
SRC Technical Note
1998 - 005

March 10, 1998

Reduction in TLA

Ernie Cohen
Bellcore

and Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Digital Equipment Corporation 1998. All rights reserved

Reduction in TLA

Ernie Cohen
Bellcore

Leslie Lamport
Digital Equipment Corporation

10 March 1998

Abstract

Reduction theorems allow one to deduce properties of a concurrent sys-
tem specification from properties of a simpler, coarser-grained version called
the reduced specification. We present reduction theorems based upon a more
precise relation between the original and reduced specifications than ear-
lier ones, permitting the use of reduction to reason about a larger class of
properties. In particular, we present reduction theorems that handle general
liveness properties.

Contents

1 Introduction 1

2 The Relation BetweenS and S R 2

3 An Intuitive View of Reduction 3

4 Safety in TLA 6

5 Liveness in TLA 8

6 Reducing Fairness Conditions 10

7 Proofs 14

8 Further Remarks 14

References 15

1 Introduction

We reason about a high-level specification of a system, with a large grain of atom-
icity, and hope thereby to deduce properties of a finer-grained implementation.
For example, the single atomic action

x , y := f (x , y), g(x , y)

of a high-level algorithm might be implemented by the sequence of actions

P(sem); t := x ; x := f (x , y); y := g(t, y); V (sem) (1)

whereP andV are the usual operations on a binary semaphoresem, andt is a
new variable. This process is usually justified by asserting that the two specifica-
tion are, in some suitable sense, “equivalent”. Areduction theoremis a general
rule for deriving an “equivalent” higher-level specificationS R from a lower-level
oneS . We callS R thereducedversion ofS . For example,S might be a multipro-
cess program containing critical sections, andS R might be obtained fromS by
replacing each critical section with a single atomic statement.

The first reduction theorem was proposed by Lipton [10]. Several others fol-
lowed [3, 5, 4, 6, 9]. In these theorems, executions of the reduced specification and
of the original one are completely separate, sharing only certain properties. In the
reduction theorems we present here, the original and reduced specifications “run
in parallel”, their executions connected by a coupling invariant [7]. Our theorems
thereby provide a more precise (and hence stronger) statement of the relation be-
tween the original and the reduced specifications. This enables certain hypotheses
to be stated as assumptions about a given execution, rather than in the stronger
form of assumptions about all executions. In particular, we relate liveness prop-
erties of executions of the two specifications, obtaining what we believe to be the
first published general reduction theorems that handle liveness. The only previous
theorems we know that concern liveness are Back’s [3] results for total correct-
ness of sequential programs and a theorem in [4] showing that certain progress
properties of a component are preserved under fair parallel composition with an
environment.

Our theorems are stated in TLA (the Temporal Logic of Actions) [8], but they
should be adaptable to other formalisms with a trace-based semantics. Space does
not permit us to include examples; they will appear elsewhere.

1

2 The Relation BetweenS and S R

We begin by examining the relation between the original specificationS and the
reduced versionS R. We want to infer properties ofS by proving properties ofS R.
For this,S andS R needn’t be equivalent; it’s necessary only thatS implement
S R—for some suitable notion of implementation.

SupposeS represents a multiprocess program with shared variablesx andy
that are accessed only in critical sections, and the reduced versionS R is obtained
by replacing each critical section with a single atomic statement—for example,
replacing (1) with

t, x , y := x , f (x , y), g(x , y)

One sense in whichS implementsS R is that, if we ignore the times when
a process is in a critical section,S assigns the same sequences of values to all
variables thatS R does. This is the notion of implementation used by Doeppner
in his reduction theorem [6]. While satisfactory for many purposes, this notion of
implementation is rather weak. It says nothing about what is true while a process
is in its critical section, which can be a problem because assertional reasoning
requires proving that an invariant holds at all times.

Let v be the tuple of all variables ofS , includingx andy . Our stronger notion
of implementation is that there exists a tuple of “virtual variables”v̂ such that,
asS changes the real variablesv , the virtual variableŝv change according to the
specificationŜ R obtained fromS R by replacing each real variable by its virtual
counterpart. The relation between the real and virtual variables is expressed by a
predicateI relatingv andv̂ . (Such a predicate is known as a “coupling invariant”
[7].) This generalizes Doeppner’s notion of implementation ifI implies v = v̂
when no process is in a critical section. For example, during execution of the
critical section (1),I might imply:

t̂, x̂, ŷ =

t, x, y before executingt := . . .
t, f (x, y), g(x, y) just after executingt := . . .
t, x, g(t, y) just after executingx := . . .
t, x, y after executingy := . . .

All the steps of the critical section leave the virtual variables unchanged except
for the assignment tot , which performs the “virtual assignment”

t̂, x̂ , ŷ := x̂ , f (̂x , ŷ), g (̂x , ŷ)

2

Expressed in temporal logic, this implementation relation is

S ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R (2)

where∃∃∃∃∃∃ is existential quantification over flexible1 variables.2 This is approxi-
mately the conclusion of our reduction theorems.

We would like to prove thatS R satisfies (implies) a property5 and deduce
thatS satisfies5. By (2), all we can infer fromS R ⇒ 5 is S ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ 5̂.
How useful this is depends upon the nature ofI and5. Space precludes a discus-
sion of how our reduction theorem can be applied. We just mention one important
case. SupposeI implies ẑ = z for every variable occurring in5. In this case,
∃∃∃∃∃∃ v̂ : 2I ∧ 5̂ implies5, so we inferS ⇒ 5 from S R ⇒ 5. It is this result that
justifies the well-known rule for reasoning about multiprocess programs that al-
lows grouping a sequence of operations into a single atomic action if they include
only a single access to a shared variable [11].

3 An Intuitive View of Reduction

We consider the situation in which one operationM is reduced to a single atomic
actionM R—for example, one critical section is replaced by an atomic statement.
Reduction of multiple operations can be performed by applying the theorem mul-
tiple times to reduce one operation at a time.

A single execution of the operationM consists of a sequence ofM steps.
These can be interleaved with other system steps, which we callE steps, as in:

· · · s41
M−→ s42

E−→ s43
M−→ s44

E−→ s45
E−→ s46

M−→ s47
M−→ s48 · · · (3)

We think ofE asM ’s environment. The idea is to construct a behavior “equivalent
to” (3) by moving all theM steps together, as in

· · · s41
E−→ u42

M−→ u43
M−→ u44

M−→ u45
M−→ u46

E−→ u47
E−→ s48 · · · (4)

which is then equivalent to the behavior

· · · s41
E−→ u42

M R−→ u46
E−→ u47

E−→ s48 · · · (5)

1In temporal logic, a flexible variable is one whose value can change over time; a rigid variable
is one whose value is fixed.

2As with any form of implementation, this works only ifS R allows stuttering steps and∃∃∃∃∃∃
preserves stuttering invariance [8].

3

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · ·

HHHj
����

HHHj
����

· · · s41
E−→ u42

R−→ s 43
X−→ s 44

E−→ s 45
L−→ r46

E−→ s 47
L−→ s48 · · ·

HHHj
����

HHHj
����

· · · s41
E−→ u42

R−→ s 43
X−→ s 44

L−→ u45
E−→ r46

L−→ u47
E−→ s48 · · ·

HHHj
����

· · · s41
E−→ u42

R−→ s 43
X−→ s 44

L−→ u45
L−→ u46

E−→ u47
E−→ s48 · · ·

Figure 1: Constructing (7) from (6).

of the reduced system.
To construct behavior (4), we restrictM so that its execution consists of a

sequence ofR steps, followed by anX step, followed by a sequence ofL steps.
We say that an execution ofM is in its first phasebeforeX is executed, and in
its second phaseafter X is executed. (The terminology comes from the use of
reduction to prove serializability of the two-phased locking discipline of database
concurrency control.) Intuitively,M receives information from its environment
in the first phase, and sends information to its environment in the second phase.
Behaviors (3) and (4) are then

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · · (6)

· · · s41
E−→ u42

R−→ u43
X−→ u44

L−→ u45
L−→ u46

E−→ u47
E−→ s48 · · · (7)

To obtain (7) from (6), we must moveR actions to the right andL actions to the
left. We say that actionA right commuteswith actionB , andB left commuteswith

A, iff for any statesr , s, andt such thatr
A−→ s

B−→ t , there exists a stateu such

thatr
B−→ u

A−→ t . If R actions right commute withE actions andL actions left
commute withE actions, then we can obtain (7) from (6) by commuting actions
as shown in Figure 1. Observe that, since we don’t have to commute theX action,
u43 = s43 andu44 = s44.

Lipton [10] was concerned with pre/postconditions, so he essentially trans-
formed (6) to (5). Doeppner [6] transformed (6) to (7) and observed that the new
behavior differs from the original only on states in which the system is in the
middle of operationM . In our theorems, we use the behavior (7) to construct
the virtual variableŝv for the behavior (6). The value of̂v in a states i of (6) is
defined to be the value ofv in a corresponding stateν(s i) of (7), where the cor-

4

· · · s41
R−→ s 42

E−→ s 43
X−→ s 44

E−→ s 45
E−→ s 46

L−→ s 47
L−→ s48 · · ·

· · · s41
E−→ u42

R−→ s43
X−→ s44

L−→ u45
L−→ u46

E−→ u47
E−→ s48 · · ·

?

�
�
�	

�
�
�	

HHHHHHj

HHHHHHj

HHHHHHj

@
@
@R ?

Figure 2: The correspondenceν between states of (6) and of (7).

respondence is shown in Figure 2. For example,ν(s44) = u46, so the value of̂v
in states44 of (6) is the value ofv in stateu46 of (7). Observe thatR andL steps
leavêv unchanged, and theX step changeŝv the way anM R step changesv (see
(5)).

For an actionA, let
A+−→ be the irreflexive transitive closure of

A−→, sos
A+−→ t

iff there exist statesr1, . . . ,rn such thats
A−→ r1

A−→ · · · A−→ rn
A−→ t . There

is the following relation between a states i and its corresponding stateν(s i).

• If (in state s i) M is not currently being executed—statess41 and s48 in
Figure 2—thens i = ν(s i).

• In the first phase (execution ofM begun butX not yet executed)—states

s42 ands43 in Figure 2—we haveν(s i)
R+−→ s i .

• In the second phase (X executed butM not terminated)—statess44 through

s47 in Figure 2—we haves i
L+−→ ν(s i). (To see thats45

L+−→ ν(s45), observe

from Figure 1 thats45
L−→ r46

L−→ u47.)

Observe also that:

• M is not currently being executed in a stateν(s i).

The construction ofν described by Figure 2 works only if, once theX step
has occurred, the execution ofM eventually terminates. The construction can also
be made to work if the entire system halts after executingX , as long as we can
extend the behavior (6) by adding a finite sequence ofL actions that complete the
execution ofM . Therefore, in the conclusion of our reduction theorems, we must
replace (2) with

S ∧Q ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R (8)

whereQ asserts that, once anX step has occurred, either the execution ofM
eventually terminates or else the entire system halts in a state in which it is possible
to complete the execution ofM . Note that we allow behaviors in which execution
of M remains forever in its first phase, never taking anX step.

5

4 Safety in TLA

In TLA, a state is an assignment of values to all flexible variables, and a behavior
is a sequence of states. An action is a predicate that may contain primed and

unprimed flexible variables. IfA is the actionx ′ = 1+ y , thens
A−→ t is true iff

the value assigned tox by statet equals 1 plus the value assigned by states to y .
The canonical form of the safety3 part of a specification isInit ∧ 2[N]v , where
Init is a state predicate (a formula containing only unprimed flexible variables),
N is an action called thenext-state action, v is the tuple of all flexible variables
occurring inInit andN , and [N]v is an abbreviation forN∨(v ′ = v).4 A behavior

s1, s2, . . . satisfies this formula iffInit is true in the initial states1 ands i
[N]v−→ s i+1

holds for alli—that is, iff Init holds initially and every step is either anN step or
a stuttering step (one that leaves all the relevant variables unchanged).

From now on, we assume thatv is the tuple of all flexible variables that
appear in our formulas.

The next-state actionN is usually written as the disjunction of all the indi-
vidual atomic actions of the system. For our reduction theorems,N is defined to
equalM ∨E , whereM is the disjunction of the atomic actions of the operation be-
ing reduced, andE is the disjunction of the other system actions. We assume two
state predicatesR andL, whereR is true when execution ofM is in its first phase
(M has begun butX has not yet been executed), andL is true when execution
of M is in its second phase (X has been executed butM has not yet terminated).
We takeInit , M , E , R, andL to be parameters of the theorems. The theorems
assume the following hypotheses, which assert thatR andL are consistent with
their interpretations as assertions about the progress ofM . The hypotheses are
explained below.

(a) Init ⇒ ¬(R ∨ L)
(b) E ⇒ (R′ ≡ R) ∧ (L′ ≡ L)

(c) ¬(L ∧M ∧R′)
(d) ¬(R ∧ L)

(9)

(a) The system starts withM not in the middle of execution.

(b) Executing an action of the environment cannot change the phase.

3Any property is the conjunction of a safety property, which constrains finite behavior, and a
liveness property. [2]

4For any expressione containing no primes,e ′ is the expression obtained frome by priming
its flexible variables.

6

(c) Execution ofM can’t go directly from the second phase to the first phase
(without completing the execution).

(d) The two phases are disjoint. This hypothesis is actually unnecessary; given
predicatesR andL that satisfy the other hypotheses, we can satisfy this
assumption as well by replacing eitherR withR ∧¬L orL with L∧¬R.

We define the actionsR, L, andX in terms ofM ,R, andL by

R
1= M ∧R′ L

1= L ∧M X
1= (¬L) ∧M ∧ (¬R′) (10)

That is, anR step is anM step that ends in the first phase, anL step is anM step
that starts in the second phase, and anX step is any otherM step. Either phase
can be empty. Both phases might even be empty, in which case execution ofM
consists of just a singleX step.

We define the sequential compositionA·B of actionsA andB so thats
A·B−→ t

iff there exists a stateu for which s
A−→ u

B−→ t . Equivalently,A·B equals
∃ r : A(r/v ′) ∧ B(r/v), wherer is a tuple of rigid variables,A(r/v ′) denotesA
with each primed variable ofv replaced by the corresponding component ofr,
andB(r/v) denotesB with each unprimed flexible variable ofv replaced by the
corresponding component ofr. The equivalence of the two definitions is seen
by letting r be the tuple of values assigned to the variables inv by the stateu.
The definition of commutativity given above can be restated as: actionA right
commuteswith action B , andB left commuteswith A, iff A·B ⇒ B ·A. We
can then state the commutativity hypotheses we used in the previous section as
R·E ⇒ E ·R andE ·L⇒ L·E .

We defineA+ to equalA ∨ (A·A) ∨ (A·A·A) ∨ This definess
A+−→ t

to have the same meaning as above. A complete execution ofM is a sequence
of M steps starting and ending in states for whichM is not in the middle of its
execution—that is, in states satisfying¬(R ∨ L). We therefore define:

M R 1= ¬(R ∨ L) ∧M+ ∧ ¬(R ∨ L)′ (11)

We defineN , N R, S , andS R by

N
1= M ∨ E

N R 1= M R ∨ E

S
1= Init ∧2[N]v

S R 1= Init ∧2[N R]v

(12)

Supposes
A−→ t . If the tuple of variablesv has the valuev s in states and the

valuev t in statet , then the relationA(v s/v , v t/v
′), obtained by substituting the

7

elements ofv s for the unprimed flexible variables ofA and the elements ofv t for
the primed variables ofA, holds. We constructed the tuplêv of virtual variables by
defining a mappingν on states of a behavior and defining the value ofv̂ in a state

s to be the tuple of values ofv in the stateν(s). This means that, ifs
A−→ ν(s),

then the values ofv andv̂ in states satisfyA(v/v , v̂/v ′), which is justA(̂v/v ′).

If ν(s)
A−→ s, then the values ofv and̂v in states satisfyA(̂v/v , v/v ′). From the

four observations above, based on Figure 2, about hows andν(s) are related, we
obtain the following definition of the relationI betweenv andv̂ :5

I
1= ∧R⇒ R+(̂v/v , v/v ′)
∧ L⇒ L+(̂v/v ′)
∧ ¬(R ∨ L)⇒ (̂v = v)
∧ ¬(R ∨ L)(̂v/v)

(13)

5 Liveness in TLA

In temporal logic,2 meansalwaysand its dual3, defined to equal¬2¬, means
eventually. Thus,23 meansinfinitely oftenand32 meanseventually forever.
Let σ be the behaviors1, s2, For a predicateP , formula23P is true for
σ iff P is true for infinitely many statess i , and32P is true forσ iff P is true
for all statess i with i > n, for somen. For an actionA, formula23A is true

for σ iff s i
A−→ s i+1 is true for infinitely manyi . To maintain invariance under

stuttering, we must write23〈A〉v rather than23A, where〈A〉v is defined to
equalA ∧ (v ′ 6= v). The formula23〈A〉v asserts of a behavior that there are
infinitely many nonstutteringA steps.

We define ENABLED A to the be predicate asserting that actionA is enabled.

It is true of a states iff there exists some statet such thats
A−→ t . Equivalently,

ENABLED A equals∃ r : A(r/v ′), wherer is a tuple of rigid variables.
We observed above that the conclusion of a reduction theorem should be (8),

whereQ asserts that either (i)M must eventually terminate after theX step has
occurred, or (ii) the entire system halts in a state in which execution of a finite
number ofL steps can complete the execution ofM .

To express (i), note that anX step makesL true, andL remains true untilM
terminates.6 Thus, (i) asserts thatL does not remain true forever, an assertion ex-

5We let a list of formulas bulleted with∧ or ∨ denote the conjunction or disjunction of the
formulas, using indentation to eliminate parentheses.

6More precisely, anX step either makesL true or terminates the execution ofM .

8

pressed by¬32L, which is equivalent to23¬L. We can weaken this condition
by allowing the additional possibility that, infinitely often, it is possible to take a
sequence ofL steps that makesL false, if such a sequence can lead to only a finite
number of possible values ofv .

To express (ii), we note that in TLA, halting is described by a behavior that
ends with an infinite sequence of stuttering steps, so eventual halting is expressed
by 32[FALSE]v (which is equivalent to32[v ′ = v]v). It is possible to complete
the execution ofM by takingL steps iff a sequence ofL steps can makeL false,
which is true iff it is possible to take anL+ step withL false in the final state.
Thus, condition (ii) can be expressed as32([FALSE]v ∧ ENABLED (L+ ∧ ¬L′)).

Using the temporal logic tautology32(F ∧G) ≡ (32F ∧32G), we define
Q by

Q
1= ∨ 23(¬L ∨ (∃!! r : ENABLED ((L+ ∧ ¬L′)(r/v ′))))
∨ 32[FALSE]v ∧ 32ENABLED (L+ ∧ ¬L′)

(14)

where∃!! r : F means that there exists a finite, nonzero number of values forr for
whichF holds. We can now state our first reduction theorem, for specificationsS
that are safety properties.

Theorem 1 Let Init ,R, andL be state predicates; letE andM be actions; and
let v be the tuple of all flexible variables that occur free in these predicates and
actions. LetR, L, S , S R, I , andQ be defined by (10)–(14). If

1. (a) Init ⇒ ¬(R ∨ L) (c) ¬(L ∧M ∧R′)
(b) E ⇒ (R′ ≡ R) ∧ (L′ ≡ L) (d) ¬(R ∧ L)

2. (a) R · E ⇒ E · R (b) E · L ⇒ L · E

then S ∧ Q ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R , wherev̂ is a tuple of new variables and̂
denotes substitution of the variablesv̂ for the variablesv .

The specificationsS andS R are safety properties, so it may appear that we
are using the liveness propertyQ to prove that one safety property implies an-
other. We needQ in general because, even though2I ∧ Ŝ R is necessarily a safety
property,∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R need not be one. Recall that the purpose of a reduction
theorem is to deduce properties ofS by proving properties ofS R. For the purpose
of proving safety properties, we can eliminateQ by adding the hypothesis

L ⇒ ENABLED (L+ ∧ ¬L′) (15)

9

which asserts that, after executingX , it is always possible to complete the execu-
tion of M . LetC(5) be the strongest safety property implied by property5, so5
is a safety property iff5 = C(5). (The operatorC is a topological closure opera-
tor [1].) Hypothesis (15) impliesC(S ∧ Q) ≡ S . SinceC is monotonic (5⇒ 8

impliesC(5)⇒ C(8)), this proves:

Corollary 2 With the notations and assumptions of Theorem 1, let5 be a safety
property. IfL ⇒ ENABLED (L+ ∧ ¬L′), then(∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R) ⇒ 5 implies
S ⇒ 5.

6 Reducing Fairness Conditions

Most TLA specifications are of the formS ∧ F , whereS is as in (12) andF is a
liveness condition. We would like to extend the conclusion (8) to

S ∧ F ∧Q ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R ∧ F̂ R (16)

whereF R is a suitable reduced version ofF . The liveness conditionF is usu-
ally expressed as a conjunction of WF (weak fairness) and/or SF (strong fairness)
formulas, defined by

WFv (A)
1= 32ENABLED 〈A〉v ⇒ 23〈A〉v

SFv(A)
1= 23ENABLED 〈A〉v ⇒ 23〈A〉v

Let’s begin by considering the simple case whereF equals WFv(A), for some
action A. (The caseF = SFv(A) is similar.) In this case,F R should equal
WFv(A

R), whereAR is the reduced version of actionA. Reduction means re-
placing the given actionM by M R; it’s not clear what the reduced version of
an arbitrary actionA should be. There are two cases in which the definition is
obvious:

• If A is disjoint fromM , thenAR = A.

• If A includesM , soA = (A ∧ E) ∨M , thenAR = (A ∧ E) ∨M R.

We generalize these two cases by takingAR to be(A ∧ E) ∨ AR
M , where anAR

M

step consists of a complete execution ofM that includes at least oneA∧M step.
The formal definition is:

AR
M

1= ¬(R ∨ L) ∧M ∗ · (A ∧M) ·M ∗ ∧ ¬(R ∨ L)′ (17)

10

whereM ∗ stands for [M+]v .
From the definition of WF and a little predicate logic, we see that to prove

(16), it suffices to prove:

S ∧Q ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R ∧ (23〈A〉v ⇒ 23〈ÂR 〉v̂) (18)

2I ∧ 32ENABLED 〈ÂR 〉v̂ ⇒ 32ENABLED 〈A〉v (19)

(For SF, we must replace32 by 23 in (19).) We consider the proofs of (18) and
(19) separately.

To prove (18), we must show that if a behavior contains infinitely many〈A〉v
steps, then it contains infinitely many〈ÂR 〉v̂ steps. To simplify this discussion, we
temporarily drop the angle brackets and subscripts. We must show that infinitely
manyA steps imply infinitely manŷAR steps. Those infinitely manyA steps must
include (i) infinitely manyA ∧ E steps or, (ii) infinitely manyA ∧M steps. We
consider the two possibilities in turn.

To show that infinitely manyA ∧ E steps imply infinitely manŷAR steps, it

suffices to construct the virtual variables so that eachA ∧ E step is a
((hh
A ∧ E step.

We have already constructed the virtual variables so that eachE step is also a

Ê step. We must strengthen that construction so anA ∧ E step is also a
((hh
A ∧ E

step. Recall that, in Figure 2, the steps44 → s45 of the top behavior is âE step
because the corresponding stepu46 → u47 of the bottom behavior is anE step.
We must therefore guarantee that ifs44→ s45 is anA∧E step, thenu46→ u47 is
also anA ∧ E step. Recalling the construction of the bottom behavior, shown in
Figures 1, we see that we can makeu46→ u47 anA∧E step ifR right commutes
with A∧E andL left commutes withA∧E . In general, reintroducing brackets and
subscripts, we can guarantee that infinitely many〈A ∧ E 〉v steps imply infinitely
many〈ÂR 〉v̂ steps with the additional hypotheses:

R · 〈A ∧ E 〉v ⇒ 〈A ∧ E 〉v · R 〈A ∧ E 〉v · L ⇒ L · 〈A ∧ E 〉v
These hypotheses are vacuous ifA ∧ E equalsFALSE. If A ∧ E equalsE , they
follow from the commutativity conditions we are already assuming.

Step (ii) in proving (18) is showing that if there are infinitely manyA ∧ M
steps, then there are infinitely manyAR

M steps. It suffices to guarantee that if one
of the steps in a complete execution ofM is also anA step, then the corresponding
M̂ R step is anAR

M step. Figure 2 shows that anX step corresponds to âM R

step because its starting states satisfiesν(s)
R+−→ s, its ending statet satisfies

t
R+−→ ν(t), andM is not in the middle of its execution in statesν(s) andν(t).

11

If the X step is anA ∧ X step, then it is clear that the correspondinĝM R step is
anAR

M step. Suppose that one of theR steps is anA ∧ R step, and letR+A equal
R∗ · (A ∧ R) · R∗. TheM̂ R step will be anAR

M step if the starting states of the

X step satisfiesν(s)
R+A−→ s. Figure 1 shows that we can constructν to satisfy

this condition if we can interchangeA ∧ R andE actions—that is, ifA ∧ R (as
well asR) right commutes withE . Similarly, when one of theL steps is anA∧L
step, we can guarantee that thêM R step is anAR

M step ifA∧ L (as well asL) left
commutes withE . Putting the brackets and subscripts in, we see that infinitely
many〈A ∧M 〉v steps imply infinitely manŷAR steps if

〈A ∧ R 〉v · E ⇒ E · 〈A ∧ R 〉v E · 〈A ∧ L〉v ⇒ 〈A ∧ L〉v · E
These hypotheses are vacuous ifA ∧M equalsFALSE. If A ∧M equalsM , they
follow from the commutativity conditions we are already assuming.

The argument we just made assumes that each execution ofM terminates. For
example, a behavior might contain infinitely manyA ∧ R steps but noX steps,
in which case there would be noAR

M steps. We need the assumption that if there
are infinitely manyA ∧M steps, then there are infinitely manyX steps. So, we
replace (18) with

S ∧Q ∧O ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R ∧ (23〈A〉v ⇒ 23〈ÂR 〉v̂) (20)

whereO equals1 ∧23〈A ∧M 〉v ⇒ 23〈X 〉v .
Finally, we showed only that infinitely many〈A〉v steps imply infinitely many

ÂR steps, which are not necessarily〈ÂR 〉v̂ steps. We need to rule out the degen-
erate case in which thosêAR steps are stuttering steps that leavev̂ unchanged. We
do this by assuming(〈A〉v)RM ⇒ (v ′ 6= v). In most cases of interest,M R implies
v ′ 6= v . so(〈A〉v)RM ⇒ (v ′ 6= v) holds for anyA.

A specification can contain a (possibly infinite) conjunction of fairness prop-
erties, so we must generalize from a single actionA to a collection of actionsAi ,
for i in some setI. The definitions above are generalized to

AR
i

1= (Ai ∧ E) ∨ (Ai)
R
M

O
1= ∀ i ∈ I : 23〈Ai ∧M 〉v ⇒ 23〈X 〉v

(21)

The theorem whose conclusion is the generalization of (20) is:

Theorem 3 With the notation and assumptions of Theorem 1, letAi be an action,
for all i in a finite or countably infinite setI, and let(Ai)

R
M , AR

i , andO be defined
by (17) and (21). If, in addition,

12

2. (c) ∀ i ∈ I : R · 〈Ai ∧ E 〉v ⇒ 〈Ai ∧ E 〉v · R
(d) ∀ i ∈ I : 〈Ai ∧ E 〉v · L ⇒ L · 〈Ai ∧ E 〉v
(e) ∀ i ∈ I : 〈Ai ∧ R 〉v · E ⇒ E · 〈Ai ∧ R 〉v
(f) ∀ i ∈ I : E · 〈Ai ∧ L〉v ⇒ 〈Ai ∧ L〉v · E
(g) ∀ i ∈ I : (Ai)

R
M ⇒ (v ′ 6= v)

then S ∧Q ∧O ⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R ∧ (∀ i ∈ I : 23〈Ai 〉v ⇒ 23〈ÂR
i 〉v̂).

To prove (19) and its analog for SF, it suffices to prove

I ∧ ENABLED 〈ÂR 〉v̂ ⇒ ENABLED 〈A〉v
This can be done with the following result, which is a simple consequence of the
definition ofI .

Proposition 4 Let I be defined by (13). For any state predicatesP andQ, if

(a)P ⇒ Q (b)Q ∧ R ⇒ Q′ (c)L ∧Q′ ⇒ Q
thenI ∧ P̂ ⇒ Q, wherê is defined as in Theorem 1.

Combining this proposition with the definitions of WF and SF proves the follow-
ing corollary to Theorem 3.

Corollary 5 With the notations and assumptions of Theorem 3, if

3. (a) ∀ i ∈ I : ENABLED 〈AR
i 〉v ⇒ ENABLED 〈Ai 〉v

(b) ∀ i ∈ I : (ENABLED 〈Ai 〉v) ∧ R ⇒ (ENABLED 〈Ai 〉v)′
(c) ∀ i ∈ I : L ∧ (ENABLED 〈Ai 〉v)′ ⇒ ENABLED 〈Ai 〉v

then
S ∧ (∀ i ∈ I : XFv (Ai)) ∧ Q ∧ O

⇒ ∃∃∃∃∃∃ v̂ : 2I ∧ Ŝ R ∧ (∀ i ∈ I : XFv̂(Â
R
i))

whereXFv(Ai) is eitherWFv(Ai) or SFv (Ai).

Hypothesis 3(a) holds automatically for eachi such thatAi ∧ M equalsFALSE

or M , the two cases that inspired our definition ofAR
i . It is this hypothesis that

most severely limits the class of actionsAi to which we can apply the corollary.
In applying the theorem or the corollary, we expect the specification’s fairness
properties to implyQ ∧O .

13

7 Proofs

We now briefly describe how our results are proved; complete proofs will appear
elsewhere. Theorem 1 follows from Theorem 3 by lettingI be the empty set. We
already observed how Corollary 2 is proved by showing that (15) impliesC(S ∧
Q) ≡ S , a result that follows directly from the definition ofC [1]. Proposition 4
is proved by a straightforward calculation based on the definitions ofI and of the
+ operator; it easily proves Corollary 5. This leaves Theorem 3.

In Section 3 we sketched an intuitive proof of (8). Section 6 indicated how we
can extend that proof to a proof of Theorem 3 for a single fairness condition—that
is, whenI contains a single element. We used hypotheses 2 to commuteA∧M or
A ∧ E steps. In the general case, we have the extra difficulty that the hypotheses
do not allow us simultaneously to commute all theAi steps. When extending
the construction shown in Figure 1, we must choose a singleAi to commute at
each step. The choice must be made in such a way that everyAi that is executed
infinitely often is chosen infinitely often.

This proof sketch can be turned directly into a semantic proof of Theorem 3.
The theorem can also be proved using only the rules of TLA, with no semantic
reasoning. The key idea is to introduce a history variable that gives the value of
v̂ whenR is true (beforeX is executed) and a prophecy variable that gives the
value of̂v whenL is true (afterX is executed). (History and prophecy variables
are explained in [1].) In addition, we need a new type of infinite prophecy variable
that tells which disjunct ofQ holds, as well as history and prophecy variables that
choose, at each point in the construction, whichAi to commute.

8 Further Remarks

We often want to use an invariantInv of the specificationS to verify the hy-
potheses of the theorems. For example, when proving thatR right commutes with
E , we want to consider only states satisfyingInv . With TLA, it isn’t necessary
to weaken the hypotheses to take account of an invariant. Instead, we apply the
general rule

2Inv ⇒ (2[A]v ≡ 2[Inv ∧ A ∧ Inv ′]v)

Thus, if S implies2Inv , then we can replaceM andE by Inv ∧M ∧ Inv ′ and
Inv ∧ E ∧ Inv ′.

Many TLA specifications are of the form∃∃∃∃∃∃w : S ∧ F , wherew is a tuple of
“internal variables”. Since one proves(∃∃∃∃∃∃w : S∧F)⇒ 5 by provingS∧F ⇒ 5

14

(renaming variables if necessary), it suffices to reduceS ∧F . Thus, we can ignore
existential quantification (hiding) when applying a reduction theorem.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness.Information Pro-
cessing Letters, 21(4):181–185, October 1985.

[3] R. J. R. Back. Refining atomicity in parallel algorithms. Reports on Com-
puter Science and Mathematics Ser. A, No 57, Swedish University ofÅbo,
February 1988.

[4] Ernie Cohen.Compositional Proofs of Asynchronous Programs. PhD thesis,
University of Texas at Austin, May 1993.

[5] Ernie Cohen. A guide to reduction. Technical Report TM-ARH-023816,
Bellcore, 1993. Available from the author aternie@bellcore.com .

[6] Thomas W. Doeppner, Jr. Parallel program correctness through refinement.
In Fourth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 155–169. ACM, January 1977.

[7] David Gries and Ivan Stojmenovi´c. A note on gramham’s convex hull algo-
rithm. Information Processing Letters, 25(5):323–327, July 1987.

[8] Leslie Lamport. The temporal logic of actions.ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, May 1994.

[9] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research
Report 44, Digital Equipment Corporation, Systems Research Center, May
1989.

[10] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs.Communications of the ACM, 18(12):717–721, December 1975.

[11] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6(4):319–340, 1976.

15

