
SRC Technical Note
1997 - 021

September 30, 1997

Certificates and Fast Algorithms for

Biconnectivity in Fully-Dynamic Graphs

Monika Rauch Henzinger and Han La Poutr´e

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved



Han La Poutr´e is at the Centrum voor Wiskunde en Informatica, Amsterdam,
The Netherlands. His electronic mail addresses is: Han.La.Poutre@cwi.nl

A preliminary version of this work appeared in the Proceedings of the Third
Annual European Symp. on Algorithms – ESA’95.

1



Abstract

In this paper, we present sparse certificates for biconnectivity together
with algorithms for updating these certificates. We thus obtain fully-dynamic
algorithms for biconnectivity in graphs that run inO(

√
n logn logdm

n e) amor-
tized time per operation, wherem is the number of edges andn is the number
of nodes in the graph. This improves upon the results in [12], in which algo-
rithms were presented running inO(

√
m logn) amortized time, and solves

the open problem to find certificates to speed up biconnectivity, as stated in
[2].

1 Introduction

The field of dynamic graph algorithms has become an important field in algorith-
mic research in recent years. Currently, several results exist for incremental and
fully-dynamic graph problems, like for maintaining spanning trees, the 2-edge- or
the 2-vertex-connected components of a graph, or the planarity of a graph under
the insertions and/or deletions of edges and vertices [3, 4, 5, 7, 8, 9, 10, 11, 12, 14].

In [4, 5, 12], algorithms for maintaining minimum spanning trees and the
connectivity, 2-edge-connectivity and the 2-vertex-connectivity relations in fully-
dynamic graphs were presented that run in O(

√
m) or O(

√
m logn) time per oper-

ation (amortized time for 2-vertex-connectivity). (In this paper,n is the number of
nodes andm is the number of edges.) In the meantime, in [2], the concept of cer-
tificates and sparsification trees (for definitions, see Section 2) was introduced to
speed up several fully-dynamic graph algorithms. In particular, sparse certificates
could be used for speeding up fully-dynamic algorithms for maintaining minimum
spanning trees and the connectivity and 2-edge-connectivity relations in graphs
[4, 5], to O(

√
n) time per operation. Basically, these sparse certificates were de-

fined in terms of (successive, minimum) spanning trees, and were maintained by
applying Fredericksons minimum spanning trees data structure [4]. The algorithm
to be speeded up was thus used on the resulting certificate for the whole graph (viz.,
in the root of the sparsification tree).

However, this approach seems not to work for certificates for biconnectiv-
ity. Like for many other problems involvingk-connectivity, such as designing
static, parallel, incremental, or fully-dynamic algorithms, 2-vertex-connectivity
appears to be substantially harder to deal with than 2-edge-connectivity. An ex-
ample of this can also be observed in [1], considering parallel algorithms fork-
connectivity, where sparsestaticcertificates for biconnectivity are defined in terms
of breadth-first trees, whereas those for 2-edge-connectivity can consist of any kind
of spanning trees. Up to now, no efficient fully-dynamic algorithms for maintain-
ing breadth-first trees are known, and it is commonly felt that these trees are hard

2



to maintain indeed. So, designing certificates for fully-dynamic biconnectivity and
thus speeding up the fully-dynamic algorithms for it is an appealing open problem
[1, 2, 12].

In this paper, we present new, sparse certificates for biconnectivity that can
efficiently be maintained under insertion and deletion of edges. We thus obtain
O(
√

n logn logdm
n e) amortized time algorithms for maintaining the biconnectivity

relation in fully-dynamic graphs, and therefore show that fully-dynamic biconnec-
tivity falls in the same (current) time complexity class as fully-dynamic 2-edge-
connectivity.

We introduce sparse certificates that are determined in a relaxed, history-dependent
way, and that thus are not defined in a more mathematical, “static” way, like in [2].
In particular, the certificates we use are not “stable”, as defined and used through-
out in [2] (see also Definition 2.1). Also, we develop extensions of the algorithms
that must be speeded up themselves [12] as well, to be able to maintain the certifi-
cates. Thus, our approach also appears to be the first combination of certificates
and maintenance algorithms that also uses the algorithm that must be “speeded up”
itself to maintain the certificates, and not just Fredericksons minimum spanning
tree algorithms.

In our solutions, the (on-line) sequence of update operations is split into two
parts, which are treated separately: one concerning deletions and one concerning
insertions. Viz., we typically start with subgraphs of which we only want to main-
tain the certificates in adecrementalway: after any (delete) operation, roughly
either the number of biconnected components increases, or we find some edges to
“repair” the biconnectivity relation in the certificate of the subgraph (with some
additional constraints). Insertions of edges are then temporarily processed outside
the sparsification paradigm, and from time to time handled further in a batch-like
way.

Thus, our relaxation of (non-stable) certificates, usage of sparsification trees,
and the separation of decremental subproblems are new. We conjecture, that our
approach may lead to fast algorithms for various other fully-dynamic graph prob-
lems as well, likek-vertex connectivity fork ≥ 3.

The paper is organized as follows. Section 2 contains the preliminaries, in-
cluding a description of sparsification trees. In Section 3, we define certificates
for biconnectivity, and give algorithms for maintaining them. In Section 4, the re-
placement data structure, used in Section 3, is described. In this extended abstract,
we omit many details and special cases.

3



2 Preliminaries

For a graphG, two nodesx andy are calledbiconnected(or 2-vertex-connected)
if the deletion of a node fromG does not separatex andy in G (i.e., x andy are
still connected).

For a treeT , we denote byπT(x, y) the (unique) path between nodesx andy
in T .

We give some definitions concerning certificates, as occurring in [1, 2]. For
any graph propertyP, and graphG, a certificatefor G is a graphG′ such thatG
has propertyP if and only if G′ has propertyP. A strongcertificate forG is a
graphG′ such that, for any graphH , G ∪ H has propertyP if and only if G′ ∪ H
has propertyP.

A property is said to havesparsecertificates if there is some constantc such
that for every graphG on ann-vertex set, we can find a strong certificate forG
with at mostcn edges.

In [2], some sparse certificates are given fork-edge-connectivity, minimum
spanning trees, and bipartiteness, all depending on the data structures for mini-
mum spanning trees presented by Frederickson [4, 5]. Also, the concept of stable
certificate is defined, which is important for the use of certificates in sparsification
trees, as follows.

Definition 2.1 Let A be a function mapping graphs to strong certificates. Then A
is stableif it has the following properties:

1. For any graphs G and H, A(G ∪ H ) = A(A(G) ∪ H ).
2. For any graph G and edge e in G, A(G − e) differs from A(G) by O(1)

edges.

However, for fully-dynamic biconnectivity, this definition seems to be too strict.
Amongst others, it supposes that for each graph, a (unique) certificate can be cho-
sen, which then has to be maintained by the dynamic algorithms with onlyO(1)
changes (see [2]). We seem to need a more liberal concept of certification.

2.1 Sparsification tree

We sketch how certificates can be used in sparsification trees [2] to maintain a
propertyP. Our final strategies will be somewhat different, though.

As in [2], maintain a partition of the graph edges indm
n e groups, all but one

containing exactlyn edges. The remaining group is called the small group.
Insertion of an edge in the graph is always done in the small group. Deletion

of an edge is performed in the proper group, after which an edge from the small

4



group is transferred to this group (via a deletion and insertion in these groups,
respectively). If the small group becomes empty, we delete it; if it containsn edges
and we want to insert a new edge, we start a new group.

We form and maintain asparsification tree, which is a binary tree of height
O(logdm

n e), with dm
n e leaves corresponding to thedm

n e groups. Each nodex in the
sparsification tree corresponds to a subgraphG(x) of G formed by the edges in the
groups at the leaves that are the descendants of that nodex. Also, to nodex, a sub-
graphS(x) of G(x) is related, such thatS(x) has propertyP iff G(x) has property
P (S(x) is actually a sparse certificate forG(x)). If x is a leaf, thenS(x) = G(x).
We say that the edges inS(x) are theedges related to x. Furthermore, a sparse
certificateC(x) (for G(x) or S(x)) is maintained. The subgraphS(x) related to
nodex is found by forming the union of the certificatesC(y) andC(z) of the two
child nodesy andz. The certificateC(x) is found and maintained inS(x). Thus,
the certificate at the root is the certificate of the whole graph. For further details
and elaboration, we refer to [2].

3 Certificates for biconnectivity

In this section, we present sparse certificates for biconnectivity together with algo-
rithms for updating these certificates, and handling sparsification trees.

3.1 Monotone sparse certificates and their maintenance

Consider a graphG of n nodes. For a spanning treeT of graphG and a sequence
of (ordered) edgesei (1 ≤ i ≤ l ), the extension graphT Tj (0 ≤ j ≤ l ) consists of
all the edgesei with 1≤ i ≤ j . We call the sequence of edges anadd-on sequence
if for every j , 0 ≤ j < l , the graphsT ∪ T Tj andT ∪ T Tj+1 have a different
number of biconnected components. Hence, the number of components inT Tj+1

is at least one smaller than the number of components inT ∪ T Tj .

Lemma 3.1 Let G be a graph, T a spanning tree of G, and S an add-on sequence
for biconnectivity. Then S contains at most n− 1 edges.

Proof: T T0 = T contains exactlyn different biconnected components.
Since any graph contains at least one biconnected component, it follows by
the definition of add-on sequence thatScontains at mostn− 1 edges.

We first describe a certificate and the maintenance of it for some appropriate
graphG.

5



A dynamic color partitionof G colors the edges ofG from three colors viz.
blue, red, and green.

For convenience in this abstract, we assume in this subsection thatG always is
a connected graph (this is not essential, though). Blue and red edges have acost
related to them, which is 0 for blue edges and which is a natural number otherwise.
No two red edges have the same cost.

At any time, the blue edges form a spanning tree ofG, and the red edges
are O(n) non-tree edges that form an add-on sequence if ordered according to
their cost. In addition, this add-on sequence ismaximal, i.e., such thatT ∪ T Tl

contains the same (number of) biconnected components asG. The blue and red
edges together form the certificate forG. Hence, this is asparse certificatefor G.

We give algorithms for maintaining the sparse certificate ofG under deletions
and certain insertions of edges. The edge insertions are only allowed if they do not
change the biconnectivity relation. Therefore, the changes in the biconnectivity
relation are monotone for a sequence of these operations, i.e., biconnected compo-
nents are only split up and are never joined. Thus, we call this sparse certificate
a monotone sparse certificate. (We want to point out that the restriction on inser-
tions only applies to maintaining the certificates themselves, and not to the overall
algorithms presented in Subsection 3.2.)

Here and in the sequel, we use (implicitly) an operation that turns a given green
edge into a red edge, while simultaneously labelling this edge with a cost which is
the number of preceding operations.

3.1.1 Initialisation.

We can construct a sparse certificate forG as follows. Initially, all edges are ofG
are green. First, a breadth-first search tree ofG is constructed, and all the edges
in it are made blue. This blue tree is denoted byTb. The graphGr consisting
of red edges is then incrementally constructed as follows. First, a breadth-first
search forestB of G \ Tb is made and the edges are enumerated in some way.
A (green) edge ofB is converted into a red edge only if it changes the number
of components ofTb ∪ Gr . This can be done by maintaining the biconnected
components dynamically [8, 14], thus yielding an add-on sequence indeed. As
was shown in [1], the graphTb ∪ B is a certificate for biconnectivity, hence, so is
Tb∪Gr . (We do not really need the breadth-first forest, but can do this with all the
existing edges once they are ordered as well.)

The edges inGr are given a cost which corresponds to their position in the
add-on sequence.

6



3.1.2 Insertions and Deletions.

The algorithms for maintaining the certificate processes deletions and insertions as
follows.

Edge insertions intoG are only allowed if they do not change the biconnectivity
relation. The algorithm inserts a new edge as a green edge.

When an edge is deleted, the following may happen to the color of edges. After
the deletion of one red edge, some green edges may become red. After the deletion
of a blue edge, one red edge may become blue and some green edges may become
red. And finally, the deletion of a green edge is done without consequences for
other edges and their colors.

For the deletion of an edge, we have the following more detailed strategy.
Whenever a blue edgee is deleted, it is replaced by the minimum cost red edge

e′ which restores a blue spanning tree ofG. This is processed by first interchanging
the colors ofeande′, and subsequently deleting the (now) red edgee, as in the case
below.

Whenever a red edge(x, y) is deleted, a nodea that now is a new articulation
point for x and y in the current Tb ∪ Gr is generated. Such a node is called a
potentialarticulation point. Then, for potential articulation pointa, it is tested
whether it is also an articulation point ofG: If it is, we call it adefinitearticulation
point. Otherwise, (i.e., if not,) a green edge(x, y) is turned red such thata is not an
articulation point inTb∪Gr any more, andGr is updated accordingly. Successively,
the next potential articulation point is generated for the current (possibly updated)
Tb ∪ Gr (if any), and the above process is repeated until no unprocessed potential
articulation points forx andy exist.

Lemma 3.2 At any moment, the current red edges (in the order of their costs) form
an add-on sequence for biconnectivity.

Proof: We distinguish the three basic changes with respect to red and blue
edges.

1. Obviously, if a red edge is deleted from the add-on sequence, the
remaining sequence still is an add-one sequence.

2. When a red edgee= (x, y) and a blue edged = (u, v) interchange
colors, thend = (u, v) ∈ πTb(x, y). We show that replacinge by d in the
add-on sequence (while interchanging the numbers related to these edges
as well) yields another add-on sequence.

Let S = e1, ..., ek be the red add-on sequence before deletion ofd,
wheree= ej . Let T1 andT2 be the two subtrees remaining after deletingd
from Tb, and letT ′b beT1∪ T2∪ {(x, y)} (the new spanning tree).

7



Let the sequenceS′ equalS wheree is replaced byd. ThenS′ is an
add-on sequence forT ′b, which is seen as follows. Note thatTb ∪ T Tj

equalsT ′b ∪ T T′j . Hence,Tb ∪ T Ti = T ′b ∪ T T′i for i ≥ j , and hence the
graphsT ′b ∪ T T′i andT ′b ∪ T T′i+1 have a different number of biconnected
components, forj ≤ i < k. Furthermore, fori < j , an edgeei must have
both its end points in eitherT1 or T2, becausee= ej was the minimum cost
edge connectingT1 andT2. Therefore, sinceTb∪T Ti andTb∪T Ti+1 have
a different number of biconnected components for 0≤ i < j , and since
Tb andT ′b equal on their subtreesT1 andT2 and differ only in the edgese
andd, it follows that the graphsT ′b ∪ T T′i andT ′b ∪ T T′i+1 have a different
number of biconnected components, for 0≤ i < j .

Hence, the (new) sequence of red edges is an add-on sequence forT ′b.

3. When a green edgee = (x, y) is turned red, the thus extended
new sequence of red edges obviously is an add-on sequence again, since
otherwise this edge would not have been added.

Corollary 3.3 During a sequence of d deletions of edges, at most d+2n−2 edges
have been blue or red for some time.

Proof: The total number of blue or red edges that have existed (as blue or
red edge) is at most 2(n− 1) (the final number of blue and red edges) plus
d (the number of deleted edges).

We refer to the above algorithms for maintaining the certificates ascertificate
algorithms.

3.1.3 Data structures for monotone sparse certificates.

To determine which edges change color, as described above, we use the follow-
ing dynamic data structures, which allow deletions, restricted insertions, and color
changes of edges as described above.

1. We keep the graphTb∪Gr in a dynamic minimum spanning tree data struc-
ture of Frederickson [4] with all blue edges having cost 0. Whenever a blue
edge is deleted, this data structure provides us with the minimum cost red
edge. This edge becomes blue.

2. We keepTb ∪ Gr in a dynamic biconnectivity data structure of Rauch [12].
Whenever a blue or red edge is deleted, this data structure provides us with
the new potential articulation points generated one at a time, in time propor-
tional to the number of actually generated potential articulation points.

8



3. We keepG in a dynamic biconnectivity data structure of Rauch [12]. This
allows to test for every new potential articulation pointa of Tb∪Gr whether
it is also an articulation point ofG. If not, some green edge(x, y) such that
a ∈ πTb(x, y) should become red, as above.

4. We keep areplacement data structurethat provides such a green edge. It is
described in the next section.

By [12], the operations on the data structures 1 and 2 can be performed in
O(
√

n logn) time per returned edge or node, sinceTb ∪ Gr hasO(n) edges, and
the operations on data structure 3 can be performed inO(

√
m logn) time, while

the operations on data structure 4 can be performed inO(
√

m logn) time, by The-
orem 4.2.

In the following, a certificate operation denotes the insertion, deletion or color
change of an edge, the generation of a new potential articulation point or the other
queries on the data structures as described above.

Lemma 3.4 A certificate operation can be performed in O(
√

m logn) time.

3.2 The overall algorithms and data structures

We can now combine the above certificate and certificate algorithms with sparsifi-
cation as follows. (For terminology, we refer to Subsection 2.1.)

The edges in the graph are partitioned into yellow and non-yellow. The spar-
sification tree “contains” only non-yellow edges. (A non-yellow edge has (local)
color(s) defined at relevant sparsification nodes.) Each leaf corresponds to a group
of at mostn non-yellow edges. Ateachnodex of the sparsification tree, the above
certificate algorithms are executed locally on the graphS(x), to maintain the cer-
tificateC(x) in S(x). Note that, thus,S(x) has a color partition, with just the colors
blue, red, and green, where the colors are defined “locally” inS(x) (independent
of the actual colors red and blue in e.g.C(y) andC(z) in the childreny andz, if
any), and where thusC(x) consists of the blue and red edges ofS(x).

Whenever a new edgee is inserted in the graph, keep it as a yellow edge in
the “yellow delay set”Y. If the total number of yellow edges exceedsO(n), we
create a new leafx with S(x) consisting of these yellow edges, then color these
edges green and run the certificate initialization algorithm onS(x). Subsequently,
we “build/rebuild” every node on the root path ofx.

Whenever an edgee is deleted, it is deleted from the proper leafx, i.e., from
S(x). The deletion fromx might cause that at mostn− 1 green edges turn red at
x. Let y be the parent ofx in the sparsification tree. First add all the new red edges
of x as green edges toy, called “forced insertions”. (Note that forced insertions

9



do not change the biconnectivity relation ofS(y).) Subsequently, ify containse,
deletee from y (where again, green edges may turn red) and (recursively) repeat
this procedure for the parent of nodey, until e is not deleted from a tree node any
more or until we reach the root.

Whenever there are more than 2dm
n e leaves, rebuild the entire sparsification

tree.
Thus, the certificateC(G) for G is given byC(root) ∪ Y, i.e., the certificate

related to the root, joined with the existing yellow edges in the yellow delay set.
This obviously is a sparse certificate again. We run the biconnectivity algorithms
of [12] on this for maintainingC(G) and for computing the queries asked.

Lemma 3.5 Let x be a node of the sparsification tree. At any time during a se-
quence S of operations, the number of edges related to x is at most4(n− 1), and
the number of red and blue edges is at most2(n− 1). During sequence S, at most
d + 2n − 2 edges have been blue or red for some time, and at most d+ 4n − 4
edges have been related to x, where d is the number of edge deletions in the node
x.

Proof: Follows from the fact that the edges related toX consist of two
spanning trees and two add-on sequences and from Corollary 3.3.

Note that (new) green edges are added to a sparsification node only if they do
not change the biconnectivity relation indeed (at the very moment of their inser-
tion), as mentioned before.

Lemma 3.6 For a sparsification node x, since its last (re)building, the total num-
ber of new, definite articulation points in S(x) is O(n), and the total number of
certificate operations in S(x) is at most O(n+ d), where d is the number of edge
deletions in node x.

Proof: The first statement follows since definite articulation points do not
vanish any more. For the second statement, we charge the cost of obtaining
a potential articulation point that vanishes again by making a green edge
red, to this color change; We observe that color changes only occur from
green to red to blue; and we use Lemma 3.5.

Theorem 3.7 There exists a fully-dynamic algorithm for biconnectivity in graphs
such that a sequence of s operations starting from the empty graph takes O(s.

√
n logn logdm

n e)
time, while each query takes O(1) time, and where n is the current number of
nodes. Thus, each operation takes O(

√
n logn logdm

n e) amortized time, and each
query takes O(1) worst-case time.

10



Proof: The number of certificate operations in a sparsification nodex since
its last (re)building isO(n+ d), whered is the number of (local) deletions
in that node. Charge theO(n) operations to the rebuilding (initialisation)
at x, and charge each occurring local deletion for one operation. Thus,
each “global” deletion is charged forO(log m

n ) certificate operations in
total (viz., for the sparsification nodes that all lie on a root path). Fur-
thermore, maintaining the graphS(root) ∪ Y (of O(n) edges) takes time
proportional to maintainingS(root) and O(1) amortized certificate oper-
ations per yellow edge. We charge the cost of the former to maintaining
S(root) and the cost of the latter to the insertion of a yellow edge, viz.,
O(1) certificate operations per operation. Finally, each insertion of an edge
is now charged forO(log m

n ) amortized operations in total, by the delay-
build/rebuild strategy. Each such certificate operation takesO(

√
n logn),

since the occurring graphs haveO(n) edges, and by [12] and Theorem 4.2.

Adding up the number of certificate operations and using [12], yields
the theorem.

4 The replacement data structure

In this section, we describe the replacement data structure, as mentioned in Sub-
section 3.1.3.

We are given a graphG of blue, red, and green edges such that the blue edges
form a spanning treeTb of G (for convenience, we assume thatG is connected).
We refer to an edge ofTb just astree edgeand denote the tree pathπTb(x, y) just
by π(x, y).

Let P be a path inTb and letb1, a, andb2 be three consecutive vertices onP
such thata is an articulation point inTb ∪ Gr that separatesb1 andb2. We say a
green edgee covers aon P iff a does not separateb1 andb2 in Tb ∪Gr ∪ e.

We describe the functionality of the replacement data structure. On the one
hand, it is able to perform the deletions, restricted insertions, and color changes of
edges as described in Subsection 3.1.3. On the other hand, it can return the appro-
priate green edges as described in Subsection 3.1.3. We describe this operation in
more detail.

Let the red edge(u, v) have to be deleted. The replacement data structure is
given a (newly generated) potential articulation pointa of π(u, v) on the current
Tb ∪ Gr that isnotan articulation point onπ(u, v) in G (calledcandidate). Then
for candidatea, it outputs a green edge coveringa onπ(u, v).

In this section, we assume that each blue or red edge has cost 0 and each green
edge has cost 1.

11



Now, first assume we would maintain the following (too costly) data structure,
namely, for each nodex the minimum spanning treeF(x) of G \ x. Note that two
neighbors ofx are biconnected iff they are connected inF(x). Since the blue and
red edges form a sparse certificate ofG before an edge deletion, all edges inF are
blue or red. The deletion of a blue or red edge removes at most one edge fromF
and adds at most one, potentially green, edge. This edge is a green edge covering
a, i.e. it is an edge that the replacement data structure is looking for.

However, it is too expensive to maintain for each nodex the minimum spanning
treeF(x) of G \ x. Thus, we decompose the graph into subgraphs, calledclusters,
which are connected by blue edges, and maintain for each cluster a data structure
similar to the one described above. Since the nodes in a cluster are connected by
a spanning tree containing only blue edges, we have to focus on edges between
clusters.

4.1 Graph decomposition

We expand every node ofG with degreed > 3 intod nodes that are connected by
a chain ofd−1 dashededges. We naturally expandTb to be a spanning tree of the
expanded graphG′ (where all dashed edges thus are inTb).

We decomposeG′ as in [12]. A cluster is a set of vertices that induces a
connected subgraph ofT . An edge isincident to a cluster if exactly one of its
endpoints is in the cluster. Arestricted partition of order kwith respect toT is a
partition of the vertices so that

1. Each set in the partition is a cluster that is incident to≤ 3 tree edges and
contains≤ k vertices.

2. A cluster that is incident to 3 tree edges contains exactly one vertex.

3. If a cluster is incident to a dashed edge, then all tree edges incident to the
cluster are incident to the same vertex ofG.

4. No two adjacent clusters can be combined and still satisfy 1 to 3.

The partition splitsG into O(m/k) clusters of size≤ k and is found in timeO(m+
n) [5]. We denote byC(x) a cluster containing a representative of a vertexx and
say thatC(x) contains x. If the representatives ofx are contained in> 1 clusters,
thenx is ashared vertexand all clustersC(x) are calledx-clustersandshare x.
By condition 3 every cluster shares≤ 1 vertex. Since each dashed edge between
two clusters is a tree edge, there areO(m/k) shared vertices.

This decomposition induces the followinggraph H1 of clusters.Two vertices
C andC′ of H1 are connected by an edge (respectively blue edge) if and only if

12



there is an edge (respectively blue edge) between a vertex ofC and a vertex ofC′.
If there is no blue edge between a vertex ofC andC′, but a red edge, thenC and
C′ are connected by a red edge. If there is neither a blue nor a red, but a green edge
between them, they are connected by a green edge.

We defineH2 to consist ofH1 with all dashed edges contracted. For a non-
shared vertexx, the unique clusterC(x) is represented by a unique node ofH1.
For a shared vertexx, all clustersC(x) are represented by a unique vertex inH2.

For i = 1, 2 we denote byH br
i the subgraph ofHi induced by blue and red

edges. The blue edges form a spanning tree ofHi and of H br
i . Two clusters that

are adjacent in this spanning tree are calledtree neighbors.

4.2 Outline of the data structure

For i = 1, 2 we maintainHi andH br
i dynamically in the high-level data structure

of [12] 1. For a graphH ′ (with H ′ eitherHi or H br
i ), the high-level data structure of

[12] maintains for each nodeC in H ′ the following graphH ′(C): H ′(C) contains
a node for each tree neighbor ofC. There is an edge between two tree neighbors
L1 andL2 of C iff there is an edge inH ′ \ C between the subtree containingL1

and the subtree containingL2. The data structure in [12] can be extended to label
an edge(L1, L2) in H ′(C) with an edge inH ′ \ C connecting the subtree ofL1

with the subtree ofL2.
As shown in [12], all graphsH ′(C) can be maintained in timeO(k+(m/k)/ logn)

per edge insertion inG or edge deletion inG. Augmenting the data structure to
label edges ofH ′(C) with edges ofH ′ does not increase the running time. A con-
nectivity query inH ′(C) can be answered in constant time. Note that two tree
neighbors ofC are connected inH ′(C) iff they are biconnected inH .

We use the high-level data structures ofH ′ to

1. test in constant time if two tree neighbors of a nodeC are biconnected inH ′,

2. output all biconnected tree neighbors inH ′ of a nodeC in time linear in their
number and a spanning forest connecting them inH ′(C),

If there is an edge betweenL1 and L2 in Hi (C), but not inH br
i (C), then all

edges inHi \C between the subtree containingL1 and the subtree containingL2 are
green. Thus, using the high-level data structure ofHi and ofH br

i , we can determine
the minimum cost edge inHi connecting the subtree containingL1 and the subtree
containingL2. Given the spanning forests connecting the tree neighbors ofC in

1The full version of this paper is available at http:\\www.research.digital.com\SRC\
personal\monika\papers.html

13



Hi (C) and H br
i (C), we can compute a minimum spanning forest connecting the

tree neighbors ofC in Hi (C) in time linear in the number of tree neighbors. A
query to determine this minimum spanning forest is called aminimum spanning
query for C.

As mentioned above, new shared vertices can be created during the sequence
of operations. To distinguish them from the others, we call all shared vertices that
are not new,old. There areO(k) vertices in all clusters sharing a new vertex.

In the next subsections, we will describe how we find a green covering edge for
different types of candidates. Again, we have the high-level data structures of [12]
as the base, but we modify and extend it. We will consider a candidatea, where
b1 andb2 are the neighbors ofa on π(u, v). We distinguish betweena being a
“non-shared vertex”, a “new shared vertex”, or an “old shared vertex.”

4.3 Non-shared candidates or new shared candidates

To cover a non-shared or new shared candidatea with a green edgee, we first
build a graphG(a) of sizeO(k) and then we determinee usingG(a). Both steps
take timeO(k logn + m/k). We do this as follows. For a non-shared candidate
let H ′ denoteH1, for a new shared candidate letH ′ denoteH2. Let Ca denote
representing (all)Ca in H ′.

Let Ca be incident toj tree edges. The graphG(a) contains as nodes all the
nodes ofCa and one additional node for each tree neighborLj of Ca in H ′, called
cluster-node. The graphG(a) contains as edges (1) all the edges between two
nodes ofCa, (2) an edge(x, Lj ) for each edge(x, y) incident to a nodex ∈ Ca if
π(x, y) contains the tree edge betweenCa andLj , and (3) the edges of a minimum
spanning tree inH ′(Ca) (between the tree neighbors ofCa).

The graphG(a) can be built as follows: The edges of (1) can be found by
inspecting the edges incident to nodes ofCa in time O(k). The edges of (3) can be
found in timeO(1) per edge using a minimum spanning query forC. To determine
the edges of (2), we first store the spanning tree ofH ′ in a dynamic tree data
structure. Then we scan all edges incident to nodes inCa to find every edge(x, y)
with x ∈ Ca andy 6∈ Ca. For each such edge we determine the corresponding tree
neighbor ofCa. This determines in timeO(logn) the edge(x, Lj ) that belongs
to G(a). SinceO(k) edges have at least one endpoint inCa, the total time is
O(k logn+m/k).

Note thatb1 andb2 are either contained inG(a) or represented by nodesLj .
Sincea is a candidate,b1 andb2 or their representatives are disconnected in the
graph induced by the blue and red edges ofG(a) \ a, but connected inG(a) \ a.
Thus, there exists a cut inG(a)\a separatingb1 andb2 or their representatives that
only contains green edges. Any one edgee of the cut coversa in G(a). The cut

14



can be found in timeO(k) by executing a BFS fromb1 or its representative. Ife
is an edge between two neighbor clustersL1 andL2, the corresponding “original”
green edge is the label ofe as given by the high-level data structure.

4.4 Old shared vertices

To cover a candidate that is an old shared vertexa, we would like to build the
same graphG(a) as for a non-shared vertex. However, an old shared vertex can
be shared by all clusters and, thus,G(a) can consist ofm edges. Thus we cannot
afford to constructG(a) \ a whenever we have to covera, but we have to maintain
dynamically a data structure that representsG(a) \ a instead.

Let us call a vertex not belonging to any clusterC(a) an outsidevertex ofa.
If an outside vertex is adjacent to a vertex in a clusterC(a), it is called anoutside
neighborof C(a).

In [12] we maintain a graphG(a) constructed as follows: (1) Remove from
G \ a edges between some outside vertices and (2) addartificial edges between
some outside neighbors such that the following conditions hold:

(a) Every artificial edge connects two vertices that are connected inG \ a.

(b) All outside neighbors that belong to the same cluster are connected inG(a).

By condition 3 of a restricted partition it follows that all outside neighbors be-
longing to the same node ofH2 are connected inG(a). For each node ofH2 that
does not containa but contains an outside neighbor ofC(a), call one of its outside
neighbors aspecialneighbor.

Theaugmented graph A(a) is built by ”combining”G(a) andH2\C(a): A(a)
consists ofG(a) with the following additional edges. If two nodesC andC′ of H2

both contain a special neighbor ofC(a) and there is an edge betweenC andC′ in
the minimum spanning forest ofH2 \ C(a) then there is an edge (with the same
cost) between the special neighbor ofC and the special neighbor ofC′.

We use the following property ofA(a)

Lemma 4.1 Two neighbors of a are connected in A(a) iff they are connected in
G \ a.

Proof: Every edge inA(a) corresponds to an edge or a path inG\a. Thus,
if two neighbors are connected inA(a) they are connected inG \ a.

Consider a pathP in G \ a between two neighborsb1 andb2 of a.
Every edge ofP that is incident to a vertex of a clusterC(a) also belongs
to G(a). Removing these edges fromP forms subpaths, each connecting

15



two nodesu1 andu2 from the set{b1, b2, outside neighbors ofC(a)}. We
show that these two nodes are also connected inA(a). The lemma follows.

If u1 andu2 belong to the same node ofH2, they are connected inA(a)
by the above observation. Ifu1 andu2 belong to different nodes ofH2,
these nodes are connected inH2\C(a) and therefore the special neighbors
of these vertices are connected inA(a). Since bothu1 andu2 are connected
to ”their” special neighbors,u1 andu2 are connected inA(a).

Now we proceed similar to before. Sincea is a candidate,b1 andb2 are discon-
nected in the subgraph ofA(a) induced by blue and red edges but are connected in
A(a). Thus, there exists a cut inA(a) separatingb1 andb2 that only contains green
edges. We cannot afford to exhaustively searchA(a) for such a cut.

However every minimum spanning forest ofA(a) (with green edges having
cost 1 and all others having cost 0) must cross the cut with a green edge. Thus, it
suffices to determine the first green edge on the tree path betweenb1 andb2 in the
minimum spanning forest ofA(a).

We show next how to implement this algorithm efficiently. The data structure
in [12] maintains a spanning forest ofG(a). It can be extended to maintain a
minimum spanning forest MSF without increase in the asymptotic running time.
Additionally MSF can be stored in a dynamic tree data structure [13] without
running time increase.

A minimum spanning forest ofH2 \ C(a) consists of the minimum spanning
forest of H2(C(a)) combined with the (blue) spanning forestT2 of H2 where all
edges incident toC(a) are removed. This minimum spanning forest ofH2\C(a) is
known since the blue edges ofH2 and the minimum spanning forest ofH2(C(a))
are maintained.

The minimum spanning forest ofA(a) is a subgraph of the minimum spanning
forest ofG(a) and the minimum spanning forest ofH2 \C(a).

Thus to covera first ”add” the edges of the minimum spanning forest ofH2 \
C(a) to MSF and then determine the first green edge on the path in MSF between
b1 andb2.

We describe how to add the edges of the minimum spanning forestH2 \ C(a)
to MSF. Consider such an edge. If both of its endpoints contain special neighbors,
replace it by an edgee between these special neighbors. Otherwise stop. Ife’s
endpoints are not connected in the current MSF, add it to the MSF. Otherwise,
determine the maximum cost edgee′ on the path in MSF connecting its endpoints.
If e’s cost is smaller thane′’s cost, replacee′ with e in the MSF. If its cost is not
smaller, do nothing.

Using the dynamic tree data structure of MSF adding an edge takes timeO(logn),
for a total ofO(m/k . logn). The data structure in [12] requires timeO(k logn+

16



√
m logn) to maintain MSF.

In summary, the additional data structure needed is

• the MSF ofG(a), stored in a dynamic tree data structure, and

• a special neighbor for each node ofH2 that contains a neighbor ofC(a).

4.5 Complexity and Correctness

We presented a data structure determines in timeO(k logn + m/k . logn) an
edge that covers an old shared candidate. It can be updated in amortized time
O(k logn+√m logn) after each update operation inG and it can be built in time
O(m). By choosingk = √m, we obtain the following theorem.

Theorem 4.2 The given data structure determines in time O(
√

m logn) an edge
that covers a candidate. It can be updated in amortized time O(

√
m logn) after

each update operation in G and it can be built in time O(m).

5 Conclusion

We have presented certificates for biconnectivity together with algorithms for up-
dating these certificates. We thus obtained fully-dynamic algorithms for biconnec-
tivity in graphs that run inO(

√
n logn log m

n ) amortized time per operation. We
used novel techniques and approaches to handle sparsification.

We conjecture that our liberalization of certificates and their maintenance, and
the usage of monotone subproblems, are important for other dynamization prob-
lems, likek-vertex-connectivity fork ≥ 3.

References

[1] J. Cheriyan and R. Thurimella, “Algorithms for parallelk-vertex connectivity
and sparse certificates”Proc. 23rd Annual Symp. on Theory of Computing,
1991, 391-401.

[2] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A tech-
nique for speeding up dynamic graph algorithms”Proc. 33nd Annual Symp. on
Foundations of Computer Science, 1992, 60–69.

[3] D. Eppstein, Z. Galil, G. F. Italiano, and T. Spencer. “Separator based spar-
sification for dynamic planar graph algorithms”.Proc. 25th Annual Symp. on
Theory of Computing, 1993, 208–217.

17



[4] G. N. Frederickson, “Data Structures for On-line Updating of Minimum Span-
ning Trees”SIAM J. Comput.14 (1985), 781–798.

[5] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-edge-con-
nectivity andk smallest spanning trees”Proc. 32nd Annual IEEE Symp. on
Foundation of Comput. Sci., 1991, 632–641.

[6] Monika R. Henzinger and Han La Poutr´e. “Certificates and Fast Algorithms
for Biconnectivity in Fully-Dynamic Graphs”.Proc. Third Annual European
Symp. on Algorithms ESA’95, pages 171–184.

[7] M.H. Rauch Henzinger and V. King, “Randomized Dynamic Graph Algo-
rithms with Polylogarithmic Time per Operation”Proc. 27th Annual Symp. on
Theory of Computing, 1995, 519-527.

[8] J.A. La Poutré, “Dynamic Graph Algorithms and Data Structures”Ph.D. The-
sis, Utrecht University, 1991.

[9] J.A. La Poutré, “Alpha-Algorithms for Incremental Planarity Testing”Proc.
26 Annual Symp. on Theory of Computing, 1994, 706-715.

[10] J.A. La Poutré and J. Westbrook, “Dynamic Two-Connectivity with Back-
tracking” Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, 1994,
204-212.

[11] M. H. Rauch. “Fully Dynamic Biconnectivity in Graphs”Algorithmica13,
1995, 503–538. Also appeared inProc. 33nd Annual Symp. on Foundations of
Computer Science, 1992, 50–59.

[12] M. H. Rauch. “Improved Data Structures for Fully Dynamic Biconnectiv-
ity” Proc. 26 Annual Symp. on Theory of Computing, 1994, 686–695. A full
version of the paper is available at http:\\www.research.digital.com\SRC\
personal\monika\papers.html.

[13] D. D. Sleator, R. E. Tarjan, “A Data Structure for Dynamic Trees”J. Comput.
System Sci.24 (1983), 362–381.

[14] J. Westbrook, R. E. Tarjan, “Maintaining bridge-connected and biconnected
components on-line”Algorithmica7 (1992), 433–464.

18


