SRC Technical Note
2000-002

October 12, 2000

ESC/Java User's M anual

K. Rustan M. Leino, Greg Nelson, and James B. Saxe

COMPAQ

Compaqgq Computer Corporation
Systems Resear ch Center
130 Lytton Avenue
Pdo Alto, CA 94301
http://research.compag.com/SRC/

Copyright © 1999, 2000 Compag Computer Corporation. All rights reserved

Limitation of liability: This publication and the software it describes are provided ~asis' without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability, fitnessfor a
particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographicad errors. Furthermore, the Compaq
Extended Static Checker for Java (ESC/Java) is currently under development. Compaq therefore expects that
changes will occur in the ESC/Java software and documentation, from time to time. Compaq reserves theright
to adopt such changes, or to cause or recommend that ESC/Java users adopt such changes, upon such notice as
is practicable under the circumstances or without any notice, in its discretion.

The Compaq Extended Static Checker for Java (ESC/Java) is hot a product of Sun Microsystems, Inc.

Compaq is aregistered trademark of Compag Computer Corporation. Javais atrademark or registered
trademark of Sun Microsystems, Inc. UNIX isaregistered trademark in the United States and other countries,
exclusvely licensed through X/Open Company, Ltd. Windows is aregistered trademark of Microsoft
Corporation. PogtScript is aregistered trademark of Adobe Systems, Inc. All other trademarks or registered
trademarks mentioned herein are the property of their respective holders.

1d%

Abstract

The Compag Extended Satic Checker for Java (ESC/Java) is aprogramming tool that attemptsto find
common run-time errors in Java programs by gtatic analysis of the program text. Users can control the amount
and kinds of checking that ESC/Java performs by annotating their programs with specialy formatted comments
cdled pragmas This manud isdesigned to serve both as an introduction to ESC/Java and as areference
manud. It Sarts by providing an overview of ESC/Javathrough an illudtrative example of its use and a summary
of its features, and then goes on to document al the pragmas supported by ESC/Java and dl the kinds of
warningsthat it generates. Appendices provide abrief sketch of ESC/Java's implementation, information about
obtaining ESC/Java, and some discussion of its limitations.

Preface

The Compag Extended Static Checker for Java (ESC/Java) is a programming tool that attemptsto find
common run-time errors in Java programs by static andysis of the program text. Users can control the amount
and kinds of checking that ESC/Java performs by annotating their program with specidly formatted comments
cdled pragmas Thismanua garts by providing an overview of ESC/Java through an illudrative example of its
use and asummary of its features, and then goes on to document al the pragmas supported by ESC/Javaand dl
the kinds of warningsthat it generates. It dso provides basic information about running ESC/Java

This manua documents Version 1.2.2 of ESC/Java, built on October 12, 2000. We sometimes speak of ““the
current ESC/Java--rather than just ~"ESC/Java’--to emphasize that particular features, bugs, or limitations under
discusson are artifacts of the Verson 1.2.2 implementation and may be subject to change in future versons. Of
course there is no guarantee that al such aspects of ESC/Javawill in fact change (nor that other aspects will
remain unchanged) asthetool evolves.

Thismanud is designed to serve both as an introduction to ESC/Java and as areference manua. Fird-time
readers may prefer to skip the portions marked ~Fine point(s)" as well as some other parts that we have
indicated. On the other hand, the extended example in section 0 should be particularly hdpful to fird-time
readers.

For a much abridged treatment of the information in this manud, see the "ESC/Java Quick Reference” [SLS00].

The Quick Reference lists most of the specification language features described in sections 2 and 3 of this manud

and dl the warning types described in section 4, giving very brief descriptions of each. While it necessarily omits

numerous examples, tips, motivating discussons, and technica details found in the present manud, it will till be of
interest both the new reader seeking awhirlwind tour of ESC/Java's features and to the experienced user seeking
aquick reminder about some ESC/Javafeature.

Although ESC/Java contains afull Java program verifier, the god of ESC/Javais not to provide formdly rigorous
program verification. Rather, it isto help programmers find some kinds of errors more quickly than they might be
found by other methods, such astesting or code reviews. Consequently, ESC/Java embodies engineering
trade-offs among a number of factorsincluding the frequency of missed errors, the frequency of fase darms, the
amount of time used by the tool, the effort required to learn and use the annotation language, and the effort
required to implement the toal. In this manua we atempt to give a precise description of the syntax,
type-checking, and other linguistic rules of the annotation language, as well as aclear though informa description
of the meanings of the various pragmas. While we discuss potentia sources of missed errors or fse darms at

20%

various placesin the manud, induding a summary in appendix C, we do not attempt to characterize precisdy the
degree of (in)accuracy of ESC/Javas checking

In many places we cite sections of The Java Specification Language, by James Goding, Bill Joy, and Guy
Sede[JLY. For example, the notation "[JLS, 19.2]" refersto section 19.2 of The Java Language
Soecification. Thelig of references a the end of this manud gives bibliographic information for this and other
works cited herein.

A specification notation and set of tools related to ESC/Javais the Java Modeling Language (JML) [LBR99,
LBROO, LLPRJOQ]. Through a collaborative effort, we have attempted to make the IML specification language
and the ESC/Java annotation language as Smilar as practicd, with IML providing a superset of the features of
ESC/Java. The gods of the two languages are different, so differences in the notations remain. However, many
programs annotated with ESC/Java annotations should be amenable to processing with other ML tools, and
programmers who learn one language should have little trouble picking up the other aswell.

Acknowledgments

ESC/Javawas origindly designed and implemented at the Compaq Systems Research Center (SRC) by Cormac
Flanagan, Mark Lillibridge, Raymie Stata, and the authors. Todd Millstein implemented ESC/Java's execution
trace facility and helped with other aspects of ESC/Java. Caroline Tice and Rgeev Joshi lent helping hands with
miscellaneous agpects of the implementation, including reducing ESC/Javas memory footprint (Tice) and getting
the build recipe for the Smplify theorem prover to work on multiple platforms (Joshi).

The ESC/Java project is afollow-on to an earlier extended static checking project at SRC targeting the
Modula-3 language [DLNS98], and continues to use the Smplify theorem prover developed as part of that
project.

The authors thank our colleagues who have offered comments on earlier versons of this manua. Allan Heydon,
David Jefferson, Mark Lillibridge, Slvija Seres, and Caroline Tice have been particularly helpful in this regard.
Silvija Seres compiled the initial verson of the ESC/Java Quick Reference [SLS00] from an earlier verson of this
manua. We and the other implementers of ESC/Java have benefited from the feedback of early users, including
Sanjay Ghemawat, Steve Glassman, Allan Heydon, David Jefferson, Marc Ngork, Keith Randdl, and Silvija
Seres. Gary Leavens played amgor role in our attempt to remove gratuitous incompatibilities between
ESC/Java and JML, and helped us to improve the ESC/Java annotation language in the process.

Contents
Preface

Acknowledgments

Contents

0 Anillustrative example of usng ESC/Java

30%

0.0 Scene 0: We write a class declaration.

0.1 Scenel: Werun ESC/Java, and it warns of two potentid nul | dereferences.
0.2 Scene 2. Wewritear equi r es (precondition) pragmafor the Bag constructor.
0.3 Scene3: Weadd anon nul | pragmafor thefidd a.

0.4 Scene4: Wecorrect abug in Bag. extract M n.

0.5 Scene5: Wetake no action for aredundant warning.

0.6 Scene 6: We supply aprecondition for Bag. ext ract M n.

0.7 Scene 7: Werun ESC/Javaagain and it ill issues awarning.

0.8 Scene8: Wesupply ani nvari ant pragmardating n toa. | enght . [Sic]
0.9 Scene 9: ESCl/Java notices atypographica error.

0.10 Scene10: Our efforts come to a happy conclusion.

1 An overview of ESC/Java and of this manual

ESClJavais achecker for Java programs, optiondly annotated with user-supplied pragmas.
o ESClJavapragmas must occur within pragma-containing comments
o ESC/Javapragmas can contain expressions that are smilar to Java expressons.
o ESC/Java pragmas record programmer design decisions.
o ESCl/Javas pragmas support modular checking.
o When Java sources are unavailable, users can supply pragmasin . spec files
e ESC/Javais checker for (dmost dl of) Java1.2.
e ESC/Java has a command-line interface like the Java compiler's.
e ESC/Javaissues warning messages for potentid run-time errors.
o The current ESC/Java checks only method and congtructor bodies.
o ESC/Javatreats exceptions thrown by the Java run-time system as run-time errors.
o ESC/Java does not warn of potentid errors in the evduation of specification
expressions.
o ESC/Javawarning messages may include execution traces.
e ESC/Javaissues error messages for badly formed programs.
o ESC/Javaerror messages are like compiler error messages.
o ESC/Javadoesn't detect al compile-time errors that Java compilers detect.
e ESC/Javas extended static checking isn't perfect.
o ESC/Javacan miss errors.
o ESC/Java can give Spurious warnings.
o Pragmas give the user some control over ESC/Javas unsoundness and
incompleteness.
o ESC/Javaissues caution messagesin some (but not al) cases where unsound
checking may occur.

2 ESC/Java pragmas

2.0 Rules about where pragmas may occur

2.0.0 ESClJava pragmas must occur within pragma-containing
comments.

2.0.1 Therearefour syntactic categories of pragmas.

2.0.2 ESC/Java sometimes alows pragmas to contain nested pragmas
or comments.

40 B

2.1 The most basic pragmas

2.1.0 nowar n pragma
2.1.1 assert pragma
2.1.2 assune pragma
2.1.3 unr eachabl e pragma

2.2 Some remarks concerning assert and assune

2.2.0 Theassune pragmashould be used with judgment.

2.2.1 Mosgt ESC/Java pragmas are just fancy forms of assert and
assune.

2.2.2 A nowar n_pragma suppresses warnings by turning assertions into
assumptions.

2.2.3 A hdpful tip: Experimentswith assert and assune_pragmas can
help you understand ESC/Java's behavior and debug your annotated
code.

2.3 Pragmas for specifying routines

2.3.0 requires pragma
2.3.1 nodi fi es pragma

2.3.1.0 target fidds

2.3.2 ensur es pragma

2.3.3 A noteontheinteraction of nodi fi es and\ ol d
2.3.4 exsures pragma

2.3.5 al so_ensures pragma

2.3.6 al so_exsures pragma

2.3.7 al so_requires_pragma

2.3.8 al so_nodi fi es pragma

2.4 Pragmas for specifying data invariants

2.4.0 non_nul | pragma

2.4.1 i nvari ant _pragma

2.4.2 axi ompragma

2.4.3 1 oop i nvari ant pragma

2.5 Pragmas affecting conditions under which variables may be referenced

2.5.0 spec public pragma
2.5.1 readabl e i f pragma
2.5.2 uninitialized pragma

2.6 Pragmas concerning ghost variables

50 %

2.6.0 ghost pragma
2.6.1 set pragma
2.6.2 Examples usng ghost variables

2.7 Pragmas for specifying synchronization

2.7.0 noni tored_ by pragma
2.7.1 noni t or ed pragma
2.7.2 Examplesilludrating race and deadlock checking

3 Specification expressions

3.0 Specification types
3.1 Redrictions
3.2 Additions

3.20 \type
3.2.1 \typeof

3.2.2 \el entype

3.2.3 Subtype: <:

3.24 Examplesinvolving\ TYPE, \ t ype, \ t ypeof ,\ el ent ype, and
<

3.2.5 \l ockset

3.26 Membershipinlock sats. []
3.2.7 Lock order: < and <=

3.2.8 \ max

3.2.9 Implication: ==>

3.2.10 \forall

3.2.11 \exists

3.2.12 \ nonnul | el enent s
3.2.13 \fresh

3.214 \resul t

3.215 \old

3.2.16 \I bl neg and\ | bl pos
3.2.17 owner

3.3 Scoping, name resolution, and access control in specification expressons

4 Warnings

4.0 Parts of ESC/Javawarning messages
4.1 ArrayStore waning

4.2 Assert waning

4.3 Cast waning

4.4 Deadl ock warning

4.5 Excepti on warning

4.6 | ndexNegat i ve waning

60 B

4.7 1 ndexTooBi g warning

4.8 I nvari ant waning

4.9 Loopl nv. waning

4.10

NegSi ze waning

4.11

NonNul | warmning

4.12

NonNul | | ni t waning

4.13

Nul | warning

4.14

Oaner Nul | warning

4.15

Post warning

4.16

Pr e warning

4.17

Race warning

4.18

Reachabl e warning

4.19

Unr eadabl e warning

4.20

Uni ni t warning

4.21

Zer oDi v warning

5 Command-line options and environment variables

5.0 -

suggest

5.1 Specification (. spec) files and the ESC/Javas class path

5.1.0 Filereading modes

5.1.1 The ESC/Javaclass path (- cl asspat h, CLASSPATH,

- boot cl asspat h)

5.1.2 Specification (. spec) files

5.1.3 How ESC/Java decides which files to read and in which modes

5.1.4 -depend

6 Javalanguage support and limitations

Appendix A: Overview of how ESC/Java works

Appendix B: Instadling and using ESC/Java at your ste

Appendix C: Sources of unsoundness and incompleteness ESC/Java

C.0 Known sources of unsoundness

C.0.0 Trusting pragmas

C.0.1 Loops

C.0.2 Object invariants

C.0.3 Modification targets

C.04 Theal so nodifies andal so requires pragmas
C.0.5 Multiple inheritance

C.0.6_Arithmetic overflow

C.0.7 Ignored exceptiona conditions

C.0.8 Condtructor lesking

C.0.9 Sdicinitidization

70d%

C.0.10 Classpathsand . spec files

C.0.11 Shared variables

C.0.12 Initidization of fidds dedared non_nul |
C.0.13 String literds

C.0.14 Searchlimitsin Smplify

C.0.15 Integer arithmetic bug in Smplify

C.1 Some sources of incompleteness

C.1.0 Incompleteness of the theorem-prover
C.1.1 Incomplete modding of Java semantics
C.1.2 Modular checking

References

O Anillustrative example of using ESC/Java

To give the reader agenerd idea of what ESC/Java does and how to use it, we begin with an exampleillustrating
some salient features of ESC/Java through its application to a smple class declaration deliberately seeded with
Some errors.

0.0 Scene0: Wewrite a class declaration.
Our example isthe class Bag declared in afile Bag. j ava asfollows

line

1. class Bag {
int[] a;
int n;

n = input.length;
a = newint[n];

2

3

4:

5; Bag(int[] input) {
6

7

8 System arraycopy(i nput, 0, a, 0, n);
9

}
10:
11: int extractMn() {
12: int m= Integer. MAX VALUE;
13: int mndex = 0;
14 for (int i =1; i <=n; i++) {
15: if (a[i] <m {
16: m ndex = i;
17: m= ali];
18: }
19: }

80 B

20: n--;

21: al m ndex] = a[n];
22: return m

23: }

24: }

A copy of this program isin escjavaRoot/ exanpl es/ 0. 0/ Bag. j ava, where escjavaRoot denotes the
(ste-specific) top-leve directory for ESC/Java (see appendix B). Theideaisthat an object x of classBag
represents amultiset (aso known asa ""bag") of integersin the form of integer array x. a together with an integer
x. n, where the dements of the multiset are the first x. n elements of the array. In our example declaration, we
define a congtructor that creates aBag from an array, and asingle method ext r act M n that finds, removes, and
returns the minima dement of aBag. Theext r act M n method iterates over thefirst t hi s. n dements of

thi s. a, kegping track of the smdlest oneinthelocd varidblem. After finding the smdlest dement of t hi s. a,
it copies the dement at the highest used position of x. a into the position formerly occupied by the minimum
element, decreases the count of used elements, and returns the value that was saved in m.

0.1 Scenel: Werun ESC/Java, and it warns of two potential nul | dereferences.

To compileBag. j ava, wewould type the command line:
javac Bag.java

To check our definition of class Bag with ESC/Java, we instead type the following smilar command line:
escj ava Bag.j ava

ESC/Java then produces the following output:

Bag.j ava: 6: Warning: Possible null dereference (Null)
n = input.length;
AN

Bag.j ava: 15: Warni ng: Possible null dereference (Null)

it (ali] <m {

Execution trace information:
Conpleted O loop iterations in "Bag.java", |ine 14, col 4.

Bag.j ava: 15: Warning: Array index possibly too | arge (I ndexTooBig)
if (a[i] <m {

N

Execution trace information:
Conpl eted O loop iterations in "Bag.java", line 14, col 4.

Bag.j ava: 21: Warning: Possible null dereference (Null)
a[mindex] = a[n];
AN
Execution trace information:
Conpl eted O loop iterations in "Bag.java", line 14, col 4.

90 %H

Bag.j ava: 21: Warni ng: Possi bl e negative array index (IndexNegative)

a[mi ndex] = a[n];

Execution trace information:
Conpleted O loop iterations in "Bag.java", line 14, col 4.

5 war ni ngs

Remark: Actually, the aboveisthe output generated by the command

escj ava -quiet Bag.java

The normal output of ESC/Java also includes various progress messages and timing information which are
omitted here.

Remark: Some of the messages above include a part marked as ““Executi on trace information”. Wesay more
about execution traces below, particularly in section 4.0, but will not discuss them further in the course of this
introductory example.

0.2 Scene2: Wewritear equi r es (precondition) pragma for the Bag constructor.

ESC/Javas firs warning is that the attempt on line 6 to accessi nput . | engt h might fail becausei nput might be
nul I . We now must decide what to do about this warning.

One gpproach would be to decide that the implementation of the congtructor isincorrect. Following this
approach, we would modify the congtructor to test for a null argument and, for example, construct an empty
multiset:

Bag(int[] input) {
if (input == null) {

n = 0;
a = newint[0];
} else {
n = input.length;
a =newint[n];

System arraycopy(input, 0, a, 0, n);

}
}

Thiswould indeed diminate the firs warning. Instead, however, we will continue our example by illugtrating a
second approach, in which we decide that the implementation of the congtructor is correct, but that we do not
intend for the congtructor ever to be cdled with anull argument. We inform ESC/Java of this decision by adding
an annotation to the constructor declaration:

/l@requires input !'= null;
Bag(int[] input) {
n = input.length;

When the character @isthefirs character after theinitid // or / * of aJavacomment, asin thefirs line of the

100 %

program fragment above, ESC/Java expects the body of the comment to consist of a sequence of ESC/Java
annotations, known as pragmas. Ther equi r es pragma above specifies a precondition for the constructor,
that is, a boolean expresson which must bet r ue a the start of any call. When checking the body of a method
or congructor that is annotated with a precondition, ESC/Java can assume the truth of the precondition to
confirm the absence of errorsin the body (for example, the absence of anull dereference during the evaluation of
i nput . | engt h in the code fragment above). When checking code that calls amethod or constructor annotated
with a precondition, ESC/Javawill issue awarning if it cannot confirm that the precondition (with the vaues of the
actua parameters subgtituted for the forma parameter names) would dways evauatetot r ue a the cdl ste.

0.3 Scene3: Weadd anon_nul | pragmafor thefield a.
So much for thefirgt warning. We now turn our atention to the second warning:
Bag.j ava: 15: Warni ng: Possible null dereference (Null)

it (a[i] <m {

Here, ESC/Javais warning that the array variable a (actudly t hi s. a) might benul 1 . We could ded with this
warning by ether of the approaches discussed above in connection with the first warning--that is, by adding the
preconditionrequires a != nul | totheextract M n method, or by adding specid code for the casea ==
nul | . However ESC/Java offers yet another choice, which isto specify that the a field of any Bag isdways
supposed to be non-null. To do this, we annotate the declaration of a withanon_nul | pragma:

class Bag {

[*@non_null */ int[] a;

This causes ESC/Java to assume that thea fidd of any Bag object isitsef non-null (and thus can safely be
dereferenced). Conversdly, it causes ESC/Javato issue awarning for any assgnment to the a fidd of aBag, if it
cannot confirm that the expression being assgned will have anon-null vaue a run time. Furthermore ESC/Java
will check that every Bag congructor initidizesthe a field of the constructed object to a non-null vaue.

0.4 Scene4. Wecorrect abugin Bag. extract M n.
We now consider the third warning:

Bag.j ava: 15: Warning: Array index possibly too |large (lIndexTooBiQ)
it (ali] <m {
N

Examining the program, we now find agenuinebug. Thef or loop garting on line 15 (in the origina program)
examines aray dementsa[1] through a[n], but array indexing in Javais zero based. We correct thelineto
read

for (int i =0; i <n; i++) {
0.5 Scene5: Wetake no action for a redundant war ning.

Thefourth warning

Ndodb

Bag. j ava: 21: Warni ng: Possible null dereference (Null)

a[m ndex] = a[n];

requires no action, asthenon_nul | pragmawe added in section 0.3 already preventsa frombengnul 1. In
other words, the second and fourth warnings complain about the same problem.

Remark: ESC/Java often avoidsissuing such redundant warnings. Note, for example, that it doesn't complain
about the expressiona[nj on (origina) line 17, or the expressiona| ni ndex] on the left hand side of the
assignment on (original) line 21. However, it does not avoid them in all cases. A detailed description of the
circumstancesin which ESC/Javawill or will not issue multiple warnings with the same underlying causeis
beyond the scope of this manual.

0.6 Scene6: We supply a precondition for Bag. extract M n.
We now congder thelast of the five warnings:

Bag. j ava: 21: Warning: Possible negative array index (lIndexNegative)
a[mi ndex] = a[n];

AN

The problem isthat the codein (origind) lines 20-21 removes an ement from the bag even when the bag is
dready empty (that is, whent hi s. n == 0 onentry to ext ract M n). ESC/Javahas caled our attention to the
need for another design decision: do we add specia code to handle the Stuation when ext r act M n iscalled on
an empty bag, or do we add a precondition forbidding such calls? Let'stry the latter course:

12: /[l @requires n >= 1;
13: int extractMn() {

0.7 Scene 7: Werun ESC/Java again and it still issues a warning.
With dl the changes described above, our example program now reads.

1. class Bag {

2; [*@non_null */ int[] a;

3: int n;

4.

5: /l@requires input !'= null;

6: Bag(int[] input) {

7: n = input.length;

8: a = newint[n];

o: System arraycopy(input, 0, a, 0, n);
10 }

11:

12: /Il @requires n >= 1;

12: int extractMn() {

13: int m= Integer. MAX VALUE;

14; int mndex = 0;

15: for (int i =0; i <n; i++) {

20 %

16: if (a[i] < m {
17: m ndex = i;
18: m=ali];

19: }

20: }

21: n--;

22: al m ndex] = a[n];
23: return m

24: }

25}

We now run ESC/Java again and it produces the following warning:

Bag.java: 17: Warning: Array index possibly too |large (lIndexTooBiQ)
it (ali] <m {
N

0.8 Scene8: Wesupply ani nvari ant pragmarelatingn toa. | enght .

It may appear that ESC/Javais still complaining about the bug we thought we'd fixed in section 0.4, but further
study reveds adifferent problem: ESC/Java has no reason to expect that n, which we intend to be the length of
the meaningful prefix of a, will infact bea mogt a. | engt h. We can expressthisintention with an i nvari ant

pragma:

class Bag {
/*@non_null */ int[] a;
int n;
/l@invariant 0 <= n & n <= a.l enght;

A w N B

Roughly spesking, ESC/Java tregts an invariant as an implicit postcondition of every constructor and as both a
precondition and postcondition of every method. The semanticsof i nvari ant pragmas—-and dl other
ESC/Java pragmas--are described in greater detail in section 2 below. The full rules about expressons that can
occur in pragmeas (caled specification expressions) are given in section 3. For now, we remark that snce
specification expressons are not actualy executed, the unconditiond logical operators& and | are
interchangesble (except for binding power) in specification expressons with the respective conditiona operators
&and||.

0.9 Scene9: ESC/Java notices a typographical error.
When we run ESC/Javaagain, theresult is

Bag.java: 4: Error: No such field in type int[]
/[l@invariant 0 <= n & n <= a.lenght;
AN
Caution: Turning off extended static checking due to type error(s)

1 caution
1 error

130 %H

0.10 Scene 10: Our efforts come to a happy conclusion.

Whoops! Ouri nvari ant pragmahad aspelling error. We correct it to read
4: //@invariant 0 <= n & n <= a.length;
and try again. Thistime ESC/Java runs without reporting any further complaints.

Thefile escjavaRoot/ exanpl es/ 0. 10/ Bag. j ava containsacopy of thefind verson of the Bag class.

1 An overview of ESC/Java and of this manual

In this section we summarize the principa festures of ESC/Java While some of the things we say here reiterate
points made in our example of section 0, we aso describe a number of features of ESC/Javathat are not
discussed at dl in section 0. Moreover, we address a number of points that were glossed over in section 0, and
that possibly raised questionsin the mind of the perceptive reader. Throughout this section we refer the reader to
later parts of this manua where various topics are discussed in more detail.

< ESC/Javaisachecker for Java programs, optionally annotated with user-supplied pragmas.

e ESC/Java pragmas must occur within pragma-containing comments
We showed some examples of pragma-containing commentsin section 0. Section 2 indudes dl the
rules about where the various kinds of pragmas are alowed.

e ESC/Java pragmas can contain expressionsthat are similar to Java expressions.
The ESC/Java specification language--that is, the language of ESC/Java pragmas--includes
expressions, which we call specification expressions, or SpecExpr's. While the syntax,
name-resolution, and type-checking rules for specification expressons are smilar to those for
ordinary Java expressons, there are inevitably some differences. The rulesfor specification
expressions are described in section 3 of this manud.

o ESC/Java pragmasrecord programmer design decisions.
In addition to giving the user control over ESC/Java, pragmeas serve to record formaly some of the
programmer’'s intentions about the function and use of methods, congtructors, and variables (for
example, that the Bag congtructor of our example in section 0 was meant never to be cdled with a
nul | argument). These are the same sorts of intentions that good programmers may aready record
informaly in naturd language comments.

o ESC/Java's pragmas support modular checking.
The checking done by ESC/Javais modular. When checking the body of aroutine (thet is, a
method or congtructor) r , ESC/Java does not examine bodies of routines caled by r. Rather, it
relies on the specifications of those routines, as expressed by r equi r es pragmeas, by other
pragmas described below, and by Java constructs such as signatures, return types, andt hr ows
clauses. Conversdly, to check the body of r , ESC/Java does not examine cdlersof r. It does,
however, assumethat r is caled only in accordance with its own specification.

o When Java sources are unavailable, users can supply pragmasin . spec files.
When the file dedlaring adass T uses atype U, ESC/Java may need datainvariants of U and/or
specifications of U'sroutinesin order to check theroutinesof T. If ESC/Java can find only abinary
(. cl ass) fileand no sourcefile dedaring U, then it will assume smple default specifications for the
routines of U based on their sgnatures. The user can supply additiona specifications for the routines
of U, and dso invariants for U, by putting them in pragmasin afileu. spec. A . spec fileislikea

140 B

. j ava file except that it is dlowed to omit method bodies. Section 5.1 tells more about . spec
files
Section 2 includes descriptions of dl ESC/Java pragmas.

< ESC/Javaischecker for (almost all of) Java 1.2.
ESC/Javaistargeted for Java 1.2, as described in The Java Specification Language, by James Goding,
Bill Joy, and Guy Stede[JLY, supplemented by the “"Inner Classes Specification” [CY], except for some
limitations described in section 6 of this manudl.

« ESC/Java hasa command-line interface like the Java compiler's.
An invocation of ESC/Java has the form:

escj ava [options] sourcefiles

Theescj ava(1) man pagein the ESC/Java release (see appendix B) includes descriptions of ESC/Java's
command-line options and of environment variables that affect ESC/Javas operation. For now we
mention only the CLASSPATH environment variable, whose effect on ESC/Javais Smilar to its effect on

j avac(5) andthe-suggest command-line option, which causes ESC/Javato offer suggestions of
pragmas that might diminate certain kinds of warnings. Section 5 contains further description of these
features (but not dl command-line options and environment variables).

¢ ESC/Java issueswarning messagesfor potential run-timeerrors.

o Thecurrent ESC/Java checks only method and constructor bodies.

The current ESC/Java provides no warnings for potentid run-time errorsin Satic initidizers [JLS,
8.5 orininitidizersfor st at i ¢ fields or in anonymous classes.

o ESC/Javatreats exceptionsthrown by the Java run-time system asrun-timeerrors.

Some of the potentid ~error" conditions detected by ESC/Java are conditions that would be
detected by the Java run-time system and give rise to exceptions (pecificdly,

Nul | Poi nt er Excepti on, | ndexQut Of BoundsExcepti on, Cl assCast Excepti on,
ArrayStoreException, ArithmeticException,andNegati veArraySi zeException [JLS
11.5.1.1]). The current ESC/Java treats these conditions as errors, and generates warnings for
them even if the program actudly catches the resulting exceptions. Accordingly, our use of the
word “error” in this manud includes such conditions. Future versions of ESC/Java may provide
support for checking programs that catch exceptions thrown by the Javarun-time sysem. The
current ESC/Java version does support checking of programs that catch explicitly-thrown
exceptions (including those just listed).

o ESC/Java does not warn of potential errorsin the evaluation of specification expressions.
Specification expressions are never actudly evauated, and (with one exception described in section
2.6.1) ESC/Javawill not produce specific warnings about specifications expressons whose
evauation might dereferencenul | , access arrays out of bounds, etc. Rather, the meanings of such
expressions (for example, 0. f where 0, if it were actudly evduated, might evaluatetonul 1) are
an unspecified function of (the meanings of) their subexpressons. In most cases, atemptsto prove
things about such unspecified vaues will fail, thus giving rise to warnings of some sort (though das
not the clearest warnings that one could hope for).

o ESC/Java warning messages may include execution traces.

Associated with each ESC/Java warning message is some execution path that--so far as ESC/Java
can determine--may plausibly lead to the run-time error mentioned in the warning. If certain kinds
of “interesting” events occur on this execution path, the message will contain an execution trace

150 %

listing those events. See section 4.0 for details about which events are considered ~interesting”.
Section 4 of this manud includes descriptions of dl ESC/Java warning messages.

« ESC/Javaissueserror messagesfor badly formed programs.
Before ESC/Java can andyze a program for potentid run-time errors, it must first perform operations such
as parang, name resolution, and type-checking both of the Java code and of any pragmas. When
ESC/Java detects an illegal construct (such as the syntacticdly incorrect pragma shown in section 0.8
above) during this preiminary processing, it issues an error message. Error messages are distinguished
from warning messages by the occurrence of theword Er r or ingtead of War ni ng near the beginning of
the message. Only wheniitsinput isfree of such errors can ESC/Java go on to look for potentid run-time
errors and generate warnings (just as a compiler generates object code only when the source codeis free
of compile-time errors).
= ESC/Javaerror messages are like compiler error messages.
ESC/Java error messages are Similar to compiler error messages, and we hope they will be
sf-explanatory. Thus, they are not fully enumerated or described in thismanua. We beieve that
al ESC/Java error messages arise ether (1) from circumstances that would cause the Java
compilersto report compile-time errors or (2) from violations of the rules for writing pragmas as
givenin section 2 and section 3.
o ESC/Java doesn't detect all compile-time errorsthat Java compilers detect.
A number of conditions that give rise to Java compile-time errors are not detected by ESC/Java
For example, the current ESC/Java does not enforce Java's definite assgnment rules[JLS, 16] or
al of Javas redtrictions on accessto pr ot ect ed variables[JLS, 6.6.2]. Thusit iswiseto run your
code through a Java compiler a least once before trying to run it through ESC/Java. (Tip:
Sometimes the nature of a syntax error in your program may not be immediately clear from an
ESC/Java error message. In such cases, a compiler may detect the same error and offer a
better--or at least different--description of the problem.)
- ESC/Java'sextended static checkingisn't perfect.
o ESC/Java can misserrors.
When ESC/Java processes a program and produces no warnings, it is not necessarily true that the
programisfree of dl errors. For example, ESC/Javanever checks for some kinds of errors, such
as arithmetic overflow, or infinite looping. Also ESC/Java doesn't check programs for functiond
correctness properties other than those given by the user in pragmas. Findly, even when ESC/Java
checks for aparticular kind of errors, there may be Stuations in which it erroneoudy concludes that
the error cannot occur, and therefore fails to issue alegitimate warnings. In the jargon of proof
theory, we say that ESC/Java--viewed as a system for proving program correctness--is unsound.
Section C.0 describes the known sources of unsoundness in ESC/Java.
o ESC/Java can give spurious warnings.
Conversdy, when ESC/Javaissues awarning, it doesn't necessarily indicate the presence of an
eror; it merdy means that ESC/Java is unable to conclude that the indicated error will never occur,
given the annotations that the user has supplied. In the jargon, ESC/Java--viewed as a system for
proving program correctness--isincomplete. Section C.1 describes the main sources of
incompletenessin ESC/Java
o Pragmas give the user some control over ESC/Java’'s unsoundness and incompleteness.
ESC/Java provides pragmeas thet et the user eliminate spurious warnings--thet is, reduce
ESC/Javas incompleteness--ether without |oss of soundness (as, for example, ther equi res
pragmawe wrote in section 0.2 diminated the warning about a potentid dereference of nul | inthe
Bag congtructor by imposing a precondition on calls) or, if need be, at some risk of lost soundness
(asinthe case of thenowar n, assune, and axi ompragmas repectively described in sections

160 B

2.1.0,2.1.2, and 2.4.2 below).
o ESC/Java issues caution messagesin some (but not all) cases wher e unsound checking
may occur.

2 ESC/Java pragmas

In this section we describe dl the kinds of ESC/Java pragmeas, the places where they can occur, and (informdly)
what they mean. We begin by giving some generd information about where pragmas can occur, and then go on
to describe the individua pragmes.

Many pragmas can contain expressions-—-caled specification expressons--which are amilar to Java expressions,
but with afew congtructs lega in Java expressions being forbidden and a number of added congtructs being
permitted. We mention some of the added constructsin connection with pragmas where they are of use, but
defer a detailed description of pecification expressons to section 3.

Most pragmeas are ways of asking ESC/Javato produce warnings if certain user expectations about the behavior
of the annotated program may be wrong. We will often say that ESC/Java " checks' that some condition x holds
a aparticular control point when it would be more precise to say that ESC/Java issues awarning message if it
cannot prove that x holds at that point. Keep in mind that in addition to the possibility that x might fail, the
warning may aso be issued because the annotations are inadequate to imply that x holds, because the
theorem-prover's deductive power isinadequate to complete the proof, or because ESC/Javals modd of Java
semantics isincomplete.

2.0 Rules about where pragmas may occur
2.0.0 ESC/Java pragmas must occur within pragma-containing comments.
ESC/Javalooksfor pragmas within certain specidly formatted comments. Specificdly:
* When the character @isthefirg character after theinitid // or / * of a Javacomment, ESC/Java expects
the rest of the comment's body to consist entirely of a sequence of (zero or more) ESC/Java pragmes.
* Ingde a documentation comment [JLS, 18], a sequence ESC/Java pragmas can be bracketed by

<esc> and </ esc>.

Many pragmas end with an optiona semi-colon (; opt). If such apragmaisfollowed by another pragmain the
same pragma-containing comment, then this semi-colon is required.

2.0.1 Therearefour syntactic categories of pragmas.

Pragmas are divided into four syntactic categories according to the places in a program where they can sengbly
be used. All pragmasin any single pragmarcontaining comment must be of the same syntactic category.

« Lexical pragmas may occur anywhere that ordinary Java comments may occur.
[It would be more accurate to say that ESC/Java allows the occurrence of a pragma-containing comment whose
body is a sequence of zero or more lexical pragmas at any point where Java allows a comment; we henceforth
take the liberty to eschew this degree of pedantry.]

170 %

The current ESC/Java includes only one kind of lexica pragma
e nowar n pragma (section 2.1.0).
Declaration pragmas--such as, for example, thei nvari ant pragmain section 0.8 in our introductory
example--are ana ogous to Java declarations, and may occur only where declarations of class members or
interface members may occur. The current ESC/Javaincludes the following kinds of declaration pragmes:
° invariant pragma(section 2.4.1)
° axi ompragma(2.4.2)
° ghost pragma(2.6.0)
Satement pragmas are andogous to Java satements. They may occur only where Java statements may
occur. The current ESC/Java includes the following statement pragmeas.

assert pragma(2.1.1)
assune pragma(2.1.2)
unr eachabl e pragma (2.1.3)
| oop_i nvari ant pragma(2.4.3)

° set pragma(2.6.1)
Modifier pragmas are analogous to Java modifierssuch aspri vat e andf i nal . Generdly, modifier
pragmeas are dlowed in the same positions as Java modifiers, but they are dso alowed in afew other
places, as described in the fine points below. Some modifier pragmeas (for example, thenon_nul |
pragmain section 0.3 in the introductory example) modify variable declarations; other modifier pragmas
(for example, the requi res pragmasin sections 0.2 and 0.6 in the introductory example) modify
declarations of routines (methods or congtructors). The current ESC/Java includes the following modifier
pragmas for varigble declarations:

non_nul | pragma(2.4.0)
° spec_public pragma(2.5.0)
° readabl e_i f pragma(2.5.1)
e uninitialized pragma(2.5.2)
° nonit ored_by pragma(2.7.0)
° noni tored pragma(2.7.1)
The current ESC/Javaincludes the following modifier pragmas for routine declarations:
° requires pragma(2.3.0)
° nodifies pragma(2.3.1)
ensur es pragma(2.3.2)
exsur es pragma(2.3.4)
al so_ensur es pragma(2.3.5)
al so_exsur es pragma(2.3.6)
° al so_nodifies pragma(2.3.8)
In the current ESC/Java there are no pragmas that can modify both variable and routine declarations.

o O o o

o o o o

Fine points

A modifier pragmathat modifies aroutine (method or congtructor) declaration may appear either in any of the
following places

near the beginning of the declaration, in the usud place where Javamodifierssuch as pri vate orfi nal
may occur,

just before the opening |eft brace of the routine's body, or

just before the fina semicolon of aroutine declaration if thereisno body (asin an interface, in an
abstract class, or sometimesina. spec file (see section 5.1.2)

18 B

The semantics of aroutine modifier pragmais independent of whether the pragma appears lexicdly before or
after the Sgnature of theroutine. Routine modifier pragmas are described further in section 2.3.

A modifier pragmathat modifies a variable declaration may gopear ether in the usud place for modifiers near the
beginning of the declaration or just before the fina semicolon. The pragma gppliesto al variables declared in the
declaration, and its semanticsis independent of its position within the declaration. For convenient reference, here
isatable listing ESC/Java pragmeas that can modify variable declarations, the sections of this manuad where they
are described, and the kinds of declarations they are alowed to modify:

instance static |ocal formal

variable field vari abl e paraneter
non_nul | (24.0) yes yes yes yes
spec_public (25.0) yes yes no no
readable_i f (25.1) yes yes yes no
uninitialized (25.2) no no yes no
noni tored_by (2.7.0) vyes yes no no
noni tored (2.7.1) yes no no no

Note that ESC/Java sometimes dlows modifier pragmeas in declarations of locd variables (including those
declared in the Forlnit of af or statement [JLS 14.12]) and forma parameters.

Particular pragmas may have further restrictions on where they may occur beyond those given above. These
regtrictions are described in the sections describing the respective pragmas.

2.0.2 ESC/Java sometimes allows pragmas to contain nested pragmas or comments.

Situations sometimes arise where it is convenient to nest acomment insde a pragma, or whereit is
convenient--or even necessary--to nest apragma inside another pragma. In particular, thisisthe only way to
annotate a ghost field (see section 2.6.0) with amodifier pragma We describe here the rules governing such
negting. [Readers may wish to skip the remainder of this section on first reading of the manual, or until
occasion for using such nesting presentsitself)

In the current ESC/Java, a pragma-containing comment (cal iti nner) may be nested insde pragma-containing
comment (out er) only in the following cases

(1) eachpragmaini nner isalexicd (nowar n) pragma (see section 2.1,0), or

(2) eechpragmaini nner isamodifier pragmafor aghost variable declared in out er (see section
2.6.0 for further details).

Furthermore, out er must not itsdf be nested insde another pragma-containing comment. (However, out er may
be of the form <esc>...</ esc>, which must of necessity occur indde a Java documentation comment).

Any pragma-containing comment out er --even anested one--may have an ordinary (i.e.,
non-pragma-containing) comment i nner neted ingdeit.

190 B

Also, there are some redtrictions concerning the syntactic forms of a nested (ordinary or pragma-containing)
commenti nner and the enclosing pragma-containing comment out er , as given in the fallowing table and the
associated notes. These redtrictions ensure that the portions of the input file that ESC/Java regards as comments
or pragmas will be precisely those regarded as comments by Java compilers. Each row of the table corresponds
to asgyntactic form of out er and each column corresponds to asyntactic form of i nner . Entriestell whether
eaech specific form of nesting is dlowed and reference notes giving any additiond restrictions on dlowed forms of
nesting and explanations of why forbidden forms of nesting are forbidden.

i nner /... 1@.. [*000*] 1*@..*/ [**000%]

outer

/1@..inner... ok(1) ok(1) ok(2) ok(2) no(3)
/*@..inner...*/ ok(4) ok(4) no(5) no(5) no(5)
<esc>...inner...</esc> ok(6) ok(6) no(5) no(5) no(5)

Notes.

(1) ESCl/Javaconsdersi nner to extend to the end of the line on which it begins.

(2) i nner must be entirely on one line (because Java definesout er to end at the end of the line).
(3) The current ESC/Javamight accept this form of nesting, but it is strongly deprecated. Thereis
no good reason to use it, and j avadoc(5) will not recognizei nner as adocumentation comment.
(4) ESClJavaconddersi nner to extend ether to the end of theline or up to theclosing */ of
out er , whichever isearlier.

(5 Theseforms of nesting are forbidden because Java does not alow comments of the form
/*..x/ to benested ingde each other. Thus Java compilerswould interpret the closing */ of

i nner asending out er .

(6) ESClJavaconddersi nner to extend ether to the end of theline or up to the closing </ esc>
of out er , whichever isearlier.

Examples
Here are some examples of legd nesting of comments and pragmeas inside pragmes.

® // @ghost public /*@non_null // comrent */ Object o;

® /*@requires a > 0; /1l comrent 1
requires b > 0; //@nowarn Pre // comrent 2
requires c > 0; /1 comrent 3 */

void mliint a, int b, int ¢c) { ..
Here are some examples of illegd nesting:
e /*@ghost public /*@non_null */ Object o; */

* //@requires a > 0; [/* nulti-line "nested"
coment */

Tip: ESC/Javaswarning messages for these two examples of illegd nesting fall to give the line number on which

200 %

the error occurs (but do indicate that the problem is an "unterminated comment™). Y ou can locdize the error by
running a Java compiler on your program (which is generdly a good thing to do before running ESC/Java,

anyway).
2.1 Themost basic pragmas

In this section we describe the Smplest ESC/Java pragmas. nowar n, assune, asser t , and unr eachabl e. The
nowar n pragmais essentialy a blunt instrument for getting ESC/Java to shut up about uninteresting warnings, thus
helping to prevent ESC/Javas known imperfections and limitations from becoming mgor sources of user
annoyance. Theassert and assunme pragmas are the fundamenta pragmeas of which most others are smply
more elaborate forms (see section 2.2.1). They may dso be ussful in their own right (see particularly section

2.1.0 nowar n pragma
A nowar n pragmaisalexicd pragma It hasthe form:
nowarn L ;

' opt

whereL isa (possbly empty) commaseparated ligt of warning types from the following list:

ArrayStore I nvari ant Post
Assert Loopl nv Pre

Cast NegSi ze Race

Deadl ock NonNul | Reachabl e
Excepti on NonNul | I ni t Unr eadabl e
I ndexNegati ve Nul | Uninit

I ndexTooBi g Owner Nul | Zer oDi v

The pragma suppresses any warning messages of the typesin L that are associated with the line on which the
pragmaappears. If L isempty, dl warning types are suppressed. See section 4 for descriptions of the different

types of warnings.
Fine points

Some ESC/Java warning messages refer to two source code locations, namely (1) alocation indicating the
control point where an error could potentialy occur at run-time, and (2) the location of a pragma (or,
occasiondly, a Java declaration) associated with the warning. 1n such cases the warning can be suppressed by a
nowar n pragmaon either of the indicated source lines.

Thenowar n pragmais potentialy unsound, and should be used only in cases where the programmer iswilling to
take respongbility that the suppressed warnings are redlly fdse darms. The primary intended use of nowar n
pragmas is where the suppressed warnings concern situations that are impossible in practice, but for reasons
beyond ESC/Javas ability to discover. Another use would be to suppress warnings for circumstances that are
actudly harmless (and where the programmer iswilling to take respongbility thet they are harmless). For
example, anowar n pragmamight be used to suppress awarning for anull dereference if the resulting exception
would be caught by ahandler (but in such a case the current ESC/Javawill not check that there actudly isa
handler, nor will it check for any errors that might occur during or after execution of the handler).

2ld B

Thenowar n pragma suppresses warnings on aline-by-line basis. ESC/Java dso provide command-line options
that enable and disable checking at a much coarser grain (see the descriptions of the - nowar n, -warn, -start,
-routine,and-routinelndirect optionsontheescj ava(1) man page).

Unlike warning messages, ESC/Java error messages cannot be suppressed by nowar n pragmas. Error messages
report conditions that prevent ESC/Java from making enough sense of the program to do further checking.

Bug: The current ESC/Java does not allow another pragmato follow anowar n pragmain the same
pragma-containing comment. Since the only lexica pragmain the current ESC/Javais nowar n, and since you
can say with onenowar n pragma anything that you can say with two, this should not cause problemsin practice.

2.1.1 assert pragma
Anassert pragmaisadatement pragma. It hasthe form
assert E ;opt

where E is boolean specification expresson. The pragma causes ESC/Javato issue awarning if it cannot
establish that E is true whenever control reaches the pragma.

2.1.2 assune pragma
Anassune pragmaisadatement pragma. It hasthe form

assune E ;opt

where E is boolean specification expresson. The pragma causes ESC/Java to assume that E is true whenever
control reachesthe pragma. In other words, for any execution path in which E is fase when control reaches the
pragma, ESC/Javaignores the path from that point on.

Example

The usua purpose of an assune pragmais to supply ESC/Javawith some piece of information that isincapable
of deducing on its own, thereby preventing ESC/Java from generating spurious warnings. In the code fragment

22: /] start conplicated conmputation guaranteed to leave i !=0
146 /1 end of conplicated computation

147: /[l @assume i != 0;

148: if (b) {

149: g = hli;

150 } else {

151 h =g/li +4g/j;

152: }

the assume pragmaat line 147 prevents ESC/Java from warning that the divison by i in lines 149 and 151 may

2d%

giverisetoan Ari t hmet i cExcept i on, but ESC/Javawill ill generate awarning about the divison by j inline
151 unlessit can deducethatj will never be zero when control reaches that point.

Fine points

Likethenowar n pragma, the assume pragmais potentially unsound, and should be used only if the programmer
iswilling to take responghility that E holds whenever control reaches the pragma (or at least iswilling to give up
further checking for any execution paths on which E isfase). When faced with the choice of using either an
assunme pragmaor anowar n pragmato suppress a spurious warning, it is preferable to use an assune pragma
(if itispractica to do s0), Sncetheassunme pragmamore explicitly documents your assumptions about the
behavior of the program.

The sentence ""In other words, for any execution peth ... from that point on." may have seemed unclear to some
reeders. For some more examples of its meaning, consder the following code fragment:

31 if (u!=null | v!=null) e = 10;
32: if (v ==null) {
33: w = a.f;
34: /]l @assert b = null;
35: /l@assume a != null &b !'=null &c !'=null &d!'=nnull &e > 0;
36: X = c¢.f;
37: /Il @assert d !'= null;
38: } else {
39: C = new ..;
40 d = v;
41: }
42: y = a.g;
43; /I @assert b !'= null;
44; Z = cC.0;
45 /[l @assert d !'= null;
46: /| @assert e > 0;
When ESC/Java checks this code:

¢ ESC/Javawill not warn of apossble dereference of nul | at line 36 or of a possible assertion
failure at line 37, because the only way control can reach those linesis by firgt reeching the assune
pragma at line 35.

* Theassume pragmaat line 35 will nat prevent ESC/Java from issuing warnings about line 33
and/or 34, because control can reach those lines before reaching line 35.

* ESC/Java might issue warnings about line 42 and/or 43, because control might reach those lines by
some path that does not firgt reach line 35. This can happen if control can reach line 32 with a or b
being nul I and x being non-null.

¢ ESC/Javawill not warn of apossible dereference of nul | at line 44 or of a possible assertion
falurea line 45 or 46. Every execution path that reachesline 44 firg elther reachesline 35 (in
which case ESC/Java considers further execution of that path only for cases where the expression in
theassunme pragmawould evauatetot r ue) or reaches lines 39 and 40 (in which casethec and d
are assigned non-null values, and e must dready have been assigned a nonnegetive vaue a line 31).

Bd B

For a concise forma description of the semantics of assume, see [LSS99].
2.1.3 unreachabl e pragma

Anunr eachabl e pragmaisasatement pragma It hastheform

unr eachabl e ; opt

The pragmais semanticdly equivaent to
assert fal se;
except for giving rise to a different warning message.
2.2 Someremarksconcerning assert and assune

[Readers anxious to " cut to the chase" may skip this section on first reading. Others, however, may find
that this material aids their intuition about how ESC/Java works.]

Theassert and assune pragmasintroduced in section 2.1 are in some sense the most basic ESC/Java
pragmas. We make some remarks about them here before going on to describe the rest.

2.2.0 Theassune pragma should be used with judgment.

Anassune pragmaresemblesan assert pragmain tha each states a condition that the programmer believesto
hold whenever control reaches a certain point in the program. The differenceisthat ESC/Java checks--that is,
issues awarning if it cannot establish--the condition (called an asserted condition or assertion) inan assert
pragma, but ESC/Java takes the assumed condition (or assumption) inan assune pragmafor granted. That
is, the programmer takes responsibility that assumed conditions will hold.

Put another way, the assune pragmaalows the programmer to trade spurious warnings (incompleteness) for
possible missed warnings (unsoundness). Thus, you should use assune pragmas with care, lest by supplying an
incorrect assumption you suppress warnings of genuine errors. For example, ESC/Java will not warn of any
error that might occur downstream in the execution path from the line:

X = null; //@assune x != null;

snce there can be no execution path where the assumption holds after the assgnment is performed.

On the other hand, there will be cases where assune pragmas (or nowar n pragmas, which call for amilar
caution in ther use) will be the only practical means to diminate spurious warnings. Also, whileit is sometimes
possible to diminate spurious warnings by means that don't carry the same risks of missed warnings, some
judgment must be exercised as to whether the improved assurance of correctness will be worth the increased
effort in any particular case.

2.2.1 Most ESC/Java pragmasarejust fancy formsof assert and assune.

The ESC/Java annotation language includes over twenty different kinds of pragmas, but to afirst gpproximation
they are mainly more or less eaborate ways of adding assertions (i.e.,, clams about the program date that are

240 %

checked by the ESC/Java) and/or assumptions (i.e., clamsthat are taken for granted by ESC/Java) at different
pointsin the program. Indeed one can dso think of the checking that ESC/Java does in the absence of any user
annotations as amply checking implicit assertions before each pointer dereference, array access, etc., so that, for
example, the program fragment

x = a[i];
istreated asif it were

/|l @assert a != null; assert 0 <= i; assert i < a.length;
x =a[i];

There are severa vauable differences between the explicit introduction of assertions through the use of assert
pragmas and their implicit introduction through other ESC/Java pragmas and through built-in checking rules:

¢ Warningsaisngfrom assert pragmasadl produce the same kind of warning message:

: Warning: Possible assertion failure (Assert)

Implicitly introduced assertions, on the other hand, give rise to awide variety of more specific
messages.

* Anassert pragmacan occur only where a Java statement can occur, but implicitly introduced
assartions are not limited to statement boundaries. For example, given the statement

p = mq) + q[++i]

ESC/Java makes sure that the implicit assertion that array q isnon-null isintroduced & a control
point after the cal to method m and that the implicit assertion that index i isin bounds isintroduced
a acontrol point after i isincremented. For the user to introduce explicit assertions at these points,
it would be necessary to modify the Java source code, bresking the statement into several parts and
introducing atemporary variable for the result of the cal tom

* Anassert pragmaintroducesasingle assertion at the control point whereit occurs. In contrast, a
sangle other pragma (or built-in checking rule) can introduce many assertions throughout the
program--for example, a every cal of agiven method, or a every accessto agiven variable.

* The systemdtic introduction of assertions at certain points in a program sometimes makesiit possible
for ESC/Java safely to introduce assumption at other points.

In short, the various pragmas (and built-in checking rules) provided by ESC/Java enable the introduction of
collections of assertions and assumptionsin a manner that would be quite tedious, avkward, and error-prone to
accomplish with explicit assert and assune pragmas aone.

2.2.2 A nowar n pragma suppresses war nings by turning assertions into assumptions.

Recall from the previous section (2.2.1) that ESC/Javas built-in checking for null dereferences works, in effect,
by implicitly putting an assertion before each pointer dereference in the program, so thet the line

209: z = x.f;

getstreated asif it were

50 %

209: /*@assert x !'=null; */ z = x.f;

except that the precise text of the warning message, if any, isdifferent. Theway that anowar n pragma
suppresses warnings is by turning the (implicit or explicit) assertions that would generate the warnings into
assumptions. Thus, for example, the code fragment

209: 4
210: w

/] @nowarn Null;

X. f;
X. g
istreated by ESC/Javalike

209: [*@assune x !=null; */ z =
210: /*@assert x !'=null; */ w=

By changing the implicit assartion thet x is non-null on line 209 into an assumption, the nowar n pragmanot only
prevents ESC/Java from warning of a possble dereference of nul | on line 209, but dso stifiestheimplicit
assertion on line 210, thus preventing ESC/Java from warning that the evauation of the expression x. g might
dereferencenul | .

It should be clear from the above that the commentsin section 2.2.0 about the need for judgment regarding the
useof assume pragmas are (at least) equally gpplicable to nowar n pragmas.

2.2.3 A hepful tip: Experimentswith assert and assume pragmas can help you under stand
ESC/Java's behavior and debug your annotated code.

Asilludrated in the example of section O, usng ESC/Javawill often be an iterative process: Y ou run ESC/Java
on your program; it reports some warnings, you address the warnings by changing either the Java code itself or
the annotations; you run ESC/Java again; and so on until ESC/Java reports no warnings. At some point in this
process, you may find that you can't figure out why ESC/Javalis issuing some warning, or why the change you
meade to address some warning isn't making the warning go away. In such cases experiments with assert and
assunme pragmas can be useful in the same way that displaying intermediate resultsis useful in ordinary

debugging.

Suppose, for example, that the problem seems to be that ESC/Javais missing some critica fact that " should be
obvious" You might try adding an assert pragmafor the (supposedly obvious) fact and see whether ESC/Java
redly warnsthat theassert couldfal. Or you might try adding an assune pragmato see whether supplying the
(supposedly criticd) missng fact redly diminates the warning.

Such experiments can aso darify your own understanding of your program. Congder, for example, the Stuation
described in section 0.7, where ESC/Java continued to complain of apossible array bounds error even after we
fixed the bug in the surrounding f or loop:

ESC/Java input from file Bag.java:

16: for (int i

=0; i
17: if (a[i] <m {

< n; i++) {
ESC/Java output:

260 %

Bag.j ava: 17: Warni ng: Possible array index too |large (lndexTooBiQg)

it (afi] <m {

1 war ni ng

If we found this behavior puzzling we might consider the experiment of adding an assert pragma between lines
16 and 17. The outcome of the experiment would depend on which of the two "obvious' assertions we chose:

/] @assert i < n;
or
/|l @assert i < a.length;

In either case, observing the outcome might take us a step closer to understanding the Situation.

Note: Some earlier versons of ESC/Java had a bug that sometimes resulted in highly counterintuitive fallure to
warn of the first potentia error on an execution path. For example, if a program contained the lines

23: /|l @assert x < 10 & y < 10;
/'l statenments not nodifying x
33: /] @assert x < 10;

then ESC/Java might have produced an Asser t warning for line 33, but not for line 23 (even though the
assartion at line 33 could be false after execution of lines 24-32 only if the assertion at lines 23 had been false
beforehand, and even though ESC/Java would have warned about line 23 if the assertion in line 33 were not
present). Thisbehavior could be quite confusing for a user atempting to useassert pragmas as adebugging
ad, as suggested in this section. We have since made changes to ESC/Java to prevent such behavior, or at least
gregtly reduceitslikdihood. If you observe a case where addition of an assertion inhibits ESC/Java from
warning about a potentid error earlier in the execution path, we would like to know about it. See the ingtructions

on reporting bugsin appendix B.
2.3 Pragmas for specifying routines

In this section, we describe those pragmeas, caled routine modifier pragmas, thet explicitly supply
specifications for individud routines.

Fine points

The reader should be aware that these pragmas are not the only ones that give rise to routine specifications. In

this regard, we direct the reader's attention particularly to the descriptions of thenon_nul I andi nvari ant
pragmas in sections 2.4.0 and 2.4.1, aswell asto the description of the axi ompragmain section 2.4.2.

All routine modifier pragmeas have a number of propertiesin common:
ESC/Java dlows modifiers for a routine declaration to gppear not only in the usud place for modifiers near
the beginning of the declaration, but dso just before the opening Ieft brace of the routine's body, or before

the find semicolon if thereisno body (asin aninterface, abst r act class, or sometimesina. spec file
(see section 5.1.2)). For example, ther equi r es pragmathat we introduced for the Bag congtructor in

21 B

section 0.2
/Il @requires input !'= null;
Bag(int[] input) {

might equally well have been written after the Signature of the congtructor
Bag(int[] input)
/[*@requires input !'= null; */ {

with identica semantics (except, of course, that warning messages referring to the pragmawould indicate a
different source file location).

Regardless of where aroutine modifier pragma appears, the parameters of the routine are in scope in any
specification expresson in the pragma.

Inan ensur es (section 2.3.2) pragmamodifying a congructor and in any pragmamodifying an instance
method, specification expressons may mention t hi s, denoting the constructed object or the object whose
method isbeing invoked. Asusud in contextswheret hi s may occur, it may occur implicitly, afield
accesst hi s. f being written amply asf (unlessthe namef is hidden, for example by a parameter name).
The pragmas in this section specify preconditions, modification targets, and norma and exceptiond
postconditions of routines. When amethod of a class or interface s inherits or overrides [JLS, 8.4.6] a
method mfrom aclass or interface T, the method s. minherits dl the preconditions, modification targets,
and postconditions of T. m with the forma parameter names of S. mbeing substituted for those of T. m
(ESC/Java desugars implicit referencestot hi s, as described in the previous bullet, before doing the
forma parameter subgtitution, so nothing funny hgppensif only one of the two forma parameter ligts
indudes aname conflicting with afield of t hi s.) Thistreatment of inheritance sometimes leads to unsound
checking in the presence of multiple inheritance (see section C.0.5).

When checking code that contains acall to aroutine, ESC/Java interprets the routine's preconditions,
modification targets, and postconditions with the actud parameters val ues subgtituted for the formal
parameter names, and in the case of an inglance method cdl E. ny ...) , with the value of E subtituted for

t hi s (including, of course, implicit occurrencesof t hi s). In cases where evauation of the actual
parameters may have sde-effects or may raise exceptions, ESC/Java does the right thing: It checksthe
preconditions of the routine for the program dtate after the sde-effects, and only for casesin which
evauation of al parameters would terminate normdly.

When checking code that containsamethod call E. nt(...) , ESC/Java determines the specification
(preconditions, modification targets, and postconditions) of mbased on the Satic type T of E, evenif E can
be proven always to be of some subtype s of T. (To get ESC/Javato use additiond specificationsof S. m
beyond those inherited from T. m you could rewrite the Java code to cast E to type S before invoking m)

2.3.0 requi res pragma

A requi res pragmaisaroutine modifier pragma. It hastheform

requires E ;opt

where E is a boolean specification expression. The pragmamakes E a precondition of the routine the pragma
modifies. When checking the body of the routine, ESC/Java assumesthat E holdsinitialy. When checking acdl
to the routine, ESC/Javaissues awarning if it cannot establish that E holds at the call Site.

Fine points

28d%

If theroutineissynchr oni zed, then E is assumed to hold before acquisition of the lock. If theroutineise
congtructor, then E is assumed to hold before the implicit superclass congtructor cdl, if any, and thus dso before
execution of indance variable initidizers.

Except for the forma parameters of the routine, the variables mentioned in E must be spec-accessible (see
section 3.3) anywhere the routine itsdlf is accessible. For example, a precondition of apubl i ¢ method may not
mention apri vat e variable (unlessthe variable is declared spec_publ i ¢, see section 2.5.0).

A method declaration that overrides another method declaration cannot be modified with ar equi r es pragma,
but inherits the overridden method's preconditions as described above. Multiple inheritance can lead to
unsoundness in some cases, as discussed in section C.0.5.

A gngle routine declaration may be modified with any number of r equi r es pragmas. The effective precondition
isthe conjunction of dl the preconditions given, but any resulting warning message indicates the specific

requi res pragmagiving rise to the warning, and warnings arisng from each pragma can be suppressed
individualy.

2.3.1 nodi fi es pragma

A nodi fi es pragmaisaroutine modifier pragma. It hasthe form

modi fies L ;Om
whereL isanonempty, commarseparated list of specification desgnators. A specification desgnator designates
amutable component of the gate. It isvery much like aJava LeftHandSide [JLS, 19.12], but generdized as
described below. The pragma specifies that the routine is dlowed (but not required) to modify any of the Sate
componentsligedin L.

The gtate components named in modifies pragmas of a routine are called modification targets of the routine.
When checking code that calls aroutine, ESC/Java assumes that the call modifies only the routine's modification
targets (with the usud subgtitutions) and possibly also any freshly dlocated State, regardiess of whether the call
terminates normally or abruptly. However, the current ESC/Java does not enforce nodi f i es pragmas when
checking aroutine's implementation.

Fine points
Permissble forms of specification designators are:

* asimplenamen. The name must denoteanon-fi nal fied (possbly aghost field, see
section 2.6.0). Thisform dlows modification of t hi s. n if the routine is an ingtance method,
or of T. n if theroutineis a static method of classT.

» afield access of theform o f , where O is a pecification expresson of areferencetype T
and f denotes one of thefidds (possbly aghogt fidd) of T. Thisform dlows modification of
o f. If f isadaticfidd, oisused only in that its Setic type disambiguates .

¢ anarray accessof theform A 1], where A is a gpecification expression of an array type,
and | isaspecification expresson of an integra type other than | ong. Thisform dlows
modificationof Al 1] .

< anarray range of theform Al *] , where A is a Specification expression of an array type.

2020 %

Thisform dlows modification of dl dementsof A (but not of A itsdf).

A routine may be annotated with multiple modi f i es pragmas, in which case acdl is assumed possibly to modify
any state component listed in any of the nodi f i es pragmas. If no modification targets are specified for a
routine, then ESC/Javawill assume that cdlsto the routine modify only freshly dlocated Sate, if any.

A method declaration that overrides another method declaration cannot be annotated with armodi fi es pragma,
but inherits the modification targets of the overridden method. Note that this forbids the overriding method from
modifying additiona State, but see the description of al so_nodi fi es below (section 2.3.8).

2.3.1.0 target fields

When amodification target of aroutine hastheform E. £ (or smply f, meaning t hi s. f), thefidd f issaidto be
atarget field of theroutine. (Note that a modification target of theform E. g. f makesf but not g be atarget
fied).

2.3.2 ensur es pragma

Anensur es pragmaisaroutine modifier pragma. It hasthe form

ensures E ; opt
where E is aboolean specification expresson. The pragmamakes E anormd (that is, non-exceptiona)
postcondition of the routine the pragma modifies. When checking the body of the routine, ESC/Javaissues a
warning if it cannot establish thet E holds whenever the routine terminates normaly. When checking code that
cdlsthe routine, ESC/Java assumes that E holds just after the cal if the cal terminates normally.

In apostcondition of anon-voi d method, the special ESC/Javaidentifier\ r esul t denotes the result of the
method. (For congtructors, the constructed object may be denoted only by t hi s, hot by \ r esul t .) The satic
typeof \ resul t isthe result type of the method.

Within E, an expression of theform \ f r esh(R) whereR is a specification expresson of areference typeistrueif
the object denoted by R in the post-date is dlocated in the post-gtate (implying that R ! = nul | in the post-state)
and was not dlocated in the pre-state. The Static typeof \ f r esh(R) is boolean.

A postcondition E may contain expressions of theform \ ol d(X) . Roughly spesking, \ ol d(X) meansthe vaue
of X inthe pre-state. The static type of \ ol d(X) isthe same asthe datic type of X. Anexpresson X used asan
argument of \ ol d may not itsdf contain applicationsof \ ol d or \ f resh. More precise details are given below.

Fine points

Postconditions of asynchr oni zed method apply to the state after the release of the lock.

Except for formd parameters, identifiers used in postconditions of aroutine (and not within \ ol d) denote their
vauesin the post-gtate. While Java dlows aroutine body to include assgnment to the routine's formd
parameters (thus using the parameters aslocd variables), such assgnments have no effect as seen by the cdler,

since parameters are passed by value. Therefore ESC/Java interprets occurrences of forma parametersin
postconditions as denoting the origind (pre-date) actual parameter values.

DA B

A sngle routine declaration may be modified with any number of ensur es pragmas. The effective postcondition
isthe conjunction of al the postconditions given, but any resulting warning message indicates the pecific

ensur es pragmagiving rise to the warning, and warnings arising from each pragma can be suppressed
individualy.

In apostcondition, an expression of theform \ ol d(X) , where X is a Specification expression, denotes the vaue
denoted by X, except that (1) any occurrence in X of atarget field (see section 2.3.1.0) of theroutineis
interpreted according to the pre-gtate value of thefidd, and (2) if any modification target of the routine has the
foomA[i] or A] *], then all array accesseswithin X are interpreted according to the pre-state contents of
arays. Notethat in the norma postcondition of anon-voi d method, \ r esul t dways refers to the method's
result, even when \ r esul t occursin an argument to\ ol d. Similarly occurrencesof t hi s inanormd
postcondition of a constructor aways refer to the constructed object. See sections 2.3.3and 3.2.15 for further
discussion of the ssmanticsof \ ol d.

It isasource of potentia unsoundness for a postcondition to mention a variable that might not be spec-accessible
(section 3.3) to an override of that method, and ESC/Java may forbid such postconditions. In particular
ESC/Java forbids postconditions of amethod that mention pr i vat e varigbles except when the routine is
static,iSfinal,iSprivate,orisdeclaredinafi nal class or whenthepri vat e variables mentioned are
declared spec_publ i ¢ (section 2.5.0). The current ESC/Java doesn't forbid, for example, postconditions of
publ i ¢ methods from mentioning package variables, but future versons of ESC/Javamay not be so lenient.

A method declaration that overrides another method declaration cannot be modified with an ensur es pragma,
but inherits the postconditions of the overridden method. (Seedsotheal so_ensur es pragmadescribed in
section 2.3.5.)

Since Java guarantees that a constructor cdl returns a newly alocated object, ESC/Java automatically supplies
the postcondition \ f r esh(t hi s) for every constructor.

2.3.3 A noteon theinteraction of nodi fi es and\ ol d
[This section may be skipped on first reading.]

The current ESC/Java does not check that the body of aroutine actualy obeys the congtraint expressed by the
routinésnodi f i es pragmas. Thislack of checking is one of severa potentia sources of missed warnings
(unsoundness). The potentid for missed warnings is mitigated somewhat by afact that may have seemed
surprising when we mentioned it in the previous section (2.3.2): If aparticular fidd (either adatic fidld or an
instance variable) is not specified as atarget fidd (section 2.3.1.0) of aroutine, then occurrences of thet fidd
within argumentsto\ ol d in the routine's postconditions are taken to refer to post-state values.

Congdder, for example aclasswith an integer fiddf and amethod i ncf declared asfollows, with no nodi fi es
pragma

/|l @ensures f == \old(f) + 1;
void incf() {
this. f++;

}

1o fe3

Sincef isnot goecified asamodification target of i ncf , ESC/Javawill interpret both occurrences of f inthe
ensures pragma as referring to the post-state value of t hi s. f. Consequently ESC/Javawill be unable to show
that the method establishes the specified postcondition, and will issue awarning to thet effect.

While thiswarning may seem surprising, the result of interpreting the second occurrence of as the pre-state
vaueof t hi s. f would be even worse. Under the latter interpretation ESC/Java would issue no warnings about
thebody of i ncf , but would assume after acal x. i ncf () both (1) that x. f had been incremented in
accordance the postcondition), and (2) that x. f was left unchanged in accordance with the (unchecked) empty
st of modification targets. Since these assumptions are mutually contradictory, the result would be equivaent to
assuming f al se, and ESC/Javawould silently omit al checking after the cal.

Asan additiond guard against omission of modi f i es pragmas, ESC/Javaissues a caution message for any
occurrenceof \ ol d(X) in apostcondition of amethod munless (1) the expresson X mentions some target field
of m or (2) the expression X includes an array access and mhas some modification target of theform A[1] or
Al*].

Of course, theinteractionsof nodi fi es and\ ol d described above do not entirdly make up for the fact that the
current ESC/Java does no checking of nodi fi es pragmas. A method declaration like

/Il @ modi fies someQtherCbject.f; //instead of this.f
/Il @ensures f == \old(f) + 1;
voi d incf() {

this.f++;

}
can dill effectively disable checking of code following cals to inc.

2.3.4 exsures pragma

Anexsur es pragmaisaroutine modifier pragma. It hasthe form

exsures (T t) E ;opt

or

exsures (T) E ;opt
where T isasubtypeof j ava. | ang. Thr owabl e, t (if incduded) isaan identifier, and E is a boolean specification
expresson. Theidentifier t (if included) isin scopein E, where it hastype T. The pragma makes E an
exceptiona postcondition of the routine the pragmamodifies. That is, it specifiesthat E holds whenever the
routine completes aoruptly by throwing an exception t whose typeisasubtypeof T.

When checking the body of the routine, ESC/Java checks that E holds whenever the routine completes abruptly
by throwing an exception t whose type isa subtype of T. When checking code thet calls the routine, ESC/Java
assumes that the E holds just after the cdll if the cal completes abruptly with an exception whose type is a subtype
of T.

Fine points

RAdB

Like normd postconditions, exceptiond postconditions of synchr oni zed methods apply to the state after the
release of the lock.

Theidentifier t may not be the same as any forma parameter of the routine, and quantified expressions (see
sections 3.2.10 and 3.2.11) within E may not uset as abound variable name,

Theexpresson E canincludeusesof \ f resh and\ ol d, which have the same semanticsasin an ensur es
pragma. However, E cannot mention \ r esul t , Snce an abruptly-terminating routine invocation returns no
result. Smilarly E cannot mention t hi s if theexsur es pragmamodifies a congructor, Snce we teke the view
that the object being congtructed should be discarded. (Thisview is potentialy unsound; see section C.0.8.)

A single routine declaration may be modified with any number of exsur es pragmas. ESC/Java checks that the
body obeys each exsur es pragmaand assumes that cals obey each exsur es pragma. For example, if a
routine is modified by the pragmas

exsures (T1 t) E1; exsures (T2 t) E2;

where T2 isasubtype of T1, then ESC/Java checks (if checking the body of the routine) or assumes (if checking
acdler) that E1 holds whenever the routine completes abruptly by throwing an exception thet is an instance of
T1, and that both E1 and E2 hold whenever the routine completes abruptly by throwing an exception that isan
ingance of T2.

A method declaration that overrides another method declaration cannot be modified with an exsur es pragma,
but inherits the exceptiona postconditions of the overridden method. (Seedsotheal so_exsur es pragma
described in section 2.3.6.)

2.3.5 al so_ensur es pragma
Anal so_ensur es pragmaisaroutine modifier pragma. It hastheform
al so_ensures E ;opt

where E is a boolean specification expresson. An al so_ensur es pragma has the same semantics as an
ensur es pragma, but may appear as amodifier only of a method declaration that overrides another method
declaration (while overriding method declarations are forbidden to have ensur es pragmas).

2.3.6 al so_exsures pragma
Anal so_exsur es pragmaisaroutine modifier pragma. It hastheform
al so_exsures (T t) E ;opt
or
al so_exsures (T t) E ;opt

where T isasubtype of j ava. | ang. Thr owabl e, t (if induded) isaan identifier, and E is a boolean specification

BAFB

expresson. An al so_exsur es pragma has the same semantics, and must obey the same syntactic restrictions,
asan exsur es pragma, but may appear as amodifier only of amethod declaration that overrides another
method declaration (while overriding method declarations are forbidden to have exsur es pragmas).

Thereationship between al so_exsur es andexsur es isexactly anaogousto that between al so_ensur es
and ensur es.

2.3.7 al so_requi res pragma

Anal so_r equi r es pragmaisaroutine modifier pragma It hasthe form

al so_requires E ; opt
where E is a boolean specification expresson. An al so_r equi r es pragma has the same semanticsas a

requi res pragma, but the declaration of amethod c. mmay be modified by an al so_r equi r es pragmaonly if
al three of the following conditions hold:

¢ cisadass(not aninterface),
¢ thedeclaration of C. moverrides some method declaration in a superinterfaces of c, and
¢ thedeclaration of C. mdoes not override any method declaration in asuperclassof C.

(By contrast, ar equi r es pragmamay only modify amethod [or congtructor] declarations that does not override
any other method declaration, and neither ar equi r es pragmanor anal so_r equi r es pragmamay modify a
method declarations in classes that overridden declaration in a superclasses, or amethod declaration in an
interface that overrides amethod declaration in a superinterface.)

Fine points

Theal so_r equi re pragmais apotentia source of unsoundness. Suppose method C. mof class C overrides
method | . mof interface | . When checking acal of theform E. n{ ...) , where E is an expresson of typel ,
ESC/Java only enforces the preconditions of 1 . mand not any preconditions given by al so_r equi r es pragmas
modifying the declaration of C. m However, the expression E might evauae to avaue of type C, causng the call
to invoke C. m and the correctness of C. msimplementation may depend on preconditions given in such

al so_requi res pragmas. Thereason that ESC/Javaincludesan al so_r equi r es pragma, despite its
unsoundness, isthat it is often essentia for preconditions of amethod €. mto mention instance variables of class
¢, and Java does not adlow instance variables to be declared in interfaces. [Note, however, that ESC/Java does
alow declarations of ghogt variables (section 2.6.0) in interfaces)]

In addition to the potential unsoundness just described, the al so_r equi r es pragma shares the potentia
unsoundness of ther equi r e pragmain the presence of multiple inheritance (see section C.0.5).

2.3.8 al so_nodi fi es pragma

Anal so_nodi fi es pragmaisaroutine modifier pragma It hasthe form

al so_nmodifies L ; opt

whereL isanonempty, comma-separated list of specification designators (see section 2.3.1). An

Ad B

al so_nodi f i es pragma has the same semanticsasanodi f i es pragma (section 2.3.1), but may appear only
asamodifier of amethod declaration that overrides another method declaration (while overriding method
declarations are forbidden to have nodi f i es pragmas).

An overriding method declaration may modify both the targets named initsown al so_nodi fi es pragmasand
any modification targets it inherits from the overridden method.

Fine points

Liketheal so_r equi r e pragma(section 2.3.7), theal so_nodi fi es pragmais apotentia source of
unsoundness. When writing code thet followsacdl E. n(...) where E has satic type T, a programmer may
reasonably be expected to cope with the posshility that the cal has modified parts of the state named in

nodi f i es pragmas that annotate the declaration of T. m but it seems unreasonable to expect the programmer to
ded with the possihility that the call might modify other parts of the date (perhaps parts mentioned in

al so_nodi fi es pragmas of yet-to-be-written overrides) aswell.

The reason that ESC/Javaincludes an al so_nodi f i es pragmaisthat an overriding method may need to modify
fidsthat are not in scope at the point where the overridden method is declared, such aspri vat e variables of
the cdlass declaring the overriding method.

To reduce the likelihood of unsoundness, al so_nmdi f i es pragmas ought not to name modification targets that
are accessible [JLS 6.6] from the scope of the overridden method. However, the current ESC/Java does not
enforce any such redtriction. For more discussion of the problem of specifying modification targets in the
presence of subclassing, and for a sound solution thereof, see [Leino9g].

2.4 Pragmas for specifying data invariants

This section describes severd pragmas that ESC/Java provides for specifying properties of variables and data
structures.

2.4.0 non_nul | pragma

A non_nul I pragmaisamodifier pragma It may modify the declaration of avariable of areferencetype. The
variable may be a gatic field, instance varidble, locd varidble, or parameter. It hastheform

non_nul |

The pragma causes ESC/Java to check, a each assgnment to the variable, that the value assigned isnot nul 1,
and to assume at each use (except in one case, described below) that the vaueisnot nul | . When aforma
parameter declaration is annotated with anon_nul | pragma, ESC/Java checks a each call ste that the
corresponding actud isnotnul | .

Fine points
Inthe casethat anon_nul | indance variable x isdeclared in aclass ¢ and aread access of x occursin a

congtructor of € that does not cal a sbling constructor, then ESC/Java does not automatically assume that the
vaue read will be non-null.

HdB

ESC/Javadlowsanon_nul | pragmato modify aforma parameter, even though Java 1.0 syntax does not alow
modifiers on parameter declarations.

A non_nul I pragmamay not modify a parameter declaration of a method that overrides another method.
Sometimes the same design decision might be expressed ether by anon_nul | pragmaor by some other kind of
pragma, such asar equi res pragmaor ani nvari ant pragma. For example, ingtead of using ar equi res

pragmain section 0.2

/[l @requires input !'= null;
Bag(int[] input) {

we might have written
Bag(/*@non_null */ int[] input) ..
and ingead of usng anon_nul | pragmain section 0.3
class Bag {
/*@non_null */ int[] a;
we might have written
class Bag {

int[] a;
//@invariant a !'= null;

In each of these cases, the dternative annotations have dightly different semantics, but either dternative would be
adequate to enable checking of our example program. (The differences are that thenon_nul | pragmas are
checked at every assgnment toi nput or a, whereasther equi r es pragmawould dlow assgnments of nul | to
i nput within the body of the Bag constructor, and thei nvar i ant pragmawould be checked only at routine
cals asexplained in section 2.4.1.)

We recommend that non_nul | pragmas be used in preference to semanticaly smilar r equi res and
i nvari ant pragmas except in cases where the somewhat stricter semantics of non_nul I makesitsuse
untenable.

Limitation: Since the current ESC/Java does not check static bodies and static initidizers, it is entirely the user's
respongbility to ensure that static fields declared asnon_nul | arein fact initidized to have non-null values.

2.4.1 invariant pragma

Ani nvari ant pragmaisadeclaration pragma. It hastheform

BA B

i nvariant E ; opt
where E is aboolean specification expresson. The pragmadeclares E to be an object invariant of the class
within whose declaration the pragma occurs. If E mentionst hi s, ether explicitly or implicitly, then E issaid to be
an instance invariant; otherwise E isastatic invariant. Roughly spesking, dl object invariants are supposed to
hold a dl routine call boundaries. That is(1) if E an ingtance invariant of dass T, then

(Morall Tt; Enqiset)

should betrue at dl routine cals and returns, wheret isavariable not occurring in E, the universd quantification
ranges over dl dlocated instances T, and E, . ., istheresult of subgtituting t for dl (explicit and implicit)
occurrencesof t hi s INE, and (2) if E isadatic invariant of dass T, then E should betrue a dl routine call
boundaries, regardless of whether or not any allocated objects of class T exist.

Fine points

ESC/Java does not fully enforce the discipline just described, partly because it would be too drict for many
programs (which may have legitimate reasons for temporarily breaking object invariants) and partly because such
checking would be very expensive. Ingeed, it performs less expengve (and potentially unsound) checking.
Essentidly, ESC/Java assumes object invariants for al objects on entry to a routine body, and checks objects
invariants for al objects at the end of the body; however, at cdl stes, ESC/Java checks object invariants only for
parameters and Stetic fields, and assumes of the call only that it doesn't bresk any object invariants and thet it
establishes object invariants for freshly alocated objects. More precisay, when checking the body of aroutine
R:

ESC/Java chooses, from al available object invariants, a set of invariants to be considered relevant
to the checking of R. [The heuristic used to choose the "rdevant” object invariantsisfairly
complicated and subject to change, so we don't explain it in this manud .|

ESC/Java assumesthat at the start of R's body, al rdlevant gatic invariants hold, and al revant
ingance invariants hold for dl alocated objects.

For every routine cdl in the body of R:
ESC/Java checks that dl relevant (to R) Satic invariants hold before the call.
ESC/Java checks that the value of each actud parameter of the call, including the
implidt t hi s parameter of an instance method call, satisfies every reevant (to R)
ingance invariant of every supertype of the static type of the corresponding forma
parameter.

ESC/Java checks that the vaue of each satic field f (actudly each of aheurigticaly
selected set of “rdevant” datic fields) satisfies every rdevant (to R) indance invariant

of every supertype of the atic typeof f .

ESC/Java assumesthat dl relevant (to R) gtatic invariants hold after the call.

ESC/Java assumes that, after the call, each relevant (to R) object invariant E of type T

3aFB

holdsfor dl ingances of T for which E held before the cdll, and for dl ingtances of T
alocated by the call (except that when a congtructor calls a superclass congtructor,
ESC/Java assumes that the congtructed object satisfies the instance invariants of the
supertype but not necessarily any additiona invariants of the subtype).

ESC/Java checksthat at the end of R'sbody al rdlevant gatic invariants hold, and dl rdevant
ingance invariants hold for al alocated objects (except thet if Ris a constructor, ESC/Java assumes
that the constructed object satisfies dl relevant object invariants of R'stype, including those inherited
from supertypes, but not necessarily those of any subtypes of R whose constructors may cdl Rasa
superclass congructor, and furthermore, when considering abnormally-terminating executions of the
constructor R, ESC/Java makes no assumptions about the constructed object).

It isapotentid source of unsoundness for an object invariant to mention fields other than those declared in the
class declaring the invariant. For example, suppose that s isasubclassof T and that an instance invariant of s
mentionsafiddf declaredin T, and consder aroutine R containing an assgnment x. f = ... wherex has satic
typeT. If x hasdlocated type s, the assgnment might break the ingtance invariant declared in s. But neither the
programmer of R nor ESC/Java can reasonably be expected to enforce theinvariants of s, snce s might not bein
scopein R, and indeed might be written after R. The current ESC/Java does not attempt to detect declarations of
such unenforcegble invariants, but future versions may bring some such declarations to the programmer's
atention. (For amore detailed examination of the unenforceable invariant problem, see [LS97].)

When afinal fiddf isdeclared with aVariblelnitializer [JLS, 19.8.2], ESC/Java may infer some smple
invariants automaticaly. For indance, if the initidizer is a congant expresson [JLS, 15.27] ¢ not of type

st ri ng, then ESC/Javainferstheinvariantf == C; and if theinitidizer isadring literd, an array congtructor, or
aninvocation of new, then ESC/Javainferstheinvariantf 1= nul I .

Limitation: The tatic bodies and dtatic initidizers of a class are supposed to establish the static invariants
declared in the class, but the current ESC/Java does not check this. Thus the responsibility for initid
edtablishment of gatic invariants lies entirely with the user.

2.4.2 axi ompragma

Anaxi ompragmaisadeclaration pragma. It hastheform
axi om E ; opt

where E is a boolean specification expression. The pragma causes ESC/Java to assume that E (whichwe cdl an

axiom) istrue a the start of every routine body that it checks.

Fine points

Since the axi ompragma introduces assumptions without introducing reciprocal checks, it is potentialy unsound
and programmers should use it carefully.

An obvious use of an axi ompragmawould be to state some universaly truefact. For example, the built-in
cgpabilities of Smplify (Si mpl i fy(1)), the theorem prover used by ESC/Java, include adecision procedure for
linear arithmetic but no rules about multiplication other than by congtants. Thus there may be cases where
ESC/Java would be helped by an annotation like

BAB

[l @axiom (\forall int x, y; x >0 &y >= 0 ==> x*y >= 0);

(recdl that ESC/Java doesn't claim to check for arithmetic overflow, so an axiom like this is congstent with the
view that Javai nt 's behave like the mathematicd integers, dthough this view isnot true). Beware that profligate
introduction of axioms (in the hope that they may occasiondly be useful) can have a serious impact on
performance.

Less obvioudy, axioms mentioning Java variables are sometimes useful, and ESC/Java dlows such axioms
despite the unsoundness inherent in assuming them when checking method bodies without aso checking them at
cdl stes. For further discussion of this point, see the example in section 2.7.2 involving an axiom about the lock
order. Axiomsmay not mentiont hi s or\ 1 ockset .

When checking a congtructor body, ESC/Java assumes that axioms hold before the implicit superclass
congructor cdl, if any, and thus also before execution of indtance variable initidizers.

When it is clear that the correctness of the program depends on a particular property holding for a particular
expressonE of typeT at aparticular point in the program, it may be better to write an assume pragma

/] @assune ...E..;
at that point in the program, in preference to introducing an axiom pragma
[l @axiom (\forall t T; ..t..);

sating that the property holds for dl vaues of the type (even if it does). For onething, the Smplify theorem
prover used by ESC/Javais incomplete, and may not discover the relevant instance of the axiom to gpply. On
the other hand, regardless of whether Simplify discovers the relevant instance of the axiom, it may spend alot of
time congdering many irrdlevant ingtances.

Limitation: Jugt asfor invariants (section 2.4.1), ESC/Javalimitsits use of axiomsto aredtricted set of axioms
consdered “relevant” to the checking of any particular routine R. In the current version of ESC/Java, the only
axioms conddered relevant are those declared in the same class as the implementation being checked.
Consequently, there is no way for the user to declare " libraries’ of potentialy useful axioms.

2.4.3 | oop_i nvari ant pragma

Al oop_i nvari ant pragmaisadatement pragma. It hastheform

| oop_invariant E ; opt
where E is aboolean specification expresson. A | oop_i nvari ant pragmamust appear before a Javaloop
satement--that is, aJavaf or, whi | e, or do statement [JLS 14.10, 14.11. 14.12], or a Javalabeled statement
[JLS 14.6] L: s suchthat s isaJavalabeded satement. Betweenthel oop_i nvari ant pragmaand the
asociated loop statement, there may be no intervening Java code and no intervening pragmeas, except for

nowar n pragmas and other | oop_i nvari ant pragmas. The pragma causes ESC/Javato check that E holds at
the start of each iteration of the loop.

Fine points

DA B

For the purposes of hame-scoping, aloop invariant istreated asif it occurred just inside the associated loop
datement. That is, if the associated loop Satement isaf or Statement (or af or statement wrapped within one or
more |abeled statements), then the variables declared by the ForInit [JLS, 19.11] arein scope in the loop
invariant.

An “iteration of aloop" includes the termination test, and aso includes the update code in af or loop. Thus

/1 @l oop_invariant E;
while (B) {

S
}

intuitively means

while (true) {
/'l @assert E; /1 but giving a Looplnv warning
if (!1(B)) break;
S

}

(however, see the comments below about loop unrolling). Note that the checking of the loop invariant E applies
to the state before the test of B (and before any Sde effectsin the evduation of B). Likewise,

/1 @1 oop_invariant E;
do {

S
} while (B);

intuitively means

while (true) do

/| @assert E; /1l but giving a Looplnv warning
S

if (1(B)) break;

}

and

/1 @Il oop_invariant E;
L: for(l1, .., Im B; UL, .., Un) {
S
}

intuitively means

{11, ..., Im
L: while (true) {
/'l @assert E; /1 but giving a Looplnv warning
if (!1(B)) break;

400 %5

S
ui, .., Un;

}
}

but with any occurrence within s of
conti nue L;

(or amply of cont i nue; gppearing outsde of any nested loop and thus meaning cont i nue L;) trandferring
control only to the end of s rather than to the end of un.

In ESC/Java, loop invariants are optiond. The checker consders only execution paths in which the loop body is
executed at most once (and the test for being finished is executed most twice), rather than the potentidly infinite
number of paths that are redly possble. Because of this smplification the checker doesn't need an invariant to
andyze the loop.

If you do include aloop invariant, ESC/Javawill check that it holds both initidly and after the Sngle loop iteration
that the current checker considers. Consequently, the checking performed on

/1 @l oop_invariant E;
while (B) {

S
}

is actualy the same as would be done for

/'l @assert E; /1 but giving a Looplnv warning
if (B {
S
/I @assert E; [// but giving a Looplnv warning
/] @assunme !B; // (don't check |ater code for case B == true)

}
(where execution of acont i nue ins resultsin norma termination of S and execution of a br eak in S resultsin
norma termination of the entire code fragment above). Y ou can make ESC/Java check more (or fewer)
iterations of loops by using the - | oop command-line option (see section C.0.1).
2.5 Pragmas affecting conditions under which variables may be referenced

2.5.0 spec_public pragma

A spec_publ i ¢ pragmaisamodifier pragma It may occur as amodifier only of anon-publ i ¢ fidd
declaretion. It hastheform

spec_public

The effect of the pragmais to make the fields declared in the declaration be as spec-accessible (thet is accessble

4%

in pragmas, see section 3.3) asthey would have been if the declaration had been publ i c.

For example, if apri vat e fidd of aclassisdeclared with aspec_publ i ¢ pragma, then the field can be
mentioned in pre- and postconditions of apubl i ¢ method, but dlients of the class cannot modify the fied
directly.

Example

Consider theBag example form section O. In presenting this example, we glossed over the issue of accessibility.
To dlow dients of the Bag class to make use of the routines of the class (Bag,ext r act M n, and othersthat we
might add), these routines should be declared publ i c. On the other hand, the fieldsa and n used in the
implementation ought not to be publ i c. For example, arbitrary clients ought not to be able to write these fields
except by cdling routines of the Bag class.

If we smply declare the routines, but not the fidlds of Bag to be publ i ¢, ESC/Javawill complain:

ESC/Javainput from Bag.java
1. class Bag {

2: /*@non_null */ int[] a;
3: int n;
13: /l@requires n >= 1;

14: public int extractMn() {

ESC/Java output:
Bag.java: 13: Error: Fields mentioned in this nodifier pragm nust be at
| east as accessible as the field/ method being nodified (perhaps try

spec_public)
/Il @requires n >= 1;
N
Caution: Turning off extended static checking due to type error(s)

1 caution
1 error

If programmers usng the Bag class are not supposed to know that its implementation includes the field n, then it
is unreasonable to expect them to establish a precondition involving n before cdling ext ract M n. We can
prevent ESC/Java from complaining by declaring thefield n to be spec_publ i c:

3: /*@spec_public */ int n;
Thiswill dlow n to be mentioned in r equi r es pragmas of publ i ¢ routines, aswell asin pragmas occurring in
other packages that import the Bag class. Of course, actual Java code in other packages will not be able to read
or write the n field directly (as would be dlowed if n were declared with a Javapubl i ¢ modifier).

Fine point

By declaring n with aspec_publ i ¢ pragma, the implementer of the Bag class expresses a design decision that
usersof Bag are supposed to know about the n field, even if their Java code cannot accessit directly. This

PdB

design decision could cause problemsiif implementer later decided to change the implementation to represent &
Bag using adata structure that did not include an explicit count--for example, alinked list. Seethefirgt example
in section 2.6.2 for further discussion of thisissue.

2.5.1 readabl e_i f pragma

A readabl e_i f pragmaisamodifier pragma. It can occur only asamodifier of afied declaration or of aloca
variable declaration. It hasthe form

readable_if E ; opt

where E is a boolean specification expression.

The pragma causes ESC/Javarto check that E istrue just before any read access of any of the variable(s)
declared in the declaration. The pragma thus expresses the programmer's intention that the variable modified by
the pragma has ameaningful vaue only when E istrue.

The specification expression E isdlowed to mention t hi s if the pragma modifies an ingance fidd declaration, or
if the pragmamodifies alocd variable declaration within an indance method or a congtructor. If the pragma
modifies the declaration of an ingtance fidd f , then for purposes of checking aread access O. f, occurrences of

t hi s in E are taken to denote the value of O.

Fine points

If the pragmamodifies aloca variable declaration then the variables declared by the declaration are not in scope
inE, even if the pragma occurs just before the find semi-colon instead of before the type.

class C {
bool ean b;
void m() {
boolean b /*@readable_if b */;
/1 "b" in the pragma above neans this.b, not the local b
/1 "b" in the pragna bel ow neans the local b
/* readable_if b */ int c;

}
}

If the pragmamodifies afield declaration, then dl fields of the containing class arein scopein E, even those that
are declared in textudly later declarations.

class C extends B {
/*@readable_if b */ int a;
bool ean b;
/1 "b" in the pragma means this.b, not ((B)this).b

\
If the pragma modifies afield declaration, then the free variables of E must be spec-accessible wherever fieds

430 %

declared by the declaration are accessible according to Java's access control rules [JLS, 6.6]

Remark: For the picky, amore precise name for this pragmamight be ““meani ngf ul _only_i f".

Remark: Perhaps unfortunately, ESC/Java does not provide away to say when particular array elements are
readable (meaningful). This could be useful since one could then express, for example, “a[i] ismeaningful only
ifo <= i &i < n",whichsaysthat only thefirstn elements of array a arein use.

252 uninitialized pragma

Anunini tial i zed pragmaisamodifier pragma An uni ni ti al i zed pragmacan occur as amodifier only of
alocd varidble declaration that has an initidizer. The pragma causes ESC/Javato check that no execution path
reeds the variable without firgt performing an assgnment (other than the initidizer) to the varidble.

Theintended use of theuni ni ti al i zed pragmaisfor Stuations in which the consarvetive nature of Javas
“definite assgnment” rules [JLS, 16] has forced the programmer to supply anirrdlevant initid vaue.

2.6 Pragmas concerning ghost variables

Unlike ESC/Modula-3 (see SRC Report 159, " Extended atic checking”) ESC/Java does not support data
abgtraction. But ESC/Java does provide a poor man's version of abstract variables, cdled ghost variables. We
describe here the ghost pragma, which declares ghost variables, and theset pragma, which modifies them, and
then give an example of thair use.

2.6.0 ghost pragma

A ghost pragmaisadeclaration pragma. It is alowed where the declaration of a class or interface member is
dlowed. It hasthe syntax

ghost M T VD ;opt

where T is a specification type (see section 3.0), VD isa Java VariableDeclarators [JLS19.8.2], and Misa
sequence of modifiers. (In other words, the pragmais like an ordinary Java variable declaration preceded by the
word ghost .) Inthe current ESC/Java, Mmust include the modifier publ i ¢, and VD can declare only one
identifier. The only other modifier dlowed in Misst ati c. Noinitidizersare dlowed in vD.

The pragmaislike the Java declaration
MT VD ; g

except that it isvisible only to ESC/Java, not to the compiler. The variables declared by aghost pragmaare
cdled ghost varidbles.

Fine points

No field declared in VD may have the same name as afidd (including aghost fidld or afidd declared ina
supertype) dready declared for the type in whose declaration the pragma occurs.

The current ESC/Java does not implement local ghost variables.

440 %

A ghos fidd declared in an interface | ismultiply inherited by dassesthat implement 1 and interfaces that extend
I. (If aghost varidblef isdeclared inaninterface! , and | isextended by interfacesJ and K, and aclassc
implements| , J, and K, and if x isavarigble of type C, then the expressons ((1)x) . f, ((J)x).f, ((K) x).f,
and x. f dl denote the same ghost field. That is, C getsonly one copy of f .)

For information about resolution of name conflicts involving ghost variables, see section 3.3.

In some cases, it is useful to declare aghogt variable with amodifier pragma, such asnon_nul | . Inthis case, the
modifier pragmamust occur within a nested pragma-containing comment, for example:

/1 @ghost public /*@non_null */ T t;
More precisdy, withinaghost pragma

MT VD ; g
an inner pragma-containing comment containing modifier pragmas is dlowed either as part of Mor just after VD.
The only modifier pragmas that can usefully modify a ghost varigble arenon_nul I, moni t or ed, and

moni t or ed_by (the current ESC/Java may accept others, but if it does they will have no effect on the checking
performed). In addition, these pragmas are allowed only in the case where they would be dlowed for anorma
variable according to the tablein section 2.0.1. For example, ast at i ¢ ghost variable cannot be declared with
the pragmaoni t or ed, or with the pragmanoni t or ed_by E wherethe expresson E mentionst hi s.
ESC/Java checks noni t or ed (section 2.7.1) and noni t or ed_by (section 2.7.0) pragmas for aghost varigble g
only whereg isassigned to by aset pragma (section 2.6.1), not at other places where g isused in pragmas.

2.6.1 set pragma
A set pragmaisadatement pragma. It hastheform
set D=E ;opt

where D isaghost designator and E is a specification expresson containing no quantifiers or labels. The pragma
has the same semantics as the Java assgnment statement b= E would haveif D and E were in Java.

A ghogt designator can have one of the following forms:

o f , where 0is specification expression of an object type T and f isaghod field of T.

f ,wheref isadaicghos fieldort his. f isalega ghost designator of the preceding form.
Fine point
If thefiddf assgnedtoby aset pragmaisdeclared withanon_nul I , noni t or ed, OF noni t or ed_by
pragma, then ESC/Javawill perform the usua checking implied by the modifier pragma, generating warningsin
case the vadue being assigned may benul 1, or in case the specified lock may not be held. Thisisthe only

circumstance in which the current ESC/Java generates warning of possible run-time errors in the evauation of
pragmes.

4o B

2.6.2 Examplesusing ghost variables
Example: specifying Bag without revealing itsimplementation

Aspointed out in section 2.5.0, there is a scoping problem with the Bag example from section 0: Inaredigic
Stuation, the implementer of the Bag class may want to makepubl i ¢ the routines of the class, but not the fields.
How then are clients of thepubl i ¢ method ext r act M n to discharge the precondition requires n >= 1,
which mentionsthe norn-publ i ¢ fiddn?

In section 2.5.0, we showed how to address the problem by declaring n withaspec_publ i ¢ pragma But what
if the implementer of the Bag class wanted to |leave open the possibility of switching to adifferent implementation
(say, alinked ligt) in which the representation of aBag did not include an explicit count of the dements?

To resolve this annotation question, we must first make a design decision about the actud Java code: How, in
fact, are the clients of the Bag class supposed to avoid ever cdling theext r act M n method of an empty Bag?

One approach--the one that we will illustrate here--would be for the implementer of the Bag classto provide a
method i sEnpt y that clients could use to test a Bag for emptiness before cdling its ext r act M n method. To
specify the semantics of the Bag class, we would use aboolean ghost fieldenpt y, that would bet r ue precisdy
for those Bag's that contain no eements. Here's how that annotated implementation of Bag might look like under
this approach:

1. class Bag {

2 [*@non_null */ int[] a;

3 int n;

4 /[l@invariant 0 <= n & n <= a.length;
5: /1 @ ghost public bool ean enpty;

6 [l @invariant enmpty == (n == 0);

7

8 /[l @requires input !'= null;

o: /1 @ensures this.enpty == (input.length == 0);
10: public Bag(int[] input) {

11: n = input.length;

12: a = newint[n];

13: System arraycopy(input, 0, a, 0, n);
14: /] @set enpty = n == 0;

15: }

16:

17: /!l @ensures \result == enpty;

18: public boolean i sempty() {

19: return n == 0;

20: }

22: [l @requires !'enpty;

23: /1 @rmodifies enpty;

24: /[l @modifies n, a[*];

25 public int extractMn() {

46 B

26 int m= Integer. MAX_VALUE;

27 int mndex = O;

28: for (int i =0; i <n; i++) {
29: if (a[i] <m {

30: m ndex = i;

31 m= ali];

32: }

33: }

34: n--;

35: /] @set enpty = n == 0;

36: /] @assert enpty == (n == 0);
37: a[mi ndex] = a[n];

38: return m

39: }

40 }

The precondition for ext r act M n on line 22 specifiesthat it isincorrect to invoke theext r act M n method of
anempty Bag. The postcondition for i senpt y on line 17 dlows clients (and ESC/Java) to determine that a code
fragment like

if (!'x.isEmpty()) i = x.extractMn();

will never violate the precondition for ext r act M n. Theinvariant on line 6 rdaes the ghost fidd enpt y to the
actud fiddn inthe implementation of aBag and is of interest only to the implementer of the Bag class and not to
clients. ESC/Java usesthisinvariant to verify that theimplementation of i sEnpt y satisfiesits postcondition, and
to verify that theimplementation of ext r act M n, when caled in accordance with its precondition, will not
attempt to accessa[- 1] inline37. Theset pragmason lines 14 and 35 guarantee that the invariant on line 6 is
established by the Bag constructor and preserved by the ext ract M n method.

Example: specifying a generic queue

Condder aclassthat implements queues of bj ect 's. Thereis a congtructor that creates an empty queue, and
there are ingtance methods for enqueueing and dequeueing dements and for testing whether a queue is empty:

public class Queue {
public class Queue() {...}
public enqueue(Object e) {..}

public bool ean isEnmpty() {...}

public Object dequeue() throws {..}
}

In the absence of any annotations, a number of problems come up when checking clients of the Queue class.
Fird, thereis no check againg calling dequeue on an empty queue.

Second, auser may wish to have a queue whose dements are dl of sometype T (a proper subtype of bj ect).
Since the result type of dequeue iSbj ect , the user will frequently have to cast the result of dequeuetoaT.

47 of %5

Tt = ..., u;
Queue g = new Queue();

g. enqueue(t);
u = (T)qg. dequeue();
Given the code fragment above, ESC/Java has no way to know that the cast will succeed.

Findly, it is common for queues (and other such ~"container” objects) to contain only non-null elements. When a
queueisintended to contain only non-null eements it would be nice to have ESC/Java check that only non-null
elements are enqueued, and on the other hand not issue spurious warnings about potentia null dereferences on
dequeued objects.

Hereisa. spec file (see section 5.1.2) for the Queue class with annotations addressing the issues described
above.

public class Queue {

/1 @ghost public int size;

/[l @invariant size >= 0;

/1 @ghost public \TYPE el enent Type;
/1 @ghost public bool ean canHol dNul | ;

/] @ensures el enent Type == \type(Obj ect);
/'l @ensures canHol dNul | ;

/| @ensures size == 0;

public Queue();

/*@requires \typeof(e) <: elenentType |
(e == null & canHoldNull); */

/1 @nmodifies size;

/] @ensures size == \old(size) + 1;

public void enqueue(Object e);

/] @ensures \result == (size == 0);
public bool ean i sEmpty();

/[l @requires size >= 1;

/1 @nodifies size;

[*@ensures \typeof (\result) <: elenentType |
(\result == null & canHol dNull);

*/

/] @ensures size == \old(size) - 1;

public Object dequeue();
}

(The specification expression constructs\ TYPE, \ t ype, \ t ypeof , and <: are explained in sections 3.0, 3.2.0,
3.2.1, and 3.2.3, respectively.) Given the specification above, the user can express the intention to use aqueue g

480 %

to hold only non-null eements of type T by writing

Queue g = new Queue();
/'l @set q.elenmentType
/'l @set q.canHol dNul |

\type(T);
fal se;

ESC/Javawill then warn of a possible precondition violation on any cal g. enqueue(E) where E may not be an
inganceof T. On the other hand it will not issue a (spurious) warning of possible cast failure on

(T) q. dequeue() . Also ESC/Javawill warn of apossble precondition failureon q. dequeue() if it cannot
establish, based on the number of € ements enqueued and dequeued done since the alocation of q or the most
recent cal toq. i sEnpt y, that g isnonempty (q. si ze >= 1) at the point of the call.

For more examples of the use ghost variables in specifying container classes, read thefilesDi ct i onary. spec,
Enuner at or . spec andVect or . spec inescjavaRoot/ | i b/ specs/ j ava/ uti| (See appendix B).

2.7 Pragmasfor specifying synchronization

ESC/Java provides support for checking that multi-threaded programs respect alocking discipline that prevents
race conditions and smple deadlocks.

A race condition is a Situation in which two threads access a variable smultaneoudy and the accesses are not
both read accesses. To prevent race conditions, the locking discipline requires that every shared variableis
monitored by one or more locks. If avariable is monitored by alock, athread is not alowed to accessthe
vaiable unlessit holds the lock (and this discipline is enforced by ESC/Java).

A deadlock occursif thereisacycle of threads, each holding alock that some other thread in the cycleiswaiting
to acquire. To prevent deadlocks, the locking discipline requires that the programmer declare a partial order in
which locks are to be acquired. ESC/Javawill then check that each thread doesin fact acquire locksin the given
order. But the checker trusts the programmer that the declared locking order is actudly a partia order.

2.7.0 noni t or ed_by pragma

A noni t or ed_by pragmaisamodifier pragma It can occur only asamodifier of afield declaration. It hasthe
form

monitored_by L ; opt

whereL isanonempty, comma-separated list of specification expressons,

The pragma declares that the modified field is a shared variable monitored by the locksin L. That is, it causes
ESC/Javato check that (1) thefield is never read except by athread holding at least one non-null lock in L and
(2) that the field is never written except when at least onelock in L is non-null and the writing threed holds all
non-null locksin L. (Seethefirgt fine points below for an exception the preceding statement.)

If the field declaration modified by the pragma declares an instance field f , then the expressonsin L may mention

t hi s (explicitly or implicitly). When ESC/Java checks an accessto O. f, occurrences of t hi s withinL are
consdered to denote the value of O.

49d %

Fine points

When checking a constructor body ESC/Java does not require that any lock be held in order to accesses afield
of t hi s, evenif thefield is declared with @ roni t or ed_by Or noni t or ed (section 2.7.1) pragma. (In some
cases, this can result in unsoundness; see section C.0.8.)

All fields of the class containing the pragma are in scopein E, even those that are declared in textudly later
declarations.

class C extends B {
/*@monitored_by g */ S f;
Tg
/1 "g" in the pragma nmeans this.g, not ((B)this).g

}

The variables mentioned in L must be spec-accessible (section 3.3) anywhere the fidd itsdlf isaccessble [ILS,
6.6]. For example, apubl i c fidd may not be monitored by apri vat e lock (unlessthe lock is declared
spec_publ i c, see section 2.5.0).

A fidd dedlaration may be modified by multiple noni t or ed_by pragmas, in which case the effect is asif there
wereasnglenoni t or ed_by pragmaliging dl the locks mentioned in any of the actud noni t or ed_by
pragmas. (Bug/limitation: When ESC/Javaissues aRace warning for such afield, it will mention only one of
the moni t or ed_by pragmas, and possibly not the right one, as the annotation associated with the warning.)

2.7.1 roni t or ed pragma

A noni t or ed pragmaisamodifier pragma. It can occur only as amodifier of an instance variable declaration.
It hasthe form

noni t or ed
and is semanticaly equivadent to
nmoni tored_by this;
2.7.2 Examplesillugtrating race and deadlock checking

Annotation of programs for race and deadlock checking typicaly requires use not only of moni t or ed and/or
noni t or ed_by pragmas but of other pragmas as well, most commonly r equi r es pragmas (section 2.3.0) and
axi ompragmas (section 2.4.2) involving the locking order < (section 3.2.7) and the lock set\ | ockset (section
3.2.5). Rather than leave it to the reader to assemble the big picture from fragments of information scattered over
many sections of this manua, we present here afew examples to show how the piecesfit together.

In specification expressons the specia ESC/Javaidentifier \ | ockset refersto aspecid variable, caled the lock
s, denoting the set of dl objects held as locks by the current thread. For testing membership of locksin the
lock set, we overload the array subscripting notation, so that \ | ockset [X] istrue when object X isin thelock
Set\ | ockset .

0d %5

Thus, given the ingtance field declarations

Tf;
U g;
[*@monitored_by f, g; */ V h;

the code fragment
x.h = y.h

istrested roughly like

/[*@assert y !'= null; */ /1 Check for null dereference
/*@assert (y.f !'= null && \lockset[y.f]) |

(y.g '= null && \lockset[y.qg]); */

/1 Check for race (section 4.17) on read

[*@assert x !'= null; */ /1 Check for null dereference
/[*@assert (x.f !'=null | x.g !'=null) &

(x.f '=null ==> \lockset[x.f]) &

(x.g !'= null ==> \lockset[x.qg]); */

/1 Check for race on wite
Xx.h = y.h;

The necessary conditions to establish such locking assertions can be established explicitly, for example by a
requires pragmaasin

/l@requires f !'= null && \lockset[f];
void m() {

. h .. /'l read access produces no Race warni ng

}

Also, asynchr oni zed routine body and asynchr oni zed Satement aways begin by adding alock to the lock
Set.

class C {
monitored T t;
synchroni zed void m() {

T x =1t; /* no race because starting a synchroni zed
met hod establishes \lockset[this] */

void n() {
synchroni zed (this) {
Tx =1t; [/ no race

510 %

}
}

The preceding examples ded only with race detection. We now turn to the issue of deadlock detection.

ESC/Java supports a synchronization discipline in which deadlocks are avoided by imposing a partia ordering on
locks and acquiring locks only in increasing order. The arithmetic ordering relations < and <= are overloaded to
compare objectsin the locking order. The specid function \ max yields the maximum lock in alock set.

Without some help in the form of user-supplied pragmes, it is never possible for ESC/Javato prove the absence
of deadlock in a program that ever acquires alock. Deadlock checking is therefore disabled by default. When
deadlock checking is enabled (by use of the command-line option - war n Deadl ock), ESC/Java checks
synchroni zed statements and synchr oni zed methods and issues warningsiif they might acquire locks out of
order.

A synchr oni zed Satement

synchroni zed (E) {...}

istreeted roughly like

bject e = E; // where e is a variable nane not already used

/Il @assert e !=null; // but with Null warning on failure
/'l @assert \lockset[e] | \max[\lockset] < e; [// but wi th Deadl ock warning
Insert e into\ | ockset ;
try
{..}
finally

Restore former value of \ | ockset ;

Thedigunct\ | ockset [e] inthetest for potential deadlocks reflects the fact that Javalocks are ™reentrant”,
that is, that athread that dready holds alock may acquire the lock again without deadlocking [JLS 17.5].

When checking asynchr oni zed method declaration, ESC/Java acts asif the body of the method were
wrapped in synchr oni zed Statement, as described in [JLS, 8.4.3.5]. That is, ESC/Java checks an instance
method

synchroni zed T m(paraneters) {body}
asif it had been written

T m(paraneters) {synchronized (this) {body}}
and ESC/Java checksast at i ¢ method

static synchronized T m(paraneters) {body}

in acdassc asif it had been written

2d%

static T n(paranmeters) {synchronized (C. class) {body}}

When aroutine that aready holds alock acquires another one, ESC/Java needs some way of knowing that the
first lock precedes the second in the lock order. One way to give ESC the needed information is by supplying an
axi ompragma (see section 2.4.2) about the lock order, asin the following example:

public class Tree {
public /*@nonitored */ Tree left, right;
public /*@nonitored non_null */ Thing contents;

[l @axiom (\forall Tree t; t.left !'=null ==>1t < t.left);
/[l @axiom (\forall Tree t; t.right !'= null ==>1t < t.right);

Tree(/*@non_null */ Thing c) {
contents = c;

Il @requires \max(\l ockset) <= this;
public synchronized void visit() {
contents. mungl e();
if (left !'=null) left.visit();
if (right '=null) right.visit();
}
}

Fine points

Note that the axioms above are inconsstent if a (so-called) Tr ee caninfact be cyclic. Note aso that
incongstency or incompleteness can arise from the possible mutation of variables mentioned in the axioms,
namdy thefidds| ef t andri ght . For example, given the axioms above, ESC/Java will generate a spurious
Dead| ock warning for the following method:

Il @requires \max(\l ockset) <= this;
public synchroni zed void w ggl ewsggl e() {
/1 Performa rotation on this.right (but give up and just
/[l return if this.right or this.right.left is null):
11
11 this this
11 [\ I\
... X v
11 /I \ --> [\
/1 % y u X
/1 [\ /I \
/1 u w w oy
11
{ Tree x = this.right;
if (x == null) return;
synchroni zed (x) {

530 %

Tree v = x.left;
if (v == null) return;
synchroni zed (v) {
x.left = v.right;
v.right = x;
this.right = v;
} /'l line (a)
}
}

/1 Undo the rotation:
{ Tree v = this.right;
synchroni zed (v) { /1 line (b)
Tree x = v.right;
if (x '=null) { /1l line (c)
synchroni zed (x) { /1 line (d)
v.right = x.left;
x.left = v;
this.right = x;

} /1 line (e)

The problem is that the axiom is assumed to gpply at the start of the routine, and thus to apply to the values of
.left and.right a thedart of theroutine. According to the lock order thus defined, the lock acquired at the
line(d) would precede that acquired a (b). [Despite these cavests, our experience with ESC for Modula 3
suggests that axioms like the ones above will do the right thing surprisingly often and rarely cause problems]

The preceding example ad o illustrates a possible source of unsoundnessin ESC/Javas trestment of race
detection. If thelinesmarked (¢) and(e) are deleted, and if deadlock checking isleft disabled, then ESC/Java
will accept line (d) without complaint, ignoring the possihility that some other thread might have taken advantage
of the window between lines (a) and(b) to synchronizeon “v" and setits . ri ght fiddtonul I .

3 Specification expressions

While specification expressions are generdly smilar to Java expressons, there are a number of differences,
described below. Section 3.0 describes adight extension to the Java type system. Section 3.1 describes
notations alowed in Java expressions but forbidden in specification expressons. Section 3.2 describes additiona
notations alowed only in oecification expressons. Section 3.3 describes how the rules for scoping, name
resolution and access control in gpecification expressons differ from those in Java

Specification expressons are never actudly evauated when a Java program is run, and ESC/Javawill not
produce specific warnings about specification expressons whose evauation (if they were evauated) might
dereferencenul | , access arrays out of bounds, etc. Rather, the meanings of such expressons (for example, E.
where E , if it were actudly evauated, would evauate to nul |) are unspecified functions of (the meanings of)
their subexpressons. In most cases, atempts to prove things about such unspecified vaues will fail, thus giving

S4d %

rise to warnings of some sort, though aas not the clearest warnings that one could hope for. For example, giver
the program fragment

/1 @assunme \nonnul | el erents(a);
[l @assert a[j] !'= null;

in aplacewherej might be negative, ESC/Javawill produce an Assert warning (section 4.2) rather than an
I ndexNegat i ve warning (section 4.6).

3.0 Specification types

Like Java expressions, Specification expressions have types (which we cdl specification types). A specification
typeis either a Javatype, or one of the specid types\ TYPE or \ LockSet (or an array of specid types, for
example\ TYPE[1[1). (Inthe current ESC/Java, the programmer cannot mention \ LockSet explicitly.)

3.1 Restrictions

Specification expressons must be free of subexpressonsthat, in genera, may have sde effects. In particular,
Specification expressons may not contain any:

assgnment (=, +=, €tc.),

pre-increment, pre-decrement, post-increment, post-decrement (++ or - -),
array or object creation (new), or

method invocation.

Method invocations are forbidden in specification expressions even when the method is known to have no Sde
effects.

The next section describes additiona congtructs that are alowed in specification expressions beyond those
dlowed in Javaexpressons. Some of these congtructs have redtrictions on their use. We describe these
restrictions together with the descriptions of the congtructs to which they apply.

3.2 Additions

3.2.0 \type

An expression of theform \ t ype(T) where T is a specification type (see section 3.0), isa pecification
expression of type\ TYPE. It denotesthetypeT.

3.2.1 \typeof

A specification expression of theform \ t ypeof (E) where E is a specification expresson whosetypeis a
reference type is a Specification expression of type\ TYPE. It denotesthe dynamic type of thevadue of E. The
vaueof \ t ypeof (E) isunspecified when E evduaestonul | .

3.2.2 \el entype

An expresson of theform \ el ent ype(E) where E isa pecification expression of type\ TYPE is aspecification

5o %

expression of type\ TYPE. If E denotesan array type T[], then\ el ent ype(E) denotesT. Otherwise the vaue
of \ el ent ype(E) isungpecified.

3.2.3 Subtype: <:

Anexpresson of theform s <: T where s and T are specification expressons of type\ TYPE is a pecification
expression of typebool ean. It denotesthat s isasubtype of T (including the casewhere s isequd to T). The
operator <: hasthe same binding power as the rdational operators <, >, <=, and >=.

3.2.4 Examplesinvolving\ TYPE, \ t ype, \ t ypeof,\ el ent ype, and <:
SupposefileT. j ava containsthe following declaration
class T {

/l@requires a != null & 0 <= i & i < a.length;
static void storeGoject (T[] a, int i, T x) {
a[i] = x;

}
When checking the body of the st or eObj ect method, ESC/Javawill produce an Ar r ay St or e warning
(section 4.1) for the assgnment
ali]l] = x;

The problem isthat, so far as ESC/Java can tell, the actud type of a at thetime of the cal might be S[], wheres
is some proper subtype of T, and x might not be of type s. Consequently, the attempt to storex intoa[i] might
giverisetoan Array St or eExcept i on [JLS 10.10, 15.25.1], which ESC/Javatreats as an error.

TheArray St or eExcept i on canot arisein the method if the parameter a aways has actua type exactly T[] .
The programmer can express this intention with the pragma

[l @requires \elemype(\typeof(a)) == \type(T);
or, equivdently, with the pragma

Il @requires \typeof(a) == \type(T[]);
Note that

/1l @requires \typeof(a) == \type(T)[];

would not be legd, sincethe form N[] makes sense only when N is a specification type, not a specification
expression of type\ TYPE.

A wesker, but il sufficient, precondition for avoiding the Ar r ay St or eExcept i on would be to require thet the

aray a merely have an actud dement type adequate to hold the vaue of x. This precondition is expressed by
the pragmas

560 %5

/l@requires x == null || \typeof(x) <: \elenmype(\typeof(a));
Note that the pragma
/l@requires x == null || x instanceof \elenype(\typeof(a));

isnot legd, since theright hand argument of i nst anceof must be atype, not a specification expresson of type
\ TYPE.

3.2.5 \l ockset

The specid identifier\ | ockset isagpecification expression of type\ LockSet . It denotes the set of locks held
by the current threed.

3.2.6 Membershipinlock sets: [1]

An expression of theform S[L] where S isaspecification expresson of type\ LockSet and L isa specification
expression of areference type is a specification expression of typebool ean. It denotesthat L isamember of S.

327 Lock order: <and <=

Within specification expressons, the rdations< and <= are extended to gpply to locks as well as numbers. The
order they refer to is called the lock order. For some examples of use of the lock order, see section 2.7.2.

3.2.8 \ max

An expresson of theform \ max(S) where s is a specification expresson of type\ LockSet isagpecification
expression of type Qbj ect . It denotes the maximum eement of s in the lock order.

Toinsuretha \ max isadwayswel defined, ESC/Java assumes that lock sets are dways nonempty and that thelr
elements are dways tota ly ordered by the lock order <. Since locks must be acquired in increasing order, and
since thereis no way to write a program that releases the fictitious maximum eement of the lock set of athread
that redlly holds no locks, the preceding assumptions are invariantly true if they are true initialy.

3.2.9 Implication: ==>

An expression of theform E ==> F where E and F are specification expressons of typebool ean isa
specification expression of typebool ean. It denotes the condition that E impliesF, that is, (! (E)) | F. The
operator ==> hasless binding power than && and| | , but binds more strongly than the ternary conditiona
operator ? :t. (Thehbinding precedence of operatorsin Javaisimplicit in the grammar for expressons[JLS,
19.12].)

3.2.10 \forall
Anexpression of theform (\foral |l T Vv, E) whereT isaspecification type (see section 3.0), visa
nonempty comma-separated list of identifiers (caled bound variables), and E is a specification expression of

typebool ean isaspecification expresson of typebool ean. It denotesthat E istrue for dl substitutions of
vaues of type T for the bound variables. If T isareference type, the quantification ranges only over dlocated

57 %

objectsthat are instances of T. Note that thisexcludesnul | . If T isether of thetypesi nt or | ong, then the
quantification ranges over dl mathematical integers, regardless of whether they are in the ranges of possible vaues
for Java variable of those types.

Fine points

Just as Javaforbids declaration of an identifier asalocd variable within the scope of a parameter or locd variable
of the same name [JLS 14.3.2], so ESC/Javaforbids declaration of an identifier as abound variable within the
scope of a parameter, locd variable, or bound variable of the same name. ESC/Java aso forbids declaration of
\l ockset Or\result asaboundvariable. The samerestriction gppliesto variablesbound by \ exi st s

(section 3.2.11).

If a gpecification expresson E has an gpplication of \ f or al | asa (not necessarily proper) subexpression, then E
may occur only in one of the following contexts

¢ asan (entire) argument to one of the following operators:
the ESC/Java implication operator ==> (See section 3.2.9)
the Java conditiond operators&& and || [JLS, 15.22, 15.23]
the Javalogicd operators &, ~, and | [JLS 15.21.2]
the Java boolean equdlity operators== and! = [JLS 15.20.2]
o theJavalogica complement operator! [JLS, 15.14.6]
¢ asthe (entire) body of
o aparentheszed expresson (E),
o aquantified expresson (\forall ..; E) or(\exists ..;E) (seesection 3.2.11), or
o alabeled expresson (\ 1 bl pos n E) or (\l bl neg n E) (Seesection 3.2.16)
* asatop-leve boolean specification expression (that is, not properly contained by another specification
expresson) in apragma.

0o

o

o

[o]

The same redtriction gpplies to pecification expressons containing applications of \ exi st s (section 3.2.11) or
of \ I bl neg or\ I bl pos (section 3.2.16). In particular, aquantified or labeled expresson may not occur in an
argument to the ternary conditiond operator ? : and this restriction cannot be evaded by use of the (bool ean)
cast operator. For example, specification expressions of the form

((bool ean)(\exists ..)) ? ...:

arenot dlowed. A consequence of these redtrictionsiis that al lega specification expressons containing
quantified or labeled subexpressons are of typebool ean.

Note that the preceding rule forbids quantified expressions (and labeled expressions) within argumentsto\ ol d.
[Future versons of ESC/Javamay liberdize this restriction, with quantifications on reference typesingde\ ol d
ranging over objects alocated in the pre-date

3.2.11 \exists
Anexpresson of theform (\exi sts T Vv; E) whereT isaspecification type (see section 3.0), visa
nonempty comma-separated list of identifiers (caled bound variables), and E is a pecification expression of

typebool ean isaspecification expresson of typebool ean. It denotesthat E istrue for some subgtitution of
vaues of type T for the bound variables. If T isareference type, the quantification ranges only over dlocated

8d %

objectsthat are instances of T.
Fine points

See section 3.2.10 for redtrictions on bound variable names and redtrictions on places where quantified formulas
may appear.

3.2.12 \nonnul | el ement s

An expression of theform \ nonnul | el enent s(A) Where A isaspecification expression of an array typeisa
specification expresson of typebool ean. Itisequivdent to

Al=null && (\forall int i; 0 <=1i &i < Alength ==> Ali] '= null)

Expressions of the form above came up fairly frequently in our early experiments with ESC/Java, and we found
writing them sufficiently tedious to justify the introduction of a specid notation.

Example
Consder thenmai n method of a program:

static public void main (String[] args) {..}
The usua way for mai n to beinvoked iswith the value of ar gs derived from the command line by the Java
interpreter, in which case ar gs will be non-null, and dl its dements will be non-null. However, itislegd for a
Java program to contain explicit calsto mai n, and the value of ar gs supplied by such acdl might in some cases
be either nul | or an array containing nul | as an eement.

It is often helpful to annotate mai n asfollows

/1 @requires \nonnul |l el ements(args);
static public void main (String[] args) {...}

Given this annotation, (1) ESC/Javawill assume, when checking the body of mai n, that ar gs and dl its dements
are non-null, and (2) ESC/Javawill check that any explicit calsto mai n supply anon-null argument with only
non-null dements.

Fine points

Since an gpplication of \ nonnul | el enent s does not explicitly include a quantifier, it may be used asan
agumentto? : and may occur indde an argument of \ ol d.

Notethat if Aisof typeT[]1[],then\ nonnul | el ement s(A) impliesthat Al i] isnon-null (if i isin bounds), but
not necessarily that any Al i] [j] isnon-null.

3.2.13 \fresh

An expresson of theform \ f r esh(E) where E isa specification expression of areference type is a specification
expression of type bool ean. In apostcondition, it denotesthat E is non-null and was not dlocated in the

90 %

pre-state of the routine cal.
(Seedso section 2.3.2.)

3.214 \resul t

Within anorma postcondition or amodification target of anon-voi d method, the specid identifier \ resul t isa
specification expresson whose typeis the return type of the method. It denotes the vaue returned by the
method. \ resul t isdlowed only withinan ensur es, al so_ensur es, nodi fi es, Or al so_nodi fi es pragma
that modifies the declaration of anon-voi d method.

Fine points

Note that dthough \ r esul t may occur within amodifies pragma, it is not itself a specification designator (see
section 2.3.1). Thus

nmodi fies \result

isnever alegd pragma. However pragmas such as, for example,
modi fies \result.f

or
nodi fies \result[i]

may belegd, depending on thetypeof \ resul t.
3.215\ol d

In apostcondition, an expression of theform \ ol d(E) where E is a specification expresson is a specification
expression of the sametype ask. It denotes the same thing as E except that (1) any occurrencesin X of atarget
fidd (see section 2.3.1.0) of theroutine is interpreted according to the pre-state vaue of thefidd, and (2) if any
modification target of the routine hastheform X[i] or X[*] , then all array accesseswithin E are interpreted
according to the pre-state contents of arrays. An expresson of theform \ ol d(E) may occur only inan

ensur es, exsur es, al so_ensur es, Oral so_exsur es pragma. The argument E may not itsaf include any
usesof \ ol d Or\ fresh.

Fine points

Inanorma postcondition of anon-voi d method, the specid identifier\ resul t (section 3.2.14) may occur
within an argument to\ ol d. In thiscontext, \ r esul t denotes, as usua, the value returned by the method,
despite the fact that the returned value may not even be dlocated in the pre-tate (in which case the meaning of a
fiddaccess\resul t. f or anarray access\resul t[i] isungpecified). Smilarly any occurrence of t hi s

(explicit or implicit) in anormal postcondition of a constructor denotes the constructed object, even within an
argument of \ ol d.

The following (correctly annotated) code example illustrates the semantics of \ ol d.

class C {

60of B

static C x, oldx, vy;
int f;

static int ol dxf;
static int[] a, olda, b;
static int oldai;
static int i;

/[l@requires x !'= null &y !'= null;

/l@requires a != null & 0 <= i & i < a.length;

/'l @nodi fies oldx, oldxf, x, x.f, olda, oldai, a, a[i], i;
/'l @ensures ol dx == \ol d(x)

/'l @ensures ol dxf == \ol d(x.f);

/[l @ensures \old(x).f == \old(x.f) + 1;

/! @ensures (\exists Cz; z == x &\old(z.f) ==\old(y.f));
/'l @ensures olda == \old(a) & oldai == \old(a[i]);

/1 @ensures \old(a)[\old(i)] == \old(a[i]) + 1;

static void m() {

ol dx = x;

ol dxf = x.f;
X =Y

ol dx. f ++;
olda = g;
oldai = a[i];
a = b;

ol da[i] ++;

i ++;

}
}

Note the distinctions between \ ol d(x. f) and\ ol d(x) . f and between\ol d(a)[\ol d(i)] and
\old(a[i]). Notedsothat while ESC/Java does not alow the notation x. \ ol d(f) tomean “theorigina f
field of the current vaue of x" in the pragma, the same effect is achieved by the expresson \ ol d(z.) withinthe

pragma
/Il @ensures (\exists Cz; z == x &\old(z.f) == \old(y.f))

For further discusson of \ ol d, induding the interaction of \ ol d and nodi fi es, See sections 2.3.2 and 2.3.3.
3.2.16 \ 1 bl neg and \ | bl pos

[This section may be skipped on first (and second) reading. It describes, incompletely, a feature of
included mainly for use by the implementers.]

An expresson of theform (\ 1 bl neg n E) or (\| bl pos n E) whereE isaspecification expression of type
bool ean andn isan identifier (called an expresson labdl) is a specification expression of typebool ean.
Logicdly, thelabeled expression (\ I bl neg n E) [or(\| bl pos n E)] denotesthe samething asE, but when
ESC/Javaissues awarning, the warning message will mention the labdl n if, in the execution path associated with
thewarning, the expression E would evauateto f al se [resp., t r ue] a apoint where the containing pragmaiis
“rdevant” and in circumstances where the value of the expression E is "~ rdlevant” to the pragmaasawhole. The

6lof B

details of the (heurigtic) definition of ~“relevant” are beyond the scope of this manud and are subject to change.
Example
Supposefile C. j ava contains the following code:
class C {
/[l @requires (\lblpos feei <5) || (\Iblpos fiei > 10);
/'l @ensures (\lblneg foe \result !'=5) & (\Iblneg fum\result > 0);

int n(int i) {

return i+1;

}

Then output from the command escj ava C. j ava incdudesthe following warning:

C.java: 7. Warning: Postcondition possibly not established (Post)

}
AN
Associ ated declaration is "C. java", line 4, col 6:
/! @ensures (\lblneg foe \result !=5) & (\Iblneg fum\result >0 ...

AN

Execution trace information:
Executed return in "C. java", line 6, col 6.

Count er exanpl e | abel s:
fum fee

Thelabe f ee comesfrom the postively labeled expresson (\ 1 bl pos fee i < 5) intherequi res pragma
for method m and tdlls us that in the execution path associated with the warning, mis cdled with an argument i
suchthat (i < 5) == true. Thelabd f umcomesfrom the negatively labded expresson (\ | bl neg fum
\result > 0) intheensur es pragmafor m and tells usthat in the execution path associated with the warning,
mreturnsaresult\resul t suchthat (\result > 0) == fal se.

Fine points

Expression labds are in their own name space, so they never conflict with or hide any other kinds of identifiers.

Labeled expressions are dlowed only in those places where quantified expressions are alowed (see section
3.2.10).

Limitation: There are many stuations in which labels are ambiguous. For example, supposefileD. j ava
containsthe code:

class D {

int a, b;

620 B

//@invariant (\lblpos fooa>=0&b >=0) || (\Iblpos bar a <0 &b
<0);

/[l@requires x !'=null & y !'= null;
D(D x, Dy) {

a = X.a;
b = vy.b;

}

Then the command escj ava D. j ava yiddsthe warning:

D.java: 10: Warni ng: Possible violation of object invariant (lnvariant)

}

AN

Count er exanpl e | abel s:
bar foo

Thereisno way to tell from this message whether ESC/Java is warning about the case where a has nonnegetive x
andy fidldsand b has negativex andy fields, or about the case where a'sfields are negative and b's are
nonnegative. (However, for this particular example, the- count er exanpl e switch, described in appendix A,
would resolve the ambiguity.)

3.2.17 owner

The standard . spec file (see section 5.1.2) for the classj ava. | ang. Obj ect gives every object 0 aghos fidd
O. owner Of typebj ect :

ESC/Java input from file .../java/lang/Object.spec:

/'l @ghost Object owner;
The intended use of thisfield isfor dtuations is which the programmer wishes to specify that somefidd is
unshared. For example. if aclass T with anindancefidd f declares the ingtance invariant

ESC/Java input from file .../T.java:

[/ @invariant f.owner == this
then it follows that, a any point where the invariant holds, we cannot havex. f == y. f for two distinct objects x
andy of type T (3ncethe conditionsx. f. owner == x,y.f.owner == y,together withx.f == y.f would
imply x == y).

Example

630 B

Hereisan example of agtuation in which it is useful to specify that afidd isunshared. [Note: Understanding
this example may require more than a cursory reading. While we usudly relegate such materid to sections
marked ~"Fine points", the scenario described here is of a sort that most ESC/Java users are likely to encounter
as oon asthey try to check code with invariants of any complexity, specificdly invariants involving both (1)
quantification (induding the quantification implicit in dl ingtance invariants) and (2) indirect referenceslikex. f . g
orx.a[i] (induding caseswhere an expresson likef. g ora[i] implictly meansthis.f.gorthis.a[i]).

A few minutes working through the details with pen or pencil in hand will lead to dear underganding, and the time
will be well spent]

Congder the following class, whose instances represent stacks of objects (to keep the example smple, we put a
fixed limit of 10 on the 9ze of a dack):

Input from file ObjStack.java:

1: class Obj Stack {

2 [*@non_null */ Cbject [] a;

3 /[l @invariant a.length == 10;

4 /[l @invariant \elentype(\typeof(a)) == \type(hject);

5: int n; //@invariant 0 <= n & n <= 10;

6 /[l@invariant (\forall int i; n<=i &i <10 ==> a[i] == null);
7

8 Obj Stack() {

9 n = 0;

10: a = new bject[10];

11 }

12:

13: /I @requires n < 10;
14: voi d Push(Object o) {

15: a[n++] = o;

16: }

17:

18: /l@requires n > 0;
19: Obj ect Pop() {

20: bject o = a[--n];
21 a[n] = null;

22: return o;

23: }

24:

25}

The dements of agtack x arethefirdx. n dementsof thearray x. a. To avoid retaining pointers to garbage, we
insure that the remaining dementsof x. a arenul |, as pecified by thei nvari ant pragmaon line 6.

If we run ESC/Java on the source above, it produces the following complaint:

oj St ack: Push(java.l ang. Object) ...
Cbj St ack. java: 16: Warning: Possible violation of object invariant

(I'nvariant)

}

640 B

N

Associ ated declaration is "Obj Stack.java", line 6, col 6:
/1@invariant (\Mforall int i; n<=i &i <10 ==> a[i] == null)

N

Possibly relevant itens fromthe counterexanpl e context:
brokenObj <2> I'= this
(brokenCbj* refers to the object for which the invariant is broken.)

(For abasic explanation of counterexample contexts, seeappendix A.) What is going on hereisthat ESC/Java
has found a scenario in which the Push method fails to maintain the ingance invariant on line 6. Theline

br okenObj <1> ! = this

tells us that the object for which the invariant is broken is not the object (t hi s) whose Push method is called.
The problem isthat, so far as ESC/Java can tell, there may be some object, cal it br okenbj , such thet the
following conditions hold at the Sart of the execution of Push:

® brokenObj !'=this
® brokenCbj.a == this.a
* brokenObj.n == this.n

Now consder the effect of theline
15: a[n++] = o;

Theevadudion of n++ increasest hi s. n, but leaves br okenObj . n unchanged. On the other hand, the array
store does set br okenbj . a[n] (where n denotes the vaue before the increment) to o. Thus, after line 16, we
have

® brokenQbj . a[brokenObj.n] == o
sothaifo !'= null (asmay very wdl bethe case), theingance invariant on line 6 isviolated for br okenQbj .
Infact, asillugtrated by the example above, the correctness of the Push method of bj St ack depends on an
implicit design decison: No two disinct Obj St ack's ever share the same a field. (The correctness of Pop dso
depends on this design decision, though not in away that is checked by ESC/Java given the annotations in the
example above)) The user can take advantage of the owner fidd to communicate this desgn decison to
ESC/Java by adding the pragma:

7: [/ @invariant a.owner == this

(Given thisinvariant, it is no longer possible to have a scenario in which the conditions

® brokenObj != this
® brokenCbj.a == this.a

both hold.) Having added thisinvariant, the user must dso supply aset pragmain order to guarantee that the

6o B

congtructor for Obj St ack establishesthe invariant:

o ObjStack() {

10: n = 0;

11: a = new Object[10];

12: /] @set a.owner = this;
13: }

Without theset pragma, ESC/Javawill generate awarning that the congtructor fails to establish the invariant
a.owner == this.

Fine points

Just asdl congructors have the implicit postcondition \ f resh(\ resul t) (see section 2.3.2), dl constructors
(including the implicit congtructors for arrays) have the implicit postcondition t hi s. owner == nul I . Inthe
example above, thisimplicit postcondition guaranteesthet t hi s. a. owner == nul | after line11. If

this. a. owner could have had some non-null value (cal itbr okenQbj) after line 11, then the set pragmamight
cause the invariant on line 7 to be violated for br okenbj .

Another way to guarantee that no two Obj St ack's share the same a fidld would be to include in the declaration
of Obj St ack the gatic invariant

(\forall OnjStack x, y; x !=y ==> x.a l=y.a)

Theingance invariant a. owner ==t hi s isnot only more succinct than the setic invariant above, but aso
stronger. To see why, suppose we had another class Foo which declared afidd b and the ingance invariant

b. owner == this. Thentheinvariantsa. owner == thi s (for Obj St ack) andb. owner == t hi s (for Foo)
together would imply not only

(\forall OnjStack x, y; x !=y ==> x.a l=y.a)
and
(\Mforall Foo x, y; x =y ==> x.a !=y.b)
but aso
(\forall ObjStack x; (\forall Foo y: (Object)x !'=y ==> x.a !=y.b))

If, for example, ESC/Java were checking code that modified a component of the b field of someFoo f oo, and if
that code occurred in ascope where the invariant on line 6 of bj St ack. j ava were conddered heurigticaly
relevant (see the fine pointsin section 2.4.1), then ESC/Javawould need thislast consequence in order to
eliminate from consderation scenarios in which the invariant on line 6 might become violated for some bj St ack
br okenObj With br okenbj . a == foo0. b.

See [LS99] for adifferent approach to specifying that certain fields are unshared.

3.3 Scoping, name resolution, and access control in specification expressions

66 of B

The rulesfor scoping, accessibility, and resolution of names in specification expressons differ in severd ways
from those for Java expressons. We have described most of these differences dsewhere in this manud, but
repest them here to have them collected in one place.

Applications of the ESC/Java operators\ t ypeof , \ el ent ype, \ max, \ nonnul | el ements\fresh,and\ ol d
are parsed like method invocations, with the operator taking the role of the method name. Of course,
gpplications of these operators are dlowed in specification expressions even though ordinary method invocations
areforbidden, as stated in section 3.1.

Bound variablesintroduced by \ f or al I and\ exi st s are scoped like Javalocal variables, as are the variables
declared to name exceptionsin exsur es and al so_exsur es pragmas. For example, in aquantified expression
(\forall int k; a[k] == 0),thedeclarationi nt k; introducesthe bound variable k, whose scopeisthe
SoecExpr a[k] == 0. Furthermore, just as Javaforbids declaration of an identifier asaloca variable within
the scope of a parameter or local variable of the same name [JLS 14.3.2], so ESC/Java forbids declaration of
an identifier as abound variable within the scope of a parameter, locad variable, or bound variable of the same
name. Consequently, the quantified expresson (\foral | int k; a[k] == 0) cannot occur in ascope
where there is dready a parameter, local variable, or bound variable named k.

The scoping rules of routine parameters, fields, t hi s, and super are dightly different from thosein Java. In
paticular:

* When a SpecExpr occursin amodifier pragma (section 2.0.1) applied to afied, namesin the SpecExpr
are resolved asif the SpecExpr were part of the initidizer of the fidd. Consequently, if thefidd isan
ingancevariable thent hi s and super can be mentioned and any unqudified fidd namef isasynonym
forthis. f. While Javaforbidsfied initidizers from using other fidds thet are declared later in textud
order (even though they are in scope), this restriction does not gpply to ESC/Java pragmas (compare the
examplesin sections 2.5.1 and 2.7.0 tothosein [JLS, 8.3.2.1, 8.3.2.2]).

¢ When a SpecExpr occursin amodifier pragma gpplied to aroutine declaration, names in the SpecExpr
are resolved asif the SpecExpr were placed a the beginning of the routine body. Consequently, the
names of the routine's parameters are in scope. Furthermore, if the routine is an instance method, then
t hi s and super can be mentioned, and if the routine is a congtructor, then t hi s and super can be
mentionedin ensur es pragmas. Asusud, wherever t hi s can be mentioned, an unqudified fidd name f
isasynonymfort his. f.

¢ When a SpecExpr occursin amodifier pragma applied to an abstract method declaration, namesin the
SoecExpr areresolved as if the method could have a body and the SpecExpr were placed there. That is,
the names of the method's parameters are in scope, t hi s can be mentioned, any unqudified field name
isasynonym for t hi s. f, and if the abstract method declaration occursin a class (rather than in an
interface) then super can be mentioned.

* Inany other SpecExpr, the same parameters, loca variables, and fields are in scope asin the Java context
where the annotation containing the SpecExpr occurs; t hi s can be mentioned (and any unqudified fidd
namef isasynonym fort hi s. f) if the SoecExpr occursin a Java context wheret hi s can be
mentioned; and super can be mentioned if the SpecExpr occurs in a Java context where super can be
mentioned. Moreover, in a SpecExpr that occurs in adeclaration pragma (see section 2.0.1) inaclass,
t hi s and super can be mentioned and any unqudified fidld namef isasynonymfort his. f.

A ghost fiddf (see section 2.6.0) isin scopein pragmas wherever an actua Java member of the class

containing the ghost pragmadeclaring f would be in scope. The rules for name resolution are different for ghost
variables than for ordinary variables. Javavariables (if in scope) hide conflicting ghost variables of the same name

670 B

regardless of their points of declaration, and regardless of whether the Java variable is accessible. Ghost
variables, on the other hand, hide neither Java variables nor other ghost variables. For example, given the
declarations

Input form file I.java:
interface | {
/'l @ghost public int i;
/1 @ghost public int j;

}
Input from file C.java:

class C {
private int i;
/'l @ghost public int j;

}
Input from file D.java:

class D extends C inplenments | {..}

areferencetoi inapragmain D. j ava would resolveto thered field of C rather than the ghost fidd of 1 (and
would then generate an error because that field is not accessible in D), while areferencetoj inapragmain D
would be ambiguous (sncec and | both declare ghost fiddds named j and neither hides the other).

Note: The preceding rules about ghost variables, and the restriction againg reusing a name in scope as a ghost
field name (section 2.6.0), are intended to reduce the number of Stuations where a name unambiguoudy means
one thing in Java code and unambiguoudy means a different thing in an adjacent pragma. Unfortunately, some
such stuations dill remain. For example, if aghost field and a dlass have the same name N, then the expression
N.f might refer to adatic field of cdlassN in Javacode, whilemeaning t hi s. N. f in anearby annotation.

The rules that make names accessible in specification expressions (spec-accessible) are in some cases more
liberd that Javas access control rules[JLS, 6.6]. In particular:

« |f avariables declaration is annotated with aspec_publ i ¢ (section 2.5.0) pragma, then the variableis
spec-accessible wherever it would have been spec-accessible if it had been declared publ i c.

« A variabledeclared aspr ot ect ed IS spec-accessble in the package where it is declared and in any
subclass of the classwhereit is declared (without the additiond redtriction in[JLS, 6.6.2]).

Of course there are also some cases where variables--for example, ghost variables (section 2.6.0)--are
spec-accessible but not Java accessble smply because they are not in scope in Java

Findly, thelabd Identifier ina\ | bl pos or\ | bl neg expression is part of a separate name space. The label
does not become available for use insde the SpecExpr. A labd is permitted to have the same name as an
identifier dready in scope or asalabd in an enclosing labeled expression. If alabe has the same name as an
identifier dready in scope, it does not hide that identifier.

4 Warnings

680f B

ESC/Javaissues warnings for conditions thet it regards as run-time errors, and that, so far isit can tdl, might
actudly occur at run-time.

The potentia conditions that give rise to some ESC/Javawarning types (specificaly Nul 1, 1 ndexNegat i ve,

I ndexTooBi g, Cast, ArraySt or e, Zer oDi v, and NegSi ze) are conditions that would be detected by the Java
run-time system and give rise to exceptions (pecificaly, Nul | Poi nt er Except i on,

I ndexQut OfF BoundsExcepti on, Cl assCast Excepti on, ArraySt or eExcepti on,

Arithmeti cException, and Negat i veArraySi zeExcepti on). The current ESC/Java regards these
conditions as run-time errors, and generates warnings for them even if the program actually catches the resulting
exceptions.

Fine point: In some cases multiple warnings may arise from the same cause. For example, if a
varidbleis dereferenced in multiple arms of aswi t ch statement but is not dereferenced before the
swi t ch Statement, and ESC/Java cannot confirm thet the variable is non-null, then it will issue a
warning for the first dereference of the variable in each arm of the swi t ch Statement. In order to
reduce the likelihood of flooding the user with redundant warnings, ESC/Java will issue & most 10
warnings for any method or routine before moving on to the next routine. Users can change the
maximum number of warnings per routine by setting the PROVER_CC_LI M T environment varigble
(seetheescj ava(1) man page).

Section 4.0 describes the parts of ESC/Java warning messages. The remaining subsections of this section
describe dl the types of warnings issued by the current ESC/Java. [These descriptions may be skipped on first
reading, or until the reader is confronted with an ESC/Java warning whose meaning or cause is unclear.]

A recommended discipline for usng ESC/Java is to annotate your program sufficiently so that ESC/Java
produces no warnings, and in this process to resort to the use of nowar n or assune pragmas only in cases
where other dternatives are impractical. Below we include occasiond tips about pragmas that might be added in
response to particular warnings. The - suggest command-line option (see section 5.1.1 or theescj ava(1)
man page) causes ESC/Javato offer suggestions (of varying qudity) for pragmas that might be added in response
to some warnings.

4.0 Parts of ESC/Java warning messages

Theprimary part of each ESC/Javawarning message gives a brief description of the kind of condition being
warned of, including a parenthesized “warning type" name, and indicates a source code location--the ~dynamic
location” of the warning--for the control point a which the condition potentialy occurs.

For some warning types, the message additiondly indicates the source code location of (the first character of the
initia keyword of) the pragma:-the warning's associated pragma--that causes ESC/Javato regard the condition
asarun-time error.

If thewamningisan | nvari ant warning, the message will usudly indude apartial counterexample context,
which may be of help to the user to tell which object that might--so far has ESC/Java can determine--have its one
of itsinvariants violated and why.

An ESC/Java warning message may include an execution trace lising interesting (see the fine points below)

control decisions on some execution path that--so far as ESC/Java can determine--may plausibly lead to the
run-time error mentioned in the warning.

6o B

Finaly, an ESC/Java might list some labels that occur in pragmeas an are relevant to the scenario being warned
about. (See section 3.2.16 for some examples))

Example

Supposethefilec. j ava contains the following class declaration.

1. class C {
2
3 int i;
4 int[] x;
5: /*@invariant i > 0
6 ==> x != null
7 */
8
9 void m(int[] p, int[] q) {
10: i = 10;
11: int[] t;
12: if (p!=null) {
13: t =p;
14: } else {
15: t = q;
16: }
17: X =t;
18: }
19: }
Then the output from the command

escjava C.java

includes one warning message.

The primary part of the warning message indicates that the some invariant might not hold when control reeches
the end of the method mi

CC.java: 18: Warning: Possible violation of object invariant (Invariant)

}

The next part of the warning message gives the associated pragma, ani nvar i ant pragmagartingonlines:

Associ ated declaration is "C. java", line 5, col 6:
/[*@invariant i >0 ...

AN

The dlipsisindicates that the associated pragmamay continue beyond the part that is shown in the message. (In
this case it extends onto the next line of the program.)

0o B

Sincethisisan | nvari ant warning, itincludesapartid counterexample context:

Possi bly relevant itens fromthe counterexanple context:
brokenObj == this
(brokenCbj* refers to the object for which the invariant is broken.)

Here we see that the object whose invariant might be violated ist hi s, that is, the object whose mmethod is
being executed.

Thefind part of the warning message is an execution trace, indicating a scenario in which the right hand side ¢ of
the assgnment on line 12 might in fact evaluateto nul | :

Execution trace infornmation:
Executed el se branch in "C. java", line 14, col 11.

Fine points

The command-line option - pl ai nwar ni ng suppresses output of partia counterexample contextsin | nvar i ant
warnings.

The command-line option - count er exanpl e causes ESC/Java to supply counterexample contexts with all
warnings.

The execution trace in awarning mentions the following events on the execution path associated with the warning:

¢ execution of ar et ur n statement (provided evauation of the expression to be returned completes
normally)

¢ execution of at hr ow Statement (provided evauation of the exception to be thrown completes normally)

¢ execution of abr eak Satement

¢ execution of acont i nue Satement

¢ commencement of any branch of ani f gatement (including the implicit empty el se branch)

* commencement of any branch of aswi t ch satement (indluding the implicit def aul t)

« commencement of evauation of either arm of aconditiona (2 :) expresson

« ghort-circuit completion of evauation of aconditiond (&& and | |) expression

* exceptiond completion of aroutine cal

« commencement of any iteration of aloop (see the fine points of section 2.4.3 for information about
ESC/Java's trestment of 1oops)

e entrancetoafi nal | y block, when the associated t ry block terminateswith at hr ow, r et ur n, br eak,
Or conti nue

e exitfromafinal I'y block, when the block is entered after at hr ow, r et ur n, br eak, Or cont i nue and
the body of thef i nal I y block completes normaly (so that thet hr ow, r et ur n, br eak, Or cont i nue is
resumed after thef i nal I y block)

ESC/Java actudly associates some execution path with each warning, but if the execution path associated with a
warning includes no events of the kinds listed above, then ESC/Java omits the line

Execution trace infornmation:

710 %

from the warning message.
The command-line option - not r ace SUppPresses output of execution traces.

The command-line option - suggest causes ESC/Javato accompany certain of its warning messages with
suggestions for pragmas that may diminate those warnings. See section 5.0 for some examples.

4.1 ArrayStore warning

AN Ar ray St or e warning warns thet the control may reach an assgnment Al 1] = E whenthevaueof E isnot
assgnment competible with the actud eement type of A. (This condition would result in an
ArraySt or eExcept i on being thrown a runtime [JLS, 10.10, 15.25.1].)

Tip: See section 3.2.4 for discussion of acommon cause of Spurious Ar r ay St or e warnings and examples of
annotations to avoid them.

4.2 Assert warning
AnAssert warning warnsthat control may reach apragmaassert E whenthevadueof E isf al se.
4.3 Cast warning

A cast warning warns that control may reach acast (T) E when the vaue of E cannot be cast to the type E.
(This condition would result inacl assCast Except i on being thrown & runtime [JLS 5.4, 15.15].)

Tip: cast warnings often arise in connection with the use ~container" classes, when the programmer intends a
particular container to be used exclusvely to hold e ements of some particular type T (a proper subtype of

Obj ect) but the methods for extracting elements are declared to return results of type bj ect . The second
examplein section 2.6.2 shows how the programmer can use aghost variable to express the desgn decison
that the container will hold only instances of T (0 that objects extracted from the container can dways safely be
cast to typeT).

4.4 Deadl ock warning

A Deadl ock warning warnsthat control may reach asynchr oni zed Statement or acal toasynchr oni zed
method that would acquire alock in violation of the locking order. That is, it warns of the possibility that athread
might attempt to acquire alock L when

\lockset[L] | \max(\lockset) < L

isfdse

In the current ESC/Java, Dead! ock warnings are disabled by default, but can be enabled by use of the command
lineoption - war n Dead! ock.

The only way that ESC/Java can ever show that the execution of asynchr oni zed Statement or a

synchroni zed method body will not result in a potentia locking order violation (and thusin a potentid
deadlock) is by using information supplied in pragmas. The usua way to supply the necessary information isto

20 %

use an axiom pragmarto supply information about the locking order, and to use ar equi r es pragmato supply
information about the locks held on entry to any routine whose body includesasynchr oni zed statement or a
cdl toasynchr oni zed method.

A Deadl ock warning has no associated pragma. Typicaly the warning results from the absence of some pragma
that would supply the information needed to show that the locking order is obeyed. While auser might
sometimes blame aDead| ock warning on abug in some specific pragma, there is no generd mathematicd rule
for uniquely ascribing such blame.

4.5 Excepti on warning

AnExcept i on warning warns that a routine may terminate abruptly by throwing an exception that is not an
ingtance of any type listed in the routine's throws clause.

Note that ESC/Javas treatment of unchecked exception classes[JLS, 11.1] isdifferent from Javas. Javas
compile-time checking never requires a throws clause to mention an unchecked exception class. By contradt,
when ESC/Java checks the body of aroutiner, it consders the possbility of exceptions being thrown by any

t hr ow Statement in the body of R and by any call from R to a routine with a nonempty throws clause, and it issues
awarning if (so far asit can determine) it is possible that R may terminate aoruptly with such an exception other
than an ingance of atype mentioned in R'sthrows clause. (However, ESC/Java does not consider the possibility
of exceptions being thrown other than by t hr ow Statements or in accordance with the throws clauses of called
routines.)

Tips. Thecontrol point associated with an Except i on warning isthe end of the routine body, rether than the
point a which the exception isfirg thrown. Thisistechnicaly correct because the potentid error is not throwing
the exception, but letting the exception escape the routine body without being caught. However, in trying to
understand why the warning is being issued and what to do about it, you are more likely to be interested in
knowing where the problematic exception might be thrown, as indicated by the execution trace (see section 4.0)

in the warning message.

The Java language requires that routines declare all checked exceptions that they might throw [JLS, 11.2].
Consequently, ESC/Javas Except i on warning is of interest only in connection with unchecked exceptions.
Even if your own code makes no mention of unchecked exceptionsit may cal library routines whose throws
clauses mention unchecked exceptions.

It may tempting to take the view that unchecked exceptions are unchecked precisdy because it is not worthwhile
to check for their presence a compile time, and therefore dways to run ESC/Java with the - nowar n

Except i on command-line option (seetheescj ava(1) man page for descriptions of ESC/Java command-line
options). However, the whole purpose of ESC/Javaisto do more sophigticated static checking than compilers
do, and you may make better use of its cgpabilities by employing aless extreme and more fine-grained trestment
of unchecked exceptions. Suppose, for example, that your program cals alibrary method with the declaration

/[** Returns the elenent-wi se sumof a and b. Throws
a Nul | Poi nterException if either a or b is null.
Throws an | ndexQut Of BoundsException if a and b are
not of the same |ength.

**/

public static int[] add(int[] a, int[] b)

730 B

throws Nul | Poi nt er Exception, |ndexQOut Of BoundsException

{ ..
}

and that it is your intention never to supply arguments that give rise to exceptions (and therefore not to bother
with code to detect and handle the exceptions a run time). In this case, you might get some useful checking from
ESC/Java by cregting a. spec file (see section 5.1) containing adeclaration for add with thet hr ows clause
removed and ar equi r es pragmasupplied inits place

[** .

<esc> requires a !=null &b !'=null & a.length == b.|ength;
</ esc>

**/

public static int[] add(int[] a, int[] b);

Alternaively, you might supply exsur es pragmas specifying the conditions under which the exceptions may be
thrown:

[** .

<esc> exsures (Null Poi nterException)
a==null | b == null
exsures (I ndexCut Of BoundsExcepti on)
al!=null &b !=null & a.length = b.length
</ esc>
**/

public static int[] add(int[] a, int[] b);

With this last specification, ESC/Javawill consder execution paths in which acall to add terminates
exceptiondly, but only if it cannot verify the arguments are non-null and of equd length.

4.6 | ndexNegati ve warning

An| ndexNegat i ve warning warnsthat control may reach an array access Al 1] when the vaue of theindex |
isnegdive. (Thiscondition would result in an | ndexQut Of BoundsExcept i on being thrown a runtime[JLS,
11.5.1.1, 15.12.1].)

4.7 1 ndexTooBi g warning

An| ndexTooBi g warning warns that control may reach an array accessA[1] whenl >= A | engt h. (This
condition would result in an | ndexQut Of BoundsExcept i on being thrown a runtime[JLS, 11.5.1.1, 15.12.1].)

4.8 | nvari ant warning

Anl nvari ant warning warns that some object invariant may not hold when control reaches aroutine cdl, or
that some object invariant may not hold on exit from the current body. The warning is associated with the

i nvari ant pragmathat givesthe potentidly violated object invariant.

Tip: Aninvari ant warning is normaly accompanied by apartid counterexample context describing conditions
under which, so far as ESC/Java can determine, the indicated invariant might be violated, for example:

TAdf %5

Possibly relevant itenms fromthe counterexanpl e context:

\'t ypeof (brokenOhj <3>) == \typeof (this)
brokenObj <3> !'= this
br okenObj <3> ! = nul

In this diplay, some inflected form of the identifier Br okenbj isused to name the object for which the invariant
is broken, known as the broken object. If, asin the example above, the displayed formulas tell what the broken
object isnot equd to, but don't tell what it isequd to, then the likely cause of the warning is that the program
modifies some fidd (call it f) of some object (call it t) and that ESC/Java hypothesizes that this modification
might break the invariant for some other object, for example a hypothetica object u suchthatu !'= t butu. f

== t.f. If the programmer'sintention isthat no such sharing of fields can occur, the programmer can
communicate this intention to ESC/Java by supplying an gppropriate invariant near the declaration of the field, for
example

[/ @invariant this.f.owner == this;

For amore detailed example of the scenario outlined above, see the discusson of the owner fidd and itsusein
section 3.2.17.

Fine points

The command-line option - pl ai nwar ni ng Suppresses output of partia counterexample contextsin | nvar i ant
warnings. Thismay be useful in cases where ESC/Javas output is read by another program.

In the partid counterexample context inan | nvar i ant warning for a constructor, the object being constructed
may be named by an inflected form of the identifier RES. For example, in the Obj St ack example from section
3.2.17, wewrote:

Without theset pragma, ESC/Javawill generate awarning that the congtructor fails to establish the
invariant a. owner == this.

Thewarning might be something like:

Cbj St ack. java: 12: Warning: Possible violation of object invariant
(I'nvariant)

}
N

Associ ated declaration is "Obj Stack.java", line 7, col 6:
/[l @invariant a.owner == this;

N

Possibly relevant itens fromthe counterexanpl e context:

br okenObj <1> == RES: 9. 13
(brokenoj* refers to the object for which the invariant is broken.)

Here, the equaity br okenbj <1> == RES: 9. 13 indicates that the object whose invariant may be violated isthe
object being constructed.

Bof B

4.9 Loopl nv warning

A Loop! nv warning warns that some loop invariant may not hold & the start of an iteration of aloop (including
aniteration inwhich the The pragmais associated with thel oop_i nvari ant pragmathat gives the potentialy
violated loop invariant. (For more details of ESC/Javas trestment of loop invariants, see sections 2.4.3 and
C.0.1)

4.10 NegSi ze warning

A NegSi ze warning warns of a possible attempt to dlocate an array of negetive length. (This condition would
reult inaNegat i veAr raySi zeExcept i on being thrown a runtime [JLS 15.9].)

4.11 NonNul I warning

A NonNul I warning warns of a possible attempt to assgn the valuenul | to avariable whose declaration is
modified by anon_nul I pragma, or to cdl aroutine with an actud parameter value of nul I whenthe
declaration of the corresponding forma parameter is modified by (or inherits) anon_nul | pragma Thewarning
isassociated with thenon_nul | pragmathét is potentialy violated.

Tips: If theright hand Sde of the assgnment indeed never evduatesto nul |, you must somehow communicate
the reason to ESC/Java. For some ideas about this, see the tips given in connection with Nul | warningsin
section 4.13. Alterndively, it may bethat thenon_nul | pragma associated with the warning is too strong and
should be replaced by an annotation that only requires the affected field or variable to be non-null under certain
conditions. See aso the commentsin section 2.4.0 about non_nul | VS.i nvari ant andr equi r es pragmas.

4.12 NonNul I I ni t warning

A NonNul I I ni t warning warns that a congructor may fail to establish a non-null value for an ingance fidld of the
congructed object when the declaration of that instance fidld is modified by anon_nul I pragma Thewarning is
asociated with thenon_nul | pragmathat is potentidly violated.

4.13 Nul I warning

A Nul | warning warns of a possible attempt to dereferencenul |, for example, by field accesso. 1, an array
access i], amethod cdl 0. n{...), asynchroni zed Satement synchroni zed (O) ..., Or at hrow
datement t hr ow O, where O evaduatestonul | . (Any of these would result inaNul | Poi nt er Except i on being
thrown a runtime [JLS, 11.5.1.1, 14.17, 15.10, 15.11, 15.12].)

Remark: JLS doesn't say that throwingnul I resultsin anul I Poi nt er Except i on, but experimentation with
javac(5) andjava(5) revealsthat it does.

Tips. If theexpresson oisaforma parameter, consder adding anon_nul | pragmato the parameter's
declaration or supplying ar equi r es pragmastating that the parameter must be non-null under certain
conditions. If oisafied accessP. g, consder adding anon_nul I pragmato g's declaration, supplying an

i nvari ant pragmadating that g isnon-null under certain conditions, or (if P involves parameters of the current
routine) supplying an gppropriaier equi r es pragma. If Oisan array access, consder supplying ar equi res or
i nvari ant pragmausng\ nonnul | el enent s (See section 3.2.12). If oisamethod cdl, consder annotating

60 B

the cdled method with ensures \result !'= null Orensures Q ==> \result != null for some
gppropriate condition Q. See the second example in section 2.6.2 for an example of pragmas guaranteeing that an
element extracted from a container will be non-null.

4.14 Owner Nul | warning

Asdescribed in section 3.2.17, every congtructor hastheimplicit postcondition t hi s. owner == nul | . An
Owner Nul | warning warns that a constructor may return an object whose owner fied is non-null.

4.15 Post warning

A Post warning warns that a routine body may fail to establish some norma postcondition (on terminating
normaly) or some exceptiona postcondition (when terminating by throwing an exception of ardevant type). The
warning is associated with theensur es, exsur es, al so_ensur es, Or al so_exsur es pragmathat givesthe
potentialy violated postcondition.

Tips. If apost warning seems mysterious, the problem might be that the programmer intended to refer to the
post-state value of some field, but forgot to include anodi fi es Or al so_nodi fi es pragmanaming thet fidd as
atarget. See section 2.3.3 for further discussion of thispoint. 1t can aso be useful to examine the execution
trace that accompanies the warning. For example, you might see that the trace reported be ESC/Javainvolves
execution of ar et ur n statement in the middle of the method that you had overl ooked.

4.16 Pre warning

A Pr e warning warns that control may reach aroutine cal when some precondition of the routine does not hold.
The warning is associated with ther equi r es pragmathat gives the potentidly violated precondition.

4.17 Race warning

A Race warning warns of a possible attempt to access amonitored field while not holding the requisite lock(s).
The warning is associated with the noni t or ed or noni t or ed_by pragmagiving the lock(s) that should be held.

Bug/limitation: If there are multiple moni t or ed and/or moni t or ed_by pragmasfor the samefiddf, aRace
warning for an accessto f will mention only one of these pragmas, and perhaps not the most relevant one.

4.18 Reachabl e warning

A Reachabl e warning warns that control may reach an unr eachabl e pragma

4.19 Unr eadabl e warning

An Unr eadabl e warning warns that control may reach aread accessto a variable when the expressonina
readabl e_i f pragmamodifying the varidble's declaration isfdse. Thewarning is associated with the

readabl e_i f pragma

4.20 Uni nit warning

7o B

AnUni ni t warning warns that control may reach aread accessto aloca variable before execution of any
assignment to the varidble other than an initidizer in adeclaration modified by an uni ni ti al i zed pragma. The
warning is associated with theuni ni ti al i zed pragma

4.21 Zer oDi v warning
A zer oDi v warning warns of a possible attempt to apply the integer divison (/) or remainder (%9 operator with

zero asthedivisor. (This condition would resultinan Ari t hnet i cExcept i on being thrown a runtime[JLS
15.16.2, 15.16.3].)

5 Command-line options and environment variables

The operation of ESC/Javaiis controlled by avariety of command-line options and environment variables. The
primary source of information on theseistheescj ava(1) man page included with the ESC/Java release (see
appendix B). In this section, we describe a small number of options that are of particular importance, or that
seem to merit more extens ve descriptions than those on the man page.

5.0 - suggest

The- suggest command-line option causes ESC/Java to accompany certain of its warning messages with
suggestions for pragmeas that may diminate those warnings.

Examples

Running ESC/Java with the command line
escj ava -suggest Bag.java

ontheverson of Bag. j ava in section 0.0 will produce such suggestions as

Bag.j ava: 6: Warning: Possible null dereference (Null)
n = input.length;

AN

Suggestion [6,13]: perhaps declare paraneter 'input' at 5,12 in Bag.java
with 'non_null

Running ESC/Java with the - suggest option onthefileT. j ava from section 3.2.4 will produce the following
warning and suggestion:

T.java:5: Warning: Type of right-hand side possibly not a subtype of array
el ement type (ArrayStore)
a[i] = x;
N

Suggestion [5,9]: perhaps declare nethod 'storeCbject' at 4,14 in T.java
with 'requires \elenmype(\typeof(a)) == \type(T);"

Running ESC/Javawith the - suggest option on the fileObj St ack. j ava from section 3.2.17 will produce the
following warning and suggestion:

8o B

bj St ack. java: 16: Warning: Possible violation of object invariant
(I'nvari ant)

}
N

Associ ated declaration is "Obj Stack.java", line 6, col 6:
/l@invariant (\Mforall int i; n<=i &i <10 ==> a[i] == null);

N

Possibly relevant itenms fromthe counterexanpl e context:
(0 <= (brokenOnj<2>).(n:15.6))

(brokenoj* refers to the object for which the invariant is broken.)

Suggestion [16,2]: perhaps declare instance invariant 'invariant

this.a.owner == this;"' in class Obj Stack (near associated declaration at
"Obj Stack.java", line 6, col 6)
Fine points

ESC/Java does not supply suggestions for al warnings, and the suggestions that it does supply are heurigticaly
chosen and may be incorrect. For example, if the contents of fileC. j ava are

1. class C {

2:

3: int n;

4.

5: static int mM(Ca, Ch) {
6: if (al=null) {
7 return a.n;

8: } else {

o: return b.n;

10: }

11: }

12. '}

thenthe command escj ava - suggest C.j ava will giveawarning about and possible null dereference on line
9, accompanied by the suggestion:

Suggestion [9,14]: perhaps declare paranmeter 'b' at 5,22 in C.java with
"non_nul |’

It might actually be better to declare the method mwith the precondition
/l@requires a !=null | b !=null;

snce it might be the intention of the programmer to support calers that meet only this precondition and not
necessaxrily the more stringent condition that b aways be non-null.

Despiteits limitations, the - suggest option can be of consderable help to usersin paring down theinitid batch
of mostly-spurious warnings that ESC/Javatypically produces when it isfirst run on abody of unannotated code.

o B

(A project currently under way at Compaq SRC is exploring automated techniques for inferring ESC/Java
annotations [FLOO, FJLxx].)

5.1 Specification (. spec) filesand the ESC/Java's class path

This section discusses the dgorithm that ESC/Java uses to find declarations of classes, and waysin which the
user can control that agorithm.

In order to check the routine bodies of a class ¢, ESC/Javamay need various information about some other type
(cdassor interface) T. Thisinformation, which we cdl the specification of T, may include both information
introduced by pragmas (such asi nvari ant andr equi r es) and information from the Java language (such as
routine signatures and types of fields), but does not include routine bodies.

If ESC/Java needs the specification for atype T and can find only abinary (. cI ass) fileand no sourcefilefor T,
then it can produce a Smple specification based on the signature and type information included in the binary file.
ESC/Java can dso obtain specifications from specification (. spec) files (see section 5.1.2).

5.1.0 Filereading modes
ESC/Java has two modes for reading files full mode and spec-only mode. In order for ESC/Javato check the
routine bodiesin afile, it must read the filein full mode. When ESC/Javareads afilein spec-only mode, it only
obtains specifications that can be used to check routine bodies in other files. ESC/Javacanread . j ava filesin
either mode. It canread. cl ass filesin spec-only mode, but not in full mode.
When ESC/Java reads a source file in spec-only mode, it performs very limited processng--in particular, very
liberal syntactic error-checking--on the bodies of routines. We do not specify here the exact degree to which the
error-checking is liberdized, except to state that where a routine body would normaly be expected, ESC/Java
will accept (at least) any of the following when reading a source file in spec-only mode:

asemicolon ; (asinthe Javasyntax for an abst r act method declaration).

anempty body { } (hotethat nor et ur n Satement isrequired, even for anon-voi d method).

amethod body congsting of legal Java code legdly annotated by ESC/Java pragmeas (thet is, a
body thaet ESC/Java would accept if it were reading the file in full mode).

5.1.1 TheESC/Java class path (- cl asspat h, CLASSPATH, - boot cl asspat h)
Like the Javacompiler (j avac(5)), ESC/Java uses a class path to look for declarations of types (classes and
interfaces) that are not declared in files named on the command line. For a description of how ESC/Java usesthe
class path, see section 5.1.3 below.
The (full) class path is the concatenation of two parts: cl asspat h and boot cl asspat h, wherecl asspat h iS

¢ theagument of the- cl asspat h command-line option, if any, on the command line, or else

¢ thevaue of the CLASSPATH environment variable if one has been s, or dse
¢ adefault vdue

80d B

and boot cl asspat h is

¢ theargument of the- boot cl asspat h command-line option, if any, on the command line, or else
* adefault vaue

Thedefault vduesof cl asspat h and boot cl asspat h are subject to change. At the time of writing, the default
cl asspat h is". " and the default boot cl asspat h includes adirectory of selected . spec files(see section
5.1.2) for selected library classes and interaces together with directories for the norma Java system libraries (the
same default versonsused by sr cj ava(1)).

Fine point
If acommand line contains multiple occurrences of the - cl asspat h option, asin

escjava-classpath Pl -classpath P2 sourcefiles

only the last one (P2 in the example) isused. The same gpplies for multiple occurrences of - boot cl asspat h.

Tip: The-v (verbose) command-line option makes ESC/Java output various information including the full
classpath. Thus, you can learn the current default vaue of either cl asspat h or boot cl asspat h a your Site by
Setting the other to a known vaue and looking for the other in the output produced with - v. For example, you
can learn the value of boot cl asspat h by typing

escjava -classpath xxx -v | grep classpath
on Unix sysems or
escjava -classpath xxx -v | find "classpath"”

on Windows systems.
5.1.2 Specification (. spec) files

There are times when the specification that ESC/Java can derive automatically from a. cl ass fileisinadequate,
but when it isinconvenient or impossible for the user to add pragmasto the . j ava sourcefile. (For example, the
user's file syssem may not contain acopy of the. j ava file) In such stuations, the user can supply the needed
pragmas in ESC/Java specification (. spec) files which aresmilar to . j ava source files except that (1)
ESC/Java dways uses spec-only mode when reading a specification file (so routine bodies may dways be
omitted from specification files) and (2) aspecification file T. spec may contain a declaration of only the sngle
typeT.

Since Java compilers do not look for fileswith extension . spec, one can use the same class path for the Java
compiler asfor ESC/Javawith no danger of inadvertently pointing the compiler a a crippled sourcefile.

Caveat: When ESC/Javareadsa. spec file, it does not check that the contents of thet file are in any way
conggtent with those of a. j ava or . cl ass file that a compiler might find on the same class path.

5.1.3 How ESC/Java decides which filesto read and in which modes

8ld %

In this section we describe how ESC/Java decides which files to read and which modesto read themin. The
short version of the story isthat ESC/Java usesiits class path about the same way that a Java compiler does,
except that ESC/Javaprefers . spec filesover . j ava files. Seethefine points below for amore complete (but
not completely complete) sory.

Fine points

[Note: Some of the behaviorsin described in the next few paragraphs change when ESC/Javais run with the
- depend command-line option. See section 5.1.4 for details]

For each filename F on the command line, ESC/Javalooks for the exact file F (with rlative path names evauated
from the current working directory). If ESC/Java cant find file F, it issues an error message and goes on to look
for the next file, if any. If ESC/JavafindsfileF, thenit readsfile F in full mode (as a Java source file, regardless of
the filename extension), storing the type declarations it readsin an interna cache.

Once ESC/Java has read and cached the type declarations from files named on the command line, it may then
need the declarations of additiond types used (directly or indirectly) by the types dready read. When ESC/Java
needs the declaration of atypeP. T, it canfind it in any of the following places:

(0) dready in ESC/Javasinternd cache.

(1) inafilenamed ¢/ P / T. spec, Where P' isthe rdative path name whose directory-path
components are the smple-name components of P taken in order (e.g., on Unix, P would bethe
result of replacing dotsin P with dashes), and c isthe firgt directory on the class path (see section
5.1.1) suchthat filec/ P / T. spec exidts.

(2 inafilenamedc/ P/ T. j ava, where P isasin (1) above and Cisthefirg directory on the
classpath such thet filec/ P / T. j ava exids.

(3 inafilenamedc/ P / T. cl ass, where P' isasin (1) above and C isthe firgt directory on the
classpath such that filec/ P / T. ¢l ass exigts.

(4) ina.java filefound by finding afilec/ P / T. cl ass asin (3) aove and reading the interna
field that names the source file from which it was compiled.

(If namesof . j ar or. zi p filesoccur as class path components, ESC/Java actsisif the class path included
directories holding the expanded contents of thosefiles)

ESC/Javas ranking of these dternativesis, from most favored to least favored: O, 1, 2, 4, 3. Notethat this
meansthat, for example C1/ P' / T. spec isfavored over C2/ P / T. j ava evenif C2 precedes C1 intheclass
path. If ESC/Java doesn't have the declaration dready in its cache and needsto read it from afile, it will read the
file in spec-only mode.

Whenever ESC/Javareadsa. j ava filein order to get the declaration of atypeT, it will dso read and cache any
other type declarations in thet file.

Remark: Inaccordance with [JLS, 7.6], implementations may forbid afileT. j ava from declaring atype u other
than 7, when (1) the type uisreferred to by code in other compilation units of the package in which thetypeuis
declared, or (2) thetypeuis declared publ i c. ESC/Javadoes not enforce thisrestriction. Note, however, that

Kd %

when therestriction is obeyed, alternative (4) above will never arise.

During the process just described, various errors may occur. For example, afile may not contain a declaration of
the class suggested by the file name. We do not attempt here a complete enumeration of these conditions. Also,
it is beyond the scope of this manua to describe exactly which type declarations ESC/Java looks for in order to
check agiven type.

5.1.4 - depend

[Note: If you are not an ESC/Javawizard, and don't aspire to be, you should probably skip this section and
never use - depend.]

The - depend command-line option causes ESC/Java to change its behavior from that described abovein the
following ways

o ESC/Javawill prefer toread . j ava filesrather than . spec files. That is theranking givenin section 5.1.3
switchesfrom0, 1, 2,4,31t00, 2,4, 1, 3.

* Whenreading a. j ava file (dternative 2 or 4), then ESC/Javawill read thefilein full mode, rather than
gpec-only mode. Thisisin contrast to the normal behavior, whereonly . j ava files named on the
command line are reed in full mode.

¢ Ingtead of checking only classes declared in files named on the command line, ESC/Javawill dso check
the classes that those classes depend on (including indirectly) provided that finds their declarationsin
.java files

Caveat: Ascurrently implemented the - depend option islikely to give unsatisfactory results in cases where
both a. spec fileand a. j ava file declaring the same class can be found on the class path. When run with

- depend ESC/Javawill prefer to read the class declaration from the . j ava file so that it can read in full mode
and check the classs routine bodies. On the other hand, successful checking of clients of the classwill likely
require use of pragmas found only in the (ignored) . spec fileand not inthe. j ava file

6 Javalanguage support and limitations

The Java™ Language Soecification [JLS definesthe Java 1.0 language. The ~Inner Classes Specification”
[1CY specifies the additional language features supported in Java 1.1 and Java 1.2. The current version of
ESC/Java accepts dl Javalanguage features described in [JLS]; it dso accepts Al Java language features
described in [IC] with the following two exceptions:

* When ESC/Javareads aclass c fromfileC. cl ass, and one of C'smembersisaclass c. b, ESC/Javawill
look for thefile c$D. cl ass only in the directory whereit found C. cl ass.
¢ ESC/Javawill not check any routine body that mentions an anonymous class.

Java 1.2 includes the same language festures as Java 1.1, but differs from 1.0 and 1.1 in the versons of the
dandard librariesthat it includes. The current rlease of ESC/Javaincludes. spec filesfor asubset of the
dandard libraries. This subset isfar from complete, but the. spec filesthat areincluded in the rdlease are
intended to correspond to classes and interfaces that are standard for Java 1.2.

Fine point

8Bd B

While ESC/Java accepts dmogt dl of the language congtructs described in [JLY and [IC]), the semantics
ESC/Java ascribes to those congtructs differs in numerous details-including, but not limited to, those mentioned
in appendix C and other parts of this manua--from the semantics specified in [JLY and [IC]). Likewisethe
annotaionsin the. spec filesavalable in the ESC/Java rdlease may fail for various reasons to capture the
semantics of the actual JDK libraries (see section C.0.10).

Appendix A: Overview of how ESC/Java works
This gppendix gives avery rough sketch of ESC/Javas interna operation.
The operation of ESC/Java consgts of the following steps:

Firgt, ESC/Javaloads, parses, and type checks the files named on the command line, aswell as any other files
needed because their contents are directly or indirectly used by files name on the command line. (Section 5.1
describes where ESC/Javalooks for files not named on the command line.)

Next, for each class whose routine bodies are to be checked, ESC/Java generates a type-specific background
predicate encoding such information as subtype relations, types of fields, etc. in the class to be checked and the
classes and interfaces it uses,

Next, ESC/Javatrandates each routine to be checked into alogical formula called a verification condition
(VC). Asanintermediate step in this trandation, ESC/Java produces a command in an intermediate language
[LSS99| based on Dijkgtras guarded commands. The intermediate language includes commands of the form
assert E, wherek isaboolean expresson of the language. An execution of acommand issaid to " go wrong"
if control reaches subcommand of theform assert Ewhen g isfdse Idedly, when aroutine R is trandated into
acommand ¢ and thence to averification condition v, the following three conditions should be equivaent:

(1) Thereisno way that R can be invoked from a sate satisfying its specified preconditions and then
behave erroneoudy by, for example, dereferencing nul | , violaingan assert pragma, terminating
in a gate that violatesits specified postconditions, etc.

(2) Thereisno execution of C that Sartsin a date satisfying the background predicate of R's class
and then goes wrong.

(3) visalogica consequence of the background predicate.

In practice, the trandation is incomplete and unsound, so there may be semantic discrepancies between R, ¢, and
V.

Findly, ESC/Javainvokes the Smplify (Si npl i fy(1)) theorem prover, asking it to prove each body's
verification given the appropriate background predicate. If an attempted proof succeeds (or if Simplify exceeds
specified resource limitsin attempting the proof, or if ESC/Java exceeds specified resource limits generdting the
verification condition), then ESC/Java reports no warnings for the body. If the proof fails (other than by
exceeding resource limits), Smplify produces a potentid counter example context, from which ESC/Java
derives awarning message.

4B

Fine points

The command-line option - count er exanpl e makes ESC/Java print selected parts of each counterexample,
sugared into a somewhat Javarlike syntax. For example, in section 3.2.17, we gave an examplefileD. j ava and
sad of ESC/Javas output: ~ Thereis no way to tell from this message whether ESC/Java is warning about the
case Where a has nonnegative x andy fieldsand b has negative x andy fields, or about the case where a'sfidds
are negative and b's are nonnegative." If weran ESC/Javaon D. j ava with - count er exanpl e option, the
output would include something like:

Count er exanpl e cont ext:

((y:7.11). (a@re: 3.6) < 0)
(0 <= (x:7.6).(b:3.9))
((y:7.11).(b:3.9) < 0)
(0 <= (x:7.6).(a:3.6<1>))

from which one can infer that ESC/Java happens to be reporting the former case. Asyou may aso infer from the
excerpt above, the - count er exanpl e option isintended mainly for expert users, to give further details about
deciphering counterexample contexts (for example, the meanings of theinflections @r e: 3. 6 and: 3. 6<1>0n
the fidd name a) is beyond the scope of this manud.

Appendix B: Installing and using ESC/Java at your site

The ESC/Javagroup maintansaweb Steat ht t p: / / resear ch. conpag. com’ SRC/ esc/ . Thetool may be
downloaded from this site for educationa and research use.

After you download the ESC/Java release according to the ingtructions on the web site, dl filesin the release will
be in asingle directory (chosen by you) a your site. We will write ~escjavaRoot" to denote this directory.

Among the contents of escjavaRoot are the following files and subdirectories:

¢ escjavaRoot/ bi n/ escj ava (on Unix) or escjavaRoot\ bi n\ escj ava. bat (on Windows) containsthe
execution script for ESC/Java. The web Ste includes ingtructions for setting things up so that a command
of theform “escj ava [options] sourcefiles” will run this script.

¢ escjavaRoot/ doc/ mani/ escj ava. 1 containsthe Unix man(1) page for ESC/Java.

* escjavaRoot/ doc/ escj ava. ht ml - contains the man page for ESC/Javain HTML format.

« escjavaRoot/ exanpl es/ contains some examples of source code on which to run ESC/Java, including
the Bag example from section 0. Subdirectories named after sections of this manua contain examples
taken from or pertinent to those sections.

< escjavaRoot/ | i b/ specs/ contains. spec files corresponding to selected JDK library files. (Note: The
specificationsin these . spec filesmay not dways match the actual semantics of the corresponding library

files; seesection C.0.10.)

If you have a question, comment, or bug report concerning ESC/Java or this manua, you should start by
checking the FAQ on the ESC/Javaweb dte. If the FAQ does not address the issue adequately, you can emall
the ESC/Javagroup at <escj ava@ esear ch. conpag. corre. You can aso use this addressto let us know if

&Bd B

you have produced . spec filesfor additiona JDK library files and would like to share them. (Note: Redtrictions
may gpply in digtributing annotated or modified versons of Sun's DK files. See the Sun Community Source
License agreement at http://Aww.sun.com/software/java2/license.html).

Appendix C: Sources of unsoundness and incompleteness
ESC/Java

C.0 Known sources of unsoundness

An unsoundness is a circumstance that causes ESC/Javato miss an error that is actudly present in the program it
isandyzing. Because ESC/Javais an extended static checker rather than a program verifier, some
unsoundnesses are incorporated into the checker by design, based on intentiona trade-offs of unsoundness with
other properties of the checker, such as frequency of fdse darms (incompleteness), efficiency, etc. Continuing
experience, and new ideas, may lead to reevauation of these trade-offs, with some sources of unsoundness
possibly being diminated and others possibly being added in future versons of ESC/Java

In this section, we have attempted to describe, or at least dlude to, al known causes of unsoundnessin the
current ESC/Java. If you become aware of any that we have missed, please bring them to our attention (see

appendix B).
C.0.0 Trugting pragmas

Theassune, axi om and nowar n pragmas alow the user to introduce assumptions into the checking process.
ESC/Javatrugs them. If the assumptions are invaid, the checking can miss errors. Besdes the possibility of an
assune, axi om Of nowar n pragmabeing outright ““wrong," there are the following subtleties.

* Asmentioned in the description of the axi ompragma (section 2.4.2) and illudrated in an examplein
section 2.7.2, axioms can mention mutable sate. ESC/Javaassumesthat dl (heurigticaly relevant)
axioms hold at the start of any routine body being checked, but does not check that they ill hold
before each routine call or at the end of the routine body being checked.

* Cetan ESC/Javawarnings (for example Nul I warnings) correspond to conditions that would
result in Java exceptions (for example Nul | Poi nt er Except i on). If aprogramiswritten
intentionally to raise and then handle such an exception, the user might put anowar n pragmaon the
line where the exception would be raised. In such a case the current ESC/Java will not check that
there actudly is ahandler, nor will it check for any errors that might occur in the handler, or
dynamicdly after execution of the handler.

C.0.1 Loops

The current ESC/Java does not consider dl possible execution paths through aloop. 1t considers only those that
execute at most one completeiteration (plus the test for being finished before the second iteration), as explained
insection 2.4.3. Thisissmple, and avoids the need for loop invariants, but it is unsound.

The user can modify ESC/Javas treatment of loops by using the - | oop command-line option. The- | oop option
takes an argument of theform n, n. 0, or n. 5, where n isanon-negative integer literd. The argument specifies

8Bd B

the number of loop iterations ESC/Java should consider. Suppose, for example, that the program being checked
includes the fragment

/1 @1 oop_invariant E;
while (B) {

S
}

If you run ESC/Javawith the- 1 oop n (or, equivdently, -1 oop n. 0) on the command line, it will condder
execution paths that include up to n executions of

/'l @assert E; /1 but giving a Looplnv warning
if ('(B)) break;
S

plus one additiond execution of assert E. If you run ESC/Javawith -1 oop n. 5 onthe command ling, it will
consder execution paths that include up to n executions of

/'l @assert E; /1 but giving a Looplnv warning
if (1(B)) break;
S

plus one additiona execution of

assert E; /1 but giving a Looplnv warning
if (1(B)) break;

In elther case, code following the loop is checked only for execution paths in which the sequences described
above terminate by abr eak out of theloop (including theimpliciti f (! (B)) break), thethrowing of an
exception, or the execution of ar et ur n statement. ESC/Javawill not consider code following the loop for
execution paths that ~fall through" to the end of the unrollings (for example, by executing thefind i f (! (B))
br eak intheunraling for -1 oop 1.5 When B evaluatestot r ue).

The default behavior of ESC/Javaisthe same asthat given by -1 oop 1. 5. Larger vaues of the parameter make
ESC/Javas checking more nearly sound, but not perfectly sound. Larger values of the parameter can result in
sgnificantly dower checking and increased memory usage, especidly when checking routines that include large
loops bodies and/or nested loops. Loops that manifestly require many iterations to terminate normaly pose a
particular difficulty. Suppose, for example, that the program being checked contains a fragment of the form

for (int i =0; i < 1000; i++) {S1}
S2

where s1 never exits druptly. Then the ESC/Javawill never consider executions that reach s2 unlessitisrun
witha- | oop option with an argument greater than 1000, which would most certainly result in impracticaly
large verification conditions or impracticaly dow checking.

Fine point

In the unrollings described above, execution of abr eak causes norma completion of the entire loop, and

e §°3)

execution of cont i nue causes norma completion of the current unrolled copy of s.
C.0.2 Object invariants

When checking the implementation of a method, ESC/Java assumesiinitialy that al alocated objects stisfy their
invariants. But when checking a call to amethod, ESC/Javaimposes a wesker condition on the cdler: dl actud
parameters of the call and dl datic fidlds that are in scope are shown to satisfy their invariants, but not every
object in exigence. Since moreis assumed than is proved, thisis unsound. It seems difficult to design asound
discipline that is not impracticaly drict; the current rule is a compromise that seems useful. See [LS97] for a
more detailed discussion of the interaction of object invariants with scoping.

Another source of unsoundness in the checking of object invariants arises because, as we mentioned in section
2.4.1, when ESC/Java checks the body of any routine R, it does not consder dl invariants but only a heurigticaly
chosen “rdevant” subset. If aninvariant is deemed irrdlevant during the checking of aroutine that calsR, but
deemed relevant during the checking of R, then the invariant will not be checked (even for parameters) a the call
Ste, but will nonethdess be assumed to hold initidly during the verification of R. (If ESC/Java cautioned the user
againg unenforcesble object invariants of the sort mentioned in the fine points of section 2.4.1, the Stuation
would be partidly, but not entirdly, aneliorated.) Conversdy, ESC/Java might consder some invariant to be
irrdlevant to R, but relevant to acdler. Inthis case, ESC/Javawill not check that the body of R preservesthe
invariant, but will nonetheess assume, while checking the cdler, that theinvariant is preserved by the call.

C.0.3 Modification targets

When reasoning about a cdl to aroutine, ESC/Java assumes that the routine modifies only its specified
modification targets (asgivenin modi f i es and/or al so_nodi f i es pragmas modifying the routine and any
routinesit overrides). But when checking the implementation of a method, the current ESC/Java doesn't check
that the implementation modifies only the specified targets. Thusnodi fi es and al so_nodi f i es pragmas are
purdly away of describing the programmer's intent in the form that the checker can use as an assumption.

C.04 Theal so_nodi fi es and al so_r equi r es pragmas

Theal so_nodi fies andal so_r equi res pragmaare unsound because they dlow an overriding method to
have awesker specification than the method it overrides.

Suppose that amethod u. moverrides amethod T. m and suppose that some methodr containsacal of the form
E. n(...) Where E has static type T but might evaluate at run time to avaue of type u. While checking the code
containing the call ESC/Javawill use the specification of T. m but the actud cdl (even in the absence of other
sources of unsoundness) might only meet the weaker semantics specified for u. m In particular:

¢ If U misdedared with an al so_nodi fi es pragma, the cal might modify parts of the Sate that are
specified as modification targets of u. mbut not of T. m but ESC/Javawill check the implementation of r
under the assumption that the call modifies only the targets specified for T. m Thiswould be a source of
unsoundness even if ESC/Java guaranteed that U. mmodifies only its specified modification targets (which
it doesn', asjust mentioned in section C.0.3). Rustan Leino [Leino98] has designed a programming
methodology that would avoid this unsoundness, but in the current ESC/Java we have decided to leave it
to the programmer to use al so_nodi fi es with care so asto avoid introducing the unsoundnesses
described in Leino's paper.

* |If U. misdeclared with an al so_r equi r es pragma, then ESC/Javawill use the preconditions specified in

8d B

theal so_r equi r es pragmawhen it checks the implementation of u. m but will not enforce those
preconditionsat thecal E. n...) .

C.0.5 Multipleinheritance
ESC/Java trests multiple inheritance of preconditions and modification targets unsoundly.

Suppose that amethod C. minheritsfrom A. mand B. m where C isaclass, and either A and B are both be
interfaces that C implements, or oneis an interface that C implements and the other isa dass that C extends; and
suppose that some methodr containsacdl of theform E. n(...) , whereE has gatic type A but might evduate at
run timeto avaue of typecC.

When checking the body of ¢. m ESC/Javawill assume that al preconditions for mdeclared in (or inherited by)
ether A or B, hold initidly. On the other hand, when checking thecdl E. n(...) inthebody of r , where
expressonE has gtic type A, ESC/Javawill only check the preconditions of A. m and not those of B. m

Smilarly, when ESC/Java checks code after the call, it will assume that the call modifies a most the modification
targets specified for A. m Thiswould be a source of unsoundness even if ESC/Java checked that the body of
c. mmodified only its declared modification targets.

C.0.6 Arithmetic overflow

ESC/Java reasons about integer arithmetic as though machine integers were of unlimited magnitude. Thisis both
an unsoundness and an incompleteness, but it smplifies the checker and reduces the annotation burden for the
user, while il dlowing ESC/Javato catch many common errors.

The Simplify theorem prover used by ESC/Java (see appendix A) includes a decision procedure for linear
rationd arithmetic based on the smplex dgorithm. If integer operations in Smplify's amplex module result in
overflows, they will silently be converted to incorrect results. Thisisapotentia source both of unsoundness and
of incompleteness (see dso section C.1.0).

C.0.7 Ignored exceptional conditions

ESC/Java checks for specific conditions that could give riseto aNul | Poi nt er Except i on,

I ndexQut Of BoundsExcepti on, Cl assCast Excepti on, ArraySt or eExcepti onArithneti cExcepti on,
or Negat i veArraySi zeExcept i on, and warns of those conditions as potentid errors. It ignores the al other
cases Where ingtances of unchecked exception classes (for example, cut Of Menor yError,

St ackOver f | owEr r or, Thr eadDeat h, Securi t yExcepti on) [JLS 11.2, 20.22] might be thrown ether
synchronoudy or asynchronoudy, except by explicit t hr ow Statements in aroutine body being checked or in
accordance with the throws clauses of routines called by aroutine being checked.

C.0.8 Congtructor leaking

There are anumber of waysin which a congtructor can make the new object under construction available in
contexts where its ingtance invariants are assumed to hold, but without actudly having established those instance
invariants. For example:

* A condructor may terminate abruptly by throwing t hi s without establishing object invariantsfor t hi s.

89d B

= A supertype congtructor may storet hi s into afield of aglobd variable, and then return to the subtype
congtructor, which subsequently terminates abnormdly.

* When acongructor of aclassT is caled as a supertype congtructor from a constructor of a subtype s, the
upertype congtructor may establish the ingtance invariantsof T fort hi s, then perform amethod call
this. m...) that dynamicaly dispatchesto s. m However, the correctness of the body of S. mmight
depend on ingtance invariants declared in s and not established at the call Site.

For amore detailed examination of the constructor leaking problem, see [LS97].

In addition to the problems with invariants described above, congtructor leaking can result in unsound checking of
race conditions. When checking a constructor body ESC/Java does not require that any lock be held in order to
accesesafidd of t hi s, evenif thefidd isdeclared with a noni t or ed_by Or noni t or ed (section 2.7.1)
pragma. The reason isthat ESC/Java assumes that no other thread yet has accesstot hi s and thus thet no
actua race can result. If thisassumptionisfase, for exampleif the condtructor storest hi s into a
globaly-accessible data structure from which another thread can read it, unsound checking--in the form of
undetected race conditions--could result.)

C.0.9 Saticinitialization

The current ESC/Java does not perform extended static checking of gtatic initidizers[JLS, 8.5] and initidizers for
stati c fidds. It neither checks for the possibility that they do not give rise to errors such as null dereferences,
nor does it check that they establish or maintain Satic or instance invariants.

C.0.10 Classpathsand . spec files

Java(j avac(5), java(5))and ESC/Java(escj ava(1)), when run with the same class path, make different
choicesbetween . spec, . j ava, and. cl ass files. The current ESC/Java doesn't check that the contents of the
fileit chooses are related to the contents of thefilej avac(5) would choose. Consider, for example, a scenario
where afileFoo. j ava usesaclassBar , and where both aBar . j ava and aBar . spec file can befound on the
class path. In response to the command escj ava Foo. j ava, ESC/Javawill check the routine bodiesin

Foo. j ava under the assumption that callsto methods of Bar have the semantics specified in Bar . spec (ignoring
thefileBar . j ava). Inresponseto the commandescj ava Bar . j ava, ESC/Javawill check the method bodies
iNBar . j ava agang the gpecificationsin Bar . j ava (ignoring thefileBar . spec). In naither caseisthere any
checking that ether the specifications or the bodies of routinesin Bar . j ava have any connection to the
specifications of corresponding routinesin Bar . spec, Or eventhat Bar . j ava and Bar . spec declare routines
with the same names and Sgnatures.

Note in particular that the specificationsin the . spec files available for download via the ESC/Javaweb ste (see
gppendix B) may disagree agree with the actua semantics of the corresponding JDK classes and interfaces, for
any of avariety of reasons, including but not limited to the following:

¢ Theannotaionsinthe. spec fileswere added mostly in reaction to specific Stuations encountered by
members of the ESC/Javateam in our use of ESC/Java, rather than as part of any systemdtic effort to
specify any set of routines completely (or even as completely as practicd given the limitations of the
ESC/Java annotation language).

¢ Theremay be “verson skew" between the . spec files you download and the JDK filesin use a your
Ste.

* The. spec filesmay have intentiond semantic differences from the corresponding JOK filesfor

DA B

methodological reasons (see, for example, the discussion of unchecked exceptionsin section 4.5).
« The. spec files the DK files, or both may smply contain errors.

(See dso the disclaimers near the beginning of this manual.)
C.0.11 Shared variables

ESC/Java depends on programmers to supply noni t or ed and noni t or ed_by pragmas telling which locks
protect which shared variables. In the absence of such annotations, ESC/Javawill not produce awarning when a
routine might access a variable without holding the appropriate lock. Even when the user does specify which
locks protect which variables, there is another potentia source of unsoundness. ESC/Java assumes that the value
of ashared variable stays unchanged if aroutine releases and then reacquires the lock that protectsiit, ignoring the
possibility that some other threed might have acquired the lock and modified the varidble in the interim.

C.0.12 Initialization of fidldsdeclared non_nul |

There is an unsoundness in ESC/Javas checking that constructors assign non-null values to fields declared
non_nul | . Congder thefollowing program:

class C {
[*@non_null */ Object f;

1

2

3

4 Cc) {
5:) ;
6 }

7

8

9

[/ @nodifies this.f;
void m() {

}
}

When checking the implementation of the congtructor for ¢, ESC/Java will assume (based solely on the pragmas
on lines 2 and 8) that the method mreturnswith t hi s. f set to anon-null vaue. While checking the body of m
ESC/Javawill check that any assgnmentsto f indeed assgn non-null vaues. However, if the body of mcan
complete normally without assgningtot hi s. f, then ESC/Javas assumptionthat t hi s. f isaways non-null after
line 6 will be unsound.

C.0.13 String literals

Javas treatment of string concatenation (see [JLS, 3.10.5]) is not accurately modeled by ESC/Java. Thisisa
source both of unsoundness and of incompleteness.

C.0.14 Search limitsin Smplify
If Smplify cannot find a proof or a (potentid) counterexample for the verification condition (see gppendix A) for

aroutine within a set time limit, then ESC/Javaissues no warnings for the method, even though it might have
issued awarning if given alonger timelimit. If Smplify reachesitstime limit after reporting one or more

9o B

(potentia) counterexamples, then ESC/Javawill issue one or more warnings, but perhaps not so many warnings
asit would haveissued if thetime limit were larger. Y ou can st thetime limit to n seconds, wheren isapostive
integer, by setting the environment variable PROVER_KI LL_TI ME ton. If PROVER KI LL_TI ME iSOt St
ESC/Java stsit to 300 before invoking Smplify.

Thereis aso abound on the number of counterexamples that Smplify will report for any conjecture, and thus on
the number of warnings that ESC/Javawill issue for any routine. 'Y ou can set the bound to a pogtive integer n
Stting the environment variable PROVER _CC_LIM Tton. If PROVER CC LI M T isnot set, ESC/Java setsit to
10 before invoking Smplify.

C.0.15 Integer arithmetic bugin Smplify

Smplify includes a complete decision procedure for linear rationa arithmetic and some heurigtics for integer
arithmetic. We have recently learned that one of the procedures implementing the integer arithmetic heurigicsis
buggy in away that leads to unsoundness. This unsoundnessin not one that we intended to design into the
checker, and we are investigating the problem further. (For an unrelated source of unsoundness the discussion of
arithmetic overflow in section C.0.6).

C.0.16 Quantifiersand allocation

When T is areference type, specification expressonsof theforms(\forall T t; ..) and(\exists T t;

...) (sections 3.2.10, 3.2.11) quantify over alocated instances of T. If amethod allocates new objects but is not

annotated with a postcondition mentioning containing an occurrence of \ f r esh (section 3.2.13) or \ ol d (section
3.2.15), ESC/Javamay infer (unsoundly) that some property holds for al alocated objects after completion of a

cdl, when the property may in fact not hold for objects dlocated during the call. This unsoundness results from a
performance optimization and seems rarely to result in problems (missing warnings) in practice.

C.1 Some sources of incompleteness

An incompletenessis a circumstance that causes ESC/Javato warn of an potentia error, when it isin fact
impaossible for that error to occur in any run of the program it isanalyzing. Because ESC/Java attempts to check
program propertiesthat are, in generd, undecidable, some degree of incompletenessin inevitable. In addition,
ESC/Javas implementers have been willing to accept some evitable incompleteness in order to improve
performance and keep the tool smple. We list here some principal sources of incompleteness in ESC/Java, but
we do not attempt a complete enumeration of sources of incompleteness.

C.1.0 Incompleteness of the theorem-prover

The verification conditions that ESC/Java give to the Simplify theorem prover are in alanguage that includes
first-order predicate cdculus (with equality and uninterpreted function symbols) aong with some (interpreted)
function symbols of arithmetic.

Since the true theory of arithmetic is undecidable, Smplify is necessarily incomplete. In fact, the incompleteness
of Smplify's treetment of arithmetic goes well beyond that necessitated by Godd's Incompleteness Theorem. In

paticular:

< Simplify has no built-in semantics for multiplication, except by condants.
* Smplify doesn't support mathematicad induction.

Rdo B

Also, firg-order predicate cadculus (FOPC) is only semidecidable--that is, dl vaid formulas of FOPC are
provable, but any procedure that can prove dl vaid formulas must loop forever on someinvaid ones. But it is
not useful for Smplify to loop forever, snce ESC/Javaissues warnings only when Smplify reports (potentia)
counterexamples. Therefore Simplify will sometimes report a (potentid) counterexample C, even whenit is
possible that more work could serve to refute C, and even to prove the entire verification condition. More

particularly:

» Theway Smplify makes use of auniversdly quantified formula, say (\forall T t,, .. t_; B),isby

sectively indantiating the body B with substitutionsfort , ..., t , determined by matching certain
“triggering patterns’ againgt a set of terms dready under consideration. In some cases, the triggering may
be overly redtrictive, preventing Simplify from finding instances that are actualy needed for the proof.

* After Smplify ingantiates the body of a universaly-quantified formula, the terms in the ingtantiated body
may match the triggering petterns of other universaly quantified formulas, triggering ingtantiations of their
bodies, and so on. To avoid infinite looping Simplify bounds the depth to which such sequences of
matching may cascade. In some cases, Smplify may report a potentia counterexample that could in fact
have been refuted by deeper matching.

C.1.1 Incomplete modeling of Java semantics

Idedlly, the verification condition for aroutinerR would be aformulathat wasvaid if and only if R were free of the
kinds of potential errors ESC/Javaamsto detect. In fact, the verification conditions that ESC/Java generatesfall
short of modeling the full semantics of Javain many ways. For example:

* ESC/Javas built-in semantics for floating-point operations are extremely weak--not strong enough to
prove1.0 + 1.0 == 2.00reven1.0 != 2.0.

« ESC/Javas built-in semantics for strings are quite weak--strong enough to prove" Hel | o wor | d" ! =
nul | , but not strong enough to provethe assartion s == ' | dfter theassgnmentc = "Hel I o
wor | d". char At (3).

* ESC/Javatreats exceptions thrown by the run-time system as errors, even in programs that include code
to catch them.

* The ESCl/Javardeaseincludes. spec filesfor only afew JDOK libraries, and even the . spec files supplied
do not fully capture the informa semantics of the specified routines (see aso section C.0.10).

¢ According to rules of the Javatype system, if neither of two digtinct classes s and T is a subtype of the
other, then s and T have no non-null instances in common. ESC/Javas modeling of the Javatype system
is good enough to enforce this digointness for explicitly-named types, but not for al types (such asthe
dynamic element types of array variables).

¢ Asmentioned in section C.0.6, the Smplify theorem prover may exhibit unsoundness due to integer
overflow. In order to reduce the likeihood of overflow occurring in the prover, ESC/Javatreats dl integer
literdl's of absolute magnitude greater than 1000000 as symboalic vaues whose relative ordering is known
but whose exact values are unknown. Thus, ESC/Java can prove the assertions2+2 == 4 and 2000000
< 4000000 but not 2000000+2000000 = 4000000.

* While ESC/Javarecognizesthe Java 1.2 expressons of theform T. cl ass, where T isaJava Type [JLS
19.4], ESC/Javas semantics for such expressonsis extremey limited. For example, ESC/Java can
determinethat i nt . cl ass isanon-null inganceof j ava. | ang. C ass, but not that it is distinct from
short. cl ass, or eventhat it isequd to | nt eger . TYPE. Theimplementers of ESC/Java currently have
no plansto sgnificantly srengthen its semanticsfor j ava. | ang. Cl ass in the absence of clear need. (In
particular, we have no plans for creating any connection between Java's Reflection API [Refection] and

Bdof B

ESC/Javas specification type\ TYPE.)
C.1.2 Modular checking

ESC/Javas use of modular checking modular checking causesit to miss some inferences that might be possible
through whole program andysis.

¢ Whentrandatingamethod cdl E. n(...), ESC/Java usesthe spec of mfor the static type of E, evenif itis
provable that the dynamic type of E at the call ste will dways be a subtype that overrides mwith a sronger

Spec.
* ESC/Javamakes no atempt to infer method specifications. (However, see [FLOO, FJLxX].)

References

[DLNSO8] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe, " Extended Stetic
Checking", Compag SRC Research Report 159, December 1998. Available on the web at
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstractsy/src-rr-159.htmle . [Cited in the
acknowledgments.]

[FILxx] Cormac Flanagan, Rgjeev Joshi, and K. Rustan M. Leino, " Annoteation inference for modular
checkers', to appear in Information Processing Letters. [Cited in sections 5.0 and C.1.2.]

[FLOQ] Cormac Flanagan and K. Rustan M. Leino, ~"Houdini, an annotation assistant for ESC/Java’, Compag
SRC Technica Note 2000-003, September 2000. Available on the web at
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstractsy/src-tn-2000-003.html. [Cited in sections
5.0andC.1.2]

[IC] Inner Classes Specification”, Sun Microsystems, on the web at
http://java.sun.com/products/jdk/1.1/docs/guide/innercl asses/spec/innerclasses.doc.html. [Cited in section 6.]

[JLY James Goding, Bill Joy, and Guy Stede, The Java'“Language Specification, Addison-Wedey,
Reading, Massachusetts, 1996. Also available on the web at http://javasun.com/docs/books/jls/html/index.html.
[Cited in places too numerous to mention.]

[LBR9O9] Gary T. Leavens, Albert L. Baker, and Clyde Ruby, "JML: A notation for detailed design”, in Haim
Kilov, Bernhard Rumpe, and lan Smmonds, editors, Behavioral Specifications of Businesses and Systems
pages 175-188, Kluwer Academic Publishers, Boston, 1999. [Cited in the preface.]

[LBROO] Gary T. Leavens, Albert L. Baker, and Clyde Ruby, " Preiminary design of ML: A behaviora
interface specification language for Java’, Technica Report 98-06], lowa State University, Department of
Computer Science, May 2000. Available on the web at www.cs.iadtate.edu/~leavens ML .html. [Cited in the
preface.]

[Leino98] Rustan M. Leino, " Data groups. Specifying the modification of extended state”, in Proceedings of
the 1998 ACM S GPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA '98), volume 33(10) of ACM SIGPLAN Notices, pages 144-153, October 1998.

Hdo B

Avallable on the web (by permission of the ACM) in PostScript at

ftp://ftp.digital.com/pul/ DEC/SRC/publications/rustan/krml 83-oopd 898.ps and in PDF at
ftp://ftp.digital.com/pul/DEC/SRC/publications/rustan/krml 83-oopd a98.pdf. [Cited in sections 2.3.8 and
c.04]

[LLPRJOO] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs, ~ JML.: notations
and tools supporting detailed design in Java', to appear in Proceedings of the 2000 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA '00).
Also available as Department of Computer Science, lowa State University, TR #00-15, August 2000, on the
web in PDF at ftp:/ftp.cs.iastate.edu/pub/techreports TROO-15/TR.pdf and in PostScript at
ftp://ftp.csiastate.edu/pub/techreports TROO-15/TR.ps.gz. [Cited in the preface.]

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie Stata, - Checking Java programs via guarded
commands', in Formal Techniques for Java Programs workshop proceedings, Bart Jacobs, Gary T.
Leavens, Peter Mlller, and Arnd Poetzsch-Heffter, editors, Technica Report 251, Fernuniversitét Hagen, 1999.
Also available as Compag SRC Technical Note 1999-002, on the web at
http://gatekeeper.dec.com/pulb/ DEC/SRC/techni cal -notes/abstracts/src-tn-1999-002.html. [Cited in section
212]

[LS97] K. Rustan M. Leino and Raymie Stata, ~ Checking Object Invariants’, Compag SRC Technical Note
1997-007, January 1997. Available on the web at

http://gatekeeper.dec.com/pub/DEC/SRC/technica -notes/abstracts/src-tn-1997-007.html. [Cited in sections
2.34,2.4.1,and C.0.2]

[LS99] K. Rustan M. Leino and Raymie Stata, " Virginity: A contribution to the specification of object-oriented
software”, Information Processing Letters, 70 (1999), pages 99-105. [Cited in (fine points of) section
3.2.17]

[Reflection] ~ Reflection” (section of JDK documentation), Sun Microsystems, on the web at
http://java.sun.com/products/jdk/1.1/docs/quidefreflection/. [Cited in section C.1.1]

[SLS00] Silvija Seres, with K. Rustan M. Leino and James B. Saxe, "ESC/Java Quick Reference”, Compag
SRC Technica Note 2000-004, October 2000. Available on the web at
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-2000-004.html. [Cited in the preface
and acknowledgments.]

BdF B

