SRC Technical Note
2000-004

October 12, 2000

ESC/Java Quick Reference

Silvija Seres, June 1999

Revised by K. Rustan M. Leino and James B. Saxe, October 2000

COMPAQ

Compaqgq Computer Corporation
Systems Resear ch Center
130 Lytton Avenue
Pdo Alto, CA 94301
http://research.compag.com/SRC/

Copyright © 1999, 2000 Compag Computer Corporation. All rights reserved

Limitation of liability: This publication and the software it describes are provided ~asis’ without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability, fitnessfor a
particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographica errors. Furthermore, the Compaq
Extended Static Checker for Java (ESC/Java) is currently under development. Compaq therefore expects that
changes will occur in the ESC/Java software and documenteation, from time to time. Compaq reserves the right
to adopt such changes, or to cause or recommend that ESC/Java users adopt such changes, upon such notice as
is practicable under the circumstances or without any notice, in its discretion.

The Compaq Extended Static Checker for Java (ESC/Java) is not a product of Sun Microsystems, Inc.
Compaqg is aregistered trademark of Compag Computer Corporation. Javaisatrademark or registered

trademark of Sun Microsystems, Inc. Any other trademarks or registered trademarks mentioned herein are the
property of their respective holders.

lof 7

Abstract

This document isintended to be a non-detailed, trimmed-down version of the ESC/Java User's Manud, for
people who would like to get an overview of the annotation language supported by the Compaq Extended Static
Checker for Java (ESC/Java) without getting immersed in dl itstechnicd intricacies.

For more detailed information, please refer to the ESC/Java User's Manual. For information about the invocation
of the ESC/Java checker, please see the escjava(1l) man page included with the ESC/Java download available
from http://research.compag.com/SRC/esc/.

0. What does ESC/Java do anyway?

Type annotation and dtatic type checking of programs have proved to be one of biggest engineering successes of
computer science. Typing provides a coarse semantics for programs, since it pays no attention to the semantics of
any language congtructs that are not related to types. Nevertheless, the automatic type checking of programs
weeds out dready a compile time many of the most common programming errors, thus making them less costly
for the developers. Also, typing forces a certain discipline upon the programmer, which results in better

programs.

The Compaq Extended Static Checker for Java (ESC/Java) pushes the idea behind type checkers afew steps
further. The class of errorsthat it looks for is much larger and more varied: it addresses, among others, the
potentia run-time errors that arise from illegd array operations, null-pointer dereferencing, deadlocks and race
conditions of threads. Given a Java program, it automaticaly infers and checks aset of verification conditions
that correspond to the described classes of errors. It dso dlows the programmer to record design decisions, and
to influence the choice of verification conditions by annotating the program with aset of pragmas. These can be
used to specify the pre- and postconditions of routines, properties of abstract data types, invariants of loops, and
much more.

The errors that ESC/Java looks for are chosen on a pragmatic basis, they are the errors that, according to the
engineering experience, occur often and are relatively chegp to find, but the ESC/Java system isflexible and can
be extended to alow for checking of other types of errors. Currently, ESC/Java checks dmost the entire Java
1.2 language, including dl of Java 1.0.

In terms of program verification, ESC/Java is unsound, because it can missred programming errors (from the
targeted class), and it isincomplete, because it can give some spurious warnings. Some degree of inaccuracy is
inevitable in atool such as ESC/Java due to theoreticd limits of decidability. Additionaly, the design of
ESC/Java intentiondly sacrifices some accuracy in trade for efficiency of thetool. The user has some control
over ESC/Javas unsoundness and incompleteness thanks to pragmas. These pragmas not only enable modular
program checking, but are also a convenient formalism for recording programmers design decisons and program
pecifications.

The remainder of this page gives arough description of the kinds of pragmas available in the current ESC/Java,
the specification expressions that can occur in those pragmas, and the kinds of warnings ESC/Java reports.

1. Therearefour syntactic categories of ESC/Java pragmas:

207

A pragma (annotation) is enlosed in a Java comment whose first character isan @ For example, / * @ non_nul |
*/ isan ESC/Java pragma.

lexical pragmas may occur in the same places as Java comments,

statement pragmas may occur in the same places as Java statements,

declar ation pragmas may occur in the same places as Java declarations of class and interface members,
modifier pragmas may occur in certain places within Java declarations of variables or routines.

All pragmas enclosed in a single Java comment must be of the same syntactic category.

2. Thelist of ESC/Java pragmas with their (syntactic, semantic) contexts:

For pragmeas terminated by semicolon, the semicolon is optiond if there are no further pragmas enclosed in the
same comment.

nowarn L; (lexicd, generd):

L denotes a possibly empty comma-separated list of warning types, ESC/Javawill suppress any warning
messages of thetypesin L (or of dl types, if L isempty) at the line where the pragma appears.

assume E; (Statement, generd):

E denotes a boolean specification expresson; ESC/Javawill assume that E is true whenever control
reaches the pragma and ignores the remainder of dl execution pathsin which E isfdse.

assert E; (Statement, generd):

E denotes a boolean specification expresson; ESC/Javawill issue awarning if it cannot establish that E is
true whenever control reaches the pragma.

unr eachabl e; (Statement,generd): semanticaly equivaenttoassert fal se;

requi res E; (modifier, non-overriding routine):

E denotes a boolean specification expresson that is a precondition of the routine the pragma modifies,
ESC/Javawill assume that E holds initidly when checking the implementation of the routine, and will issue
awarning if it cannot establish that E holds at acdl Ste.

nodi fi es S; (modifier, non-overriding routine):

S denotes a nonempty commarseparated list of modification targets, ESC/Javawill assume that calsto the
routine modify only the modification targetsin s and freshly dlocated state components, but will not check
the routine implementation correspondingly (thet is, ESC/Java does not warn about implementations that
modify more targetsthan s alows).

ensures E; (modifier, non-overriding routine):

E denotes a boolean specification expresson that isanormd (i.e. non-exceptiona) postcondition of the
routine the pragma modifies, ESC/Java will assume that E holds just after each call Ste the routine, and will
issue awarning if it cannot prove from the routine implementation that E holds whenever the routine
terminates normally.

exsures (T t) E (modifier, non-overriding routine):

T isasubtypeof j ava. | ang. Thr owabl e, t isan (optiond) identifier, and E denotes a boolean
specification expresson that is an exceptiond postcondition of the routine the pragma modifies, ESC/Java
will assume that E holds whenever the a cal to the routine completes abruptly by throwing an exception t
whose type is a subtype of T, and will issue awarning if it cannot prove from the routine implementation
that E holds whenever the routine terminates completes abruptly by throwing an exception t whosetypeis
asubtypeof T.

al so_ensures E; (modifier, overriding routine):

This pragmamay modify only amethod declaration that overrides another method declaration; otherwise,

307

it has the same meaning asensur es E;

al so_exsures (T t) E (modifier, overiding routine):

This pragma may modify only method declaration that overrides another method declaration; otherwise, it
has the same meaning asexsures (T t) E;

al so_requires E; (modifier, overriding routine):

This pragma may modify only a method declaration that occurs in a class declaration, overrides a method
of asuperinterface, and does not override amethod of a superclass; otherwisg, it has the same meaning as
requires E;

al so_nodi fies S; (modifier, overriding routine):

This pragma may modify only a method declaration that overrides another method declaration; otherwise,
it hasthe same meaning asnodi fi es S;

non_nul | (modifier, datainvariant):

Modifies the declaration of avariable of a reference type, where the variable may be adatic field, instance
vaiable, locd variable, or parameter; ESC/Javawill check a each assgnment to the variable that the
vaue assgned is not null, and assume a each use that the valueis not null.

i nvari ant E; (declaration, datainvariant):

E denotes a boolean specification expresson thet is an object invariant of the class within whose
declaration the pragmaoccurs. If E does not mention t hi s, theinvariant is cdled astatic invariant, and
is assumed on entry to implementations, checked at call Stes, assumed upon call returns, and checked on
exit from implementations. If E mentionst hi s, theinvariant is caled an instance invariant. An instance
invariant is assumed to hold for al objects of the class on entry to an implementation and is checked to
hold for al objects of the class on exit from an implementation. At acdl Ste, an ingance invariant is
checked only for those objects passed in the parameters of the cdl and in datic fidds. A cdl is assumed
not to fasfy the ingance invariant for any object.

axi om E; (declaration, datainvariant):

ESC/Java assumesthat E istrue at the Sart of every routine body

| oop_i nvari ant E; (Statement, datainvariant):

This pragmamay appear only just before aJavarf or , whi | e, or do statement. ESC/Javawill check that E
holds at the start of each iteration of the loop.

spec_publ i ¢ (modifier, variable referencing):

This pragmamay modify only non-public field declarations, and it will cause the fields in the declaration to
be as accessible in pragmas as they would have been if the declaration had been public.

readabl e_i f E; (modifier, varigble referencing):

This pragmamay modify only the declaration of afield or alocd variable; E denotes a boolean
specification expresson that has to be true at any read access of the fields or variable.

uni ni ti al i zed (modifier, varidble referencing):

This pragmamay modify only alocd varigble declaration that has an initidizer; ESC/Javawill check thet
no execution path accesses the variable without firgt performing an assgnment (other than the initidizer) to
the variable.

ghost M S v; (declaration, ghost variables):

S isagpedification type, v isan identifier, and Mis a sequence of modifiersincuding publ i c; this pragma
islikean ordinary Javavariable declaration M S v; except that it makes the declaration vigble only to
ESC/Java, and not to the compiler; such variables are caled ghost variables.

set D = E; (Statement, ghost variables):

D refersto aghost field of some object or class and Eis a specification expression containing no quantifiers
or labds, this pragma has the analagous meaning to the Java assgnment datement D = E;

moni t or ed_by SL; (modifier, synchronization):

This pragma can be gpplied only to fiddlds. The modified field is a shared variable monitored by the locks

407

in sL, which isanonempty, comma-separated list of specification expressons. ESC/Java checks that the
fiedd is never read except by athread holding at least one non-null lock in sL and thet the field is never
written except by athread holding al non-null locksin sL, of which there must be &t least one.

* noni t or ed (Modifier, synchronization):
This pragma may modify only an instance variable declaration, and isthe same asnoni t or ed_by t hi s;

3. The ESC/Java specification expressions:

A specification typeis either a Javatype or one of the specid types\ TYPE or \ LockSet (or an array of specid
types, for example\ TYPE[] []). The specification type\ LockSet cannot be mentioned explicitly in annotations.

Specification expressons must be free of subexpressons that may potentialy have side effects, so they may not
contain any assgnment (=, +=, €tc.), pre/post-increment/decrement (++ or - -), array or object creation (new), or
method invocation (even for methods that have no sde-effects).

The additiona congtructs that are dlowed in specification expressions beyond those dlowed in Java expressons
are

* \type(T): \TYPE
denotes the specification type T.
® \typeof (E): \TYPE
denotes the dynamic type of the vaue of specification expresson E, where E is of areference type.
® \elentype(E): \TYPE
denotes the specification type T if E denotes an array type T[| , unspecified otherwise.
® S < T: bool ean
denotesthat s isasubtype of T, where s and T are pecification expressions of type\ TYPE.
* \lockset: \LockSet
denotes the set of locks held by the current thread.
* S[L]: bool ean
denotesthat L isamember of S, where S isa specification expresson of type\ LockSet andL isa
specification expresson of areference type.
® E < F: bool ean
denotes that object E precedes object F in the locking order.
®* E <= F: bool ean
denotes that object E precedes object F in thelocking order or E == F.
* \max(S): Object
denotes the maximum dement of S in the locking order, where s is a specification expresson of type
\ LockSet .
®* E ==> F: bool ean
denotes the condition that E impliesF, where E and F are Specification expression of typebool ean.
® (\forall TV, E): bool ean
denotes that E istrue for dl subgtitutions of vaues of type T for the bound variables v, where T isa
specification type, V is anonempty comma-separated list of identifiers, and E is a specification expresson
of typebool ean.
* (\exists T V; E): bool ean
denotes that E istrue for some subgtitution of vaues of type T for the bound variables v, where E, T and v
are as above.
* \nonnul |l el enents(A): bool ean

50f 7

denotes that A and dl its dements are non-null, where A is a specification expresson of areference array
type.

\fresh(E): bool ean

used in postconditions, denotes that E is non-null and was not dlocated in the pre-state of the routine call,
where E is a Specification expresson of a reference type.

\result

is a goecification expression whose type is the return type of the non-void method in whose norma
postcondition or modification target it appears, denoting the vaue returned by the method.

\ ol d(E)

is a specification expression of the same type as the specification expresson E and isused ina
postcondition to denote the same thing as E except that (1) any occurrencein E of atarget fidd of the
routine is interpreted according to the pre-gate vaue of thefidd, and (2) if any modification target of the
routine hastheform X[i] or X[*] , then dl array accesses within E are interpreted according to the
pre-state contents of arrays.

E. owner: Obj ect

is a specification expression of type object, denoting the " owner" of object E. The standard specification
library shipped with ESC/Java declares owner asaghod fidd of j ava. | ang. Obj ect . The pragma/ * @
invariant f.owner = this; */ inthedeclaration of atypeT isthe conventiona way to specify that
the objects of type T do not sharether f fidds All congtructors have the implicit postcondition
this.owner !'= null.

4. The ESC/Java modification targets (or specification designators):

a smple name dencting anon-find fidd,

afield access o f, where 0isaspecification expression of areferencetype T andf denotes one of the
fields (possibly aghog fidd) of T,

an array access of theform A |], where A is a specification expresson of an array type, and | isa
specification expresson of an integrd type other than | ong, or

anarray range of theform A[*] , where A is a pecification expresson of an array type.

5. The ESC/Java warning types:

ESC/Javaissues warnings for conditions thet it regards as run-time errors, and that, so far isit can tdl, might
actudly occur at run-time.

Ar ray St or e warns that the control may reach an assgnment Al 1] = E whenthevdueof E isnot
assignment compatible with the actud eement type of A.

Assert warnsthat control may reach apragmaassert Ewhenthevdueof Eisfdse

Cast warnsthat control may reach acast (T) E when the value of E cannot be cast to the type E.

Deadl ock warnsthat control may reach asynchr oni zed Statement that would acquire alock in violation
of the locking order, or that the asynchr oni zed method may sart by acquiring alock in violation of the
locking order.

Except i on warnsthat a routine may terminate abruptly by throwing an exception thet is not an instance of
any type listed explicitly in the routine's throws clause.

I ndexNegat i ve warnsthat control may reach an array access Al 1] whenthevaueof theindex | is
negdive.

I ndexTooBi g warnsthat control may reach an array accessA[1] when A length <= 1|.

I nvari ant warnsthat some object invariant may not hold when control resches aroutine cdl, or that

60f 7

some object invariant may not hold on exit from the current body.

Loopl nv warns that some loop invariant may not hold when it is supposed to.

Owner Nul | warnsthat a constructor may violate the implicit postcondition t hi s. owner !'= nul | .
NegSi ze warns of apossible atempt to dlocate an array of negative length.

NonNul | warns of a possible attempt to assign the value null to a variable whose declaration is modified
by anon_nul | pragma, or to cdl aroutine with an actud parameter value of null when the declaration of
the corresponding formal parameter is modified by (or inherits) anon_nul | pragma.

NonNul | I ni t warnsthat a condructor may fall to establish a non-null vaue for an ingance field of the
congtructed object when the declaration of that instance field is modified by anon_nul | pragma

Nul I warns of a possible attempt to dereference null, for example, by field access o f, an array access
di],amehodcdl o nt(...),asynchronized satement synchr oni zed (0O) ..., or athrow
datement t hr ow O, where 0 evaluatestonul | .

Post warnsthat aroutine body may fail to establish some norma postcondition (on terminating normally)
or some exceptiond postcondition (when terminating by throwing an exception of ardevant type).

Pr e warns that control may reach aroutine call when some precondition of the routine does not hold.
Race warns of a possble attempt to access amonitored field while not holding the requisite lock(s).
Reachabl e warnsthat control may reach an unr eachabl e pragma

Uni ni t warnsthat control may reach aread accessto alocd variable before execution of any assgnment
to the variable other than an initidizer in a declaration modified by an uni ni ti al i zed pragma.

Unr eadabl e warnsthat control may reach aread access of afield or variable x when the expressonina
readabl e_i f pragmamodifying x's declaration isfase.

Zer oDi v warns of a possible attempt to apply the integer division (/) or remainder (%9 operator with zero
asthe divisor.

Tof7

