condition has the

s GVC ] Substitute J simpiity [ Annot - Final
Gen for guards Remover Check
Turn
off ¥
refuted
guards

Figure 2: GVC Architecture

form P~ Q and turns out to be vdid. If a alater iteration after subgtitution, we find
that the verification condition for the same method is of theform P/ Q', we can
amplify it to just Q" snce we know that Pisvalid. Fine grained optimizationisa
generdization of thisbasic idea

4.2 Digtributed I mplementation
Findly, we notice that Smplify is the performance bottleneck of the system and that

running Smplify on a verification condition is sdf-contained. Hence, it is naturd to
digtribute this task over multiple processes. We achieve such digtribution by running a
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central controller and multiple worker processes on different processors and
exchanging data between the controller and workers over sockets. The distributed
architecture is shown in figure 3.

5 Conclusion

Theinitid Houdini versgon successfully inferred annotations for a 37,000 line program
taking more than 60 hours. The new version incorporating the above as well as many
other optimizations performed the same task in alittle over 1 hour. Weran the
experiment in a 12 worker configuration and the pardl€ization gave us afactor of 7
speedup. Guarded verification conditions accounted for afactor of 2 improvement.
Surprisingly, fine grained optimization did not result in any measurable performance
gain. Therest of the improvement came from additiona optimizations not discussed

here.
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Performance Evaluation of the Piranha Memory Hierarchy

Julien Sebot
Universite Paris-Sud

1 Introduction

This summer, | explored how to improve TLB performance and second level cache
fill policy in Piranha. Firanhais an 8-CPU on-chip multiprocessor targeted at
database gpplications. The god for this project isto achieve 2 timesthe On-Line
Transaction Processing (OLTP) performancein haf the time and with one tenth of
the engineering effort, when compared to contemporary processor design efforts.

The Firanha system will be fully synthetized in an ASIC process. The Piranha
processing node will include 8 smple one-way apha cores running a 400MHz,
32kB direct mapped firg-level ingruction and data caches, a shared 1IMB 8-way
set-associ ative second-level cache, 8-way set-associative, memory controllers, and
an interconnect subsystem that connects processing nodes together.

2 Benchmarks

| used SMOS-Alpha and scaled-down TPC benchmarks for the performance
evaduation. SMOS s afull-sysem smulation tool that models hardware in enough
detail to boot an operating system. SmOS integrates severa processor and memory
sysems smulatorsthat | have used and improved. The TPC benchmarks we used
are OL TP benchmarks called TPC-B and TPC-C. These are standard benchmarks
used to modd the activity of bank transactions and wholesale suppliers. For these
programs, over 45% of the execution time is spent in the memory systemin an
architecture like Piranha.

3 Evaluation

One agpect of the memory system that has significant impact on performanceisthe
address trandation cache (TLB). The design constrains of the ASIC processto
which Franhais targeted prevents us from implementing a traditiond fully-associetive
TLB. We have sudied the impact of limited associativity on TLB performance, and
concluuded that a 256-entry, 4-way set-associative TLB is 4% better than a
64-entry fully-associative TLB, for the scaled-down benchmarks at our disposal.
Thisresult is not definitive given that the TLB performance is affected by the scaled
down nature of our benchmarks.

Anacther important area of system design that strongly effects memory system
performance is the second-level cache. In Piranha, the combined first-level cache
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Szeis512kB, and the second-level cache is IMB. The Piranha team has chosen to
implement a non-inclusive, shared, second-level cache (shared victim cache) to avoid
wasting space in the second-level cache. We have determined that the performance
impact of this choice on Piranha performance ranges between 5% to 9%, and that
the performance gains over a tandard inclusive policy becomes negligible for
second-leve cache szes of 2MB or greater. The intuition behind these results is that,
even when inclusion not enforced by hardware, in practice there will be many times
inwhich alinewill be present both in the L2 and one or many L1s. For larger
caches, the pendty of enforcing inclusion decreases as the fraction of replicated (L 1)
datain the L2 isreduced.

In anon-inclusive cache hierarchy, the second-level cacheis respongible for deciding
when a L1 cache hasto write back into the L2 (i.e., the L2 fill policy). We have
evauated the performance of Piranhas current fill policy with respect to two
potentidly "ided" fill policies one that is very eager and one that is aslazy as possible
in sending write backs to the L2. Both eager and lazy policies are infeasble to
implement since the amount of L2 State that needs to be ingpected would cause extra
delaysin satisfying processor requests. Therefore the comparison amsonly at
determining how different our current (implementable) policy deviates from the ided
cases. The results show that the 3 policies never differ more than 3% in performance,
which further corroborates the effectiveness of the current scheme being
implemented in Piranha
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Cooper ative Backup System

Sameh Elnikety
Rice University

1 Introduction

| am asecond year Ph.D. student in the department of Computer Science a Rice
Univergty. | am working with Willy Zwaenepoe, my advisor, on digtributed services.
During my internship at SRC during summer 2000, | worked with Mark Lillibridge,
my hogst, and Mike Burrows on building a prototype of a cooperative backup
system.

2 Cooperative Backup System

In this system, each machine stores its backup data remotely among a group of other
peer machines, and in return it stores equivalent amounts of data from its partnersin
itslocd file sysem. Thisform of cooperation and distribution gives severd benefits
and poses severd interesting challenges. Let usfirst consder the benefits. Asthe
partners are independent and geographically distributed, they have independent
failure modes, which isimportant for a backup system and corresponds to taking the
backup tapes off-gte. In addition, this cooperation makes the system very cost
effective as the partners do not have to pay afeeto athird party for the backup
sarvice and there is no need to purchase new equipment. Asfor the chalengesin the
design of the system, the partners do not trust each other and it is possible that some
partners are down a any moment. Therefore, we had to use severd techniquesto
ensure confidentiality, robustness, integrity, and cooperation.

Asthe backup data might be sengitive and is stored remotely, we used secret key
cryptography to encrypt the data. In particular, we used IDEA to encrypt the
backup data before sending it to the partners during a backup operation and to
decrypt the data during a restore operation. To ensure that the partners could not
modify the data unnoticed, we used a cryptographic hash function to make the data
blocks salf-checking. So, when amachineis retrieving its data during a restore
operation, it could check the cryptographic hash vaues in the data blocks to make
sure that it is the same data that was backed up during the last backup operation.
We used erasure codes to add redundancy to the data, so it ispossibleto do a
backup or arestore even if afew partners are down. The possible security attacks
againg the system were novel and guarding againgt them was the hardest design
issue. We used challenges to ensure that the partners of a given machine are keeping
its backup data. To challenge a partner, a machine requests a randomly chosen
block of datafrom that partner and checksit isthe right block. Also, we had to
impose severd rules to ensure the cooperation of the partners and to prevent any
partner from gaining any benefit if it does not apply the rules. For example, to
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prevent an attacker from exploiting one machine after the other, we imposed &
commitment cost whenever a machine acquires anew partner. The machine paysthe
commitment cost by being forced to store its partners data for a certain period of
time without any guarantee that it can restore its own data. We ended our study with
profiling the prototype system. We found out that the costs of encryption, computing
the secure hash, and gpplying erasure codes are much less than what we had

expected.
3SRC

| found SRC to be an exciting environment, full of very friendly, cooperative and
brilliant people. The research taking place at SRC is very interesting and thereisa
prevailing mutua spirit of cooperation and integration among the different research
groups. | had the chance to work closaly with many smart people at SRC. Also,
SRC isin downtown Palo Alto, which isavery lively place and | enjoyed alot of
fine restaurants and shopping places. In addition, | had the chance to vidit other
research labsin the Silicon Vdley (eg., Xerox PARC, HP Labs, IBM Almaden and
Sun Labs).

202



Detecting and Correcting LAN Pathologies

Neil Spring
University of Washington

1 Introduction

Switched Ethernets are popular for their ability to isolate traffic between different pairs of hosts for
performance and security. The increase in aggregate bandwidth alows switched networks to scae
larger than broadcast networks using hubs. This larger scale makes switched networks more
vulnerable to common network pathologies. The pathologies we address in this paper include:

1) broadcast storms
2) ARPfights

Both pathologies exist in traditiond, shared broadcast media, but are more relevant in switched
networks because of their large scale.

2 Pathologies

Broadcast storms occur when a buggy or maevolent host emits a continuous stream of broadcast
packets. Broadcast packets cannot be switched and must traverse each link in the network. This
alows asingle host to execute a denid-of-service attack on dl other hosts on the same subnet.

ARRP fights occur when two hogts with different MAC (layer 2 hardware) addresses conflict for
the same I P address. ARP is the protocol used to map IP addresses to MAC addresses for
trangport of 1P traffic over aloca network. It isnot suited to resolving conflicting responses. This
often happens due to misconfiguration or buggy DHCP implementations, and could be used by a
misbehaving hogt as part of a man-in-the-middle attack.

We have developed atool, named Vincent, to determine the source of broadcast storms and
disable the offending network segment. The tool understands the switched network topology using
agandard SNMP interface and minimal information. Another tool monitors the broadcast traffic
associated with ARP requests, and verifies the stability and lack of conflict inthe IPto MAC
address mapping. Both tools dert the systlem adminigtrator via eectronic mail, and, in the case of
broadcast storms, take action.

3 Topology Discovery

Understanding the switched network topology is important for two reasons. Firgt, it helpsin
deciding which port to disable when mishehavior occurs. Second, it alows our tool to help in
physicdly locating misbehaving hods.

Our approach uses the forwarding database (FDB) of each switch. The FDB maps eech MAC
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address to a switch output port, analogous to the forwarding table of an IP router. Since switch
topology is redtricted to that of atree, either by physical connection or by use of the spanning tree
protocoal, topology discovery isthe process of recovering thet tree.

peridot
5: amethyst

13: 76:36:6c
14: dix

L5!

L6: trois

L8: brahms
19: onze
20: jasper
50: guatre

smclabsw

srcalteon | L0949

Figure 1. Sample, abridged, topology.
4 Broadcast Storm Detection

Broadcast storms are detected and localized in two ways. First, a packet sniffer in
non-promiscuous mode can see al broadcast traffic. Seeing more than i packetsin & seconds
implies that abroadcast storm is underway. It islikely that the packet is correctly addressed, and
that knowing the source mac address and the network topology will point to a particular switch
port to be disabled.

If the packet sniffer fails at determining the source, possibly because of incorrectly formatted
packets or because the misbehaving host has not been seen on the network before, the per-port
broadcast ingress packet counters can be used to trace broadcast packets to their source. Thisis,
however, alesstimely detector, Snce retrieving these counters from the switch is a somewhat
heavyweight operation, and thus cannot be executed often.

5 Broadcast Storm Resolution

After enough packets have been seen over a1 second interva to warrant action, the source's port
isdisabled. The port will be reenabled after the passage of an interva, which doubles each time
the source port is disabled.
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6 ARP Fight Detection

The packet sniffer watches for ARP requests, which are, by nature, broadcast to al hogts.
Vincent enqueues both the source and destination IP addresses from the ARP request for
verification. This queue is used to reduce the overdl traffic load imposed on the network by
Vincent.

Every second, Vincent chooses the next 1P, and sends an ARP request. If two conflicting
responses are received, then two machines have decided to use the same | P address. Vincent
then notifies the adminigtrator by dectronic mail.

7 ARP Fight Resolution

It ispossible for Vincent to choose one of the conflicting hosts to stay in the network and disgble
others. However, the best policy is not clear. Should the host having the | P address for the longest
time be entitled to continue using it? Probably, but it might be an address alocated by DHCP, for
which the host (for any number of reasons) has not properly renewed the lease. Without a better
understanding of wheat the DHCP server intends, our response is limited to notifying the
adminigtrator.

There are Some interesting possibilitiesin this domain.

Firg, the ISC DHCP server includes aflat text file containing its P to MAC address mappings.
Any that contradict thislist would be disabled. Idedlly, the DHCP protocol would include
provison for such verification.

Second, some ingtitutions keep alist of MAC addresses that are alowed to obtain an IP address
viaDHCP. Thislig includes the user who owns the machine, which would make it particularly
easy to natify the partiesinvolved.

8 Conclusion

Our tool, Vincent, is able to recover the topology of a switched ethernet usng commonly available
information from SNMP. This festure done makes it particularly useful to network administrators

30f4



interested in planning improvements to the network infrastructure.

With this understanding of host location, it becomes possible to disable the ports of these switches
that connect to misbehaving hosts. By disconnecting these hodts, it is possible to preserve
connectivity between correctly-behaving hosts. Vincent disables some mishehaving hosts, and
reports misbehavior to the network administrator.
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Link Compression in the Connectivity Server

Rajiv Wickremesinghe (Duke Univer sity)
with Raymie Stata, Janet Wiener, and others.
Compag Systems Resear ch Center
Summer, 2000.

1 Introduction

Thereis consderable interest in andyzing the manner in which web-pages are linked
together. The link-gtructure of the web-graph is part of the page ranking criteria used
by some popular web-search Sites. It has adso been used in research on the evolution
and form of the web. The Connectivity Server (CS) provides fast, random access to
thisinformation. In order to accomplish this, it has to compress the graph information
to fit in memory. The current verson (CS2) can store link information for
gpproximately 200 million pages (about a 3-week web crawl) in 8GB of RAM.

During the summer, we assessed different methods for improving the compression in
CS2. Implementing severd aternatives, we produced CS3, which improves
compression by afactor of two, dlowing usto double the number of linkswe are
ableto gorein agiven memory Sze.

2 The Connectivity Server

The CS densdly dlocates postive numeric IDs to dl the web pages in the database.
Link information is returned as ligts of 1Ds forming an adjacency list for an ID being
queried.ID order gpproximates alphabetical order of the URL s identifying pages,
with the exception that pages are first separated into groups corresponding to having
‘many’, “intermediate’ or “few' links. This latter division ensures that well-referenced
pages have smal and proximate 1Ds (which gives better encoding), and aso
improves index compression (we are able to make assertions about the number of
links of a page). CS2 dso provides other indexing and lookup functiondity whichis
not affected by the changes we made.

There are two models we can use to reduce the amount of data required to store the
web-graph. The first modd makes predictions about the set of links on a page based
on other pages links. This gives usinter-row compresson. The second modd makes
predictions about individud links on a page, given other links on the same page. This
gives usintra-row compression. One of the main contributions of CS3 is the addition
of inter-row compression to CS2, which aready included intra-row compresion.
CS3 dso improves the overdl compression by using escaped Huffman codes to
encode the data, in place of alength and vaue code.

3 Realization

We formulated severa compression schemes based on different modds and
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evauated them by predicting the compression for some of our datasets. We chose
the scheme sketched below because it seemed the most flexible (possible to adjust
the speed vs. compression tradeoff easly) and efficient (fast).

For each set of links on a page to be compressed:

« Examinethelinksin a collection' of different pages, and pick the one most
smilar to the current page. (see below).

= Encode areference to that page, and the differences, usng Huffman codes
combined with a differentid technique.

There are many ways of selecting a collection of pages as candidates for
comparison, above. We observed that the pages in close proximity by ID form a
good (and hard to beat) collection for this purpose. They can aso be accessed
effciently when scanning the database. 1D order is effective because pages with
amilar URLs have many common links (eg: menubars, homepage and index links
etc.). Wefound that, on average, hdf the links on a page were common to other
pages with nearby 1Ds. Our god, then, was to fully utilize this redundency to improve
compression.

There are savera parametersthat can be easily changed in the above scheme. These
include the sze of the window to examine, and the length of chainsto dlow.
Increasing the size of the window results in better compression, though with dimishing
effect; we experimented with vaues in the range 2-32. Allowing longer chains
improves compression, but adversely affects speed.

Depending on the database chosen, we obtained 44%-54% compression as
compared to the original compression scheme in CS2. We aso observed that the
new compression does not cause any significant dowdown of the program. We are
now able to store link information for gpproximately 400 million pagesin 8 GB of
RAM.

©2001 Rajiv Wickremesinghe <rajiv@cs.duke.edu>

Last modified: Mon Jan 8 13:29:53 2001 by rgiv.
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A Hardware Compiler for Data-streaming Reconfigurable
Architectures

Grigorios Magklis
University of Rochester

1 Introduction

I'm currently working towards my Ph.D. at the University of Rochester, working with
professor Michagl Scott, my advisor. My current research is on Complexity
Adaptive Processing. This summer | worked with Laurent Mall, on building a
compiler for the Sepia board.

2 Sepia

Sepia congsts of areconfigurable device (Xilink FPGA) that has a PCI connection
to the host machine and a network interface to connect with other machines or Sepia
boards. It is currently being used to merge partidly rendered imagesto afind image.
In the current configuration each board accepts two streams of data (from the local
machine and from the network) representing parts of an image, and outputs a data
deam that is a combination of the two inputs. The combining function can be anything
from apha-channd blending to z-buffer comparison.

3 Hardware Configuration

The process of configuring the hw involves many seps. Firg the dgorithm is
described and tested in some high level language, like C. Then the appropriate
hardware is designed by hand. After this the hardware is described in some
hardware description language (HDL) and istested again. Findly the FPGA codeis
compiled and "downloaded" to the board.

The god of this project isto smplify this process by alowing the user to specify the
agorithm in some high level language and have the find FPGA code generated
automdticdly by the compiler.

4 The Compiler

Our compiler undergtands avery smplified C-like language. This language does not
have features like pointers and arrays due to the problems they present with
efficiently mapping them to hardware resources. It aso does not have other features
like complex types(st r uct , uni on) and support for functions (except for a

mai n function), because there was not enough time to implement them. These
features can be easly added in the future though. Loops are also not allowed (f or,
whi | e, do) because of the nature of the computation: the hardware is operating on
streams of data and has to generate aresult on every clock cycle.
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When designing the compiler we decided to follow traditional compiler techniques.
The only difference isin the intermediate language ingtruction set. Instead of
representing an |SA, it represents the available hardware resources. The first stages
of the compiler are similar to acommon C compiler. It first generates a parsing tree
and then it builds the intermediate representation code (IR) in Sngle Satic assgnment
form. The only interesting difference is that the generated code is one large basic
block. Thisis possble because the IR containsa"select” ingtruction — smilar to the
"?: " C operator.

The next step isoptimizing the IR. In this ep we dso follow traditiond compiler
techniques, only that now we are trying to optimize for code size, not speed. The
optimizations performed, in order, are: copy and constant propagation, constant

expression evauaion, expresson smplification and unreachable code dimination.

Thefind gtep of the compilation isto produce location informeation for each primitive
(IR ingruction). Thisis the most important step since it is going to decide the
performance, i.e. clock frequency, of the resulting hardware. Unfortunately | didn’t
have time to implement this step. The "scheduling problem™ asitiscdled, isan
NP-hard problem and so far people have used a number of heuristics to solve it. We
are thinking to use the datapath information we get from the IR in order to generate
placement information. This can be done by firgt identifying which IR ingtructions
belong to each pipdine stage of the resulting hardware and then try to schedule (i.e.
generate location information) for each stage separately. This has the property of
reducing the problem dimensions from two to one.
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Related field analysisin the Swift compiler

Aneesh Aggarwal
University of Maryland

| spent my internship at SRC working on aspects of the Swift compiler with Keith
Randall. A paper on thiswork isforthcoming. Here isthe abstract from that paper:

We present an extensgon of fidd andyss cdled "rdated fidd andyds' whichisa
generd technique for proving relationships between two or more fields of an object.
We demondrate the feasibility and gpplicability of rdated fidd andysis by gpplying it
to the problem of removing array bounds checks. For array bounds check removad,
we define a pair of rdated fidds to be an integer field and an array fied for which the
integer fidld has aknown relationship to the length of the array. Thisrelated fidd
information can then be used to remove array bounds checks from accessesto the
aray fidd. Our results show that related field analys's can remove an average of
50% of the dynamic array bounds checks on awide range of gpplications.

We describe the implementation of related fidld andydisin the Swift optimizing

compiler for Java, as wel as the optimizations that exploit the results of related field
andyss.
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Mining the Web for Site Structure

ChrisHoman
Rochester University

September 1, 2000

1 Overview

Our god was to discover interesting structura properties on the Web, using a
Connectivity Server 2 database built from aMercator crawl. We were particularly
interested in using structure to group Webpages into Websites. Such groupings are
crucid to thefollowing applications.

* Link-based authority measures (for determining which links are
biased).

» Spam detection.

» Measuring the size of the web.

Many factors make this problem hard. Firdt, thereis no well-defined definition of
“Webgte” Clearly, the hostname of a URL is not good enough, as many
organizetions have more than one, and others, like Geocities, contain pages from
many independent authors. Webgites like universties have departmental Stesthat are
nested indde the university-wide Ste. There are o some very exceptiona
organizations like FujiXerox that overlap with two otherwise distinct organizations (in
this case Fuji and Xerox). Another problem isthat many distinct types of
organizations exist on the Web. No smply defined organizing principle necessarily
gopliesto dl of them.

Inlight of this complex but potentidly very rewarding problem, our approach was
experimenta: we wrote code to measure various properties of the Web graph,
hoping that they would reved some as yet unseen gructure. Since hostname seems
to at least partidly correspond to the notion of Webste, many of our measures
focused on grouping by hosthame. Since we believe that every Website hasa
homepage, some of our measures were intended to reveal homepages. The actud
properties we measured included:

» the number of loca and remote links per host
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« the number of strongly connected components per host (to support
the hypothesis that multisite hosts like Geocities have alarge number of
strongly connected components),

« the 5ze of the link neighborhood of each page (to support the
hypothesis that homepages have large neighborhoods)

* The number of links per host rddive to the Sze of the hogt.

From these measurements, we made severd interesting observations. The
observationsincude:

* Even though in totd there are more inlinks than outlinks on the Web,
maost hogts have more outlinks than inlinks. This means that hosts with
fewer pages tend to have more outlinks than inlinks, and that hosts with
avery large number of pages tend to have more inlinks than outlinks.

* Exceptions to the above observation include www.geocities.com,
which has alarge number of pages but more outlinks than inlinks. The
amplest explanation for thisisthat it hosts many distinct authors who
each control rdatively few pages. Since these authors are independent
of each other, thereislittle reason for them to link within
WWW.geocities.com.

* A surprising number of hogts are nearly cliques (i.e. dmost every
possblelink exigts).

* A surprising number of hosts have about as many links as pages.

 Regarding the ditribution of loca strongly connected components,
for hosts of every sze, there were alarge number of connected
components that were close to the exact Sze of the hogt, alarge
number of very smal strongly connected components, but very few
intermediate-sized connected components. A possible explanation is
that many hogts redlly do consst of asingle strongly connected
component, but the crawl smply didn’t connect them. The small
components would then be resduals of an incomplete crawl. One way
to test this hypothesis would be to pick some example hodts, try
crawling them completely, and match the resulting graphs againg the
components found in the origina crawl.

In the next phase of our research, we compared severd methods for grouping hosts
by combinations of name and connectivity festures (this was the subject of my intern
talk). In particular, name-based grouping had been used by previous applications,
athough its accuracy was not well-known. Our belief was that adding connectivity
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features would increase the accuracy of name-based techniques. We ran four
experiments.

* grouping by the “sgnificant part " of the hostname,
* grouping by the A, B, and C sections of the |P address,
* grouping by both hostname and 1P address, and

* grouping by any two of hosthame,IP address, or Conn, where Conn
isameasure of the relative connectivity between two hogts.

Based on asampling of the groupings produced, each metric found about the same
number of true groupings, but the number of fase pogtives varied greetly from metric
to metric. In generd, over dl samples, the IP-alone grouping produced far more false
than true positives. Thiswas surprising as IPis a popular way to group hosts. The
“any 2 " grouping was generdly robust, but on occasion yielded a catastrophic
number of false positives. The experiment should be repested with much larger
samples.

2 Conclusion

Our experimenta approach was necessarily broad and unfocused, but we see ways
in which future research in this area can be more structured, based on what we have
learned. We believe it is worthwhile to first consder a sandard for evauating the
structure we discover. We mention three such standards.

Application-based gructure. There are many motivating applications for this
research. One way to measure the effectiveness of a grouping technique isto
measure the performance of test gpplications that depend on some sort of accurate
grouping, such as spam detection or authority. The downsde of this approach is thet
it is not necessarily any easer to evauate the performance of the test applications.

Example-based structure. Choose severa specific example Stes and try to determine
what structurd properties distinguish them. Proceed by running experiments to
determine if these properties generdize to Smilar Stesor if new types of example
Stes should be introduced.
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Feedback-directed binary code specialization

Juan Navarro
Rice University
with
Sharon Smith, David Hunter
Alpha Technology Solutions

1. Introduction

The current gpproach to binary performance optimization isto gpply dl known
or available optimizations at once. The problem isthat there are complex --
sometimes negative -- interactions between individua optimizations, and
deciding what subset to apply isadifficult task.

The use of profile-directed feedback to make that decision can help, because
optimization is done in accordance to the actua program behavior. In addition,
run-time information that is not available to the compiler can be used to
discover new optimization opportunities.

Specidization or partia evauation is an optimization technique that diminates
unnecessary generdity from an gpplication; it can benefit from profile-directed
feedback to identify that excess generdlity.

The god of this project isto sudy the potentid of specidization in isolation of
other optimizations. In the long term, the results are intended to help in redizing
cod-benefit andysis of specidization, which alows for adaptation to specific
workloads.

2. Spector

Spector is an off-line binary specidizer that we built for this project. It
optimizes entire functions for a particular vaue of one of its arguments.

The binary isfirg profiled to determine what the hot functions are. Then, hot
functions are instrumented at the entry point to detect frequent values passed in
the arguments. The instrumented program is run and the results are used to
seect what functions to speciaize and for what argument and value.

To specidize afunction, Spector builds the function's control-flow graph,
propagates known vaues through the graph by interpreting each basic block's
code, removes unreachable blocks, and deletes ingtructions mainly by means of
congant folding. Guard code is inserted to fdl back to the origina function
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when not in the presence of the specid case. If not enough ingtructions are
ddeted, the specidization for that function is discarded. A better approach
would beto try to optimize for adifferent argument, but Spector currently does
not do that.

Spector uses Atom to profile, insrument, and navigate the binary. 1dedly,
L'Atom (aLinux port and extenson of Atom, that supports arbitrary
modifications) would be used to rewrite the binary, but it was not available
when Spector was built. The temporary solution was to use the gpplication's
source code (which will not be required once L'Atom is available) to produce
assembly code. Since there is a one-to-one correspondence between machine
ingruction in the binary file and assembly ingructions in the assembly liging, an
ed script line is generated for each modification. Perl code is used to glue

everything together.

Dueto abug in the compiler, this gpproach didn't work for some programs,
especidly large ones. When aworkaround was found it wasto late to try it.

3. Results

The table below shows the results for 6 smal benchmark programs. The
column "%" shows the percentage of cycles spent in the hottest specidized
function. Column "Deleted” tells how many ingtructions where ddeted from that
function, out of the total number of ingructionsin the origina verson of the
function.

CIRNEJ
| fib | 1000 | 529 | -111
| haoi | 1000 | 1153 | -15
| linpeck | 870 | 6557 | 00
| sm | 155 | 4/857 | +10
| ft | 560 | 2193 | +18
|dhrystone | 108 | 7/53 | +3.7

The specidized functionsin fib and hanoi are recursive ones, and Spector
specidized them for the base case. As a consequence, the overhead of the
guard code is paid for nothing. This problem is easy to solve.

The noise in the experiments was negligible; therefore, a 1% speedup, as small
asitis, does represent an improvement because it's clearly above the noise.
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4, Conclusons and futurework

More experimentation is required to better assess specidization's potentid and
discover formulas or heurigtics to predict whether a given pecidization would
yield speedups or dowdowns. From the table above, the number of
ingtructions deleted is clearly usdless as a predictor.

Many improvements can be done, including the following:

- Thereisalong ligt of specid casesthat dlow for more
ingruction deletions and are not currently being detected.

- Code modification introduces new optimization opportunities. A
find pass with standard optimizations such asindruction
rescheduling and dead code remova would most likely pay off.

- Polyvariant specidization: specidize for more that one argument
per function or more than one vaue per argument.

- Specidize dso the origina code for the complement of the
gpecid case, snceit will never be executed when the specid case
holds.

- Hoating point operations were not considered & thistime.

- Ignoring function boundaries and specidizing for sets of basic
blocks instead, would increase specidization opportunities.
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Summer Internship at SRC

Shailesh Vaya
UCLA

1 Introduction

| am between the first and second year of my Magters leading to a PhD program a
UCLA. Theareaof my research interest is Cryptography.

Aninteresting part of my Summer Internship at SRC was that my host gave methe
flexibility to define a project/problem for mysdlf to work on. This gave me alot of
timeto talk to the researchers at SRC for the first few weeks. | spent the 2-3 weeks
studying the problem of designing an Uncensorable Bulletin Board with Mark
Lillibridge and prototyping a spam resistant mailing system with Mark Manasse (my
host). However, we didn't implement either of these idess.

| had the opportunity to work on two independent problems during the rest of the
summer which | summarize in the next two sections

2 On Existence of Incompressible functions

Dwork, Lotspeich, Naor ([2]) proposed a scheme for protecting Digital content
fromillegd digtribution usng anovel concept of "Digitd Signets SAf Enforcing
Protection of Digitd Information”. The main idea of the scheme was to make the
decryption key to some encrypted digital information as large as the actua data,
itsdf. A user isgiven asgnet which is associated with his credit card number and
using the pair the user can compute a decryption key to the encrypted digitd data
available publicly. Thus, a chesting user has two options: ether part with his credit
card number, or transmit a decryption key aslarge asthe dataitsdlf! Thisclaim,
however, is not proved.

Dwork et. d. conjectured that the security of their schemeis based on the
incompressiblity of the function:

fluj =g ogiogy...o g

An incompressible function can be defined as follows. Congder two communicating
parties. One party knows a short X and wants to communicate to another party the
long vaue of f(x) without reveding x. Roughly spesking, f isincompressbleif no
feasible computable short message from the sender to the receiver smultaneoudy
achieves both god's of enabling the receiver to compute f(x), and hiding x. The
principa open problem suggested by [2] was to prove the existence/inexistence of
incompressible functions based on standard cryptographic assumptions.
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Working with Cynthia, | proved that Diffie-Hdlman seriesisincompressible, under
the Decisond Diffie-Helman assumption. The main idea behind the proof isthet if
there exigts polynomia time computable adgorithm A for compressing the vaue of the
series and polynomid time agorithm A’ for retrieving the vaue of the series using this
compressed vaue then there exigts a polynomid time agorithm that can distinguish
between a Diffie-Hellman Triplet and atriplet sdected uniformly from the set of
tripletsin group Gp. The heart of the proof involved generating randomized
Diffie-Hellman Series (or any series) using the ideas of Naor & Reingold, [1] from a
Diffie-Hdlman triplet (or arandom triplet).

Although we made some progressit ill remains an open problem to prove that the
Signet Scheme is secure if the Diffie-Helman seriesisincompressible. Another isto
design an incompressible function that doesn't require alarge publicly known data. A
working manuscript of the proof may be available upon request from the authors
(i.e, Cynthia & mysdf).

3 Resilient Deniable Authentication

| kept mysdlf busy attending a workshop on Algorithmic Number Theory and
CRYPTO-2000 for a couple of weeks and then we sought for a new problem to
work on. In ajoint work with Cynthiaand Moni Neor (at Stanford) we studied
Deniable Authentication protocols under Intrusive Adversaries. The motivation
behind thiswork can be found while trying to congtruct a protocol for " Stock
Brokering Without Trugt" or "Private Retrieva of Medical Database".

The reslliency of an authentication protocol is defined with respect to the VIEW of
an adversary. For example, an adversary having the read accessto the
communication channel between the prover and the verifier is more powerful and has
alarger VIEW compared to an adversary who would just believe a verifier based on
the Transcript that the verifier givesto the prover. We classfy that an adversary
could be:

1. Onling/Offline: An adversary is cdled Onlineif it concurrently
interacts with the verifier while he gets some message m authenticated
from the prover. If the adversary behavesin an "assgn & collect"
fashion heis cdled an Offline Adversary.

2. Eavesdropping: An adversary is cdled eavesdropping if it hasthe
read access to the communication line between the prover and the
verifier.

3. Coercing: An adversary is called Coercing if it can suggest the
verifier to send some message m or use some string of random bits for
composing the message etc. We proved a number of
possiblity/impossiblity results regarding the existence of authentication
protocols under various combinations of adversaries as listed above. A
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working mansucript of the resultsis under preparation (vis-aVis
09/18/00).

4 References

[1] M. Naor, O. Reingold Number Theoritic Construction of Pseudorandom
Generators, FOCS97.

[2] Digital Sgnets: Salf Enforcing Protection of Digital Information, STOC'96.
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Animating Proofs With Juno-xyt

Boris Dimitrov
boris@cs.caltech.edu
http://www.cs.caltech.edu/~boris

1 Introduction

Juno-2 is an extensible congtraint-based drawing editor crested by Greg Nelson and
Allan Heydon [1], which was origindly designed for producing high-qudity ill
illugtrations. Juno-2 permits arbitrary congtraints to be specified usng a declarative
notation based on the theory of rea numbers with a paring function and equdity.
After the congraints have been specified, any degrees of freedom that remain in the
drawing may be adjusted interactively with the mouse. Thus, Juno-2 makesit easy to
illugtrate and to explore virtudly any geometric congtruction in the Euclidean plane.

Long before my internship, Allan and Greg had written in the Juno language [2] a
module for playing animations [3]. Greg had animated a fragment of Archimedess
reasoning for the area of the circle. Most SRCers who had seen Greg's animation
thought that it communicated superbly the crux of Archimedess proof. My job this
summer was to extend Juno-2 with features that would make it easier to produce
such animations.

2DimiTeX

One difficulty that Greg had encountered in animating Archimedes proof was that
typesetting mathematica formulas with Juno-2 was a very tedious task. In order for
Juno to display ?r2, Greg had to type a 30 line program that switched the current
font to "Symbol" and back again as the letter ? was displayed, and then raised the
superscript "2" up by one-third of the current font's height.

Because Greek letters, mathematica symbols, superscripts and subscripts occur
commonly in proofs, | implemented a subset of TeX's functiondity in Juno. My
implementation, which Greg named DimiTeX, mostly adheresto TeX's syntax;
however, DimiTeX's escgpe character is the exclamation mark '!", because the
backdash '\' was aready taken by Juno. For example, here is what we would have

to type in Juno-xyt for the formula ?r to appear at position a.
DimiTeX.Show(a, "$!pi "2$")

Greg wrote the documentation for DimiTeX's syntax which isincuded in the
Juno-xyt manud page.

Some proofs use symbols that are not available in the bundled PostScript and X
fonts. With Juno, it is easy to draw anew symbol and to encapsulate the resulting
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closureasaDimiTeX glyph. This glyph can be bound to a DimiTeX control
sequence, such as"Imynewsym”. (Even animated drawings can be encapsulated as
DimiTeX glyphs. That's how we cregted the DimiTeX "Icircle{ ...} " macro, which
dowly draws acircle around any formula.)

While dragging a compound formula across the screen, | observed a curious effect
which Greg cdled "rounding flicker". Congder the distance between a superscript
and a subscript in the same

formula The redl number with which DimiTeX represents this distance may not be
divisble by the screen's pixd sze, but the physicd distance on the screen dwaysis.
The window system rounds DimiTeX's real number either up or down, depending on
the formulas current postion. Asthe formulais being dragged, its current position
changes, and so does the physical distance between the superscript and the subscript
on the screen. We did not fix the resulting flicker, because we had other fun thingsto
do.

3 Animation

An animation can be fun even if it does nat prove a theorem. Early in the summer,
Greg and | crested an animation showing how a caligrapher might write " Juno xyt".
Juno-2 dready had a cdligraphic pen that could be easily gpplied to the current
PostScript path. Still, given a PostScript path which consists of afew dozen Bezier
segments, how would you draw that fraction of the path which isvisble in the
animation's current frame?

We firgt solved this problem for asingle Bezier ssgment by using De Cagtdjau’'s
congtruction. That is, we obtained Bezier control points for the visble fraction of our
segment by nesting a number of smultaneous "diders'. (After this exercise, we
crested agraphica dider in the Juno user interface and connected it to the Juno
variable "UlSlider.va"). Then we encapsulated each segment of the PostScript path
into a separate animation closure. Findly, we defined a new compaosition primitive
cdled "Seg2" which right-reduced the list of Sngle-segment animationsinto asingle
closure that animated the entire path.

Toward summer's end, we used the same "Seg2" to tie together the steps of a
cdculaiond "Feijen style" proof that the Fermat numbers (2 exp 2")+ 1 are pairwise
reaively prime. Actudly, only two of the animated didesin that proof were "Feijen
dyle" --- more traditiond "title dides’ stated the results that were to be proved. We
grouped the various dides into "scenes’ so that dide trangtions within a scene were
made automaticaly by Juno, whereas "show mode" trangtions from one scene to the
next would occur only in response to user events. We dso implemented a " Scene
menu" in the user interface that dlowed us to view the scenes in random order while
working in “edit mode". Edit mode is the mode that Juno sarts in; show mode is a
mode for giving full-screen presentations that we added this summer.

4 Conclusion

Some of the extensions that we added this summer -- for example DimiTeX -- work
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just aswel in Juno-2 as they do in Juno-xyt. Although thisis dso true of the last and
the leadt trivid to implement addition that | will describe --- afacility for unfolding
and refolding predicates and templates and for "narrowing” predicates --- we were
not hard-pressed to make this addition to Juno until we started producing larger
animations. That's because gill illustrations seldom use the same predicates and the
same templates ingtantiated over and over for the exact same parameter values,
which would be required for automated editing operations to pay off. But that's just
what happens in dide shows and animations --- they usudly congst of many scenes
al of which are derived from the same template. For example, dl scenesin Greg's
animation of Archimedess proof display a caption at the exact same anchor point.
What if, while editing scene N, Greg needed to move down that anchor point in
order to make room for alarger caption? In Juno-2, he would have had to edit
manualy al other scenesin addition to editing scene N (please note that storing the
anchor point in aglobd variable is not avaid option, because there may be
non-trivia congtraints relating the anchor point to other points in the same template).
In Juno-xyt, Greg would get away by editing just the common template --- assuming
that he has read the "Using Schemes" section of the Juno-xyt manua page.

5 References

1. Allan Heydon and Greg Nelson,
The Juno-2 Constraint-Based Drawing Editor (SRC Research Report 1314a)

http://gatekeeper.dec.com/pub/DEC/SRC/research-reportyabstracts/'src-rr-131ahtml

2. Greg Nelson and Allan Heydon,
Juno-2 Language Definition (SRC Technicd Note 1997-009)

http://gatekeeper.dec.com/pub/DEC/SRC/techni cal -notes/abstracts/src-tn-1997-009.html

3. Allan Heydon and Greg Nelson,
Congtraint-Based Animations (PostScript, 2 pp.)
http://research.compag.com/SRC/juno-2/papersanimations.ps
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