
SRC Technical Note
1999 - 001
June 22, 1999

The Vesta Approach to

Software Configuration Management

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu

Systems Research Center
130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Compaq Computer Corporation 1999. All rights reserved

Abstract

Vesta is a system for software configuration management.
It stores collections of source files, keeps track of which
versions of which files go together, and automates the pro-
cess of building a complete software artifact from its com-
ponent pieces. Vesta’s novel approach gives it three im-
portant properties not available in other systems. First,
every build isrepeatable, because its component sources
and build tools are stored immutably and immortally, and
its configuration description completely describes what
components and tools are used and how they are put to-
gether. Second, every build isincremental, because re-
sults of previous builds are cached and reused. Third, ev-
ery build isconsistent, because all build dependencies are
automatically captured and recorded, so that a cached re-
sult from a previous build is reused only when doing so is
certain to be correct. In addition, Vesta’s flexible language
for writing configuration descriptions makes it easy to de-
scribe large software configurations in a modular fashion
and to create variant configurations by customizing build
parameters. This paper describes Vesta’s advantages over
traditional tools, how those benefits are achieved, and the
system’s overall performance.

1 Introduction

This paper describes Vesta, a software configuration man-
agement (SCM) system for managing and building soft-
ware, from small systems to very large ones (tens of mil-
lions of lines of source code). Vesta addresses the follow-
ing four core SCM problems:

Version management.Version management is the pro-
cess of assigning names (typically sequential numbers) to
a series of related source files and supporting retrieval of
those files by name. Machine generated, orderivedfiles,
are also versioned by some SCM systems.

Source control. Source control is the process of control-
ling or regulating the production of new versions of source
files. Operations commonly associated with source con-
trol includecheckoutandcheckin, which respectively re-
serve a new version and supply the data for a previously
reserved version. Source control may be coupled with
concurrency control as well, so that checking out a par-
ticular version limits the ability of other users to check
out related versions.

System modeling. A system model is both a static de-
scription of a system’s configuration and a recipe for pro-
ducing a software artifact. It names the (versions of)
software components that are to be combined to produce
larger components or entire systems, names the tools that
are to be used to combine them, and specifies how the

tools are to be applied. System models are also sometimes
calledconfiguration descriptions.

Building. Building is the process of evaluating a system
model so as to construct a complete system according to
the model’s instructions. Building may also include other
activities, such as running regression tests on the resulting
artifact.

Version management, source control, system modeling,
and building are four parts of the larger SCM problem.
Considered broadly, SCM is often taken to include such
areas as process management, software life-cycle man-
agement (e.g., bug tracking, testing), and even the specific
tools used to develop and evolve software components.
We hold the view that these aspects of SCM, although im-
portant to the overall software development process, are
secondary to the core issues listed above. We have there-
fore focused the Vesta project on solving those core prob-
lems, constructing a solid base upon which we believe so-
lutions to the other problems can be built.

Some form of SCM is almost always a necessary part
of software development. SCM is useful whenever multi-
ple source files, multiple developers, or multiple releases
and/or target platforms are involved. Moreover, the larger
the number of source files, developers, or releases, the
larger the configuration management problem.

A good SCM system can greatly reduce these prob-
lems. Version management can ease the problem of man-
aging multiple source files by keeping related versions of
files together. Source control can help multiple developers
work productively in parallel. Together, system modeling
and building can help manage multiple releases by accu-
rately selecting the right sources to use for each release
and by automatically managing derived files.

However, several difficulties stand in the way of de-
signing and implementing an SCM system that addresses
these problems. First, handling large-scale software is dif-
ficult, because it usually involves large numbers of source
files and developers. Unlike other SCM systems in use to-
day, Vesta was specifically designed to handle very large
projects—millions of lines of code and beyond. The rapid
growth of today’s software makes this an even more press-
ing problem. Second, with larger numbers of develop-
ers comes the need to support parallel development across
sites that are often geographically separated, which intro-
duces the problem of keeping replicated copies consistent.
Finally, for building to be efficient, it must work incre-
mentally, re-using the results of previous builds whenever
possible. However, when multiple versions, multiple tar-
get platforms, and multiple releases are involved, sound
incremental building is a non-trivial problem.

The rest of the paper is organized as follows. We first
consider the strengths and weaknesses of several widely-
used SCM systems. Section 3 then describes the Vesta

1

approach, focusing on the main ideas in the Vesta system
and the benefits they provide. In Section 4, we then de-
scribe how those ideas are realized in practice, with an
emphasis on the user’s view of the system. Finally, we
describe the performance of our Vesta prototype in Sec-
tion 5, and in Section 6, we offer our conclusions from
our experiences using the system.

2 Previous Approaches

In this section, we review related work by assessing sev-
eral popular SCM systems. Some systems, like the Re-
vision Control System (RCS) and the Concurrent Ver-
sion System (CVS) address only version management and
source control, while others like Make address only sys-
tem modeling and building. We also consider Clear-
CASE, which provides a more integrated solution to the
core SCM problems.

2.1 RCS and CVS

RCS is a system for maintaining multiple versions of in-
dividual files [10, 11]. Its main strengths are that it is easy
to use, well-understood, and well-documented. Its main
disadvantages are two. First, it does not provide transpar-
ent access to individual file versions. That is, an explicit
checkout step is required to access an older version of a
file. Hence, to build an older version of a system, the
developer must first explicitly check out the correct ver-
sions of each source file required by the build. Second,
sources are versioned at the granularity of individual files.
Although RCS provides tagging facilities for grouping re-
lated files, those facilities are awkward to use.

Like RCS, CVS is relatively easy to use and well-
supported [4]. It also suffers RCS’s problem of not al-
lowing transparent access to file versions. However, un-
like RCS, CVS allows related files to be grouped to-
gether intomodules. CVS also includes an optimistic
concurrency control methodology that allows multiple de-
velopers to work on the same fileconcurrently. How-
ever, allowing concurrent modifications is not without its
costs, since conflicting edits must be detected and re-
solved. CVS’s conflict detection is simple-minded (i.e.,
purely line based), so semantic conflicts between changes
in disjoint lines may go undetected. When conflicts oc-
cur, they must be resolved manually, which can be a time-
consuming process.

2.2 Make

Make is a widely-used tool for building software [2]. It
is easy to use and the syntax of its system models (i.e.,
Makefiles) is simple, if somewhat cryptic. Moreover,

Make can also be used for tasks other than building soft-
ware, such as running regression tests.

However, there are several major problems with the
Make approach to software construction. In this approach,
dependencies between derived files and the inputs used to
produce them must be specified explicitly by the user, and
Make relies on timestamps to decide when it is safe to re-
use a derived file in a subsequent build. A build based on
incorrect dependency information or incorrect timestamps
can produce aninconsistentresult, in which parts of the
resulting system incorrectly include stale derived files. In-
consistent builds can produce programs that fail to link or
run, or that exhibit bizarre, unexplainable bugs. Devel-
opers often must resort to performing a scratch build to
correct such problems.

Inconsistent builds are not uncommon in Make. Speci-
fying dependencies explicitly is an inherently error-prone
task. There are tools such asmakedependfor generating
certain kinds of dependencies automatically, but again,
such tools must be run by hand, so they may not be run
as often as necessary. Another problem is that some de-
pendencies are inexpressible or too costly to express. For
example, dependencies on the values of environment vari-
ables cannot be expressed in Make, and dependencies on
the Makefile itself are too costly because they would re-
sult in a scratch build whenever the Makefile was changed.
Make’s use of timestamps is also problematic [3]. For ex-
ample, when building a system from older sources, Make
may incorrectly conclude that the system is up-to-date be-
cause the timestamps associated with the older file ver-
sions are in the past; again, a scratch build is often the
developer’s only recourse in such situations.

Finally, Make scales poorly. Make does its dependency
analysis from the leaves of the “build tree”, working its
way up to the final result. Hence, the cost of an incre-
mental build in Make is proportional to the total num-
ber of sources contributing to the build, not the number
of sources that have changed. Moreover, although it is
possible to structure a software system hierarchically by
arranging for Make to invoke itself recursively on sub-
components, doing so is awkward and performs poorly,
so it is not frequently done in practice.

2.3 ClearCASE

Perhaps the biggest problem with the systems discussed
so far is that they are not integrated. Building a particular
version of a system requires two steps: checking out the
correct versions of the sources, and then building them.
As described previously, the first build of an older ver-
sion must be performed from scratch, since Make does
not have any knowledge about which versions it is build-
ing, so it cannot tell when it is safe to re-use a derived file

2

from a different build.
ClearCASE is a commercial SCM system that inte-

grates version management with building, and that ad-
dresses many of Make’s shortcomings [1]. It is based on
many of the ideas in the earlier DOMAIN Software Engi-
neering Environment (DSEE) system [8, 7].

Unlike RCS and CVS, ClearCASE provides transpar-
ent access to older file versions. However, older versions
are almost never accessed directly in practice. Instead, a
ClearCASEview is used to transparently map an unver-
sioned file name to a versioned one. The rules governing
a view can be specified in a variety of ways, and they in-
clude provisions for always accessing the latest version of
a file.

For building, ClearCASE provides its own version of
Make calledclearmake. The advantage to this approach
is that developers do not have to learn a new system mod-
eling language, and their existing Makefiles continue to
work. Unlike Make, clearmake does automatic (although
somewhat incomplete) dependency detection by monitor-
ing and recording the files accessed during a build. It also
manages derived files for potential later re-use.

There are several problems with ClearCASE. The prob-
lem with the view approach to version management is that
the meaning of a name can change over time. In partic-
ular, the actions taken bysomeone elsecan cause one’s
own build to suddenly fail. This shortcoming is an im-
pediment to effective parallel development. There are also
problems with the clearmake builder. First , because clear-
make is Make-based, it suffers from the same scalability
problems as Make. Second, because its dependency de-
tection is incomplete, clearmake can produce inconsistent
builds. Third, clearmake’s mechanism for allowing de-
velopers to re-use the derived files produced by others —
called winking in — is based on heuristics that can fail
to capitalize on valid re-use opportunities. Finally, anec-
dotal evidence suggests that the overheads introduced by
clearmake are large, so some development organizations
choose to use ordinary Make for improved performance,
despite Make’s shortcomings.

3 The Vesta Approach

As described earlier, Vesta’s goals are to address the core
SCM problems of version management, source control,
system modeling, and building. It provides a firm tech-
nical base on which solutions to the other SCM problems
can be built. Vesta is also explicitly designed to scale up
to large code bases, which means it must also effectively
support parallel development. Of course, it must be an
open system that works with standard development tools.
Finally, it must perform well and be easy to use.

The Vesta approach is based on the following founda-
tions:

• Immutable, immortal, and versionedstorage of all
sources and tools. Unlike ClearCASE, Vesta uses ex-
plicit version numbers rather than views.

• Complete, source-basedconfiguration descriptions.
By complete we mean that the descriptions nameall
elements contributing to a build, and no build de-
pends on any aspect of the computing environment
(e.g., tools, libraries, header files, environment vari-
ables) outside of Vesta’s control1. By source-based
we mean that configuration descriptions describe
how to build a system from scratch from sources
(i.e., non-derived files). Hence, the descriptions do
not rely on templates, search paths, or other rules for
their meaning and function.

• Automatic dependency detection. All dependencies
are detected and recorded automatically by the Vesta
builder, so no dependency errors can be introduced
by human error2.

• Automatic derived file management. The storage and
naming of derived files is managed automatically by
the Vesta storage repository, thereby easing the bur-
den of building multiple releases or building for mul-
tiple target platforms.

• Site-wide caching of all build work. Vesta features a
shared site-wide cache of build results so developers
can benefit from each others’ builds.

At this point, the reader may well be wondering what it
is like to use Vesta in practice. How can any sources be
edited if all sources are stored immutably? If system mod-
els must name the version of every source file, isn’t the
overhead of maintaining those references overwhelming?
We address these questions and other practical aspects of
using Vesta in Section 4 below.

We first point out that these foundations provide several
valuable benefits:

Repeatable builds.The immutability and immortality of
sources combined with the completeness of build descrip-
tions together mean that every Vesta build isrepeatable.
That is, any build performed in the past can be exactly
reproduced at any time in the future.

1Ultimately, of course, every build is dependent on the operating sys-
tem on which it is performed. Build descriptions include a user-supplied
name for the build platform, but Vesta does not check if the supplied
name is accurate.

2Of course, it is possible in principle to write tools that depend on
aspects of the operating system that we do not encapsulate. However, we
have not encountered any such dependencies in the standard construction
tools we have used.

3

Incremental builds. Although the system models de-
scribe how to build a software system from scratch, the
Vesta builder uses the site-wide cache of previous builds
to avoid work, so good incremental build performance is
the norm. The time required to perform an incremental
build is generally proportional to the amount of work to
be done, not to the size of the system being built.

Consistent builds. Because every build is conceptually
performed from scratch, and because Vesta’s automatic
dependency detection means that a cached result is used
only when it is correct to do so, all Vesta builds are guar-
anteed to produce consistent results. Hence, there is never
any need to do “nightly” or scratch builds to correct for an
errant build in which a stale derived file was used.

Parallel development.Several features of the Vesta sys-
tem enable parallel development. For one, the Vesta
repository supports version branching and partial replica-
tion across geographically distributed sites. But perhaps
more important is the fact that a user must take explicit ac-
tion to build with a newer version of someone else’s code.
Hence, it is impossible for one developer’s action to break
another’s build. This feature allows developers to work
productively in isolation.

The entire Vesta system was designed and implemented
with an eye toward scalability. Our design goal was to
support systems containing 20 million lines of code or
more. This emphasis is visible in several respects. To
organize the construction of large-scale software, system
models can be arranged as a modular hierarchy. Dur-
ing a build, caching is done top-down rather than bottom
up. Hence, cache hits often occur on larger units of work
than individual tool invocations, such as the construction
of an entire library or collection of libraries. This top-
down caching avoids the scalability problem of incremen-
tal builds suffered by Make. Finally, because each user’s
checked out files are managed by the repository, the repos-
itory can arrange to make checkout and checkin almost
instantaneous, thereby eliminating one of the burdens of
working with large source trees.

4 A User’s View of Vesta

The discussion so far has been fairly abstract. In this sec-
tion, we provide a user’s view of Vesta to make the ideas
more concrete. We start by describing Vesta’s compo-
nents. We then consider Vesta’s source control tools and
their effects on the repository. Finally, we present some
sample system models to give a sense for Vesta’s system
modeling language.

4.1 Vesta Components

Figure 1 shows the main components of the Vesta system.
The bottom half of the figure shows therepositoryand

function cacheservers. One instance of each server is run
at each site. The repository server manages the storage
of both sources and derived files. It provides both a stan-
dard NFS interface to sources, and a remote procedure
call (RPC) interface that is used by other Vesta tools. The
function cache server stores the results of previous builds.
Both servers use a normal file system for backing storage.

System
Models

Standard
Construction
Environment

Evaluator

Runtool
Server

Tools

Repository
Server

Function
Cache
Server

Backing
File

System

Repository
Tools

Client
Host

Per−Site
Servers

Figure 1: Vesta’s main components.

The top half of Figure 1 shows the Vesta components
run on each client host. The main client programs are
the repository toolsand theevaluator. The repository
tools provide checkout, checkin, and other source con-
trol operations. The evaluator is the Vesta builder. It
reads user-writtensystem modelsand a set of system-
supplied models comprising thestandard construction en-
vironment. Not shown in the figure are standard develop-
ment tools such as text editors and the like, which can be
used to access sources via the repository’s NFS interface
in the usual way.

During a build, the evaluator will often be called on to
run an external tool like a compiler or linker. To do so,
the evaluator makes a remote procedure call to aruntool
serverprocess. As indicated by the dashed line in the fig-
ure, the runtool server may or may not be running on the
same client host as the evaluator. Decoupling the runtool
server from the evaluator allows tools to be invoked on
different machine platforms (e.g, for cross development),
or even for multiple clients to use the same runtool server
running on a more powerful machine.

Before it contacts the runtool server to launch a tool,
the evaluator calls the repository to create a special direc-

4

tory tree in which the tool will be run. The runtool server
then launches the tool in an encapsulated environment that
causes all of the tool’s file references to go to this tree,
where they are trapped and reported back to the evaluator.
The evaluator records these references as dependencies.

During the build, the evaluator also contacts the func-
tion cache server to determine if each piece of the build it
is about to execute has been performed before (either by
the same person or someone else). If so (acache hit), the
function cache returns the correct result. If not (acache
miss), the evaluator performs the work and then calls the
cache to create a new cache entry for possible re-use in
the future.

Figure 1 omits several administrative tools. Among
these is a tool called theweederthat is used to delete
unwanted derived files from the repository and unwanted
cache entries from the function cache. The weeder reads
a description file that says which build versions should be
kept; it then uses a mark-and-sweep garbage collection al-
gorithm to identify all derived files and cache entries that
are safe to delete. The description file uses a simple but
powerful pattern language; such rules as “keep builds of
the last two versions” are easily expressed.

Parameterizing the weeder with an explicit instruction
file gives each organization the flexibility to keep the
builds it considers important. Of course, deciding what
to weed is simply a time-space tradeoff. Even if a use-
ful build is accidentally left out of the weeder instructions
and deleted, Vesta’s repeatability guarantees that it can be
reproduced, albeit more slowly, and re-cached.

4.2 Repository Operations

The Vesta repository is a general-purpose file system with
special support for immutability. As mentioned earlier, it
exports both an NFS interface (with some minor restric-
tions) and an RPC interface. The repository also manages
a site-wide pool of derived files.

The repository’s main job is to provide directory trees;
the files themselves are stored in a normal Unix file sys-
tem. In particular, the repository supports three kinds of
directories: mutable, immutable, and appendable. The
purposes of these three directory types will become ap-
parent momentarily.

It is worth noting that the repository naming conven-
tions we describe next are imposed not by the reposi-
tory server, but by the much smaller client-side repository
tools. This separation of concerns is important because
it means that different source control paradigms (such
as a more concurrent paradigm like that of CVS) could
be implemented simply by rewriting the repository tools;
changes to the repository proper would not be required.

Figure 2 illustrates several aspects of the naming con-

/vesta/src.dec.com

common cxx vesta

text tablethread

1 2

2.fast

3 4

0 1 2
thread.c

thread.h
build.ves

 = Immutable
 = Appendable
 = Stub

repos eval

doc

Figure 2: Naming conventions assumed by the Vesta
repository tools.

ventions engendered by our current repository tools:

• Related sources are grouped into arbitrary directory
trees calledpackages. Versioning is done at the pack-
age granularity. As shown in version 3 of thecom-
mon/thread package, each package version may
contain arbitrary files and nested directories.

• To accommodate large-scale software, the package
namespace is hierarchical. For example, the pack-
ages of Figure 2 are arranged in a two-level hier-
archy, with package names likecommon/thread
andvesta/repos .

• Version numbers appear as explicit pathname arcs.
For example, version 3 of thecommon/thread
package is namedcommon/thread/3 .

• The root directory of each package version is im-
mutable. Hence, the contents of a package ver-
sion cannot be changed. The directories that form
the package hierarchy, such ascommonandcom-
mon/thread , are appendable. The only operation
allowed on such directories is the insertion of new
items, such as new packages or package versions.

• Branches are like sub-packages. Hence, all the op-
erations on packages apply to branches as well. In
Figure 2, the branchcommon/thread/2.fast
has three versions named0, 1, and 2, the for-
mer of which will typically be a copy ofcom-
mon/thread/2 .

As shown in Figure 3, the repository exports two
NFS file systems, which are made visible to the client
through two mount points, typically named/vesta and
/vesta-work . The directory tree rooted at/vesta
consists only of appendable and immutable directories,

5

 = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout2 3

2 3

0 1
2 0 1

2

/vesta−work

jones

thread

Figure 3: The checkout session of thecommon/thread

package.

while the one rooted at/vesta-work is mutable. There
is a mutable directory in/vesta-work for each user,
and edits are performed in subtrees of those directories.

In addition to version directories and branch direc-
tories, each package also contains a directory named
checkout . This directory contains an appendable di-
rectory for each checkout session, each of which contains
a separate, immutable snapshot of a package version each
time the package is built. Hence, Vesta keeps a version of
each package not only across checkout sessions, but dur-
ing checkout sessions as well.

The typical development cycle is as follows.

• Check out the package usingvcheckout

• Modify the package:

– Edit using your favorite text editor
– Advance the package usingvadvance
– Build the package usingvesta
– Test
– Repeat as necessary

• Check in the package usingvcheckin

The outer level consists of three steps: check out the
package usingvcheckout, modify it, and check it back
in using vcheckin. The inner loop of the development
cycle is the familiar edit-compile-test loop, but with an
extra wrinkle. Recall that Vesta’s repeatability guarantee
requires that all builds are performed against immutable
sources. Therefore, before invoking thevestabuilder, an
immutable copy of the user’s current sources must first be
made using a tool calledvadvance3. We now describe
these tools and their effect on the repository.

3Sincevadvanceand vestaare usually run together, we provide a
simplevmake script that runs them in sequence as a single command.
vadvancecan also be used independently as a means of checkpointing a
user’s current sources.

4

4

0

thread

copy

copy = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout3

3

1
2 3

/vesta−work

jones

Figure 4: The effects ofvcheckout common/thread.

snapshot

1

 = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout3

3

/vesta−work

jones

4

4

0

thread

Figure 5: The effects ofvadvance.

Figure 4 shows the effect of running the command
vcheckout common/thread. In this figure and the next
two, bold lines denote newly created elements. Assum-
ing that the latest version of thecommon/thread pack-
age was version 3, this command would first create a spe-
cial element called astubnamedcommon/thread/4 .
The stub reserves a name under which the package will
be checked back in; attempting to check out the pack-
age again will fail because a stub for version 4 al-
ready exists. Next, the new appendable directorycom-
mon/thread/checkout/4 is created, and the latest
version of the package is copied into that checkout direc-
tory as checkout version 0. Finally, a mutable copy of
the package is made in the user’s working directory under
/vesta-work .

Files in the working directory may then be freely
edited. Before building them, the user invokesvadvance.
As shown in Figure 5,vadvancesimply creates an im-
mutable snapshot of the working directory in the appro-

6

copy

 delete

 = Immutable
 = Appendable
 = Stub
 = Mutable

thread

/vesta/src.dec.com

common

thread

checkout3

3

/vesta−work

jones

4

4

0 1 2 3

Figure 6: The effects ofvcheckin.

priate part of the package’s checkout directory. Builds are
then performed using these immutable sources.

Finally, once the user is satisfied with the state of the
package,vcheckin is used to check the package back into
the main line of the package version space. As shown in
Figure 6,vcheckin replaces the previously created ver-
sion stub by the latest sub-version of the checkout ses-
sion, and deletes the user’s working version of the pack-
age from/vesta-work .

4.3 System Modeling Language

We now consider typical client system descriptions. A
complete discussion of Vesta’s system modeling language
is well beyond the scope of this paper, but its complete
syntax and semantics are defined in a separate paper [5].
Here, we will try to motivate and describe the language’s
main features.

Across different development organizations, there is a
rather wide variation in build processes, including the size
and scope of the systems being built, the structure and
methodology of the organization, and the degree of pa-
rameterization required. Vesta therefore supports varied
descriptions through a general-purpose language that sup-
ports abstraction. Abstraction permits the construction of
extensionsthat adapt the language to each organization’s
development methodology. As a proof of concept, we
have built one fairly comprehensive extension called the
standard construction environment.

The system modeling language itself is a full-fledged
functional programming language with a C-like syntax.
The functional nature of the language is important, since
each function call represents a unit of work appropriate
for caching. The language uses strong, dynamic typing,
which is to say that the run-time types of arguments to
all built-in operations are checked for correctness. The
language is methodology neutral. The main aspect of the

files
h = [date.h];
c = [date.c, calendar.c];

{
libs = < ./C/libc >;
return ./C/program("cal", h, c, libs);

}

Figure 7: A build.ves system model for building a
sample application.

language that is specialized for software construction is a
primitive to run external tools like compilers and linkers
in an encapsulated environment (i.e., to invoke the runtool
server of Figure 1). The language also includes anim-
port statement that encourages modular build descrip-
tions and thereby supports hierarchical system modeling.

Figure 7 shows a sample model for building an appli-
cation. By convention, the model responsible for building
all the components of a package is namedbuild.ves .
The files clause binds the program variablesh andc
to the listed files in the package. The body of the model
then binds the variablelibs to a singleton list containing
the standard C library, and returns the result of invoking
theprogram function supplied by the standard environ-
ment. It is theprogram function that is responsible for
compiling the necessary sources and linking the program.

Before a model like the one shown in Figure 7 can be
invoked, theenvironmentin which the build is performed
must be created and bound to the special variable named
“.” (dot). The variable “.” is special because it is passed as
an implicit argument on all function calls. Hence, assign-
ments or changes to “.” are visible in all descendant func-
tions of the function call graph. This feature of Vesta’s
function call semantics makes it easy to define customiza-
tions that affect all relevant parts of a build.

The build environment embodies not only the complete
set of functions, tools, libraries, and header files needed
by the build, but also any requested build customizations.
Such customizations are typically injected “from the out-
side”; that is, a developer considers them as parameters of
a particular build rather than inherent details of the system
being built. It is thus appropriate to include them in the
top-level (outermost) system model. Indeed, such models
do little more than list parameter values and invoke the
build procedure for a package or collection of packages.
Such a model can therefore be readily constructed from a
graphical “control panel” program in which the user spec-
ifies desired customizations. The control panel then writes
a (highly stylized)control panel model4. By convention,
control panel models are named.main.ves .

4We have not implemented the control panel yet, so we presently
write these models by hand.

7

from /vesta/src.dec.com/common import
std_env = std_env/23/build.ves;

import
calendar = build.ves;

{
. = std_env()/env_build("DU4.0");
// build customizations would go here...
return calendar();

}

Figure 8: A .main.ves control panel model for estab-
lishing the build environment.

from /vesta/src.dec.com/millicent import
wallet = wallet/12/build.ves;
vendor = vendor/20/build.ves;
broker = broker/7/build.ves;

{
return wallet() ++ vendor() ++ broker();

}

Figure 9: An umbrella system model for building a col-
lection of components and combining their results.

Figure 8 shows an example. The model begins with
two imports. One import is of the non-local modelcom-
mon/std env/23/build.ves (bound to the vari-
able std env), and the other is of the local model
build.ves (bound to the variablecalendar). The
model body consists of two statements. The first in-
vokes theenv build function returned by thestd env
model, and binds the result to the special variable “.”. The
second statement then invokes and returns the result of the
package’s ownbuild.ves model shown in Figure 7.
This example shows that a model can be called like a func-
tion using the standard function call syntax.

The two examples shown so far also illustrate an im-
portant point about the appearance of version numbers
in system models. Because sources are versioned at the
granularity of packages, and because related sources re-
side in the same package, version numbers need be sup-
plied only for cross-package imports. For example, in
Figure 7, no version numbers are required because the ref-
erenced sources reside in the same package as the model
from which they are referenced. The local import in Fig-
ure 8 requires no version specification for similar reasons.
However, an explicit version number is required for the
non-local import of thestd env package. The net re-
sult is that explicit version numbers are not required in
system models as often as might be expected. To further
reduce the effort required to maintain such version spec-
ifications, Vesta includes avupdate tool that rewrites a
model’s non-local imports to refer to the latest versions of
their respective packages.

Figure 9 shows a system model for building what we
call anumbrella package. Such packages do not contain
any sources or build anything directly. Instead, they im-
port a collection of packages, build them, and then com-
bine the results together into a single result. Umbrella
packages illustrate how to structure build descriptions in
a modular fashion. In this example, the umbrella package
serves to record the information that versions 12, 20, and 7
of the wallet, vendor, and broker components go together
to make one coherent version of the Millicent system.

The examples presented here do not really demonstrate
the full power of the Vesta system modeling language,
such as the wide variety of build customizations supported
by the standard construction environment. The system
models that make up the standard environment are rather
complicated, but we believe that investment in them by a
modeling language “wizard” is more than offset by the re-
sulting simplicity in the far more numerous user models.

5 Performance

If Vesta’s performance were significantly worse than that
of alternative SCM systems, it would be of little practical
interest. We have worked hard to make the system effi-
cient. In fact, in this section we show that Vesta’s over-
all performance on scratch builds is as good as Make’s,
and that Vesta’s caching makes it significantly faster than
Make on incremental builds.

Eval

RunTool
Server

tool

Repository
Server

Function
Cache
Server

Make tool

NFS
Server

Client
AlphaStation

500 5/333

Server
AlphaStation

400 4/233

AN2
Network

AdvFS
File System

Vesta Make

Local
Disk

Local
Disk

Figure 10: The experimental setup for our performance
measurements.

To compare Vesta with Make, we ran tests on the hard-
ware configuration shown in Figure 10. In both cases,
the builder and tools were run on a 333MHz AlphaStation
500 5/333 client machine. Server processes (the repos-
itory and function cache in the case of Vesta, and the

8

Test Lines Files Tool Runs Pkgs
Hello 10 1 2 1
Evaluator 53,304 103 117 11
Release 119,602 255 333 16

Table 1: Characteristics of three build tests.

Test Vesta Make
Hello 3.3s 3.4s
Evaluator 310s 318s
Release 912s 960s

Table 2: The elapsed time in seconds required by Vesta
and Make to build the three test cases of Table 1 from
scratch.

NFS server in the case of Make) were run on a 233MHz
AlphaStation 400 4/233 server machine. In both cases,
the server processes used the same AdvFS file system
residing on a local disk, and the client and server ma-
chines communicated via a high-speed ATM network
called AN2. All machines were running version 4.0D of
Compaq’s Tru64 Unix operating system.

We measured builds of software systems of varying
sizes. The characteristics of these systems are shown in
Table 1. The columns of this table indicate the total num-
ber of lines of source code, the number of C/C++ source
files to be compiled, the number of tool invocations neces-
sary, and the number of packages across which the sources
reside.

TheHello test is a simple “hello world” program con-
sisting of a single 10-line source file. It requires two tool
invocations: one to compile the file, and one to link it.
This test is included mainly for purposes of providing
a baseline measurement. TheEvaluator test consists of
building all of the Vesta libraries and the Vesta evaluator
application. The sources for this test are contained in 10
library packages and the evaluator package itself. Finally,
the Releasetest consists of building the entire Vesta re-
lease. In addition to building the evaluator, this includes
building all the Vesta tools, servers, and documentation.

Table 2 shows the elapsed time (in seconds) required by
Vesta and Make to perform each of the three test builds
from scratch. These data show that scratch Vesta builds
are somewhat faster than Make builds, but not appreciably
so, since most of the time is spent compiling and linking.

To measure the time required to perform incremental
builds, we modified one of the source files in each build
test and rebuilt. In the case of the Release test, we modi-
fied the same evaluator source file as in the Evaluator test.

Table 3 shows the elapsed time (in seconds) to perform
each incremental build. For Make builds, we report two

Test Vesta Make One Make All
Hello 3.3s 3.4s 3.4s
Evaluator 12.5s 15.1s 23.3s
Release 13.1s 15.1s 32.1s

Table 3: The elapsed time in seconds required by Vesta
and Make to perform incremental builds of the three test
cases of Table 1.

values. The “Make One” column reports the time required
to run Make in the single directory containing the modi-
fied source file. This is what developers typically do when
working on a set of sources. However, if a source in an-
other package was modified, the resulting build might be
inconsistent. To get closer to a consistent build, the Make
user would need to run Make in each of the other direc-
tories, or packages, contributing to the build. The “Make
All” column reports the elapsed time required to run Make
in all such packages. The extra time in the case of the
Evaluator and Release tests is the time required by Make
to determine that all the other packages were up to date.
Note that Vesta provides even stronger consistency guar-
antees than the “Make All” approach, yet it is significantly
faster, primarily due to top-down caching.

6 Conclusions

Due to space limitations, this paper omits discussion of
many technical details. They are described more com-
pletely in a separate report [6]. However, we feel it is
worth at least mentioning some of the main technical
problems we have solved.

Repository. The repository is a general-purpose file sys-
tem with support for Vesta-specific features, but making
that file system visible via an NFS interface was non-
trivial. Also, the repository includes a nice design for
partial replication of sources across geographically dis-
tributed sites.

Caching. The main challenge in caching (parts of) builds
is forming cache entries whose dependencies are as fine-
grained as possible. For example, we do not want the
compilation of a C file to appear dependent on every
header file available in its environment, but only on those
actually read when compiling it. This requires some non-
trivial dynamic dependency analysis in the Vesta evalua-
tor, as well as support for dynamic, fine-grained depen-
dencies in the function cache. Also, to make incremental
builds fast, the evaluator creates some special cache en-
tries to get cheap high-level cache hits.

System Modeling Language.The main virtue of Vesta’s
system modeling language is that it supports flexible,

9

modular build descriptions that can be highly parame-
terized. The main challenge was designing a general-
purpose language amenable to efficient execution that
supported a variety of methodologies and build cus-
tomizations.

Overall, Vesta handles the core SCM problems of ver-
sion control and building quite well. It provides repeat-
able, incremental, and consistent builds. It also sup-
ports parallel development through several features, such
as branching, explicit versioning, and partial replication.
Vesta’s system modeling language is general enough to
support different development organizations, and it en-
courages modular software descriptions. On small- to
medium-sized scratch and incremental builds, Vesta per-
forms better than Make, and provides much stronger con-
sistency guarantees. Finally, we have found the system
easy to use; once we switched over from building the sys-
tem with Make to building it with Vesta, we never wanted
to go back. The advantages provided by being able to ex-
actly name and reproduce any past build are difficult to
fully appreciate until they are available.

However, despite these successes, there are still some
open questions. The first relates to scalability. Although
Vesta was designed to scale to very large software, we
have used it to build only medium-sized systems. An ear-
lier Vesta prototype saw use by 25 programmers develop-
ing a 1.4 million line code base for over a year [9]. We
designed the current system to overcome the scaling bot-
tlenecks we observed at that time, but we have not yet
used the current system to build anything much larger than
itself. There is evidence that the system scales to a larger
number of users: the Vesta prototype is currently in daily
use by about 60 people in a Compaq engineering group.
The code base they are developing is expected to exceed
700 thousand lines of code by the time it is complete.

Another question relates to ease of use. Our experi-
ences have been positive, but as the developers of the sys-
tem, we are obviously biased. The engineering group that
is using Vesta has been able to adapt it to their application
and development environment by writing a small number
of “wrapper scripts” and a domain-specific control panel
application. Overall, they have found Vesta to be a signif-
icant improvement over their previous version and build
management tools.

Finally, for Vesta to be adopted by any organization,
some technical and non-technical hurdles must be over-
come. Users of other SCM systems need to convert their
code bases and descriptions to Vesta, which may require
specialized tools that understand their existing develop-
ment methodology. Perhaps a more substantial problem is
the need to overcome the psychological barrier created by
Vesta’s radically different approach to SCM. New users
thus require training, not just in a different set of tools,

but in a different way of thinking about the software de-
velopment process.

References
[1] Atria Software, Inc., 24 Prime Park Way, Natick, MA

01760.ClearCase Concepts Manual, 1992.

[2] S. I. Feldman. Make — A program for maintaining com-
puter programs. Software — Practice and Experience,
9(4):255–265, April 1979.

[3] Glenn Fowler. A case for make.Software — Practice and
Experience, 20(S1):S1/35–S1/46, June 1990.

[4] Dick Grune, Brian Berliner, and Jeff Polk.cvs(1) manual
page. Free Software Foundation.

[5] Allan Heydon, Jim Horning, Roy Levin, Timothy Mann,
and Yuan Yu. The Vesta-2 software description language.
SRC Technical Note 1997–005c, Digital Equipment
Corporation, Systems Research Center, June 1998.
http://gatekeeper.dec.com/pub/DEC/SRC/technical–
notes/abstracts/src–tn–1997–005c.html.

[6] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu.
The vesta software configuration management system. In
preparation.

[7] David B. Leblang and Robert P. Chase, Jr. Computer-aided
software engineering in a distributed workstation environ-
ment.SIGPLAN Notices, 19(5):104–112, May 1984.

[8] David B. Leblang, Robert P. Chase, Jr., and Gordon D.
McLean, Jr. The DOMAIN software engineering envi-
ronment for large-scale software development efforts. In
Proceedings of the 1st International Conference on Com-
puter Workstations, pages 266–280, San Jose, CA, Novem-
ber 1985. IEEE Computer Society, IEEE Computer Soci-
ety Press. ISBN 0-8186-0649-5, IEEE Catalog Number
85CH2228-5.

[9] Roy Levin and Paul R. McJones. The Vesta ap-
proach to precise configuration of large software sys-
tems. SRC Research Report 105, Digital Equip-
ment Corporation, Systems Research Center, June
1993. http://gatekeeper.dec.com/pub/DEC/SRC/research–
reports/abstracts/src–rr–105.html.

[10] W. Tichy. Design, implementation, and evaluation of a
revision control system. InProceedings of the 6th Interna-
tional Conference on Software Engineering, pages 58–67.
IEEE Computer Society Press, 1982.

[11] W. Tichy. RCS — A system for version control.Software
— Practice and Experience, 15(7):637–654, July 1985.

10

