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On the Analysis of Randomized Load Balancing Schemes

Michael Mitzenmacher∗

Abstract

It is well known that simple randomized load balancing schemes can balance load effectively while
incurring only a small overhead, making such schemes appealing for practical systems. In this paper, we
provide new analyses for several such dynamic randomized load balancing schemes.

Our work extends a previous analysis of thesupermarket model, a model that abstracts a simple,
efficient load balancing scheme in the setting where jobs arrive at a large system of parallel processors.
In this model, customers arrive at a system ofn servers as a Poisson stream of rateλn, λ < 1, with service
requirements exponentially distributed with mean 1. Each customer choosesd servers independently and
uniformly at random from then servers, and is served according to the First In First Out (FIFO) protocol
at the choice with the fewest customers. For the supermarket model, it has been shown that usingd = 2
choices yields an exponential improvement in the expected time a customer spends in the system over
d = 1 choice (simple random selection) in equilibrium. Here we examine several variations, including
constant service times andthreshold models, where a customer makes up tod successive choices until
finding one below a set threshold.

Our approach involves studying limiting, deterministic models representing the behavior of these
systems as the number of serversn goes to infinity. Results of our work include useful general theorems
for showing that these deterministic systems are stable or converge exponentially to fixed points. We
also demonstrate that allowing customers two choices instead of just one leads to exponential improve-
ments in the expected time a customer spends in the system in several of the related models we study,
reinforcing the concept that just two choices yields significant power in load balancing.

1 Introduction

Distributed computing systems continue to rise in prevalence; networks of workstations and clusters of
personal computers hold the promise of increased power and price/performance ratios. It has long been
known that in distributed systems, redistributing the workload through load balancing can lead to significant
performance improvements, in terms of both the mean and standard deviation of the time jobs spend in the
system (for example, see [7, 35]). Moreover, simple randomized schemes with low overhead have proven
effective in simulations; however, analyzing such schemes is often difficult. In this paper, we provide new
analyses for several dynamic randomized load balancing models. Unlike previous similar analyses, we do
not assume that in equilibrium each server is stochastically independent from other servers.

One example of the type of problem we consider, previously studied in [27], is the following natural dy-
namic model: customers arrive as a Poisson stream of rateλn, whereλ < 1, at a collection ofn servers. The
service times for the customers are independent and exponentially distributed with mean 1. Each customer
chooses some constant numberd of servers independently and uniformly at random from then servers, and
waits for service at the one currently containing the fewest customers (ties being broken arbitrarily), accord-
ing to the First In First Out (FIFO) protocol. We call this model thesupermarket model, or thesupermarket

∗This work was supported in part by the ONR and in part by NSF Grant CCR-9505448. Much of this work was done while the
author was a student at U.C. Berkeley. A previous version of this work appeared in the9th ACM Symposium on Parallel Algorithms
and Architectures, 1997.

1



B

A

Figure 1: The supermarket model. Incoming customer A chooses two random servers, and queues at the
shorter one. Customer B has recently been served and leaves the system.

system(see Figure 1). We are interested in the behavior of this system in equilibrium. Note that the average
arrival rate per queue is less than service rate (λ < 1), we expect the system to bestable, in the sense that
the expected number of customers per queue remains finite in equilibrium.

Standard queueing theory does not directly apply to the supermarket model, because the server loads
are dependent: the arrival rate at any server depends on the loads at the other servers. This dependency
complicates the analysis dramatically.

Many variations on the supermarket model exist. For example, in athresholdsystem, an incoming cus-
tomer successively chooses queues at random until either finding one with a load below a fixed threshold or
usingd choices. A threshold scheme may be more efficient than giving each customerd choices in practice,
since each choice will generally require some communication, and threshold schemes reduce the amount
of necessary communication. As another example, service times might not be eponentially distributed, but
constant, or given by another distribution. In this paper, we introduce new analyses for these and other
variations. Our approach, following that of [27], has two main components:

• We define an idealized process, corresponding to a system with an infinite number of servers. We then
analyze this process, which is cleaner and easier because its behavior is completely deterministic.

• We relate the idealized system to the finite system, bounding the error between them.

Our analysis of the limiting system (as the number of servers grows to infinity) focuses on finding the
fixed point(or equilibrium point) to which the system tends. If the system converges to its fixed point, then
we can use it to determine such quantities as the expected time a customer spends in the system. For most of
the idealized systems we consider, we showexponential convergenceto the fixed point, which demonstrates
that the system approaches the fixed point very quickly. Indeed, besides determining the behavior of several
interesting systems, a major contribution of this work is a simple, general theorem that gives appropriate
conditions for convergence; we expect this theorem will prove useful in other settings as well. We also
demonstrate through simulations that the method provides accurate numerical estimates of performance,
even when the actual number of servers is relatively small.

For ease of presentation, we have made several assumptions to simplify the models we consider. For
example, we assume that the time for a customer to obtain information about server loads and move to
a server is zero, and that the servers are homogeneous. Many of our techniques, however, generalize to
more complex systems, such as systems where transferring a customer incurs a delay (see [24]). Moreover,
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even the simple systems we study demonstrate remarkably interesting behavior. In particular, we emphasize
throughout that there is often a qualitative difference between systems where customers choose a single des-
tination randomly and systems where customers have two or more choices available, leading to exponential
improvement in measures such as the expected time in the system. Hence our work extends a great deal of
previous work demonstrating the power of two choices in load balancing to several new settings, providing
further evidence of the significance of this idea in the design of distributed systems.

1.1 Previous work

Distributed load balancing strategies where individual customer decisions are based on information about a
limited number of other processors have been studied analytically by Eageret al. [7, 8, 9] and through trace-
driven simulations by Zhou [35]. In fact, Eageret al. also use Markovian models for their analysis [7, 8, 9];
however, the authors derive their results assuming that the state of each queue is stochastically independent
of the state of any other queue. This approach is exact in the asymptotic limit as the number of queues
grows to infinity. Our work avoids these assumptions and introduces several new directions in the analysis
of these systems. Zhou’s work examines the effectiveness of the load balancing strategies proposed by Eager
et al. as well as others in practice using a trace-driven simulation. Both Eageret al. and Zhou suggest that
simple randomized load balancing schemes, based on choosing from a small subset of processors, perform
extremely well.

In another well-studied model, incoming customers join the shortest queue; see, for example, the work
by Adan, van Houtum, and van der Wal [1] and by Adan, Wessels, and Zijm [2, 3] for results and further
references. The shortest queue model appears more applicable tocentralizedsystems, whereas the limited
coordination enforced by our model corresponds nicely to models ofdistributedsystems.

Randomized load balancing schemes have also been analyzed in the static case, where there are a fixed
number of customers to be permanently distributed, as in a static hash table. For example, Karp, Luby,
and Meyer auf der Heide showed that using two hash functions instead of one could provide an exponential
improvement in the maximum load of a hash bucket [13]; this idea was further developed and aanalyzed
by Azar, Broder, Karlin, and Upfal [5]. Our work demonstrates that making two choices leads to a similar
exponential improvement in the dynamic setting as well.

The justification of the relationship between the finite and limiting systems relies on Kurtz’s work on
density dependent jump Markov processes[10, 19, 20, 21, 22]. Because Kurtz’s work is rather technical,
we only briefly describe it here, focusing instead on examining a variety of models and attempting to gain
insight into the load balancing problem. More details regarding the application of Kurtz’s work these models
can be found in [28]. This approach has been used similarly in several other works (for example, see
[4, 11, 14, 15, 27, 31, 33, 34]).

The rest of the paper proceeds as follows: in Section 2, we briefly review the work of [27] by examining
the limiting system for the supermarket model. This allows us to introduce the necessary terminology
and keeps this paper essentially self-contained. To demonstrate the applicability of our methods to more
realistic systems, we consider alternative service distributions in Section 3, focusing on the example of
constant service times. In Sections 4 and 5, we explore some variations on the supermarket model that may
also prove useful in practice, including threshold models. Section 4 includes general theorems for proving
the stability or exponential convergence of the limiting systems. We specialize these theorems to handle
threshold systems in Section 5. We conclude with some final comments and open questions. The main
points of Kurtz’s work are summarized in an appendix for the interested reader.
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2 The supermarket model

In this section, we review results for the supermarket model from [27]. This review allows us to introduce
the necessary terminology and methodology that we will use to study other systems.

2.1 The limiting system

Recall the definition of the supermarket model: customers arrive as a Poisson stream of rateλn, whereλ < 1,
at a collection ofn FIFO servers. Each customer chooses some constantd ≥ 2 servers independently and
uniformly at random with replacement1 and queues at the server currently containing the fewest customers.
The service time for a customer is exponentially distributed with mean 1.

We definemi (t) to be the number of queues withat least i customers at timet , andsi (t) = mi (t)/n to
be fraction of queues withat least icustomers. We drop the reference tot in the notation where the meaning
is clear. In anempty system, which corresponds to one with no customers,s0 = 1 andsi = 0 for i ≥ 1. We
can represent the state of the system at any given time by an infinite dimensional vectorEs= (s0, s1, s2, . . .).
It is clear that for each value ofn, the supermarket model can be considered as a Markov chain on the above
state space.

We now introduce a deterministiclimiting systemrelated to the finite supermarket system, given by the
following set of differential equations:

dsi

dt
= λ(sd

i−1− sd
i )− (si − si+1) for i ≥ 1;

s0 = 1.
(1)

To explain the reasoning behind the system (1), we determine the expected change in the number of
servers with at leasti customers over a small period of time of lengthdt. The probability a customer arrives
during this period isλn dt, and the probability an arriving customer joins a queue of sizei − 1 issd

i−1− sd
i .

(This is the probability that alld servers chosen by the new customer are of size at leasti −1, but not all are
of size at leasti .) Thus the expected change inmi due to arrivals is exactlyλn(sd

i−1− sd
i )dt. Similarly, the

probability a customer leaves a server of sizei in this period isni dt = n(si − si+1)dt. Hence, if the system
behaved according to these expectations, we would have

dsi

dt
= 1

n
· dmi

dt
= λ(sd

i−1− sd
i )− (si − si+1).

It should be intuitively clear that asn→∞ the behavior of the supermarket system approaches that of this
deterministic system; this is justified by Kurtz’s theorem, as explained in Appendix A. For now, we simply
take this set of differential equations to be the appropriate limiting process.

2.2 The fixed point

Given a reasonable condition on the initial pointEs(0), the infinite process described by the system (1)
converges to afixed pointEπ such that ifEs(t) = Eπ thenEs(t ′) = Eπ for all t ′ ≥ t . For the supermarket model a
necessary and sufficient condition forEs to be a fixed point is that for alli , dsi

dt |Eπ = 0.

Lemma 1 [[27], Lemma 1.] The system (1) with d≥ 2 has a unique fixed point with
∑∞

i=1πi <∞ given

byπi = λ di−1
d−1 .

1We note that our results also hold with minor variations if thed queues are chosen without replacement.
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Definition 2 A sequence(xi )
∞
i=0 is said todecrease doubly exponentiallyif and only if there exist positive

constants N, α < 1, β > 1, andγ such that for i≥ N, xi ≤ γ αβ i
.

It is worth contrasting the result of Lemma 1 with the case whered = 1 (i.e., all servers are M/M/1
queues), for which the fixed point is given byπi = λi . For d = 2, the fixed point is given byπi = λ2i−1.
The key feature of the supermarket system is that ford ≥ 2 the tailsπi decrease doubly exponentially, while
for d = 1 the tails decrease only geometrically (or singly exponentially).

2.3 Convergence to the fixed point

The deterministic differential equations (1), along with an initial point, define atrajectory of the system
in the infinite dimensional space. In [27] it was shown that every trajectory of the limiting model of the
supermarket system converges to the fixed pointEπ = (πi ) of Lemma 1 in an appropriate metric. We review
the main points here. In what follows we assume thatd ≥ 2 unless otherwise specified.

To show convergence, we find a suitablepotential function(also called aLyapunov functionin the
dynamical systems literature)8(t). The potential function must be related to the distance between the
current point on the trajectory and the fixed point; by showing the potential function decreases quickly over
time, we may show the trajectory heads towards the fixed point. A natural potential function to consider is
D(t) =∑∞i=1 |si (t)−πi |, which measures theL1-distance (or Manhattan distance) between the two points.
The potential function used in [27] is actually a weighted variant of this, namely8(t) =∑∞i=1wi |si (t)−πi |
for suitably chosen weightswi .

The supermarket system not only converges to its fixed point, but that it does soexponentially.

Definition 3 The potential function8 is said toconverge exponentially to 0, or simply to converge expo-
nentially, if8(0) <∞ and8(t) ≤ c0e−δt for some constantδ > 0 and a constant c0 which may depend on
the state at t= 0.

Exponential convergence implies not only that the limiting system approaches the fixed point, but that it
does so rapidly, making it a suitable reference point for system performance in practice.

Theorem 4 [[27], Theorem 6]Let8(t) =∑∞i=1wi |si (t)− πi |, where for i≥ 1,wi ≥ 1 are appropriately
chosen constants. If8(0) <∞, then8 converges exponentially to0. In particular, if there exists a j such
that sj (0) = 0, then8 converges exponentially to0.

The condition of Theorem 4 that there exists aj such thatsj (0) = 0 is a natural one. It can be interpreted
as saying initially there is an upper bound on the maximum queue size.

Corollary 5 [[27], Corollary 7] Under the conditions of Theorem 4, the L1-distance from the fixed point
D(t) =∑∞i=1 |si (t)− πi | converges exponentially to0.

Corollary 5 shows that theL1-distance to the fixed point converges exponentially quickly to 0. Given
this convergence, we may now ask what the expected time in the system looks like. It is interesting to
compare the case whered ≥ 2 to the case ofd = 1 (for which the expected time is well known).

Theorem 6 [[27], Theorem 8]The expected time a customer spends in the limiting model of an initially

empty supermarket system for d≥ 2 converges as t→∞ to Td(λ) ≡
∑∞

i=1 λ
di−d
d−1 . If T1(λ) ≡ 1

1−λ , then for

λ ∈ [0,1], Td(λ) ≤ cd(ln T1(λ)) for some constant cd dependent only on d. Furthermore,lim
λ→1−

Td(λ)
ln T1(λ)

=
1

logd .
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Figure 2: The graph compares the expected time in the system from simulations of 8 and 100 queues with the
limiting system prediction when two choices are made and thelogarithmof the expected time in equilibrium
when one choice is made under various arrival rates (λ).

Choosing fromd > 1 queues hence yields an exponential improvement in the expected time a customer
spends in the limiting system, and asλ → 1− the choice ofd affects the time only by a small constant
factor (dependent ond). These results are remarkably similar to those for the static load balancing problem
studied in [5].

Simulations verify that this behavior is apparent even in small systems; for example, see Figure 2. More
details are given [27] or [28].

3 Constant service times

The assumptions underlying the supermarket model, namely that the arrival process is Poisson and that
the service times are exponentially distributed, do not accurately describe many (and probably most) real
systems, although they are useful because they lead to a simple Markovian system. In this section, we
demonstrate how to modify our approach to handle more general service and arrival times. We focus on
the example where the service time is a fixed constant. The approach we use is based onErlang’s method
of stages, which we shall describe briefly here. For a more detailed explanation see [17, Sections 4.2 and
4.3]. We approximate the constant service time with agamma distribution: a single service will consists
of r stages of service, where each stage is exponentially distributed with mean 1/r . As r becomes large,
the expected service time remains 1 while the variance falls like 1/r , so that the service time behaves like a
constant random variable in the limit asr →∞.

The state of a queue will now be the total number of stages remaining that the queue has to pro-
cess, rather than the number of customers; that is, the state of a queue is [r (# of waiting customers) +
stages of the customer being served]. Sincer determines the size of the state space, numerical calculations
will be easier if we chooser to be a reasonably small finite number. Our simulations suggest that forr ≈ 20
the approximations for constant service times are quite accurate.
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There is some ambiguity in the meaning of a customer choosing the shortest queue. If the number of
customers in two queues are the same, can an incoming customer distinguish which queue has fewer stages
of service remaining? Let us first consider the case where we haveawareincoming customers, who can tell
how many stages are left for each of theird choices and choose accordingly. Letsj be the fraction of queues
with at leastj stages left to process (where we takesj = 1 wheneverj ≤ 0). Thensj increases whenever an
arrival comes to a queue with at leastj − r and fewer thanj stages left to complete. Similarly,sj decreases
whenever a queue withj stages completes a stage, which happens at rater . The corresponding system of
differential equations is thus

dsj

dt
= λ(sd

j−r − sd
j )− r (sj − sj+1).

(Whenr = 1, this corresponds exactly to the standard supermarket model.)
We can identify a unique fixed pointEπ for this system (usingdsj

dt = 0 at the fixed point). We must have
π1 = λ (intuitively because the arrival rate and exit rate of customers must be equal), andπi = 1 for i ≤ 0.
From these initial conditions one can find successive values ofπj from the recurrence

πj+1 = πj −
λ(πd

j−r − πd
j )

r
. (2)

Unfortunately, we have not found a convenient closed form forπj .
We say that the system hasunawarecustomers if customers learn only the queue size of their choices,

and not the number of stages. If more than one server chosen by an incoming customer has the shortest
queue, then the customer chooses randomly from those servers. The differential equations are slightly more
complicated than in the aware case. Again, letsj be the fraction of queues with at leastj stages left to
process. For notational convenience, letSi = s(i−1)r+1 be the fraction of queues with at leasti customers
(whereS0 = 1 always), and letφ( j ) = d j

r e be the number of customers in a queue withj stages left to
process. The corresponding differential equations are:

dsj

dt
= λ(Sd

φ( j )−1− Sd
φ( j ))

sj−r − Sφ( j )

Sφ( j )−1− Sφ( j )
+

λ(Sd
φ( j ) − Sd

φ( j )+1)
Sφ( j ) − sj

Sφ( j ) − Sφ( j )+1
− r (sj − sj+1).

Note that the fixed point cannot be determined by a simple recurrence, as the derivative ofsj depends
on Sφ( j ),Sφ( j )−1, and Sφ( j )+1. One can find the fixed point to a suitable degree of accuracy by standard
numerical methods, however.

3.1 Constant versus exponential service times

The question of whether constant service times reduce the expected delay in comparison to exponential
service times often arises when one tries to use standard queueing theory results to find performance bounds
on networks. (See, for example, [12, 25, 26, 29, 32].) Generally, results comparing various service times
are achieved using stochastic comparison techniques. Here, we instead compare the fixed points of the
corresponding limiting systems.

We show that at the fixed points, the fraction of servers with at leastk customers is greater when service
times are exponential than when service times have a gamma distribution (withr ≥ 2) with the same
mean. Since gamma distributed random variables become constant in the limiting case, we can conclude
that constant service times are better than exponential service times in supermarket systems in terms of
measures such as the expected time in the system. (We note that to formally compare constant service
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times with exponential service times with this approach requires technical arguments regarding changing
the order in which the limits asn→∞ andr →∞ are taken; for example, see [31, Chapter 14]. We have
not completed such a formal justification. However, the theorem below is the key step in the argument, and
moreover it is interesting in its own right.)

We consider the case of aware customers where service times have a gamma distribution corresponding
to r stages. Recall that the fixed point was given by the recurrence (2) asπj+1 = πj −λ(πd

j−r −πd
j )/r , with

π1 = λ andπi = 1 for i ≤ 0. The fixed point for the standard supermarket model, as found in Lemma 1,
satisfiesπi+1 = λπd

i . Sinceπ1 is λ in both the standard supermarket model and the model with gamma
distributed service times, to show that the tails are larger in the standard supermarket model, it suffices to
show thatπφ( j )+1 ≤ λπd

φ( j ) in the aware customer model. Inductively it is easy to show the following
stronger fact:

Theorem 7 In the system with aware customers, for j≥ 1,

πj = λ

r

j−1∑
i= j−r

πd
i .

Proof: The equality can easily be verified for 1≤ j ≤ r . For j > r , the following induction yields the
theorem:

πj = πj−1− λr (π
d
j−r−1− πd

j−1)

= πj−2− λ
r
(πd

j−r−1+ πd
j−r−2− πd

j−1− πd
j−2)

...

= πj−r − λ
r

(
j−r−1∑

i= j−2r

πd
i −

j−1∑
k= j−r

πd
k

)

= λ

r

j−1∑
k= j−r

πd
k .

Here the last step follows from the inductive hypothesis, and all other steps follow from the recurrence
equation (2) for the fixed point.

An entirely similar proof holds even in the case ofunawarecustomers [28, Theorem 4.7].

3.2 Simulations and other service times

We show with simulations that small values for the number of stagesr yield good approximations for
constant service times. Table 1 compares the value of the expected time a customer spends in a limiting
system with unaware customers andd = 2 choices per customer obtained using various values ofr against
the results from simulations with constant service times for 100 queues. The simulation results are the
average of ten runs, each for 100,000 time units, with the first 10,000 time units excluded to account for the
fact that the system begins empty. In all cases exceptλ = 0.99 increasingr yields a better match between the
simulation and the prediction from the fixed point; this discrepancy is because the predictions forλ = 0.99
are not sufficiently accurate for systems of only one hundred queues.

In principle, this approach could be used to develop deterministic differential equations that approximate
the behavior of any service time distribution. This follows from the fact that the distribution function of any
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λ Simulation r = 10 r = 20 r = 30

0.50 1.1352 1.1478 1.1412 1.1390
0.70 1.3070 1.3355 1.3200 1.3148
0.80 1.4654 1.5090 1.4847 1.4766
0.90 1.7788 1.8492 1.8065 1.7923
0.95 2.1427 2.2355 2.1714 2.1500
0.99 3.2678 3.2461 3.1243 3.0644

Table 1: Simulations versus estimates for constant service times: 100 queues.

positive random variable can be approximated arbitrarily closely by a mixture of countably many gamma
distributions [16, Lemma 3.9]. In practice, for the solution of this problem to be computable in a reasonable
amount of time, both the number of distributions in the mixture and the number of stages for each distribution
must be small in order to keep the total number of states reasonably small. Although these limitations appear
severe, many service distributions can still be handled easily. For example, as we have seen, in the case of
constant service times one only needs to use a single gamma distribution with a reasonable number of
stagesr to get a very good approximation. This increases the state space, and hence approximately the time
to determine the behavior of the linear equations, by a factor ofr over the case where service times are
exponential. Distributions where the service time takes on one of a small finite number of values can be
handled similarly.

4 Other dynamic models

In this section, we shall develop limiting systems for some variations on the supermarket model and show
that many of these systems also converge exponentially to their fixed points. (As all of the systems we
examine have a unique fixed point where the average number of customers per queue is finite, we shall
simply refer tothefixed point for these systems.)

4.1 Customer types and errors

One way to extend the supermarket model is to consider what happens when different customers can have
different numbers of choices. We will observe that giving even a small fraction of customers an extra choice
can have a dramatic effect on load distribution, especially in a heavily loaded system. This fact has important
practical ramifications; for example, since obtaining load information typically requires sending messages
through the system, one may wish to reduce the average number of messages per customer by only giving a
fraction of the customers additional choices.

We examine the specific case where there are two types of customers. One type chooses only one queue;
each customer is of this type with probability 1− p. The more privileged customer chooses two queues;
each customer is of this type with probabilityp. The corresponding limiting system is governed by the
following set of differential equations:

dsi

dt
= λp(s2

i−1− s2
i )+ λ(1− p)(si−1 − si )− (si − si+1). (3)

The fixed point is given byπ0 = λ, πi = λπi−1(1− p+ pπi−1). Note that this matches the supermarket
model ford = 1 andd = 2 in the cases wherep = 0 andp = 1, respectively. There does not appear to be
a convenient closed form for the fixed point for other values ofp.
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Figure 3: Expected time in the system versus probability(p) of that a customer chooses two locations
(λ = 0.99).

As shown in Figure 3, which demonstrates the results for the limiting system, the effect of increasing
the fraction of customers with two choices has a non-linear effect on the expected time that is dramatic at
high loads; atλ = 0.99, most of the gain occurs when only 20% of the customers have two choices. Our
simulation results verify that the behavior of finite systems accurately matches the behavior predicted by our
limiting model.

This model has an interesting alternative interpretation. A customer who only has one choice is equiva-
lent to a customer who has two choices, but erroneously goes to the wrong queue half of the time. Hence, the
above system is equivalent to a two-choice system where customers make errors and go to the wrong queue
with probability 1−p

2 . A model of this sort may therefore also be useful in the case where the information
available to the customers from the chosen servers is unreliable or approximate. This analysis suggests that
as long as this approximate load information reflects server loads with some reasonable accuracy between
updates, choosing from two servers should still perform quite well. (See also [24] for similar ideas in other
scenarios.)

4.2 Closed models

In theclosedsupermarket model, at each time step exactly one non-empty queue, chosen uniformly at ran-
dom, completes service, and the customer is immediately recycled back into the system by again choosing
the shortest ofd random queues. Let the number of customers that cycle through the system beαn. Note
that the average number of customers per queue isα; this corresponds to the invariant

∑∞
i=1 si = α.

The limiting system is again very similar to that of the original supermarket model. An important
difference is that at each step, the probability that a customer leaves a server withi customers issi−si+1

s1
,

since a random queue with at least one customer loses a customer. The corresponding differential equations
are thus

dsi

dt
= sd

i−1− sd
i −

si − si+1

s1
. (4)

To find the fixed point, assumeπ1 = β. Then inductively, we can solve to findπi = β di−1
d−1 ; the correct

value ofβ can be found by using the constraint
∑∞

i=1πi =
∑∞

i=1 β
di−1
d−1 = α.
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4.3 Bounded buffers

In practice, we may have a system where the queue size has a maximum limit, sayb. For example, if
customers are processes with associated data, then the queue size may be limited by the amount of memory
in a server’s buffer. In this case, we assume that arriving customers that find queues filled are turned away.
That is, for the supermarket model, if an arriving customer choosesd queues that all haveb customers
already waiting, the customer leaves the system unserved immediately.

The state can be represented by a finite dimensional vector(s0, s1, . . . , sb). The long-term probability
that a customer is turned away can be determined by finding from the point, and isπd

b . The limiting system
is given by the following equations:

dsi

dt
= λ(sd

i−1− sd
i )− (si − si+1) , i < b ;

dsb

dt
= λ(sd

b−1− sd
b )− sb.

Note that at the fixed point for this problem,π1 6= λ. The total arrival rate of customers into the queues
at the fixed point isλ(1− πd

b ), as some customers do not enter the system. Since at the fixed point the total
rate at which customers arrive must equal the rate at which they leave, we haveπ1 = λ(1− πd

b ). Using
the differential equations, we can develop a recurrence for the values of the fixed pointπi . This recurrence
yields a polynomial equation forπb, which can be shown to have a unique root between 0 and 1. Solving
for πb then allows us to compute the fixed point numerically.

4.4 Convergence and stability of limiting systems

In this section, we provide a general theorem (similar to Theorem 4) that can be used to show that several
systems we have considered converge exponentially to their fixed point. In some cases, however, proving
convergence is difficult. Instead of proving convergence, it is often easier to prove the weaker property of
stability of the fixed point. We will say that a fixed point is stable if theL1-distance to the fixed point is
non-increasing along every trajectory (this is actually stronger than the standard definition). We also give a
general theorems with conditions for stability. We believe these results are interesting in their own right and
will be useful in the future for studying other systems. (For another approach to proving convergence for
these problems, see [33].)

We consider general systems governed by the equationsdsi
dt = fi (Es) for i ≥ 1, with fixed pointEπ = (πi ).

Let εi (t) = si (t)−πi , with the understanding that fori < 1 or i larger than the dimension of the state space
we fix εi = 0. We shall drop the explicit dependence ont when the meaning is clear. For convenience, we
shall consider only systems wheresi (t) ∈ [0,1] for all t , and henceεi (t) ∈ [−πi ,1− πi ] for all t . This
restriction simplifies the statements of our theorems and can easily be removed; however, all the systems
described in this section meet this condition.

We examine theL1-distanceD(t) =∑i≥1 |εi (t)|. In the case where our state space is countably infinite
dimensional, the upper limit of the summation is infinity, and otherwise it is the dimension of the state space.
For technical reasons, we letd D

dt denote the right-hand derivative (this will be explained in the last paragraph
of the proof). We shall prove thatd D

dt ≤ 0 everywhere; this implies thatD(t) is non-increasing over time,
and hence the fixed point is stable.

For many of the systems we have examined, the functionsfi have a convenient form: they can be written
as sums of polynomial functions of the individualsj , with no product termssj sk for j 6= k. This allows us
to group together terms ind D/dt containing onlyεi , and consider them separately. By telescoping the
terms of the derivative appropriately, we can show the system is stable by showing that the sum of the terms
containingεi are at most 0.
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Theorem 8 Suppose we are given a system dεi /dt = ∑
j gi, j (εj ), where the functions gi, j satisfy the

following conditions:

1. gi,i (x) = −
∑

j 6=i gj ,i (x) for x ∈ [−πi ,1− πi ];

2. for all i 6= j , sgn(gj ,i (x)) = sgn(x) for x ∈ [−πi ,1− πi ].

Then for D(t) =∑∞i=1 |εi (t)| we have d D/dt ≤ 0, and hence the fixed point is stable.

Proof:
For eachi , we group the terms inεi of d D/dt, and show that the sum of all terms involvingεi is at

most 0. Note that, technically,d D/dt is not well-defined when someεi = 0; we shall clarify this problem
subsequently and temporarily we assume that allεi are non-zero.

The terms containingεi in d D/dt sum toh(εi ) = gi,i (εi ) sgn(εi )+
∑

j 6=i gj ,i (εi ) sgn(εj ). By condition
2 of the statement of the theorem,h(εi ) is maximized when sgn(εj ) = sgn(εi ) for all j 6= i . Hence
h(εi ) ≤ sgn(εi )

∑
j gj ,i (εi ) = 0, where the last equaity follows from condition 1 of the theorem. Hence

d D/dt ≤ 0, and this suffices to show that the fixed point is stable.
We now consider the technical problem of definingd D/dt whenεi (t) = 0 for somei . Since we are

interested in the forward progress of the system, it is sufficient to consider the upper right-hand derivatives
of εi . (See, for instance, [23, p. 16].) That is, we may define

d|εi |
dt

∣∣∣∣
t=t0

≡ lim
t→t+0

|εi (t)|
t − t0

,

and similarly ford D/dt. Note that this choice has the following property: ifεi (t) = 0, then d|εi |
dt

∣∣∣
t=t0
≥ 0,

as it intuitively should be. The above proof applies unchanged with this definition ofd D/dt, with the
understanding that with regard to the sgn function the caseεi > 0 includes the case whereεi = 0 and
dεi /dt ≥ 0, and similarly the caseεi < 0 includes the case whereεi = 0 anddεi /dt < 0.

It is simple to check that the conditions of Theorem 8 hold for several of the systems we have studied.
Hence we immediately have the following corollary:

Corollary 9 The limiting systems for the following systems have stable fixed points: gamma distributed
service times with aware customers (Section 3), customer types (Section 4.1), and bounded buffers (Sec-
tion 4.3).

Proof: We consider only the system with customer types described in Section 4.1 and whose behavior is
given by equation (3), as the argument is entirely similar for the other models stated.

With the substitutionεi = si − πi , equation (3) becomes

dεi

dt
= −2λpπi εi − λpε2

i − λ(1− p)εi − εi + 2λπi−1εi−1+ λε2
i−1+ λ(1− p)εi+1+ εi+1. (5)

(Note that all terms without someεj factor sum to 0 by definition of the fixed point.)
Condition 1 of Theorem 8 clearly holds from equation (5). Condition 2 is also easily checked– note that

sgn(εi−1 = sgn(λε2
i−1+2λπi−1εi−1) over the appropriate interval. Hence the conditions of Theorem 8 hold,

proving the corollary.

A simple generalization of Theorem 8 allows us to prove convergence, using a weighted form of the
potential function as in Theorem 4.

12



Theorem 10 Suppose we are given a system dεi /dt = ∑
gi, j (εj ), and suppose also that there exists an

increasing sequence of real numberswi (with w0 = 0) and a positive constantδ such that thewi and the
functions gi, j satisfy the following conditions:

1. sgn(x)
∑

j wj gj ,i (x) ≤ −δwi |x| for x ∈ [−πi ,1− πi ];

2. for all i 6= j , sgn(gj ,i (x)) = sgn(x) for x ∈ [−πi ,1− πi ].

Then for8(t) = ∑∞
i=1wi |εi (t)|, we have that d8/dt ≤ −δ8, and hence from any initial point where∑

i wi |εi | <∞ the process converges exponentially to the fixed point in L1-distance.

Proof: We group the terms inεi from d8/dt as in Theorem 8. By the assumptions of the theorem, the sum
of all the terms involvingεi is at most−δwi |εi |. We may conclude thatd8/dt ≤ −δ8(t) and hence8(t)
converges exponentially to 0. Also, note that we may assume without loss of generality thatw1 = 1, since
we may scale thewi . Hence we may take8(t) to be larger than theL1-distance to the fixed pointD(t), and
thus the process converges exponentially to the fixed point inL1-distance.

Proving convergence thus reduces to showing that a suitable sequence of weightswi satisfying Condition
1 of Theorem 10 exist, which is quite often straightforward. In fact, Theorem 10 applies directly to several
of the models we have mentioned. For these models we will assume, as in Theorem 4, that in our intial state
there exists an upper bound on the initial queue size, to guarantee that the system begins in a well-defined
state.

Corollary 11 The limiting systems for the following systems converge exponentially to their fixed points:
gamma distributed service times with aware customers (Section 3), customer types (Section 4.1), and
bounded buffers (Section 4.3).

Proof: Again we consider only the system with customer types given by equation (3), as the argument for
other models is similar. That Condition 2 of Theorem 10 holds was shown in Corollary 9. Hence we need
only show that aδ and a sequencewi that satisfies Condtion 1 of Theorem 10 exist. We setw0 = 0 and
w1 = 1 and show how to define the otherwi and theδ accordingly.

Using equation (5), Condition 1 of Theorem 10 becomes the following:

sgn(εi )
[
wi+1(2λpπi εi + λpε2

i )−wi (2λπi εi + λε2
i + λ(1− p)εi + εi )+wi−1(λ(1− p)εi + εi )

] ≤ −δwi |εi |

As |εi | = sgn(εi )εi , and the condition trivially holds ifεi = 0, we may divide through by|εi | to restate the
condition as

(wi − wi−1)(1+ λ(1− p))+ (2λpπi + λpεi )(wi −wi+1) ≥ δwi ;
or, using the fact that|εi | ≤ 1,

wi+1 ≤ wi + wi (1+ λ(1− p)− δ)−wi−1(1+ λ(1− p))

λp(2πi + 1)
.

It is simple to check inductively that one can choose an increasing sequence ofwi (starting withw0 =
0, w1 = 1) and aδ such that thewi satisfy the above restriction. For example, we break the terms up into
two subsequences. The first subsequence consists of allwi such thatπi satisfiesλp(2πi + 1) ≥ 1+λ

2 . For

thesei we can choosewi+1 = wi + wi (1−δ)−wi−1
3 . Because this subsequence has only finitely many terms,

we can choose a suitably smallδ so that this sequence is increasing. For sufficiently largei , we must have
λp(2πi + 1) < 1+λ

2 < 1, and for thesei we may setwi+1 = wi + 2wi (1+λ(1−p)−δ)−2(1+λ(1−p))wi−1
1+λ . This

13
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Figure 4: Weak and strong threshold models. A customer rechooses if and only if they would start behind
the dashed line. In the weak model, the customer jumps to a second server, and may go to a longer line (2).
In the strong model, the customer goes to the shorter of the two lines (1).

simple recurrence for thewi is easily solved and clearly increasing for suitably smallδ. Hence, by taking a
δ small enough, both sequences ofwi will be increasing.

Technically, we should choose a sequence ofwi so that the the corresponding8(0) = ∑∞i=1wi |εi (0)|
is finite. We can easily modify the tail of thewi sequence above so that it is dominated by a geometrically
increasing sequence, where the ratio of successive terms is less than 1/λ. If we assume that in the initial
statesj (0) = 0 for somej , thenεj is eventually dominated by geometric series where the ratio of successive
terms is at mostλ. Hence we may find a suitable sequence ofwi such that

∑∞
i=1wi |εi (0)| is finite. From

this it is clear that the conditions of Theorem 10 holds, proving the corollary.

For the closed model and the model with unaware customers, Theorems 8 and 10 do not immediately
apply. However, the technique of examining the terms in eachεi separately can still prove effective; for
example, it can be used to prove that the fixed point for the closed model given by the equations (4) is stable.

5 Threshold models

In practice, it may often be more efficient not to give all customers several choices, as each choice may have
a corresponding cost (for example, a cost corresponding to communication). A threshold system reduces the
number of choices by only allowing a customer a second random choice if the load at its first choice exceeds
a fixed threshold. The customer begins by choosing a single queue uniformly at random: if the queue length
at this first choice (excluding the incoming customer) is at mostT , the customer queues there; otherwise, the
customer chooses a second queue uniformly at random (with replacement). Two variations are now possible.
In theweak threshold model, the customer waits at the second queue, regardless of whether it is longer or
shorter than the first. In thestrong threshold model, the customer queues at the shorter of its two choices.
(See Figure 4.) One could also expand both models so that a customer has several successive choices, with
a different threshold set for each choice, up to any fixed number of choices; here we model only the case
where a customer has at most two choices. Although threshold systems have been shown to perform well in
practice [7, 18, 35], our results distinguishing these two models are new.

5.1 Limiting systems

We consider the limiting system for the weak threshold model. The rate at which a queue changes size
depends on whether it has more or fewer thanT customers. We first calculatedsi

dt in the casei ≤ T + 1. Let
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pi = si − si+1 be the fraction of queues with exactlyi customers. An arriving customer becomes thei th
customer in a queue if one of two events happen: either its first choice hasi −1 customers, or its first choice
hasT + 1 or more customers and its second choice hasi − 1 customers. Hence over a time intervaldt the
expected number of jumps from queues of sizei − 1 to i is λn(pi−1 + sT+1pi−1). Similarly, the expected
number of jumps from queues of sizei to i − 1 isnpi dt. Hence we find

dsi

dt
= λ(pi−1+ sT+1pi−1)− pi , i ≤ T + 1, or

dsi

dt
= λ(si−1−si )(1+sT+1)− (si−si+1) , i ≤ T + 1. (6)

The case wherei ≥ T + 1 can be calculated similarly, yielding

dsi

dt
= λ(si−1− si )sT+1− (si − si+1) , i > T + 1. (7)

We now determine the fixed point. As usual,π0 = 1 and, because at the fixed point the rate at which
customers arrive must equal the rate at which they leave,π1 = λ. In this case we also need to find the value
of πT+1 to be able to calculate further values ofπi . Using the fact thatdsi

dt = 0 at the fixed point yields that
for 2≤ i ≤ T + 1,

πi = πi−1− λ(πi−2− πi−1)(1+ πT+1). (8)

Recursively plugging in, we find

πT+1 = 1− (1− λ)[((1+ πT+1)λ)
T+1− 1]

(1+ πT+1)λ− 1
.

Given the thresholdT , πT+1 can be computed effectively by finding the unique root between 0 and 1 of the
above equation. (The root is unique as the left hand side is increasing inπT+1, while the right hand side is
decreasing inπT+1.) Note that in this system theπi do notdecrease doubly exponentially, although they
can decrease very quickly ifπT+1 is sufficiently small.

The strong threshold model is given by the following differential equations:

dsi

dt
= λ(si−1−si )(1+sT+1)− (si−si+1) , i ≤ T + 1; (9)

dsi

dt
= λ(s2

i−1− s2
i )− (si − si+1) , i > T + 1. (10)

As equations (6) and (9) are the same, thre recurrence (8) also holds for the fixed point of the strong
threshold system, soπT+1 for the strong threshold system is calculated similarly.

For small thresholds, the behavior of this system is very similar to that of the supermarket system, as has
been noted empirically previously in [7] and [35]. In fact, the strong threshold model is double exponentially
decreasing.

Lemma 12 The fixed point for the strong threshold model decreases doubly exponentially.

Proof: To show that the fixed point decreases doubly exponentially, we note that it is sufficient to show that
πT+ j+1 = λπ2

T+ j for all j ≥ 1, from which the lemma follows by a simple induction. Moreover, to prove

thatπT+ j+1 = λπ2
T+ j for all j ≥ 1, it is sufficient to show thatπT+2 = λπ2

T+1. That this is sufficient

follows from equation (10) and the fact thatdsi
dt = 0 at the fixed point, from which we obtain

λπ2
i−1− πi = λπ2

i − πi+1
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for i ≥ T + 2.
Hence, to prove the lemma, we now need only show thatπT+2 = λπ2

T+1. From equation (9) we have

πT+2 = πT+1− λ(πT − πT+1)(1+ πT+1),

which can be written in the form

πT+2− λπ2
T+1 = (1+ λ)πT+1− λ(1+ πT+1)πT . (11)

We show that the right hand side of equation (11) is 0.
The recurrence (8) yields that

λ(πi−2− πi−1)(1+ πT+1) = πi−1− πi .

Summing the left and right hand sides of the above equation for all values ofi in the range 2≤ i ≤ T + 1
yields

λ(1− πT)(1+ πT+1) = λ− πT+1,

or more conveniently,
λ(1+ πT+1)πT = (1+ λ)πT+1.

Hence the right hand side of equation (11) is 0 and the lemma is proved.

5.2 Convergence and stability

For the strong threshold model, we can show that the infinite system converges exponentially to the fixed
point, as we have done for the supermarket model. Unfortunately, for the weak threshold model, we have
only been able to prove stability. We present both proofs here, beginning with the stability of the weak
model.

It is convenient to write the derivativesdεi /dt obtained from equations (6) and (7) in the following form:

dεi

dt
= λ(εi−1− εi )(1+ πT+1)− (εi − εi+1)+ λεT+1(si−1 − si ) , i ≤ T + 1; (12)

dεi

dt
= λ(εi−1− εi )πT+1− (εi − εi+1)+ λεT+1(si−1− si ) , i > T + 1. (13)

Notice that we have made all the terms appear linear inεi by leaving terms of the formλεT+1(si−1 − si )

unexpanded.

Theorem 13 The fixed point of the weak threshold model is stable.

Proof: We shall assume theεi are non-zero; the caseεi = 0 can be handled as in Theorem 8. We examine the
potential function given by theL1-distanceD(t) = ∑∞i=1 |εi (t)|, and show thatd D

dt ≤ 0. As in Theorem 8
we collect all terms with a factor ofεi . For i 6= T + 1, it is simple to verify that all terms are linear inεi ,
and that the coefficient of sum of all such terms is at most 0. For example, fori < T + 1, the sum of the
terms inεi is

(−λ(1+ πT+1)− 1)εi sgn(εi )+ λ(1+ πT+1)εi sgn(εi+1)+ εi sgn(εi−1),

which is at most 0. The casei > T + 1 is similarly straightforward.
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The only difficulty arises in theεT+1 term. Note the different form of the first expression on the right
hand side of (12) and (13) : one has a factor ofπT+1, and one has a factor of 1+ πT+1. Hence, in gathering
the terms inεT+1, we have the following sum:

(−λ(1+ πT+1)− 1)εT+1 sgn(εT+1)+ λπT+1εT+1 sgn(εT+2)

+εT+1 sgn(εT)+ εT+1

∞∑
j=1

λ(sj−1− sj ) sgn(εj ).

Let us suppose thatεT , εT+1, andεT+2 are all strictly positive; all other cases are similar. Then the
above summation reduces to

−λεT+1+ εT+1

∞∑
j=1

λ(sj−1− sj ) sgn(εj ).

The largest value the second expression can take is when sgn(εj ) = 1 for all j , in which case it isλεT+1.
Hence, regardless of the signs of the remainingεi , we find that the coefficient of the sum of the terms in
εT+1 is also at most 0.

For the weak threshold model, proving convergence to the fixed point appears possible using the tech-
nique of [33], although their methods do not appear to provide bounds on the rate of covergence. (Note that
stability does not imply convergence, nor does convergence imply our strong notion of stability, namely that
the L1 distance is non-increasing.)

We can, however, show that the strong threshold model does converge exponentially. As in Theorem 13,
it will help us to rewrite the derivativesdεidt for the infinite system of the strong threshold model obtained
from the equations (9) and (10) in the following form:

dεi

dt
= λ(εi−1− εi )(1+ πT+1)− (εi − εi+1)+ λεT+1(si−1 − si ) , i ≤ T + 1; (14)

dεi

dt
= λ(ε2

i−1+ 2πi−1εi−1− ε2
i − 2πi εi )− (εi − εi+1) , i > T + 1. (15)

Theorem 14 The strong threshold model converges exponentially to its fixed point from any initial state
where there exists a k such that sk(0) = 0.

Proof: We shall find an increasing sequencewi andδ > 0 such that for8(t) = ∑
i wi |εi (t)|, we have

d8/dt = −δ8. As in Theorem 10, the proof will depend on finding a sequencewi such that the terms of
d8/dt in εi sum to at most−δwi |εi |. In fact, any sequence satisfying

wi+1 ≤ wi + wi (1− δ)−wi−1

λ(1+ πT+1)
, i < T + 1 (16)

wi+1 ≤ wi + wi (1− δ)−wi−1

λ(1+ 2πi )
, i ≥ T + 1 (17)

will suffice, and it is easy to verify that such sequences exist, as in Theorem 10. That this condition suffices
can be easily checked by grouping all theεi terms from equations (14) and (15) for allεi exceptεT+1. The
difficulty for the εT+1 terms lies in the extraneousλεT+1(si−1− si ) terms in equation (14).

We now bound the sum of the terms inεT+1. We consider here only the case where allεi are positive;
other cases are similar. The sum of all the terms inεT+1 is

(−λ(1+ πT+1)− 1)wT+1εT+1 sgn(εT+1)+ λ(2πT+1+ εT+1)wT+2εT+1 sgn(εT+2)+

wTεT+1 sgn(εT)+ εT+1

T+1∑
j=1

wjλ(sj−1− sj ) sgn(εj ).
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If all εi are positive this reduces to

(−λ(1+ πT+1)− 1)wT+1εT+1+ λ(2πT+1+ εT+1)wT+2εT+1+wTεT+1+ εT+1

T+1∑
j=1

wjλ(sj−1− sj ).

As thewi are increasing, the termεT+1
∑T+1

j=1 wjλ(sj−1− sj ) can be bounded above by

εT+1

T+1∑
j=1

wT+1λ(sj−1− sj ) = εT+1wT+1λ(1− πT+1− εT+1).

Hence the sum of the terms inεT+1 is bounded above by

(−λ(2πT+1+ εT+1)− 1)wT+1εT+1+ λ(2πT+1+ εT+1)wT+2εT+1+wTεT+1,

and it is easily checked that equation (17) is sufficient to guarantee that this sum is at most−δwT+1εT+1.
Finally, we note that we may choose thewi so that they are eventually dominated by a geometric se-

ries, as in Theorem 10. Since the tail of the fixed point for the strong threshold model decreases doubly
exponentially by Lemma 12, we have

8(0) =
∞∑

i=1

wi |εi | =
k∑

i=1

wi |εi | +
∞∑

i=k

wiπi

is finite.

5.3 Simulations of threshold schemes

We first demonstrate the accuracy of the differential equations in describing system behavior. We consider
the weak threshold scheme of Section 5 (where customers who make a second choice always queue at their
second choice) with 100 queues at various arrival rates in Table 2. As before, simulations were done for
100,000 units of time with the first 10,000 thrown out for calculation purposes. For arrival rates up to 95% of
the service rate, the predictions are within approximately 2% of the simulation results; with smaller arrival
rates, the prediction is even more accurate. These results again demonstrates the accuracy of this approach.

We also compare the strong threshold scheme and the weak threshold scheme to the standard super-
market model where each customer always has two choices. Since the performance of the weak threshold
scheme depends on the threshold chosen, we graph the best choice and second best choice for specific ar-
rival ratesλ. (Note the strong threshold scheme with the threshold set to 0 is equivalent to the supermarket
model.) As one might expect, threshold schemes do not perform as well as the supermarket model (See
Figure 5). It is worth noting, however, that even the weak threshold scheme performs almost as well for
reasonable arrival rates (sayλ < 0.9), despite the proven difference in the behavior of the tails (exponen-
tial versus doubly exponential dropoff). In many applications threshold schemes may be suitable, or even
preferable, because they reduce the overall amount of communication that is necessary. Even though the
threshold must be chosen appropriately to match the load, small thresholds are adequate over a large range
of arrival rates.

6 Concluding remarks

We have demonstrated techniques for studying large decentralized systems that use simple, effective load
balancing strategies, based on analyzing the corresponding infinite system. We have applied our methods
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λ Threshold Simulation Prediction Relative Error (%)

0.50 0 1.3360 1.3333 0.2025
1 1.4457 1.4444 0.0900

0.70 0 1.9635 1.9608 0.1377
1 1.8144 1.8074 0.3873
2 2.0150 2.0109 0.2039

0.80 0 2.7868 2.7778 0.3240
1 2.2493 2.2346 0.6578
2 2.3518 2.3387 0.5601

0.90 1 3.5322 3.4931 1.1194
2 3.1497 3.1067 1.3841
3 3.2903 3.2580 0.9914

0.95 2 4.5767 4.4464 2.9305
3 4.2434 4.1274 2.8105
4 4.3929 4.3061 2.0158

0.99 4 8.1969 7.4323 10.2875
5 7.5253 6.8674 9.5800
6 7.6375 6.9369 10.0996

Table 2: Simulations versus estimates for the weak threshold model: 100 queues.
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Figure 5: Comparison of the threshold models with two choices.
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to the supermarket model and several variations, including the case of fixed service times and threshold
systems. Besides allowing an analysis of these systems, our work demonstrates that there are important
behavioral differences between systems where customers have one choice and systems where they have
more than one choice. In particular, we have shown that using two choices can lead to an exponential
improvement in the expected time in the system over using one choice; using more choices leads to much
less substantial improvements.

Extrapolating from our results, we believe that the paradigm of using load information from a small
random sample of possible destinations will prove effective in many load balancing scenarios. Indeed, the
effectiveness of this general approach has been noted recently in practical load balancing scenarios [30] as
well as for load profiling in real-time systems [6].

Although our methodology has been successful for several models, there remain several open questions.
We conjecture that the closed model and the weak threshold model converge exponentially, although a proof
appears to require different techniques than given here. The problem of analyzing the behavior of these
simple randomized strategies on small systems and systems with fixed network topologies also appears to
lie outside the range of our techniques. Finally, it would be interesting to test the performance of these
methods in the context of more complex service and arrival distributions, such as heavy-tailed distributions.
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A From infinite to finite: Kurtz’s theorem

In this section, we briefly describe the formal theory that connects the limiting system with systems of finite
size, based on the work of Kurtz. As even stating an appropriate theorem requires a great deal of background
and notation, we here provide only an informal argument; further explication with regard to load balancing
problems is available in [28] or [33]; more general works covering the appropriat theory include [10, 31].
The supermarket model is an example of adensity dependent family of jump Markov processes. Informally,
such a family is a one parameter family of Markov processes, where the parametern corresponds to the
total population size (or, in some cases, area or volume). The states can be normalized and interpreted
as measuring population densities, so that the transition rates depend only on these densities. As we have
seen in Section 2.1, for the supermarket model the transition rates between states depend only upon the
densitiessi . Hence the supermarket model fits our informal definition of a density dependent family. The
limiting system corresponding to a density dependent family is the limiting model as the population size
grows arbitrarily large.

Kurtz’s work provides a basis for relating the limiting system for a density dependent family to the
corresponding finite systems. Essentially, Kurtz’s theorem provides a law of large numbers and Chernoff-
like bounds for density dependent families. The primary differences between the limiting system and the
finite system are:

• The limiting system is deterministic; the finite system is random.

• The limiting system is continuous; the finite system has jump sizes that are discrete values.

Imagine starting both systems from the same point for a small period of time. Since the jump rates for
both processes are initially the same, they will have nearly the same behavior. Now suppose that if two
points are close in the infinite dimensional space then their transition rates are also close; this is called the
Lipschitz condition, and it is a precondition for Kurtz’s theorem. Then even after the two processes separate,
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if they remain close, they will still have nearly the same behavior. Continuing this process inductively over
time, we can bound how far the processes separate over any interval [0, T ].

The following theorem, which we state without proof, is derived from an application of Kurtz’s results
to the finite supermarket model to obtain bounds on the expected time a customer spends in the system.

Theorem 15 For any fixed T , the expected time a customer spends in an initially empty supermarket system
of size n over the interval[0, T ] is bounded above by

∞∑
i=1

λ
di−d
d−1 + o(1),

where the o(1) is understood as n→∞ and may depend on T .

Theo(1) term in Theorem 15 is the correction for the finite system, while the main term is the expected time
in the limiting system from Corollary 6.

Of course, similar theorems bounding the deviation of the infinite and finite processes hold for the other
systems we have studied as well. Essentially, whenever the limiting system converges to a fixed point, the
equilibrium distribution of the corresponding finite system is concentrated around the fixed point. Hence
the fixed point may be used to give good approximations for such quantities as the average time a customer
spends in the system. The discrepancy between the finite and limiting system is generallyo(1). In practice,
as we have seen, for load balancing problem the discrepancy is small even when the number of queuesn is
relatively small.
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