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Abstract

In this paper we consider theonline ftp problem. The goal is to service a
sequence of file transfer requests given bandwidth constraints of the underly-
ing communication network. The main result of the paper is a technique that
leads to algorithms that optimize several natural metrics, such as max-stretch,
total flow time, max flow time, and total completion time. In particular, we
show how to achieve optimum total flow time and optimum max-stretch if
we increase the capacity of the underlying network by a logarithmic factor.

We show that the resource augmentation is necessary by proving polyno-
mial lower bounds on the max-stretch and total flow time for the case where
online and offline algorithms are using same-capacity edges. Moreover, we
also give poly-logarithmic lower bounds on the resource augmentation fac-
tor necessary in order to keep the total flow time and max-stretch within a
constant factor of optimum.

1 Introduction

Consider the problem of sending large files (eg. bitmap images) through a general
topology network. The requests arrive online and the goal is to eventually satisfy
all the requests. Since the bandwidth of the links in the network is limited, it
makes sense to try to schedule the transmissions in a way that utilizes the available
resources optimally.

In this paper we consider theonline ftp problem, which is a formal abstrac-
tion of the above file transfer problem. We assume that each ftp request specifies
source/destination nodes and the size of the file. The goal of the online algorithm
is to choose a path that will be used for transmitting each file, and to decide on the
transmission rate. The main difference between this model and the (well-studied)
models for online routing and admission control [11, 1, 12, 2] is that here we do
not assume that the sources have prespecified transmission rate requirements, i.e.
we can deal with non-streaming types of information.

There are two related measures of performance that can be used to compare
different algorithms for the online ftp problem. The first measure is thetotal flow
time, i.e. the sum over all jobs of the time that elapses between the instant the ftp
request is submitted and the time it is satisfied (including the transmission time).
The other measure is themax-stretch, which is the maximum over all ratios of
the flow time of each request and the smallest time needed to satisfy this request.
The second quantity is determined by the link bandwidth and the size of the file.
Both measures are useful since they are directly related to the performance of the
network perceived by the end-user.
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Let n be the number of requests andP the maximum ratio between the sizes
of the files. Assume that the smallest request can be processed in one time unit.
Let F∗

M AX denote the optimum max-flow i.e. the smallest value for the maximum
time a request spends in the system. The main results of the paper are algorithms
that achieve the optimum max-stretch and the optimum total flow time using re-
source augmentation1. For the max-stretch algorithm we need to increase capaci-
ties by a factor ofO(log P), whereas the total flow time algorithm needs a factor
of O(log F∗

M AX) increased capacity2. The latter algorithm does not only achieve
optimum the total flow time, butsimultaneouslyoptimizes many other objective
functions, like the maximum flow time, the total square-of-flow-time, etc.

To justify the need for giving larger capacities to the online algorithm (i.e.
resource augmentation), we show polynomial lower bounds on both max-stretch
and total flow time for the case where both online and offline algorithms are us-
ing the same capacities. Moreover, we show that in order to achieve constant
competitive ratio against an adaptive adversary we have to give the online algo-
rithm �(log P/ log log P) factor more capacity for the max-stretch metric, and
�(

√
logγ / log logγ ) more capacity for the total flow metric, whereγ = min{n, P}.

In the context of machine scheduling, total flow time is known to be a hard
metric to approximate [17] and it is only recently that progress has been made
towards obtaining algorithms that give total flow time guarantees. In particular,
logarithmic-factor resource augmentation was used in [20] to obtain optimum flow
time for machine scheduling. Max-stretch was recently proposed as a good metric
to measure user satisfaction [5]. Our lower bound on the amount of resource aug-
mentation needed for max-stretch holds in the machine scheduling model as well,
and therefore our upper bounds for max-stretch are also of interest in the machine
scheduling model.

When proving upper bounds, we restrict our algorithms to use a single rate
when transmitting a specific file, and do not allow preemption. The competitive
ratio is computed against an offline algorithm that does not have these restrictions.
Our lower bounds for online flow-time minimization algorithm without resource
augmentation (i.e. both the online and the offline algorithms work in the same
network) hold even if we remove this restriction, i.e. allow the algorithm to use
time-varying rate when transmitting a file. This contrasts with minimizing flow
time for machine scheduling, where a logP-competitive preemptive algorithm is
known [18]. Also, the lower bound for total flow time is achieved using same-size

1Throughout this paper, when we refer to an optimum solution, we mean the optimum without
any resource augmentation.

2Note thatF∗
M AX ≤ n P and therefore logF∗

M AX ≤ logn + log P.
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files. This is in contrast to machine scheduling where the unit jobs case is trivial.

We view the online ftp problem as a special case of theset scheduling problem.
In this problem we have a set of resources and each job requires a specific subset
of these resources (or one of a set of subsets). Set scheduling is a natural gen-
eralization of the machine scheduling problem that was extensively studied under
several different metrics (See [16] for a survey of offline approximation algorithms,
and [18, 20, 5, 14, 15, 8, 19] for a sampling of recent results in online algorithms.).
The set scheduling model is similar to the parallel jobs model studied by [10, 22].
We show how to apply several techniques developed in the context of machine
scheduling to the set scheduling problem (and hence the online ftp problem) for
simpler metrics such as makespan and total completion time. In particular, we use
the technique that allows us to convert an offline optimization algorithm that max-
imizes the number of scheduled jobs into an online algorithm that minimizes total
completion time [14, 15, 19]. We also develop new techniques that help us attack
more difficult metrics such as total flow time and max-stretch.

The techniques developed in this paper can be better understood when com-
pared to the technique of Hallet al. [14, 15]. There the approach is to use of-
fline ρ-approximation algorithms for offline packing problems to constructO(ρ)-
competitive online algorithms for average completion time. Our techniques allow
the transformation of offline packing algorithms that achieve the optimum packing
usingO(ρ) resource augmentation into online algorithms that achieve the optimum
flow time usingO(ρ · F∗

M AX) resource augmentation. If the online algorithm is not
required to work in polynomial time, then an optimum offline solution (ρ = 1)
can be used. Unlike the work of Hallet al. [14, 15] our techniques apply only
when jobs aremalleable[14, 6, 10, 22] i.e. extra capacity/resources can be used
to reduce the processing time of jobs. Two such problems are the parallel jobs
problem [6, 10, 22] and the vector scheduling problem [13, 7, 4]. Using our tech-
niques we can obtain non-polynomial-time online algorithms for minimizing the
total flow time for these problems; a detailed discussion of polynomial time online
algorithms that use resource augmentation to obtain optimum flow time for these
two problems is deferred to the full version of this paper.

In Section 2 we explain the models that we use. Section 3 contains the main
technical contributions of the paper – the lower and upper bounds on the perfor-
mance of online algorithms using the total flow time and max-stretch metrics. In
Section 4 we describe online algorithms for the ftp problem using the makespan
and total completion time metrics. Not all online algorithms in Sections 3 and 4 run
in polynomial time; polynomial time online algorithms and offline approximation
algorithms are discussed in Section 5. Section 5 also sketches an offline, polyno-
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mial time algorithm for minimizing the makespan for the set scheduling problem
(and hence the online ftp problem) if the rate at which a request is serviced is
allowed to vary arbitrarily.

2 Models and Definitions

In theset scheduling problemthere aren jobs andm resources. Jobj has an arrival
time (release date)aj , a processing timepj , and a resource requirementSj where
Sj is a subset ofS, the set of resources. We defineP = maxj pj / minj pj . The
quantity P plays a crucial role in the analysis of our algorithms. As in traditional
scheduling, both the preemptive and non-preemptive variants are of interest. The
Set Scheduling Problem can be formulated as either an offline or an online problem.
As in job shop scheduling and multiprocessor scheduling, the performance of an
algorithm for this problem can be studied under several different metrics – most
notably makespan, total completion time, total flow time, and max-stretch. In this
paper we will concentrate mainly on online algorithms.

The online ftp problemis defined as follows. We are given a networkG =
(V, E) where all edges have identical bandwidths. Assume that the transmission
delay along any link is zero, and that there are no buffers in the network. Once
a source starts transmitting data to another node, the other node starts receiving it
immediately. Of course the rate at which the sender transmits the data is bounded
by the minimum available bandwidth along the route over which the transmission
is taking place. Letm be the number of links in the network, andn the number of
ftp requests. Requestj has an arrival timeaj , specifies file sizepj , and a routeRj

over which the data needs to be transmitted. We also address the case where instead
of the route, the request specifies only the source and the sink nodes. The former
model is closer to the IP world, where the routes are determined by an external
algorithm, while the second model is closer to the ATM world, where one can use
source routing.

Let Cj be the completion time of jobj in a schedule. The quantityFj = Cj −aj

is called the flow time of jobj . The makespan of a schedule is maxj Cj ; total
completion time is

∑
j Cj ; total flow time is

∑
j Fj and max-stretch is maxj Fj /τj

whereτj is the time it would take to satisfy jobj if it had the whole network
to itself. We also permit jobs to have weightswj . In the presence of weights
the total completion time and total flow time metrics are defined as

∑
j wj Cj and∑

j wj Fj respectively. Traditionally, the total flow time and max-stretch metrics
are considered to be the hardest. These are also perhaps the most interesting metrics
as they most directly measure end user experience.
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The following theorem captures the hardness of the set scheduling problem –
the reduction is straightforward and we omit the details.

Theorem 1 The Vertex Color problem reduces (via polynomial time reductions) to
Set Scheduling in an approximation preserving fashion.

For the vertex color problem lower bounds are known for both the approximation
ratio (�(n1−ε) unless P=NP [9]) and competitive ratio (�(n1/3) [3]). The above
reduction also holds for the online ftp problem if the routes as well as the transmis-
sion rates are given as input. Thus to make progress with the set scheduling/online
ftp problems, we need to relax the model. The first relaxation we propose is to al-
low rate control for jobs. Thus each job would be assigned a start timesj (sj ≥ aj )
and a rater j by the scheduler. The job would execute ¿from timesj to sj + pj /r j

and would consume anr j fraction of each resource in its resource setSj during
this interval. More than one jobs may use a resource at the same time. However,
the total usage of a resource at any time must be at most 1. This relaxation is par-
ticularly appropriate to the ftp problem: it is possible to control the rate of a TCP
connection; more than one connections can use the same link; further, a connection
uses up the same bandwidth on each link along its route3.

3 Flow time and max-stretch using resource augmenta-
tion

3.1 Upper bounds with resource augmentation but no preemption

Assume that all links have the same capacity in the original network; rescale ca-
pacities so that this capacity becomes 1. Further rescale time such that the smallest
request takes four units of time to finish if it has the entire network to itself. Then
the time required to service the largest request (if the request has the entire network
to itself) is 4P.

Let n be the number of requests, andm the number of links. LetK = 3 +
logn + log P. We assume that the online algorithm can use a capacity of 5K on
each link.

3Instead of allowing a fixed rater j for each job, we could also allow the rate to vary. It turns out
that our online algorithms, even though they use just one rater j for job j , are competitive against
optimal solutions which are allowed to vary the rate. For offline algorithms it may help to vary the
rate; we will delve into this a little in Section 5
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The online algorithm pretends that there areK copies of the network,G0 . . . GK−1,
each with edge capacities 5. We call this algorithmMRHP (Most Recent Highest
Priority) since at any given time, connections which have been waiting in the sys-
tem the shortest are the most likely to get scheduled. The online algorithm does its
processing only at integral time instants. Figure 1 describes the behavior of MRHP
at timet such thatt = 2k.t ′, wheret ′ is odd.

for i = 0 to min{k, K − 1}
1. Let Si be the set of requests which arrived in

the interval [t − 2i , t)

2. Find the largest weight subset of Si that can
be completed in the network Gi between times t
and t + 2i

3. Schedule this subset in Gi such that each re-
quest has starting time t , finishing time t + 2i ,
and a uniform rate during this interval.

Figure 1: Algorithm MRHP at timet = 2k.t ′, wheret ′ is odd.

The same job may get scheduled by multiple copies of the network. The flow
time of such a job is taken to be the smallest flow time from all its copies. All
the jobs ultimately get scheduled by the online algorithm, as theGK−1 alone has
sufficient capacity to schedule all the jobs.

Let wj be the weight of thej th job, andFj the total time this job spends in
the system. LetQk be the total weight of the requests which get scheduled in at
least one of the networksG0 . . . Gk. Let Q∗

k be the total weight of all requests that
have a flow time of at most 2k+2 in the optimum solution. Letqk = Qk − Qk−1,
andq∗

k = Q∗
k − Q∗

k−1 (for convenience defineQ−1 andQ∗
−1 to be 0.). Each jobj

which contributes toqk must have a flow timeFj ≤ 2k+1 in the MRHP schedule,
and each jobj which contributes toq∗

k must have a flow timeF∗
j ≥ 2k+1 in the

optimum schedule.

Let F∗ andF denote the total weighted flow times of the optimum and on-
line algorithms, respectively. Clearly,F∗ ≥ ∑

0≤k≤K 2k+1q∗
k . Further,F ≤∑

0≤k≤K−1 2k+1qk.

Lemma 2 Qk ≥ Q∗
k
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Proof: Let S∗
k be the set of requests which contribute toQ∗

k. By definition, each
of these requests has a flow time of at most 2k+2. Divide time into intervals of the
form [i ·2k, (i +1) ·2k) for i ≥ 0. LetS(i )∗

k denote the set of requests fromS∗
k which

arrive during thei -th interval, and letQ(i )∗
k denote their combined weight. All these

jobs are scheduled by the optimum algorithm to finish before time(i +1)·2k+2k+2.
Hence all these jobs must arrive and finish in the interval [i ·2k, (i +1) ·2k +2k+2),
which has length 5· 2k. SinceGk has 5 times the original capacity on each edge,
and since it has all the jobs inS(i )∗

k available for scheduling during the interval

[(i + 1) ·2k, (i + 2) ·2k), it will schedule jobs with a weight of at leastQ(i )∗
k during

this interval. Summing up over alli , Qk ≥ Q∗
k.

Let g be any function from<+ to <+. Let F∗
g denote the optimum value of∑

j wj g(Fj ) that can be obtained in an unaugmented network, andFg denote the
corresponding value obtained by MRHP.

Theorem 3 Fg ≤ F∗
g , for all non-decreasing functions g.

Proof: Let W = ∑
j wj . We defineP(k) = Qk/W and P∗(k) = Q∗

k/W. P and
P∗ are probability measures, and Lemma 2 implies thatP∗ stochastically domi-
natesP. Theorem 3 now follows from the properties of stochastic dominance – we
omit the details from this version.

Theorem 3 is particularly interesting because it shows that MRHP simultane-
ously optimizes a very wide class of metrics. In particular, the following results
can be obtained as corollaries.

Corollary 3.1 F ≤ F∗.

Proof: Let g be the identity function in the statement of Theorem 3

Corollary 3.2 Let FM AX denote the maximum flow time (max-flow) in the schedule
obtained by MRHP and F∗M AX denote the max-flow in the optimum schedule. Then
FM AX ≤ F∗

M AX

Proof: For p > 0, defineFp to be
∑

j wj (Fj )
p. F∗

p is defined analogously. Theo-
rem 3 implies thatFp ≤ F∗

p for all p > 0. FM AX andF∗
M AX are the limiting values

of (Fp)
1/p and(F∗

p)1/p respectively asp → ∞. ThereforeFM AX ≤ F∗
M AX.

The average stretch of a job can be mimicked using a total weighted flow time
objective function with appropriate weights. MRHP does not really need to know
K in advance – it can maintain an estimate ofK and increment this estimate by
one if and when the current value ofK does not suffice to schedule all the requests.

8



Let F∗
M AX be the optimum max-flow for the given sequence of jobs, given that the

shortest job takes one unit time to finish if it has the entire network to itself. Notice
that F∗

M AX ≤ nP. The following theorem gives a sharper bound on the amount of
resource augmentation needed by MRHP.

Theorem 4 MRHP needs O(log F∗
M AX) resource augmentation. Further, F∗

M AX
need not be known in advance.

The above theorem represents a significant improvement, sincen can be arbitrarily
large even in a well behaved system with small max-flow. Section 5 shows how
to implement the algorithm in expected polynomial time withO(logn + log P +
logm) resource augmentation.

We now return to the max-flow metric introduced in Corollary 3.2. The max-
flow metric (FM AX) is interesting primarily because it relates to the max-stretch
metric. We give a simple online algorithmMMF (Minimum Max-Flow) that uses
only a constant factor resource augmentation. More specifically, MMF uses at most
five times the capacity of the original network. MMF assumes that the optimum
max-flow is at leastT and at most 2T (Initially, T is assumed to be the time re-
quired to complete the very first job in the original network.). At timest which are
multiples ofT/2, MMF looks at all requests which arrived during the lastT/2 time
units. It then assigns to each of these jobs a rate which is just sufficient for this job
to finish in the nextT/2 time units. If the load on any edge exceeds five times the
capacity of that edge in the original network, MMF doublesT , aborts the current
phase, and waits till the current time becomes a multiple of the new value ofT/2.
The following theorem subsumes Corollary 3.2.

Theorem 5 The maximum flow time of a job in the schedule produced by MMF is
no larger than the optimum max-flow. MMF runs in time polynomial in n, m, and
log P.

We are now ready to presentMMS (Minimum Max-stretch) which usesO(log P)

resource augmentation and guarantees a max-stretch that is no worse than the op-
timum max-stretch. We first observe that MMF can be modified to guarantee a
max-flow that is at most half the optimum value if the amount of capacity on each
edge is ten times that in the original network. Letp1 be the amount of data transfer
required by the first job. MMS bunches incoming requests into (at most logP)
classes, with classi containing all requests which have a data requirement in the
range [p1 ·2i , p1 ·2i+1) (i may be negative as well). There can be at most 2+ log P
classes. For requests within classi MMS invokes a separate copy of modified
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MMF. Thus the resource augmentation needed by MMS isO(log P). Note that
MMS does not need to knowP in advance. The fact that the max-flow obtained
within each class is at most half the optimum max-flow for that class is sufficient
to guarantee that the max-stretch obtained by MMS is no more than the optimum
max-stretch. The following theorem summarizes the claims made in the above
discussion.

Theorem 6 MMS uses O(log P) resource augmentation and obtains a max-stretch
that is no more than the optimum max-stretch. Further, MMS does not need to know
P. MMS runs in time polynomial in n, m, andlog P.

Note that neither MRHP, nor MMF, nor MMS need to get the transmission
routesRj as input.

Theorem 7 MRHP, MMF, and MMS can obtain optimum values for their respec-
tive metrics even if the routes Rj are not given as input.

If routes are not provided as input, MRHP, MMF, and MMS as described above
would not run in polynomial time. See theorem 15 for the amount of resource
augmentation needed by polynomial time algorithms.

3.2 Lower bounds with preemption but without resource augmenta-
tion

We show that without extra capacity, the competitive ratio of any randomized on-
line algorithm which tries to minimize the total flow time (max-stretch, resp.) for
the data transfer problem against an oblivious adversary can not be bounded by any
function of the network size. The lower bound for the competitive ratio in terms of
the number of jobs,n, is �(

√
n) for both metrics. The quantityP is 1 for the flow-

time lower bound, and
√

n for the max-stretch lower bound. The lower bounds
hold even if the online algorithm is allowed to do preemption and use fractional
capacities on links but the adversary is not.

Total flow time: Consider the length-3 pathA − B − C − D. Assume that all 3
links have the same bandwidth,u. Each connection will request the same amount
of data,r . We rescale time so thatu = r i.e. each request can be serviced in exactly
one time unit.

The adversary first tosses an unbiased coin. If the outcome is “Heads” it chooses
the link A − B as a special link, else it choosesC − D. During the first time step,
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the adversary generatesk requests fromA to C andk from B to D. The adversary
does not do anything for the nextk − 1 time units. Then for the nextk2 time units
the adversary generates one request per time unit over the special link.

Lemma 8 The expected flow time of any online algorithm on this sequence must
be�(k3), even if preemption is allowed and the online algorithm is allowed to use
fractional capacities. Further, the optimum flow time for this sequence is O(k2)

even without using fractional capacities and preemption.

Since the number of jobs isn = 2k + k2, the competitive ratio of any online
algorithm must be�(

√
n) which does not depend on the network size.

Max-stretch: Consider again the same length-3 pathA − B − C − D, with each
link capacity beingu. Again, the adversary first tosses an unbiased coin. If the
outcome is “Heads” it chooses the linkA − B as a special link, else it chooses
C − D. During the first time step, the adversary generates 1 request fromA to C
and 1 fromB to D, each of sizeku; for the nextk−1 time units the adversary does
nothing. Over the nextk2 time units the adversary generates one request of sizeu
every time unit over the special link.

Lemma 9 The expected max-stretch of any online algorithm on this sequence must
be�(k), even if preemption is allowed and the online algorithm is allowed to use
fractional capacities. Further, the optimum max-stretch for this sequence is2 even
without using fractional capacities and preemption.

The ratio P = pmax/pmin for this sequence isk. Since the number of jobs is
n = 2+ k2, the competitive ratio of any online algorithm must be�(min{P,

√
n})

which does not depend on the network size. A lower bound of�(P1/3) for the
competitive ratio of an online algorithm for the minimum max-stretch problem in
the context of machine scheduling was presented in [5].

3.3 Lower bounds on the amount of resource augmentation

In this section we give lower bounds on the amount of resource augmentation
needed for any randomized online algorithm to achieve a constant competitive ra-
tio. These lower bounds require an adaptive adversary, and assume that the online
algorithm is not allowed to preempt requests or change the rate at which a request is
being serviced. Notice that our upper bounds all work against adaptive adversaries,
and do not preempt requests.
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Theorem 10 Against an adaptive adversary, any randomized online algorithm
that achieves constant competitiveness for max-stretch must use�(min(n, log P/ log log P))

resource augmentation.

Proof: The adversary uses a one link network with capacity 1. Letu be the re-
source augmentation that the online algorithm uses and letk be a parameter chosen
suitably below. The sequence of requests created by the adversary consists of sub-
sequencesA0, A1, . . . , Af , for some f ≥ 0. The beginning of a new subsequence
Ai is called arestart. Initially i = 0. Each subsequenceAi consists of requests of
sizeLi , one everyLi time units whereLi = (16uk)3u−i . Define ai -phaseto be a
time interval between thei th and thei +1st restart during which no new jobs ofAi

arrive and no old jobs ofAi are completed by the online algorithm. Since the algo-
rithm is not allowed to vary the rates, the adversary can determine at the beginning
of ani -phase how long thei -phase would last if no new job arrived. The adversary
also knows the bandwidth utilization of the online algorithm during thei -phase. If
the adversary encounters ani -phase that would last at leastLi /(8u) time units and
were jobs ofAi use more than 1/3 units of bandwidth, the adversary incrementsi
and it restarts. If the adversary does not encounter such ani -phase, it stops when
Ai consists ofk jobs.

Note that whenever the adversary restarts, the bandwidth available to the online
algorithm for jobs created after the restart is reduced by at least 1/3. Thus the
adversary restarts at most 3u times, i.e. f ≤ 3u. It can be shown inductively that
the optimum algorithm can schedule all jobs in∪l>i Al (ie all jobs of size less than
Li ) in time at mostLi . Hence delaying the last job of each size by its size gives an
algorithm with max-stretch at most 2.

We show next that the max-stretch of the online algorithm is at leastk. Let
L f = (16uk)3u− f be the size of the shortest jobs generated by the adversary.
When the adversary creates jobs of sizeL f no f -phase exists of length at least
L f /(8u) where jobs ofAf use more than 1/3 units of bandwidth. Sincek jobs of
sizeL f are created, there are at most 2k f -phases. The total amount of data of jobs
in Af transferred duringf -phases where the jobs inAf use more than 1/3 units of
bandwidth is at most 2k · L f /(8u) · u = L f k/4. We consider nextf -phases where
the jobs inAf use at most 1/3 units of bandwidth. During the first 2kLf time units
of these f -phases at most 2kLf /3 data of jobs inAf is transferred. Therefore the
total amount of data of jobs inAf transferred by the online algorithm during the
first 2kLf time units since the last restart is at most 11kLf /12. Hence, there are
some jobs ofAf left unfinished at time 2kLf and therefore, there must be some job
with a stretch ofk.
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It follows that the competitive ratio is at leastk/2. Note that the ratioP of the
maximum job size to minimum job size is(16uk) f and that the numbern of jobs
is at most f k. Since f ≤ 3u, n ≤ 3ku andP ≤ (16uk)3u. If the competitive ratio
is a constant, bothn/3u andP1/(3u)/(16u) must be a constant. The first condition
translates tou = �(n) and the second translates tou = �(log P/ log log P).
Thereforeu = �(min(n, log P/ log log P)).

Theorem 11 Letγ = min{n, P}. Against an adaptive adversary, any randomized
online algorithm that achieves constant competitiveness for Total Flow Time must
use�(

√
logγ / log logγ ) resource augmentation.

The proof of Theorem 11 uses an argument similar to the proof of the previous
theorem, and is omitted from this version.

4 Online Algorithms for Makespan and Total Completion
Time

Standard techniques can be used to obtain constant competitive online algorithms
for makespan and average completion time for the online ftp problem without the
use of resource augmentation.

Makespan: Defineλ as the maximum over all edges,e, of the amount of data
that needs to be transferred overe. We rescale time so that one unit of data can
be transferred over a link in one unit of time. LetaM AX be the time at which the
last request arrives. LetL be the quantity max(aM AX, λ). L is a lower bound on
the makespan of any schedule. The online algorithm maintains a guessλ̃ for the
value ofL. We assume that the first request arrives at time 0. The initial value of
λ̃ is set top1, the amount of data transfer needed by the first request. Each time a
request arrives, the algorithm recomputesL. If L > λ̃, λ̃ is reset to max(L , 2λ̃).
The online algorithm schedules the newly arrived request to execute from timeλ̃

to 2λ̃, with a rate of 1/λ̃. It is easy to see that the above algorithm does not violate
capacity constraints. LetU represent the final value ofλ̃; by constructionU is at
most 2L. The makespan is at most 2U + U + U/2+ . . . < 4U . We can now claim
the following result.

Theorem 12 The above algorithm is8-competitive.

The above algorithm runs in polynomial time and hence, is also an offline ap-
proximation algorithm. However, an offline algorithm “knows” the exact value of
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L and hence can provide an approximation guarantee of 2. If routes are not given
as part of the input, a slight variant of the above online algorithm can still obtain
an 8-approximation, but it would not run in polynomial time.

Total Completion Time: The general scaling technique outlined by Hallet al.[15,
14] directly results in a 4-competitive online algorithm for the total completion time
metric, regardless of whether routes are given as part of the input. Their technique
requires an offline algorithm that can pack an optimum number of requests into a
given interval. This problem is NP hard, and therefore, our online algorithm does
not run in polynomial time. AnO(logm)-competitive polynomial time algorithm
is outlined in Section 5.

5 Polynomial Time Approximation and Online Algorithms

In this section we give offline algorithms for total completion time, makespan, total
flow time, average stretch, maximum flow time, and maximum stretch that run in
polynomial time. The algorithms for total completion time and makespan approx-
imate the optimum performance without resource augmentation. The algorithms
for the remaining metrics achieve optimum performance using either a constant-
factor or a polylogarithmic-factor resource augmentation. We conclude the section
by giving polynomial-time algorithms with optimum makespan under two different
relaxations of our model: (1) We relax the condition that the rate of a job has to be
constant: we give a polynomial-time algorithm that varies the rates and achieves
optimum makespan. (2) We assume that the start timesj is part of the input and
show that then the problem can be solved in polynomial time.

Theorem 13 There exists an algorithm that achieves an O(logm)-approximation
of the total completion time for the online ftp problem in time polynomial in n and
m, regardless of whether routes are given as part of the input.

Proof: Consider the problem of maximizing the number of ftp requests (out of a
given set of requests, all of which have the same arrival time) that can be scheduled
over a given period of time. AnO(logm) approximation to this problem can be
obtained using multicommodity flow followed by randomized rounding [21]; plug-
ging this into the general technique of Hallet al. [15, 14] results in anO logm)-
competitive polynomial time online algorithm for the total completion time of ftp
requests.

A polynomial time 2-approximation for the makespan of the ftp problem when
routes are given as part of the input follows from the discussion in Section 4; a
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simple randomized rounding trick results in anO(logm)-approximation if routes
are not provided as input.

Theorem 14 There exists an algorithm that achieves a 2-approximation for makespan
in time polynomial in n and m if routes are given as part of the input, and O(logm)

otherwise..

We now describe how to implement algorithm MRHP in polynomial time. The
only step of MRHP which might take super-polynomial time is step 2, finding the
largest weight subsetAi of Si that can be completed between timest andt + 2i .
To implement it in expected polynomial time we need to add logm + 2eK to the
capacity of each edge, whereK = logn + log P + 3.

We use first a linear programming relaxation of the problem, then round it prob-
abilistically and finally show that with high probability no edge capacity constraint
is violated. The linear program uses for each jobj a variablexj and maximizes∑

∈Si
wj xj under the constraint that for each edgee,

∑
j usese xj pj /2i ≤ 1 and

that for each j , xj ≥ 0. Let x∗
j denote the value ofxj in the solution. We

probabilistically round each jobj for each networki such P( j ∈ Ai ) = x∗
j .

Let Xe be the random variable denoting the load of edgee in G. The expected
valueµ of Xe is

∑
0≤i<K

∑
j usese x∗

j pj /2i ≤ K . Using Chernoff bounds with
δ = (logm + 2eK)/µ − 1 shows that

Pr(Xe > logm+2eK) ≤ (
eδ

(1 + δ)1+δ
)µ ≤ (

e

logm + 2eK
)logm+2eK < 1/(m(nP)2e).

Thus, the probability that one of the edge capacities overflows is at most 1/(nP)2e

in which case we simply redo the rounding step.

Note that both MMF and MMS already run in time polynomial inn, m, and
log P if routes are given as part of the input. The same ideas that we outlined above
for total flow time also result in polynomial time algorithms for the max-flow and
max-stretch problems when routes are not given as input.

Theorem 15 There exist (online or offline) algorithms that run in time polynomial
in n, m, and log P and

• achieve optimum total flow-time or average stretch with an expected O(logn+
log P + logm)-factor resource augmentation regardless of whether routes
are given as part of the input;

• achieve optimum maximum flow time with a constant-factor resource aug-
mentation if the routes are given as part of the input, and expected O(logn+
logm) resource augmentation otherwise;
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• achieve optimum maximum stretch with an O(log P)-factor resource aug-
mentation if the routes are given as part of the input, and expected O(logn+
logm + log P) resource augmentation otherwise.

We finally relax some of our conditions. Consider first the case that the rate of
jobs can vary. Assume that the optimum makespan isM. We present a linear pro-
gram that givenM checks whether there exists a feasible solution. By performing
a binary search overM, with 0 < M ≤ nP and assuming that time is rescaled so
that the shortest job takes one time unit, we get a polynomial time algorithm that
finds the optimum makespan.

We assume wlog that the first job arrives at time 0. Break the time from 0 to
M into intervals whenever a new job arrives and number the time intervals from
1 to n. Let l i be the length of intervali and letaM AX be the arrival time of the
last job. Note that the length of the last interval isM − aM AX. There is a variable
xj ,i for each intervali and each jobj . The linear program checks whether there
is a non-negative assignment for the variablesxj ,i such that (1) for each jobj ,∑

i xj ,i l i ≥ pj , (2) for each edgee and intervali ,
∑

j usese xi, j ≤ 1, and (3) for
each jobj and intervali such thatj arrived afteri , xj ,i = 0.

The linear program can be slightly modified to give a polynomial-time algo-
rithm in the case that the start timesj is given for each jobj .
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