
SRC Technical Note
1997 - 026

October 30, 1997

Specifying the modification of extended state

K. Rustan M. Leino

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved

Specifying the modification of extended state
K. Rustan M. Leino

Digital Equipment Corporation, Systems Research Center
<www.research.digital.com/SRC/personal/RustanLeino/home.html>

Abstract. This paper explores the interpretation of specifications in the
context of an object-oriented programming language with subclassing and
method overrides, for example like Java. In particular, the paper considers
annotations for describing what variables a method may change and the
interpretation of these annotations. The paper shows that there is a problem
to be solved in the specification of methods whose overrides may modify
additional state introduced in subclasses. As a solution to this problem, the
paper introducesdata groups, which enable modular checking and rather
naturally capture a programmer’s design decisions.

0 Introduction

Specifications help in the documentation of computer programs. Ideally, specifications
can be used by a mechanical program analyzer to check the body of a method against
its specification, attempting to find errors. The Extended Static Checker (ESC) [0] is an
example of such a program checker.

This paper concerns the specification of methods. A method specification is a con-
tract between the implementation of a method and its callers. As such, it includes apre-
condition, which documents what a caller must establish before invoking the method.
Consequently, the implementation can assume the precondition on entry to the method
body. A method specification also includes apostcondition, which documents what
the implementation must establish on exit. Consequently, the caller can assume the
postcondition upon return from the method invocation. When reasoning about method
implementations and calls, only the contract given by the specification is used. That
is, one does not use the code in a method’s callers when reasoning about the method
implementation, and one does not use the implementation when reasoning about the
calls.

To be useful to the caller, it is important that the postcondition detail what variables
are not changed by the method. But since the scope of the caller can include variables

0

that are not visible in the scope where the method is declared and specified, it is not
possible to explicitly list all unchanged variables in the method’s postcondition. In-
stead, the annotation language must include some form of syntactic shorthand (“sugar”)
whose interpretation as part of the postcondition is a function of the scope in which it is
interpreted. A nice construct for this is themodifies clause, which lists those variables
that the method is allowed to modify, thereby specifying that the method does not mod-
ify any other variables [2]. For example, suppose that the specification of a methodm

occurs in a scope where two variables,x and y , are visible, and that the specification
includes themodifies clause

modifiesx

If m is called from a scope where, additionally, a variablez is visible, then the caller’s
interpretation (“desugaring”) of the specification says that the call may possibly modify
x , but leaves bothy and z unchanged.

The fact that amodifies clause is interpreted differently in different scopes raises a
concern aboutmodular soundness[5]. For the purpose of this paper, modular soundness
means that the implementation, which is checked to meet the specification as interpreted
in the scope containing the method body, actually lives up to a caller’s expectations,
which are based on the specification as interpreted in the scope of the call. A conse-
quence of modular soundness is that one can check a class even in the absence of its
future clients and subclasses.

This paper explores the interpretation of specifications in the context of an object-
oriented programming language with subclassing and method overrides, for example
like Java. In particular, I consider annotations for describing what a method may change
and the interpretation of these annotations. I show that there is a problem to be solved
in the specification of methods whose overrides may modify additional state introduced
in subclasses. As a solution to this problem, I introducedata groups, which adhere to
modular soundness and rather naturally capture a programmer’s design decisions.

For simplicity, I restrict my attention to the operations on only one object, the im-
plicit self parameter. Nevertheless, because of inheritance and method overriding, the
implementations of the methods of this object may be found in superclasses and sub-
classes of the class being checked.

1 Extending the state of a superclass

To illustrate the problem, I introduce a simplified example of a computer arcade game—
an excellent application of object-oriented programming indeed.

1

The design centers aroundsprites. A sprite is a game object that appears somewhere
on the screen. In this simple example, every sprite has a position, a color, and methods
to update these. The main program, which I will not show, essentially consists of a
loop that performs one iteration per video frame. Each iteration works in two phases.
The first phase invokes theupdate method on each sprite, which updates the sprite’s
position, color, and other attributes. The second phase invokes thedraw method on
each sprite, which renders the sprite on the screen.

Here is the declaration of classSprite , in which the methods have been annotated
with modifies clauses:

classSprite {
int x,y;
void updatePosition() /* modifiesx,y */
{ }

int col;
void updateColor() /* modifiescol */
{ }

void update() /* modifiesx,y,col */
{ updatePosition(); updateColor(); }

void draw() /* modifies(nothing) */
{ }

}
The defaultupdate method invokes theupdatePosition and updateColor meth-
ods, whose default implementations do nothing. Any of these methods can be over-
ridden in Sprite subclasses. For example, a moving sprite that never changes colors
would override theupdatePosition method, a stationary sprite whose color changes
over time would override theupdateColor method, and a sprite that adds further at-
tributes that need to be updated overrides theupdate method and possibly also the
updatePosition and updateColor methods.

Since the specifications I have given in the example show onlymodifies clauses,
checking that an implementation meets its specification comes down to checking that
it modifies only those variables that it is permitted to modify. The implementations of
the updatePosition , updateColor, anddraw methods are no-ops, so they trivially
satisfy their specifications. Theupdate method invokes the other two update methods,
whose modifies clauses say they may modifyx , y , and col . So update in effect
modifiesx , y , andcol , and this is exactly what its specification allows. We conclude
that the methods in classSprite meet their specifications.

2

Let us now consider a subclassHero of Sprite , representing the hero of the game.
The hero can move about, and hence theHero class provides its own implementation
of the updatePosition method by overriding this method. The next position of the
hero is calculated from the hero’s velocity and acceleration, which are represented as
instance variables. TheHero class is declared as follows:

classHero extendsSprite {
int dx,dy;
int ddx,ddy;
void updatePosition()

{ x += dx+ ddx/2; y += dy+ ddy/2;
dx += ddx; dy += ddy;
}

. . .

}
The Hero implementation ofupdatePosition increasesx and y by appropriate
amounts (1d = v0 · t + 1/2 · a · t2 where t = 1). In addition, it updates the velocity
according to the current acceleration. (Omitted from this example is the update of ac-
celeration, which is computed according to the game player’s joystick movements.) It
seems natural to update the velocity in the method that calculates the new position, but
the specification ofupdatePosition (given in classSprite) allows only x and y to
be modified, notdx anddy which are not even defined in classSprite . (If the update
of dx and dy instead took place in methodupdate , there would still be a problem,
since themodifies clause ofupdate also does not include these variables.)

As seen in this example, the reason for overriding a method is not just to change
what the method does algorithmicly, but also to change what data the method updates. In
fact, the main reason for designing a subclass is to introduce subclass-specific variables,
and it is the uses and updates of such variables that necessitate being able to override
methods. For example, classSprite was designed with the intention that subclasses
be able to add sprite attributes and update these in appropriate methods. So how does
one in a superclass write the specification of a method such that subclasses can extend
the superclass’s state (that is, introduce additional variables) and override the method to
modify this extended state?

2 Three straw man proposals

In this section, I discuss three proposals that I often hear suggested for solving the
problem of specifying the modification of extended state. I show that these proposals

3

don’t work. This is what it means for a proposal to work:

• the proposal must provide a way to annotate classes likeSprite and Hero such
that the desired method implementations in these classes will meet their specifi-
cations,

• the interpretation of specifications must be useful to callers (for example, specifi-
cations should not all be treated as “can do anything whatsoever”),

• the annotations should not be unnecessarily tedious to write down, and

• the proposal must adhere to modular soundness.

Here is the first proposal:

Straw man 0. A subclass canrefinethe specification of a method when it
overrides it. That is, a subclass canweakenthe precondition of the method
in the superclass (that is, say that the overridden method implementation
will work in more situations) andstrengthenthe postcondition (that is, be
more specific about the effect of the method).

It is well known that this proposal is sound. However, it doesn’t solve the problem at
hand. To strengthen the postcondition means to be more precise about the final values of
variables. This is just the opposite of what we’d like—we’d like the new postcondition to
allow more variables to be modified, that is, to put no restrictions at all on the final values
of these variables. Stated differently, whileshrinkingthe list in themodifies clause is
sound,enlargingit is what we want when specifying a subclass’s method overrides.

Another straw man proposal is the following:

Straw man 1. Let m be a method declared and specified in a classT .
An implementation ofm is allowed to modify those variables listed in the
modifies clause ofm , plus any variable declared in any proper subtype of
T .

Although sound, this straw man is too liberal about the modification of variables in sub-
classes. In fact, a subclass loses the advantage ofmodifies clauses with this proposal.
To illustrate, I will show an example that builds on classSprite .

Consider a class ofmonsterswith a strength attribute. Rather than storing this at-
tribute as an instance variable in every monster object, suppose a classMonster has a
method that returns the value of the strength attribute. Thus, differentMonster sub-
classes can decide on their own representation of the strength attribute. For example,

4

if the strength of a class of monsters is constant, the method can return that constant,
without taking up any per-object storage. This design trades quick access of an attribute
for flexibility in how the attribute is represented.

The following shows classMonster , which uses the strength attribute in updating
the sprite position.

classMonster extendsSprite {
int getStrength() /* modifies(nothing) */
{ return 100; }

void updatePosition()

{ if (getStrength() < 10) { x += 2; } else{ x += 4; } }
}

A particular Monster subclass isAgingMonster , which adds an age attribute and
overrides thedraw method so as to render the monster differently according to its
strength-to-age ratio.

classAgingMonster extendsMonster {
int age;
. . .

void draw()

{ int bitmapID;
if (age = 0) {
bitmapID= MONSTER INFANT;
} else{

int s = getStrength();
int relativeStrength= s/age;
if (relativeStrength< 5) {
bitmapID= MONSTER WIMPY;
} elsif (relativeStrength< 10) {
bitmapID= MONSTER NORMAL;
} else{
bitmapID= MONSTER STRONG;

} }
Bitmap.Draw(x,y,bitmapID);
}

}
The nameBitmap.Draw denotes some procedure that can draw a bitmap given a screen
coordinate and an ID.

5

The correctness of theAgingMonster implementation ofdraw relies on the fact
that the call togetStrength does not modifyage . In particular, if getStrength
were to setage to 0 , then the computation ofrelativeStrength would result in
a division-by-zero error. MethodgetStrength is specified with an emptymodifies
clause, but Straw Man 1 gives implementations ofgetStrength permission to modify
age , since age is declared in a proper subclass ofMonster . Thus, the interpreted
specification forgetStrength is not strong enough for one to conclude that method
draw will execute correctly.

There is a workaround. If a class is allowed to refine the specifications of meth-
ods declared in superclasses, classAgingMonster can strengthen the postcondition of
getStrength with agepre = agepost . But this would quickly get annoying, because
programmers would then sometimes rely on the absence ofage in the modifies clause
to conclude thatage is not changed, and sometimes rely on an explicit postcondition
agepre = agepost to conclude the same thing. Even worse, strengthening the specifica-
tion of all methods declared in a superclass whenever a class introduces new variables
would quickly grow to be an unacceptably tedious chore.

The next straw man proposal seeks to alleviate this chore by making the mentioned
postcondition strengthening the default interpretation, and providing a new specification
constructalso-modifiesthat can override the default interpretation:

Straw man 2. Let m be a method declared and specified in a classT .
An implementation ofm in a subclassU of T is allowed to modify those
variables listed in themodifies clause ofm as given in classT , plus any
variable declared in anyalso-modifiesclause form as given in some su-
perclass ofU .

This straw man seems to solve the problem for theHero example: One would simply
annotate theupdatePosition override with

also-modifiesdx,dy

This would give theupdatePosition implementation inHero permission to mod-
ify not just x and y (as granted by the original specification ofupdatePosition in
Sprite), but also the variablesdx and dy . (One could also addddx and ddy to the
also-modifiesclause, if desired.)

Let us consider how Straw Man 2 stands up to modular soundness. Suppose that
the game uses one hero object throughout many game levels. As a new level starts,
the program will call a methodstartNewLevel on the hero object. This method resets
certain attributes of the hero object while leaving other attributes unchanged, preparing it

6

to begin the new level. To this end, suppose classHero contains the following method
declaration and specification, where the keywordensures is used to express a given
postcondition:

void startNewLevel() /* modifiesx,y,col,dx,dy,ddx,ddy
ensuresdxpost = 0 ∧ dypost = 0 */

{ dx = 0; dy = 0;
update();
}

The given implementation ofstartNewLevel contains an error: The invocation
of update results in a call to theupdate implementation in classSprite , whose
invocation of updatePosition in turn results in a call to theupdatePosition im-
plementation in classHero (because of dynamic method dispatch). This implemen-
tation of updatePosition modifies thedx and dy variables. Thus, executions of
startNewLevel may well end with non-zero values fordx and dy , so the implemen-
tation of startNewLevel does not meet its specification.

Unfortunately, the methodology proposed by Straw Man 2 does not allow one to
catch the error instartNewLevel . The problem is that even though the interpretation
of updatePosition is classHero reveals thatdx and dy may be modified (since the
also-modifiesannotation ofupdatePosition in classHero lists these variables), the
update method is not overridden inHero and thus gets its specification solely from
the one given in classSprite . Hence, the interpretation of the specification ofupdate

shows dx and dy as being unchanged, so a program checker will not find anything
wrong with the implementation ofstartNewLevel .

Note that the implementations in classSprite do meet their specifications under
Straw Man 2. For example, the interpretation of the specification ofupdatePosition

in classSprite includes onlyx and y , both of which are allowed to be modified also
by the implementation ofupdate . Hence, there is no error for the checker to report in
classSprite either.

In conclusion, Straw Man 2 seems pretty good at first, but since it allows the spec-
ifications of different methods (in the example,updatePosition and update) to be
extended in different ways (by having differentalso-modifiesclauses, or none at all),
the proposal does not adhere to modular soundness. The proposal in the next section
provides annotations for data rather than for methods, the effect of which is to make
specification extensions apply in a uniform manner.

7

3 Data groups

In this section, I explain my proposal and demonstrate how it solves the problems with
the examples shown previously. In Section 4, I show how a program checker can enforce
the proposal, and in Section 5, I argue that my proposal is sound.

The idea is to introducedata groups, which represent sets of variables. A data group
is declared in a class, just like an instance variable is. The declaration of an instance
variable is annotated with the names of the data groups to which the variable belongs.
Data groups can be nested, that is, a group can be declared as a member of another
group. A data group can be listed in amodifies clause, where it represents the set of all
members of the group.

Using data groups, the declaration ofSprite can be written as:

classSprite {
/* group attributes; */
/* group position member-ofattributes; */
int x /* member-ofposition */ ;
int y /* member-ofposition */ ;
void updatePosition() /* modifiesposition */
{ }

/* group color member-ofattributes; */
int col /* member-ofcolor */ ;
void updateColor() /* modifiescolor */
{ }

void update() /* modifiesattributes */
{ updatePosition(); updateColor(); }

/* group drawState; */
void draw() /* modifiesdrawState */
{ }

}
This version ofSprite declares four data groups,attributes , position , color ,
and drawState , and declaresposition and color to be members ofattributes ,
x and y to be members ofposition , and col to be a member ofcolor . Class
Sprite does not declare any members of groupdrawState .

Since updatePosition is declared withmodifiesposition , an implementation
of this method is allowed to modifyx and y . In addition, an implementation of the
methodupdatePosition is allowed to modify any variables declared inSprite sub-
classes to be members ofposition . An implementation ofupdatePosition is not

8

allowed to call methodupdateColor , for example, sincecolor is not a member of
position .

By introducing a data groupdrawState and listing it in themodifies clause of
methoddraw , implementations ofdraw in Sprite subclasses are given a way to mod-
ify instance variables (in particular, to modify variables that are introduced as members
of drawState).

The following illustrates how one can use data groups to annotate classHero :

classHero extendsSprite {
int dx /* member-ofposition */;
int dy /* member-ofposition */;
int ddx /* member-ofposition */ ;
int ddy /* member-ofposition */ ;
void updatePosition()

{ x += dx+ ddx/2; y += dy+ ddy/2;
dx += ddx; dy += ddy;
}

void startNewLevel() /* modifiesattributes
ensuresdxpost = 0 ∧ dypost = 0 */

{ dx = 0; dy = 0;
update();
}

}
The override ofupdatePosition gets its permission to modifydx and dy from

the fact that these variables are members of the data groupposition . This solves the
problem of how to specifyupdatePosition in classSprite so that a subclass like
Hero can modify the state it introduces.

With data groups, the error instartNewLevel is detected. Sincedx and dy are
members ofposition , which in turn is a member ofattributes , a program checker
will know that dx and dy may be modified as a result of invokingupdate . Since the
specification ofupdate says nothing further about the final values ofdx and dy , one
cannot conclude that they remain0 after the call.

As for the AgingMonster example, the data groups proposal does allow one to
infer that no division-by-zero error is incurred in the evaluation ofs/age : The guarding
if else statement guarantees thatage is non-zero before the call togetStrength , and
since age is not modified bygetStrength , whose modifies clause is empty,age
remains non-zero on return fromgetStrength .

I will give two more examples that illustrate the use of data groups.

9

First, note that the members of two groups are allowed to overlap, that is, that a
variable is allowed to be a member of several groups. For example, if aSprite subclass
declares a variable

int k /* member-ofposition,drawState */ ;
then k can be modified by both of the methodsupdatePosition and draw .

Second, I give another example to illustrate that it is useful to allow groups to contain
other groups. Suppose aSprite subclassCentipede introduces a legs attribute. Class
Centipede declares a data grouplegs and a methodupdateLegs with license to
modify legs , which implies the license to modify the members oflegs . By declaring
legs as a member ofattributes , the update method gets permission to call method
updateLegs :

classCentipede extendsSprite {
/* group legs member-ofattributes; */
int legCount /* member-oflegs */ ;
void updateLegs() /* modifieslegs */
{ legCount= . . . ; }

void update()

{ updatePosition(); updateColor(); updateLegs(); }
}

4 Enforcing the data groups proposal

This section describes more precisely how a program checker handles data groups.
For every data groupg , the checker introduces a new variablegResidue . This so-

calledresidue variableis used to represent those ofg ’s members that are not in scope—
in a modular program, there is always a possibility of a future subclass introducing a new
variable as a member of a previously declared group.

To interpret amodifies clause

modifiesm

the checker first replacesm with the variables in thedownward closureof m . For any
set of variables and data groupsm , the downward closure ofm , written down(m) , is
defined as the smallest superset ofm such that for any groupg in down(m) , gResidue
and the variables and groups declared with

member-ofg

10

are also indown(m) .
For example, computing the downward closure ofattributes in classHero as

shown in Section 3 yields

attributes,attributesResidue,

position,positionResidue,x,y,dx,dy,ddx,ddy,

color,colorResidue,col

Thus, in that class,

modifiesattributes

is interpreted as

modifiesattributesResidue,positionResidue,x,y,dx,dy,ddx,ddy,
colorResidue,col

By handling data groups in the way described, theHero implementation of method
startNewLevel , for example, is allowed to modifydx and dy and is allowed to call
method update . The implementation would also be allowed to call, for example,
updatePosition directly. The checker would complain ifstartNewLevel called
draw , because the call todraw would be treated as modifying the residue variable
drawStateResidue , and that variable is not in the downward closure ofattributes .

5 Soundness

The key to making the data groups proposal sound is that it is always known to which
groups a given variable or group belongs, and that residue variables are used to represent
members of the group that are not in scope. The data groups proposal is, in fact, a varia-
tion of the use of abstract variables and dependencies in my thesis [5]. I will explain the
relation between the two approaches in this section, and relegate the proof of soundness
to that for dependencies in my thesis.

A data group is like anabstract variable. An abstract variable (also called aspec-
ification variable) is a fictitious variable introduced for the purpose of writing specifi-
cations. The value of an abstract variable is represented in terms of program variables
and other abstract variables. In some scopes, it is not possible, nor desirable, to specify
the representation of an abstract variable because not all of the variables of the repre-
sentation are visible. This tends to happen often in object-oriented programs, where
the representation is often subclass-specific. However, if the abstract variable andsome

11

of the variables of the representation are visible in a scope, then the fact that there is
a dependency between these variables must be known to a program checker in order
to achieve modular soundness. Consequently, an annotation language that admits ab-
stract variables must also include some construct by which one can explicitly declare
the dependency of an abstract variable on a variable that is part of its representation. For
example, ifposition were an abstract variable, then

dependsposition on x

would declare thatx is part of the representation ofposition . My thesis introduced
such dependency declarations. The corresponding notion in this paper is the annotation
that declares thatx is a member of data groupposition :

int x /* member-ofposition */ ;
Using dependencies, one can give a precise definition of what the occurrence of an

abstract variable in amodifies clause means. For dependencies like the ones shown
here, this interpretation is the same as that defined for data groups above: the downward
closure.

My thesis contains a proof that the use of dependencies in this way adheres to mod-
ular soundness, provided the program meets two requirements and provided the inter-
pretation includes residue variables. The two requirements, called thevisibility and
authenticity requirements, together state essentially that a dependency declaration

dependsa on c

should be placed near the declaration ofc . Because themember-of annotation is
made part of the declaration of the variable whose group membership it declares, the
two requirements are automatically satisfied.

There is one other difference between data groups and abstract variables with depen-
dencies. Suppose an abstract variablea depends on a variablec , and that the downward
closure of themodifies clause of a method includesc but not a . The interpretation of
such amodifies clause says thatc may be modified, but only in such ways as to not
change the abstract value ofa [5]. This is called aside effect constrainton a .

But with data groups, it would be meaningless to use side effect constraints, since
data groups don’t have values. Thus, if variablec is a member of a data groupa and
the downward closure of a methodm includesc but not a , then themodifies clause
does not constrain the implementation ofm in how c is changed. Violations of modular
soundness result from the deficiency that the different interpretations of a specification

12

in different scopes are inconsistent. So by removing side effect constraints inall scopes,
modular soundness is preserved.

From our experience with writing specifications for extended static checking, we
have found it useful to introduce an abstract variable conventionally calledstate [6].
This variable is declared to depend on variables representing the state of a class or
module. Thestate variable is used in manymodifies clauses, but not in pre- and
postconditions. Furthermore,state is never given an exact definition in terms of its
dependencies. Thus, the type ofstate is never important, so we declared its type to be
any , whereany is a new keyword that we added to the annotation language.

The data groups proposal grew from a feeling that it was a mistake to apply the
side effect constraint on variables likestate whose type isany—after all, the exact
value of such a variable is never defined and thus cannot be relied on by any part of the
program. By changing the checking methodology to not apply side effect constraints on
variables of typeany , one arrives at the interpretation of data groups presented in this
paper.

As a final note on modular soundness, I mention without going into details that the
absence of side effect constraints makes the authenticity requirement unnecessary. This
means that it would be sound to declare the members of a data group at the time the
group is declared, rather than declaring, at the time a variable is declared, of which
groups the variable is a member. For example, instead of writing

/* group g; */
. . .

int x /* member-ofg */ ;
one would write

int x;
. . .

/* group g containsx, . . . ; */

Using contains in this way adheres to modular soundness (but declaring a group with
both a contains and a member-of phrase does not). However, while introducing a
group containing previously declared variables is sound and may occasionally be con-
venient, it does not solve the problem described in this paper.

6 Conclusions

In summary, this paper has introduceddata groupsas a natural way to document object-
oriented programs. Data groups represent sets of variables and can be mentioned in the

13

modifies clauses that document what methods are allowed to modify. The license to
modify a data group implies the license to modify the members of the data group as
defined by thedownward closurerule.

Since data groups are closely related to the use of abstract variables and dependen-
cies [5], they adhere to the useful property ofmodular soundness, which implies that
one can check a program one class at a time, without needing global program informa-
tion. Although the literature has dealt extensively with data abstraction and refinement,
including Hoare’s famous 1972 paper [3], it seems that only my thesis and my work
with Nelson [6] have addressed the problem of having abstract variables inmodifies
clauses in a way that modern object-oriented programs tend to use them.

The use of data groups shown in this paper correspond tostatic, as opposed tody-
namic, dependencies. Dynamic dependencies arise when one class is implemented in
terms of another. Achieving soundness with dynamic dependencies is more difficult
than the case for static dependencies [6, 1].

Data groups can be combined with abstract variables and dependencies. This is use-
ful if one is interested in the abstract values of some attributes and in the representation
functions defining these abstract values.

A related methodological approach to structuring instance variables and methods
of classes ismethod groups, first described by Lamping [4] and developed further by
Stata [8]. Method groups partition the variables and methods of a class. If a designer of
a subclass chooses to replace a variable or method of a method group, all variables and
methods of the method group must be replaced. This allows the variables of a superclass
to be used in a different way in a subclass. If this feature is desired, one can combine
data groups, abstract variables, and dependencies with method groups.

In the grand scheme of annotating object-oriented programs in ways that not only
help programmers, but that also can be used by program analyzers, this paper has
touched only on the modification of extended state. Though they sometimes seem like
a nuisance in the specification of programs,modifies clauses are what give a checker
precision across procedure boundaries. Vandevoorde has also foundmodifies clauses
to be useful in improving program performance [9].

Other important method annotations include pre- and postconditions, but they are
more straightforward and have been studied more satisfactorily. As for annotating data,
object invariants is a concept useful to programmers and amenable as annotations ac-
cepted by a program checker. Like the modification of extended state, achieving modu-
lar soundness with object invariants is an issue [7].

Acknowledgements. Raymie Stata, Greg Nelson, and Mark Lillibridge made useful
comments on a draft of this paper.

14

References

[0] Extended Static Checking home page, Digital Equipment Corporation, Systems
Research Center. On the Web athttp://www.research.digital.com/
SRC/esc/Esc.html .

[1] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep ex-
posure. KRML 68, Digital Equipment Corporation Systems Research Center, July
1996.

[2] John V. Guttag and James J. Horning, editors.Larch: Languages and Tools for For-
mal Specification. Texts and Monographs in Computer Science. Springer-Verlag,
1993. With Stephen J. Garland, Kevin D. Jones, Andr´es Modet, and Jeannette M.
Wing.

[3] C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,
1(4):271–81, 1972.

[4] John Lamping. Typing the specialization interface.ACM SIGPLAN Notices,
28(10):201–214, October 1993. OOPSLA ’93 conference proceedings.

[5] K. Rustan M. Leino.Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

[6] K. Rustan M. Leino and Greg Nelson. Abstraction and specification revisited.
KRML 71, Digital Equipment Corporation Systems Research Center, In prepara-
tion.

[7] K. Rustan M. Leino and Raymie Stata. Checking object invariants. Technical Note
1997-007, Digital Equipment Corporation Systems Research Center, 130 Lytton
Ave., Palo Alto, CA 94301, U.S.A., April 1997.

[8] Raymie Stata. Modularity in the presence of subclassing. Research Report 145,
Digital Equipment Corporation Systems Research Center, 130 Lytton Ave., Palo
Alto, CA 94301, U.S.A., April 1997.

[9] Mark T. Vandevoorde.Exploiting Specifications to Improve Program Performance.
PhD thesis, Massachusetts Institute of Technology, February 1994. Available as
Technical Report MIT/LCS/TR-598.

15

