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Abstract

We present the first fully dynamic algorithm for maintaining a minimum
spanning tree in timeo(

√
n) per operation. To be precise, the algorithm

usesO(n1/3 logn) amortized time per update operation. The algorithm is
fairly simple and deterministic. An immediate consequence is the first fully
dynamic deterministic algorithm for maintaining connectivity and, bipartite-
ness in amortized timeO(n1/3 logn) per update, withO(1) worst case time
per query.

1 Introduction

We consider the problem of maintaining a minimum spanning tree during an arbi-
trary sequence of edge insertions and deletions. Given ann-vertex graphG with
edge weights, thefully dynamic minimum spanning tree problemis to maintain a
minimum spanning forestF under an arbitrary sequence of the following update
operations:

insert(u,v): Add the edge{u, v} to G. Add{u, v} to F if it connects two previously
unconnected trees ofF or if it reduces the cost ofF . If the latter, return the
edge ofF that has been replaced.

delete(u,v):Remove the edge{u, v} from G. If {u, v} ∈ F , then (a) remove{u, v}
from F and (b) return the minimum-cost edgee of G \ F that reconnectsF
if e exists or returnnull if e does not exist.

In addition, the data structure permits the following type of query:

connected(u,v):Determine if verticesu andv are connected.

In 1985 [7], Fredrickson introduced a data structure known astopology trees
for the fully dynamic minimum spanning tree problem with a worst case cost of
O(
√

m) per update His data structure permitted connectivity queries to be an-
swered inO(1) time. In 1992, Eppstein et. al. [3, 4] improved the update time
to O(

√
n) using thesparsification technique. If only edge insertions are allowed,

the Sleator-Tarjan dynamic tree data structure [13] maintains the minimum span-
ning forest in timeO(logn) per insertion or query. If only edge deletions are al-
lowed (“deletions-only”), then no algorithm faster than the�(

√
n) fully dynamic

algorithm was known.
Using randomization, it was recently shown that the fully dynamic connec-

tivity problem, i.e., the restricted problem where all edge costs are the same, can
be solved in amortized timeO(log2 n) per update andO(logn) per connectiv-
ity query [9, 10]. However, this approach could not be extended to arbitrary edge
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weights, leaving the question open as to whether the fully dynamic minimum span-
ning tree problem can be solved in timeo(

√
n).

In this paper we give a positive answer to this question: We present a fully
dynamic minimum spanning tree data structure that usesO(n1/3 logn) amortized
time per update andO(1) worst case time per query when update time is averaged
over any sequence of�(min ) updates, formin the initial size of the graph. Our
technique is very different from [7].

The result is achieved in two steps: First, we give a deletions-only minimum
spanning tree algorithm that usesO(m′1/3 logn + nε) amortized time per update
and O(1) worst case time per query when the update time is averaged over any
sequence of�(min ) updates. Hereε is any constant such that 0< ε < 1/3, and
m′ is the number ofnontreeedges at the time of the update.

Then we present a general technique which, given a deletions-only minimum
spanning tree data structure with a certain property, generates a fully dynamic data
structure with the same running time as the deletions-only data structure. Let
f (m′, n) be the amortized time per deletion in the deletions-only data structure
with m′ nontree edges andn vertices. The property required is that, upon inserting
into the graph no more thanm′ edges at the same time (a “batch insertion”), the
deletions-only data structure can be modified to reflect these insertions and up to
m′ subsequent deletions can be performed in a total ofO(m′ f (m′, n)) time.

Using this technique, we develop a fully dynamic minimum spanning tree algo-
rithm with amortizedtime per update ofO(m1/3 logn), for a sequence of updates
of length�(min ), wherem is the size ofG at the time of the update. In other words,
lettingm(i) denote the size ofG (vertices and edges) after updatei , the total amount
of work for processing a sequence of updates of lengthl is O(

∑l
i=0 m(i)

1/3 logn).
We then apply sparsification [3, 4] to reduce the running time for the sequence to
O(ln1/3 logn).

Our result immediately gives fasterdeterministicfully dynamic algorithms for
the following problems: connectivity, bipartiteness,k-edge witness, maximal span-
ning forest decomposition, and Euclidean minimum spanning tree. See [9] for all
but the last reduction; see Eppstein [2] for the last reduction. For these problems,
the new algorithm achieves anO(n1/6/ logn) factor improvement over the previ-
ously bestdeterministicrunning time. If randomization is allowed, however, much
faster times are achievable [9, 10].

Additionally, improvements can be achieved in the following static problems
(see [4, 3]): randomly sampling spanning forests of a given graph [6]; finding a
color-constrained minimum spanning tree [8].

The paper is structured as follows: In Section 2 we give a deletions-only min-
imum spanning tree algorithm. In Section 3, we show how to use a sequence of
deletions-only data structures to create a fully dynamic data structure.

3



2 Maintaining a minimum spanning tree–deletions-only

In this section, we give an algorithm which maintains a minimum spanning tree
while edges are being deleted. The amortized update time isO(m1/3 logn) and the
query time isO(1) for queries of the form “Are verticesi and j connected?”. Let
G = (V, E) be an undirected graph with edge weights. Without loss of generality,
we assume that edge weights are distinct.

Initially, we compute the minimum spanning forestF of G. Let m′in be the

number of nontree edges inG initially and k = m′1/3in logn. We sort the nontree
edges by weight and partition them intom′in/k levels of sizek so that thek lightest
are in level 0, the nextk lightest are in level 1 and so on. The set of edges in a level
i is denoted byEi . In addition, all tree edges of the initial minimum spanning
forest F are placed in level 0. (We omit floors and ceilings to simplify notation;
either may be used without affecting the asympotic analysis.)

Throughout the algorithm, the level of an edge remains unchanged, andF de-
notes the minimum spanning forest. Fori = 0, 1, ..., (m′in/k) − 1, let Fi denote
the minimum spanning forest of the graph with vertex setV and edgeset∪j≤i Ej .
(Initially, all Fi = F , but in later stages, an edge from any level may become a tree
edge. Thus,F0 ⊆ F1 ⊆ . . . F(m′0/k)−1 = F .) Let Ti(x) denote the tree inFi which
containsx and letT(x) without the subscript denote the tree inF containingx.

The main idea is the following. If a nontree edge is deleted, then the minimum
spanning forestF is unchanged. Suppose a tree edge{u, v} in level i is deleted.
Then for eachFj , j ≥ i , the deletion splits the tree inFj containingu andv into
Tj (u) andTj (v). We search for the minimum weight nontree edgee (called the
“replacement edge”) that connectsT(u) andT(v) by gathering and then testing a
setS of candidate edges on leveli . If none is found, we repeat the procedure on
level i + 1, etc. until one is found or all levels are exhausted. We now describe the
update operations:

delete(u, v): Delete edge{u, v} from any data structures in which it occurs. If a
tree edge{u, v} from level i is deleted, then remove{u, v} from F and search for
a replacement by calling Replace(i, u, v). We refer toi as the level of the call to
Replace.

In the algorithm below, the subroutineSearchwhen applied to a tree inFi finds
all nontree edges in leveli which are incident to the tree. A phase consists of the
examination of a single edge. (Its exact definition and the details ofSearchare
given in Section 2.2 below.)

Replace(i, u, v)

1. Alternating in lockstep, one phase at a time,Search(Ti (u)) andSearch(Ti (v))

4



until k/ logn phases are executed (Case A) or one of the searches has stopped
(Case B).

• Case A: LetS be the set of all nontree edges in leveli .

• Case B: LetS be the set of (nontree) edges produced by theSearch
that stopped.

2. Test every edge inS to see if it connectsT (u) andT(v).

• If a connecting edge is found, insert the minimum weight connecting
edge intoF and the data structures representing theFj , j ≥ i .

• Else if i is not the last level, callReplace(i + 1, u, v).

2.1 Data Structures

The idea here is to use the ET-tree data structure developed in [9]: (1) to represent
and update each tree inF , so that in constant time, we can quickly test if a given
edge joins two trees; and (2) to represent each tree in anFi in such a way that
we can quickly retrieve nontree edges inEi which are incident to the tree. To
avoid excessive cost, we explicitly maintain only thoseFi wherei is a multiple of
m′1/3in / logn. An undesirable consequence of this is that when retrieving nontree
edges inEi , other nontree edges are also retrieved.

Below, we refer to input graph vertices as ”vertices” and use “node” to mean
nodes of the B-tree in which we store the “ET-sequences.”

ET-trees:An ET-sequenceis a sequence generated from a tree by listing each ver-
tex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a B-tree of degreed. This allows us to
implement the deletion or insertion of an edge in the forest as follows: we split a
tree by deleting an edge or join two trees by inserting an edge in timeO(d logd n),
using a constant number of splits and joins on the corresponding B-trees. Also we
can test two vertices of the forest to determine whether they are in the same tree in
time O(logd n). See for example [1, 11] for operations on B-trees. Ifd = nα, for
α a positive constant, then the join and split operations take timeO(d) and the test
operation takes timeO(1). We refer to the B-trees used to store ET-sequences as
ET-trees.

This data structure allows us to keep information about a vertex so that the cu-
mulative information about all vertices in a tree may be maintained. For example,
we may keep the number of nontree edges incident to a vertex at one designated
occurrence of the vertex. Then each internal node of the ET-tree stores the sum
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of the numbers of nontree edges kept with designated occurrences in its subtree.
In a degreed ET-tree, each split or join operation or each change to the number
associated with an occurrence requires the adjustment ofO(logd n) internal nodes
with each adjustment takingO(d) timesteps.

We maintain the following data structures.

• Each edge is labelled by its level and a bit which indicates if it is a tree edge.

• Let k′ = max{m′1/3in logn, nε}, for any constant 0< ε ≤ 1/3. Each tree inF
is represented as an ET-sequence which is stored in a degreek′ B-tree.

• Let c = m′1/3in / logn. We map each leveli to the j which is the largest
multiple ofc no greater thani by the functionf (i ) = cbi/cc.
For each levelj such thatc| j (“c divides j”):

– we represent each tree inFj as an ET-sequence which is stored in a
binary B-tree;

– for each vertexv, we create a listLj (v) which contains:
(i) all nontree edges incident tov which are in any leveli ∈ f −1( j )
and;
(ii) all tree edges incident tov which are in any leveli > j , i ∈ f −1( j ).

– We mark each designated occurrence of a vertexv whose listLj (v) is
nonempty. Each internal node of the ET-tree is marked if its subtree
contains a marked occurrence.

2.2 The Search routine

Search(Ti (u)) returns all nontree edges in leveli incident toTi (u). It begins by
searchingTf (i)(u) which is a subtree ofTi (u). It proceeds by examining all edges
in L f (i)(v) for all verticesv in the tree being searched. Nontree edges in leveli are
picked out and tree edges in levelsi ′, f (i ) < i ′ ≤ i are followed to other trees of
Ff (i) which are then searched in turn. Note that all such tree edges lead to other
trees ofFf (i) which are subtrees ofTi (u); and all subtrees ofTi (u) will be found by
this procedure. Aphaseof the algorithm consists of the examination of one edgee
in a list L.

Search(Ti (u))

1. S′ ← ∅;
2. treelist← Tf (i)(u);
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3. Repeat untiltreelist is empty:

• Remove an ET-tree from thetreelist.

• For each marked vertexx in the ET-tree and for each edge{x, y} in
eachL f (i)(x):

– If {x, y} is a nontree edge on leveli , add it to the set of edges to
return.

– Else if {x, y} is a tree edge on levell such thatl ≤ i , then add
Tf (i)(y) to treelist.

2.3 Analysis

Initialization: We compute the minimum spanning forestF , create the ET-trees for
Fj , for eachj such thatc| j , and partition the nontree edges by weight. Recall that
m′ in is the number of nontree edges in the initial graph. Lett be the number of
edges in the initial minimum spanning forest. The creation of all the listsL takes
time proportional to the number of nontree edgesm′in . The building of ET-trees for
F and allFj such thatc| j and the marking of internal nodes takes time proportional
to the size of each forest orO(((m′in/k)/c)t +m′in ) = O(m′1/3in t +m′ in).

Deletions of nontree edges:Deleting a nontree edge on any level may require
resetting the bit of an occurrence of a vertex in some ET-tree, which may require
resetting bits on all internal nodes on the path to the root inO(logn) time.

Deletions and insertions of tree edges:Deleting a tree edge takesO(k′) time to
delete it from the ET-tree ofF and O(logn) time to delete it from the ET-tree
of eachFj such thatc| j , for a total ofO(k′ + ((m′in/k)/c) logn) time per edge.
Inserting a replacement edge takes the same time.

Finding a replacement edge:We first analyze the cost ofSearch. Let theweight
w(T ) of a tree T of some Fi be

∑ |L f (i)(v)| summed over all verticesv in T . It
costsO(logn) to move down the path from the root to a leaf in an ET-tree to find a
marked occurrence of a vertex, or to move up a tree from an occurrence to the root.
Thus, the cost ofSearch(Ti (x)) is O(logn) times the number of edges examined,
or O(w(Ti (x)) logn), if Searchis carried out until it ends, andO(k) if it is run for
k/ logn phases.

In Replace(u, v, i ), if w(Ti (u)) ≤ w(Ti (v)), then we refer toTi (u) as the
smaller component T1; otherwiseT1 is Ti(v). The cost of a call toReplace(u, v, i )
is the cost of theSearchplus the cost of testing each edge inS. The number of
edges inS is O(min{k, w(T1)}). We may use thek′-degree ET-tree representa-
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tion for F to test each edge at costO(1). Thus the cost of a call toReplaceis
O(min{k, w(T1) logn}).

To pay for these costs: If a replacement edge is found on leveli then we
charge the cost ofReplace(u, v, i ) to the deletion. In addition, we charge the
cost of modifyingF to the deletion so the total cost charged to the deletion is
O(min{k, w(T1) logn} + ((m′in/k)/c) logn+ k′) = O(((m′in/k)/c) logn+ k′).

If no replacement edge is found on leveli then a tree ofFi which was split by
the deletion remains split. We use the following:

Claim 2.1 O(
∑
w(T1)) summed over all smaller components T1 which split from

a tree T on any given level during allReplaceoperations is O(w(T ) logn).

The proof of the claim follows [5]. The first time a smaller componentT1

of a treeT is searched, it can have weight no greater thanw(T )/2. Between two
successive times that|L f (i)(v)| contributes to the weight of a smaller componentT1

and that component splits off, the weight of a smaller componentT1 containingv is
no more than half its weight the previous time. Hence|L f (i)(v)| contributes to the
weight of anyT1 no more thanlog2w(T ) = O(logn) times. I.e.,O(

∑
w(T1)) =

O(
∑

v∈T |L f (i)(v)|) logn) = O(w(T ) logn).
There are at mostk edges per level (except for level 0, which has at mostk

nontree edges). EachLj (v) consists of edges fromc levels. Since level 0 tree
edges do not belong to any listLj (v), the maximum weight of a treew(T ) is ck.
Thus the total cost charged to a level isO(ck log2 n). Summing over all levels we
haveO((m′ in/k)(ck log2 n) = O(m′inc log2 n), or an amortized cost per deletion
of O(c log2 n) = O(m′1/3in logn), if �(m′ in ) edges are deleted.

The cost charged to each deletion isO((m′ in/ck)(logn) + k′). For k′ =
max{m′1/3in logn, nε} andc = m′1/3in / logn, this isO(m′1/3in logn+ nε).

To summarize the cost of initialization when amortized over�(min ) operations is
O(m′1/3in ) and the cost per deletion of an edge and finding replacement edges, when

amortized over�(m′ in)) operations isO(m′1/3in logn + nε). Thus for a sequence

of �(min ) operations, the amortized time per update isO(m′1/3in logn+ nε).
Finally, we note that the query of the form “Are nodesi and j connected?”

may be answered using the ET-tree data structure forF in O(1) time.

3 From deletions-only to fully dynamic

In this section, we show a general technique to develop a fully dynamic data struc-
ture using several deletions-only data structures with an added operation. (We call
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these “extended” deletions-only data structures.) As before, we assume the edge
weights are distinct.

First, we define the following operation on a deletions-only data structureA.

batchadd(G, E′, F ′): Given a graphG = (V, E) with minimum spanning forest
F , insert all edges ofE′ intoG, if they are not already there. The resultingspanning
forestF ′ is given.

We refer to the period of time which occurs between two consecutive calls
to batchadd on a graphG, or between the start of the algorithm and the first
batchaddon G as aperiod of G. Alternatively, a period may be terminated pre-
maturely (see below).

We prove the following theorem:

Theorem 3.1 Suppose for any value of n and m′in , there is an extended deletions-
only data structure for any dynamic graph G= (V, E)with |V | = n and the num-
ber of nontree edges in the edgeset E is initially m′in , such that(n+m′in ) f 0(m′in , n)
is the worst case time needed to initialize A, and(y +m′in ) f (m′in , n) is an upper
bound on the time to process y deletions.

Suppose we can process a batchadd(H, E′, F ′), following any period in
which y edges were deleted from G, in time O((y+m′in + |F ′ \ F |) f B(m′in , n)),
where m′in is an upper bound on the total number of nontree edges in G after the
batchadd.

We also assume that f0, f , f B are monotone nondecreasing functions.
There is a fully dynamic minimum spanning tree data structure that runs in

amortized cost per edge deletion or insertionof O(log2 n+∑s
i=0(s−i+1)[ f 0(mi , n)+

f (mi , n)+ f B(mi , n)] where s≤ 3+ lg m and m is the size (vertices plus edges)
of the dynamic graph at the time of the update. Here, costs are amortized over a
sequence of min update operations, where min is the size of the initial graph.

In Section 3.4, we show that

Corollary 3.2 A minimum spanning forest can be maintained in a fully dynamic
graph with amortized cost per update of O(m1/3 logn), where m is the size of the
graph at the time of the update, for a sequence of�(min ) operations.

We prove the theorem, by constructing a fully dynamic data structure from
extended deletions only data structures.

Definitions:We refer to the current minimum spanning forest ofG as the (global)
MST. Let m′ be the number of nontree edges in the current graph,m′in denote the
number of nontree edges in the initial graph, andm denote the current size (vertices
and edges) ofG.
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During the course of the algorithm, we simultaneously maintain up tos ≤
max{lg n, lg(4m′)} extended deletions-only data structuresA0, A1, ..., As, where
eachAi is an extended deletions-only minimum spanning tree data structure for a
subgraphGi + (V, Ei) of the global graphG = (V, E). We call this thecomposite
data structure. We maintain the MST in a Sleator-Tarjan dynamic tree [13] and
also in an ET-tree of degree 2.

For i = 0, . . . , d2 lgne, let mi = 2i . The minimum spanning forest ofGi as
maintained byAi is referred to aslocal spanning forestand denotedFi . A local
nontree edgeof Ai is an edge ofGi which is not inAi ’s local spanning forest or
the MST. Letxi be the number of local nontree edges in∪j≤i Aj .

When m′ falls below 2s/4 ands > lg n, s is resetand the composite data
structure is reinitialized. Between two consecutive resets, we define the the period
of time which occurs between two consecutive calls tobatchaddon a graphG, or
between the initialization or reinitialization of the composite data structure and the
first batchaddon G as aperiod of G. A reset terminates all periods.

Thesizeof a graph refers to the number of vertices plus edges. Note that the
size of a graph is always2(s).

We maintain the following invariants:

Invariants: (1) Every edge in the local forest of someAi is (a) in the MST, or (b)
is a local nontree edge in someAj , j 6= i .
(2) E = (∪Ei ) ∪ MST.

We now describe the algorithm.

To initialize: Let the initial value ofs = dlg m′ine. We initializeAs as an extended
deletions-only data structure forGs = G with Fs = MST and the set of local
nontree edges being all nontree edges ofG.

To perform an insertion operation,insert(u, v) is called, where(u, v) is an edge
to be inserted intoG.

insert(e):

1. Use the dynamic tree to determine ife should be added to the MST:
Find the maximum weight edgef on the path betweene’s endpoints in the
MST.

2. If there is no path betweene’s endpoints or if there is a path ande is lighter
than f , remove f from the MST, callinsert nontree( f ), and adde to the
MST.
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3. Else callinsert nontree(e).

The following subroutine inserts a nontree edgee into the composite data struc-
ture:

insert nontree(e). Let i be the smallest index such thatmi ≥ xi , the number of
local nontree edges in∪j≤i Aj .

Let E′ be the set of local nontree edges in∪j<i E j ∪ {e} .
1. Delete the edges ofE′ from Aj , j < i .

Setxj = 0.

2. If Ai is not initialized, initializeAi on the empty graphGi consisting ofn
nodes and no edges.

3. Callbatch add(Gi , E′ ∪ MST,MST).
Adjustxi accordingly.

After the procedure, the local nontree edges ofGi are the nontree edges previ-
ously contained in∪j≤i Aj . Its local forestFi = MST. Note that at the beginning
of a period ofGi , xj = 0 for j < i .

To delete an edgee from G:

delete(e):

1. Deletee from all data structures in which it appears, including allGi , and
update correspondingAi accordingly. Thus for each local spanning forest
Fi which containede, the local replacement edgee′ is determined, if there
is one.

2. If e was in the MST, use the ET-tree representation of the MST to determine
which of those local replacement edges reconnect the two subtrees of the
MST which result from the deletion ofe. Insert the lightest connecting edge
into the MST.

3. All other local replacement edges are reinserted into the composite data
structure using the procedureinsert nontree.

4. If xs ≤ ms−2 and xs > n, reinitialize the composite data structure. That
is, sets = dlg xse; initialize As as an extended deletions-only data structure
for Gs = G with Fs = MST and the set of local nontree edges being all
nontree edges ofG.
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3.1 Proof of correctness

It is easy to see that the invariants are maintained, by induction on the number of
operations. Initially, the invariants hold sinceGs′ = G. Invariant (2) is preserved
after each insertion, since each edge when added toG is either added to the MST
or someGi . Each edge when deleted fromG is deleted from all data structures in
which it appears. Invariant (1) holds forAi when Ai is initialized or abatchadd
is executed since the local forestFi = MST. The local forest ofAi changes only
when an edge is deleted and is replaced by some edgee. Edgee is then either
put into the MST or reinserted into the composite data structure. In that case, it is
added to someAj by abatchaddoperation. Ife is not in the MST, thene becomes
a local nontree edge ofAj . In either case, invariant (1) is preserved.

The correctness of the algorithm follows easily from the invariants. We use
the well-known fact that an edge is in the minimum spanning tree iff it is not the
heaviest edge in any cycle (“red rule” [14]). We also note that every edge in the
composite data structure is an edge inG.

Let ebe an edge of the MST which is deleted. Lete′ be the correct replacement
edge. Consider the state of the composite data structures right before the deletion
of e. By the invariant, sincee′ was not in the MST, it was a local nontree edge in
someAi .

Supposee′ is a local nontree edge inAi . Sincee′ is the correct replacement
edge fore in the MST then aftere’s deletion,e′ is not the heaviest edge in any
cycle ofG and therefore is not the heaviest edge of any cycle ofGi . Hence, after
e’s deletion,e′ becomes a local forest edge, i.e.,e′ is a local replacement edge fore
in Gi . Recall thate′ is the minimum weight edge which connects the two subtrees
of the MST resulting from the deletion ofe. Thus,e′ is the lightest connecting
edge from the set of local replacement edges, and is chosen in Step 2 of thedelete
algorithm.

3.2 Analysis

We first prove the following claims:

Claim 3.3 During any full period of Gi , there were at least mi−1/(s − i + 1)
updates to G.

Proof: For i > 0, immediately beforebatchadd is executed onGi , xi−1 > mi−1.
Immediately afterwards,xi−1 = 0.

We examine the types of insertions into the composite data structure to see
how they affectxi : (a) when a nontree edge is inserted intoG (b) when an edge is
replaced in the MST after an insertion ; (c) when an edge is deleted inG and it is
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replaced in up tos local spanning forests. The first two cases causexi to increase
by no more than one. The third case may cause up tos insertions. However, the
s insertions do not affect allAi the same. Each insertion in this case results from
a local nontree edgee becoming a local forest edge. Hence if this occurs in some
Aj , j ≤ i , the increase ofxi resulting from the insertion of a copy ofe into the
composite data structure is offset by the decrease ofxi caused by the change in
status ofe from a local nontree edge to a local tree edge. Thusxs is unchanged by
a case-(c) insertion into the composite data structure,xs−1 is changed by at most 1,
and in general,xi is changed by at mosts− i .

Hence, at leastmi−1/(s− i + 1) insertions or deletions occurred during any
full period of Gi . This concludes the proof of the claim.

We are now ready to analyze the costs of the algorithm.

Initialization: Since eachAi is initialized once, the cost for initialization during
the algorithm is(n+mi ) f 0(mi , n). Note thatAi is initialized only if the number
of nontree edges exceedmi−1.

We amortize the initialization costs of the first data structureAs and allAi for
i < lg n by requiring there to be�(min ) operations, wheremin is the size (vertices
and edges) of the initial graph. We note that for at least half these operations, the
current size of the graphm≥ min/2.

We amortize the cost of initializingAi , i ≥ lg n over the operations of the
preceding period when at leastmi−1/(s− i + 1) operations occurred.

The cost ofreinitialization of the composite data structure may be charged
to thems/2 deletions which must have occurred since the previous reset. Note
that a reset only occurs whenms > n, so that the initialization cost of(n +
ms−2) f 0(ms−2, n) results in a charge off 0(ms−2, n) per operation.

Execution of batchadd:
By assumption,(y + mi + |MST \ Fi |) f B(mi , n) is an upper bound on the

time to performbatch add(Gi , E′ ∪ MST\ Fi ,MST), wherey is the number of
deletions performed onGi in the preceding period.

We can charge the cost ofy f B(mi , n) to they deletions for a cost off B(mi , n)
each.

To charge themi f B(mi , n): By the claim,batchadd is called onGi after at
leastmi−1/(s− i + 1) insertions and deletions occurred in the preceding period.
Charging themi f B(mi , n) to those updates gives a cost per update of(s − i +
1) f B(mi , n).

To charge the|MST \ Fi | f B(mi , n), we note that at the start of the period,
Fi = MST. and for eachi , each insertion or deletion inG can cause at most one
edge to be added to and/or one edge to be deleted fromFi . Thus we can charge
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the |MST \ Fi | f B(mi , n) to the operations in the preceding period, for a cost of
O( f B(mi , n)) each.

Performing deletions during a period of Gi :.
The cost of maintainingAi during a period containingy deletions of edges in

Gi is by assumption, bounded above by(y + mi ) f (mi , n). These costs may be
charged in the same way as the costs forbatchaddwere charged, to the operations
of the preceding period.

In the unique case of the initialAs, wheres = dlg m′ine when there was no
preceding period, costs are amortized over the initial sequence of�(min ) deletions
and insertions, as in the analysis of the initialization costs.

After a reset ofs, the cost of performing deletions inAs afterAs is reinitialized
is charged to the deletions which resulted in the reset, as in the analysis of the
reinitialization costs.

The cost ofO(log2 n) for Step (2) and to update the MST is charged to the
delete operation.

Summary:For eachi , the cost per operation is thereforeO((s− i +1)[ f 0(mi , n)+
f (mi , n)+ f B(mi , n)].

Except for the initialization and reinitialization ofAs, we have charged opera-
tions of the preceding period for all costs incurred in the following period. Since
the preceding periods occur in between resets of the value ofs, we know that for
the indices of theAi , i ≤ s≤ max{lg4m′, lgn}. Hences≤ 2+ lg m, m being the
size of the graph at the time of the operation.

For the initialization and reinitialization ofAs, we charge operations which
occurred whens may have been smaller by 1. Hences ≤ 3+ lg m, m the size of
the graph at the time of the operation.

Each operation requires a constant number of updates in the dynamic tree data
structure and the binary ET-tree data structure storing the MST. This takes time
O(logn).

Summing overi , we have ofO(log2 n+∑s
i=0(s−i+1)[ f 0(mi , n)+ f (mi , n)+

f B(mi , n)], wherem is the current size ofG at the time of the operation, when
amortized over a sequence ofmin update operations andmin is the size of the
initial graph.

3.3 Implementingbatchadd

In this section, we show how a deletions-only data structureA in section 2 for a
graphG which initiallyhadm′in nontree edges can be extended so that the operation
batchaddwhich occurs after a sequenceσ of y edge deletions can be implemented
in time O((y+m′in + |F ′ \ F |)(m′in 1/3 logn).
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We begin by restoring the ET-trees ofA to MSTold, the minimum spanning
forest of G before the start of the sequenceσ of deletions. The cost of joining
two ET-trees is asympotically the same as splitting them; thus the calculations of
section 2 apply. For each deletion, the cost of restoration isO(m′1/3in ) logn+ nε).

We next transformMSTold to MST, by again modifying the ET-trees. We
remove every edge inMSTold \MSTand insert every edge inMST\MSTold, for
a cost ofO(m′1/3in logn+ nε).

To determine the transformations required, we keep a list of sorted changes
which occurred since the lastbatch add .

We remove all nontree edges which are stored inA and sort the nontree edges
of E ∪ E′, assign them to levels, and store them with the appropriate listL. The
cost per edge of removing, sorting and then storing isO(logn) per edge for the
unique (binary) ET-tree in which the edge is stored.

Let f ′(mi , n) = m1/3
i logn+ nε. We have shown an extended deletions-only

data structure such thatO((n + m′in) f ′(min, n)) is an upper bound on the worst
case time needed to initialize A, andO((y+m′in ) f ′(min , n)) is an upper bound on
the time to processy deletions.

And, we can process abatch add(G, E′, F ′), following any period in whichy
edges were deleted fromG, in time O((y+m′in +|F ′ \ F |) f ′(m′in , n)), wherem′in
is an upper bound on the total number of nontree edges inG after thebatchadd.

3.4 Proof of corollary

Substitutingf ′ for f B, f , and f 0, we conclude that there is a fully dynamic min-
imum spanning tree data structure that runs in amortized cost per edge deletion or
insertion ofO(log2 n+∑s

i=0(s− i + 1) f ′(mi , n), wheres≤ 3+ lg m.
Substituting for f ′ andmi , we haveO(log2 n+∑s

i=0(i + 1)(2s−i )1/3 logn+
nε) = O((2s)1/3 logn+ nε logn) = O(m1/3 logn+ nε

′
) for ε′ any constant.
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