
SRC Technical Note
1997 - 014
July 28, 1997

Exploring Unknown Environments

Susanne Albers and Monika Rauch Henzinger

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved



Abstract

We consider exploration problems where a robot has to construct a com-
plete map of an unknown environment. We assume that the environment
is modeled by a directed, strongly connected graph. The robot’s task is to
visit all nodes and edges of the graph using the minimum numberR of edge
traversals. Koutsoupias [16] gave a lower bound forR of�(d2m), and Deng
and Papadimitriou [12] showed an upper bound ofdO(d)m, wherem is the
number edges in the graph andd is the minimum number of edges that have
to be added to make the graph Eulerian. We give the first sub-exponential
algorithm for this exploration problem, which achieves an upper bound of
dO(logd)m. We also show a matching lower bound ofd�(logd)m for our al-
gorithm. Additionally, we give lower bounds of 2�(d)m, resp.d�(logd)m for
various other natural exploration algorithms.

1 Introduction

Suppose that a robot has to construct a complete map of an unknown environment
using a path that is as short as possible. In many situations it is convenient to
model the environment in which the robot operates by a graph. This allows to
neglect geometric features of the environment and to concentrate on combinatorial
aspects of the exploration problem. Deng and Papadimitriou [12] formulated thus
the following exploration problem. A robot has to explore all nodes and edges of
an unknown, strongly connected directed graph. The robotvisits an edge when
it traverses the edge. A node or edge isexploredwhen it is visited for the first
time. The goal is to determine amap, i.e. the adjacency matrix, of the graph using
the minimum numberR of edge traversals. At any point in time the robot knows
(1) all visited nodes and edges and can recognize them when encountered again;
and (2) the number of unvisited edges leaving any visited node. The robot does
not know the head of unvisited edges leaving a visited node or the unvisited edges
leading into a visited node. At each point in time, the robot visits acurrent node
and has the choice of leaving the current node by traversing a specific known or an
arbitrary (i.e. given by an adversary) unvisited outgoing edge. An edge can only be
traversed from tail to head, not vice versa.

If the graph is Eulerian, 2m edge traversals suffice [12], wherem is the number
of edges. This immediately implies that undirected graphs can be explored with
at most 4m traversals. For a non-Eulerian graph, let thedeficiency dbe the min-
imum number of edges that have to be added to make the graph Eulerian. Deng
and Papadimitriou [12] suggested to study the dependence ofR on m andd and

1



showed the first upper and lower bounds: they gave a graph such that any algo-
rithm needs�(d2m/ logd) edge traversals, and they also presented an algorithm
that achieves an upper bound ofdO(d)m. Koutsoupias [16] improved the lower
bound to�(d2m). Deng and Papadimitriou asked the question whether the expo-
nential gap between the upper and lower bound can be closed. Our paper is a first
step in this direction: we give an algorithm that is sub-exponential ind, namely
it achieves an upper bound ofdO(logd)m. We also show a matching lower bound
for our algorithm and exponential lower bounds for various other exploration algo-
rithms.

Note thatd arises also in the complexity of the “offline” version of the prob-
lem: Consider a directed cycle with one edge replaced byd+ 1 parallel edges. On
this graph any Eulerian traversal requires�(dm) edge traversals. A simple modi-
fication of the Eulerian online algorithm solves the offline problem on any directed
graph withO(dm) edge traversals.

Related Work. Exploration and navigation problems for robots have been
studied extensively in the past. The exploration problem in this paper was for-
mulated by Deng and Papadimitriou based on a learning problem proposed by
Rivest [19]. Betkeet al. [8] and Awerbuchet al. [1] studied the problem of ex-
ploring an undirected graph and requiring additionally that the robot returns to its
starting point every so often. Bender and Slonim [9] showed how two cooperating
robots can learn a directed graph with indistinguishable nodes, where each node
has the same number of outgoing edges. Subsequent to the work in [12], Denget
al. [11] investigated a geometric exploration problem, whose goal is to explore a
room with or without polygonal obstacles. Hoffmannet al. [15] gave an improved
exploration strategy for rooms without obstacles. More generally, theoretical stud-
ies of exploration and navigationproblems in unknown environments were initiated
by Papadimitriou and Yannakakis [18]. They considered the problem of finding a
shortest path from a points to a pointt in an unknown environment and presented
many geometric and graph based variants of this problem. Blumet al. [7] inves-
tigated the problem of finding a shortest path in an unfamiliar terrain with convex
obstacles. More work on this problem includes [2, 5, 6].

Our Results. Our main result is a new robot strategy, calledBalance, that
explores an arbitrary graph with deficiencyd and traverses each edge at most(d+
1)6d2 logd times, see Section 3. The algorithm does not need to knowd in advance.
The total number of traversals needed by the algorithm is alsoO(min{nm, dn2+
m}), wheren is the number of nodes. At the end of Section 3 we show that any
exploration algorithm that fulfills two intuitive conditions achieves an upper bound
of O(min{nm, dn2+ m}). A depth-first search strategy obtaining this bound was

2



independently developed by Kwek [17].

In Section 4 we demonstrate that our analysis of theBalancealgorithm is tight:
There exists a graph that is explored by our algorithm usingd�(logd)m edge traver-
sals. We also show that various variants of the algorithm have the same lower
bound. In Section 2, we present lower bounds of 2�(d)m, resp.d�(logd)m for vari-
ous other natural exploration algorithms to give some intuition for the problem.

Our exploration algorithm tries to explore new edges that have not been visited
so far. That is, starting at some visited nodex with unvisited outgoing edges, the
robot explores new edges until it getsstuckat a nodey, i.e., it reachesy on an
unvisited incoming edge andy has no unvisited outgoing edge. Since the robot
is not allowed to traverse edges in the reverse direction, an adversary can always
force the robot to visit unvisited nodes until it finally gets stuck at a visited node.

The robot then relocates, using visited edges, to some visited nodez with un-
explored outgoing edges and continues the exploration. Thechoiceof z is the
only difference between various algorithms and therelocationto z is the only step
where the robot traverses visited edges. To minimizeR we have to minimize the
total number of edges traversed during all relocations. It turns out that a locally
greedy algorithm that tries to minimize the number of traversed edges during each
relocation is not optimal: it has a lower bound of 2�(d)m (see Section 2).

Instead, our algorithm uses a divide-and-conquer approach. The robot explores
a graph with deficiencyd by exploringd2 subgraphs with deficienciesd/2 each and
uses the same approach recursively on each of the subgraphs. To create subgraphs
with small deficiencies, the robot keeps track of visited nodes that have more vis-
ited outgoing than visited incoming edges. Intuitively, these nodes areexpensive
because the robot, when exploring new edges, can get stuck there. The relocation
strategy tries to keep portions of the explored subgraphs “balanced” with respect
to their expensive nodes. If the robot gets stuck at some node, then it relocates to
a nodez such that “its” portion of the explored subgraph contains the minimum
number of expensive nodes.

2 Lower bounds for various algorithms

In this section we give lower bounds of 2�(d)m, resp.d�(logd)m for a locally
greedy, a generalized greedy, a depth-first, and a breadth-first algorithm. A related
problem for which lower bounds have been studied extensively, is thes–t connec-
tivity problemin directed graphs, see [3, 4, 14] and references therein. Given a
directed graph, the problem is to decide whether there exists a path from a dis-
tinguished nodes to a distinguished nodet . Most of the results are developed

3



in the JAG model by Cook and Rackoff [10]. The best time–space tradeoffs cur-
rently known [4, 14] only imply a polynomial lower bound on the computation
time if no upper bounds are imposed in the space used by the computation. Given
the current knowledge of thes–t connectivity problem it seems unlikely that one
can prove super-polynomial lower bounds for ageneralclass of graph exploration
algorithms.

In the following letG be a directed, strongly connected graph and letv be a
node ofG. Let in(v) andout(v) denote the number of incoming, resp. outgoing
edges ofv. Let thebalance bal(v) = out(v)− in(v). For a graph with deficiency
d there exist at mostd nodessi , 1 ≤ i ≤ d, such thatbal(si ) < 0. Every node
si with bal(si ) < 0 is called asink. Note that−∑s,bal(s)<0 bal(s) = d. We
use the termchain to denote a path. A chain is a sequence of nodes and edges
x1, (x1, x2), x2, (x2, x3), . . . , (xk−1, xk), xk for k > 1.

Greedy: If stuck at a nodey, move to the nearest nodez that has new outgoing
edges.

Generalized-Greedy:At any time, for each path in the subgraph explored so
far, define a lexicographic vector as follows. For each edge on the path, determine
its currentcost, which is the number of times the edge was traversed so far. Sort
these costs in non-increasing order and assign this vector to the path. Whenever
stuck at a nodey, out of all paths to nodes with new outgoing edges traverse the
path whose vector is lexicographic minimum.

Depth-First: If stuck at a nodey, move to the most recently discovered node
z that can be reached and that has new outgoing edges.

Breadth-First: Let v be the node where the exploration starts initially. If
stuck at a nodey, move to the nodez that has the smallest distance fromv among
all nodes with new outgoing edges that can be reached fromy.

Theorem 1 For Greedy, Depth-First, and Breadth-First and for every d, there ex-
ist graphs of deficiency d that require2�(d)m edge traversals. For Generalized-
Greedy and for every d, there exists a graph of deficiency d that requires d�(logd)m
edge traversals.

Proof: Greedy:BasicallyGreedyfails since it is easy to “hide” a subgraph. When-
ever Greedydiscovers this subgraph, the adversary can force it to repeat all the
work done so far.

The graphG consists of two parts, (1) a cycleC0 of three edges and nodesv,
v1(C0), andv2(C0), and (2) a recursively defined problemPd. A problem Pδ, for
any integerδ ≥ 2, is a subgraph that has twoincomingedges whose startnodes do

4



not belong toPδ but whose endnodes do, andδ outgoingedges whose startnode
belongs toPδ but whose endnodes do not. Aproblem P1 is defined in the same
way as a problemPδ, δ ≥ 2, except thatP1 has only one incoming edge. In the
case ofPd, the two incoming edges start atv1(C0) andv2(C0), respectively; thed
outgoing edges all point tov.

For the description ofPδ we also need recursively defined problemsQδ. These
problems are identical toPδ except that, forδ > 2, Qδ has exactlyδ incoming
edges.

A problem Pδ, δ = 1, 2, consists ofδ chains of three edges each. The first
edge of each chain is an incoming edge intoPδ; the last edge of each chain is an
outgoing edge. A problemQδ, δ = 1, 2, is the same asPδ.

We proceed to definePδ, for δ > 2. One of the incoming edges ofPδ is the
first edge of a chainDδ consisting of three edges, the other incoming edge is the
first edge of a long chainCδ . For each of these chainsCδ andDδ, the last edge is
an outgoing edge ofPδ. If δ = 3, the last interior node of each of the chainsCδ and
Dδ has an additional outgoing edge pointing into a problemP1. If δ ≥ 4, (a) the
last two interior nodes ofCδ each have an additional outgoing edge pointing into
a subproblemPδ−2, (b) the last two interior nodes ofDδ each have an additional
outgoing edge pointing into a subproblemQδ−2. There areδ − 2 edges leaving
Pδ−2, exactly min{0, δ − 4} of which point to nodes ofQδ−2 such that each node
in Qδ−2 that hask more outgoing than incoming edges, fork > 0, receivesk
incoming edges fromPδ−2. The remaining outgoing edges ofPδ−2 point to the
interior nodes ofDδ that have additional outgoing edges. The problemQδ−2 has
δ − 2 outgoing edges all of which are outgoing edges ofPδ. The total number of
edges inCδ is 2 plus the number of edges ofDδ plus the total number of edges
contained in the subproblemQδ−2 belowDδ.

A problemQδ, δ > 2, is the same asPδ except that the subproblemPδ−2 is
replaced by anotherQδ−2 problem. That is,Qδ is composed of chainsCδ , Dδ and
problemsQδ−2

i , i = 1, 2. As mentioned before,Qδ has exactlyδ incoming edges.

Greedyis started at nodev and traverses first chainC0. Then it either explores
Cd or Dd. In either case, afterwardsGreedyexplores all edges ofQd−2 sinceCd

is prohibitively long. Thus,Pd−2 is “hidden” fromGreedy. We exploit this in the
analysis: LetN(δ) be the number of times thatGreedyexplores edges of a problem
Pδ or Qδ, gets stuck at some node and cannot relocate to a suitable node by using
only edges inPδ resp.Qδ. We show thatN(δ) ≥ 2δ/2. Since the edge leavingv is
traversed every time the algorithm cannot relocate by using only edges inPd, the
bound follows.

A problem Pδ contains two subproblemsPδ−2 and Qδ−2. Note (a) that, be-

5



Figure 1: The graph forGreedy

cause of chainDδ, no node inQδ−2 can reach a node ofPδ−2 without leavingPδ.
Note (b) thatQδ−2 is completely explored when the exploration ofPδ−2 starts and
all paths starting inPδ−2 lead throughDδ or Qδ−2. Thus, every timeGreedygets
stuck in a subproblemPδ−2 or Qδ−2 and has to leavePδ−2 resp.Qδ−2 in order to
resume exploration, it also has to leavePδ. For Qδ−2 the statement follows from
(a); for Pδ−2 it follows from (a) and (b). In the same way we can argue for a prob-
lem Qδ. Thus,N(δ) ≥ 2N(δ − 2). Since, forδ = 1, 2, N(δ) ≥ 1, we obtain
N(δ) ≥ 2δ/2.

This implies that the edgee on C0 leavingv is traversed 2�(d) times. The
desired bound follows by replacinge by a path consisting of2(m) edges.

Depth-First:We can use the same graph as in the case of theGreedyalgorithm.
Depth-Firstwill explore all edges inQd−2 before it will start exploringPd−2.

Breadth-First: Again we can use the same graph as in the lower bound for
Greedy. The last two interior nodes ofCd have a larger distance from the initial
nodev than all nodes onDd and inQd−2. ThusQd−2 is finished beforeBreadth-
First starts exploringPd−2.

Generalized-Greedy:The graph used for the lower bound is outlined in Fig-
ure 2. The basic idea in the lower bound construction is as follows.Generalized-
Greedyexplores each subgraphQγ

i and its siblingRγi “in parallel”. Without loss
of generality we can assume that the last chain traversed in the two subgraphs lies
in Qγ

i and the algorithm continues to exploreQγ

i+1 and Rγi+1. Let N(γ ) denote
the number of times that the algorithm has to leaveRγi and traverse the root. We
will show that N(4γ ) ≥ N(γ ), which implies that the root has to be traversed
N(d) ≥ d�(logd) times.

To be precise we show the bound ford being a power of 4. The bound for all
values ofd follows by “rounding” down to the largest power of 4 smaller thand.

6



Figure 2: The graph forGeneralized-Greedy

The graphG consists of two parts, (1) a cycleC0 with nodesv, v1(C0) andv2(C0),
and (2) a recursively defined subproblemPd. ProblemPd has two incoming edges,
one starting atv1(C0) and one starting atv2(C0). It also hasd outgoing edges, all
pointing tov. The subproblemPd is a union of chainsC, each of which consists of
three edges, a startnode, an endnode and twointerior nodesv1(C) andv2(C). The
interior nodes have at most one additional outgoing edge. We proceed to definePδ

and the “sibling” graphsQδ and Rδ, for all δ ≤ d that are a power of 4, and then
show the lower bound on this graph.

A problem Pδ, δ > 1, is a graph with two incoming edges and exactlyδ out-
going edges. Aproblem Rδ, δ > 1, consists ofPδ with δ − 2 additional incoming
edges. Theproblem Qδ consists ofRδ with two additional incoming and two addi-
tional outgoing edges.

δ = 1: A problemP1 consists of one chain. The incoming edge ofP1 is the
first edge of the chain, and the outgoing edge ofP1 is the last edge of the chain.
In P1, the interior nodes of the chain have no additional outgoing edges, inQ1

each interior node has one additional incoming and one additional outgoing edge.
ProblemR1 is equal toP1.

δ = 4: A problem P4 consists of two subproblemsP1
1 and P1

2 , and chains
C1

1 and D1
1, whose first interior nodes have one additional outgoing edge. The

outgoing edge ofC1
1 is the incoming edge ofP1

1 and the corresponding edge ofD1
1

is the incoming edge ofP1
2 . The last edge ofC1

1 and ofD1
1 and the outgoing edges

of P1
1 and P1

2 are outgoing edges ofP4. A problemR4 is P4 with two additional
incoming edges, one at the startnode ofP1

1 and one at the startnode ofP1
2 . A

7



problemQ4 is R4 with two additional incoming and outgoing edges; each interior
node ofP1

1 has an additional incoming and outgoing edge.

Figure 3: The subproblemP4

δ = 4l , for somel ≥ 2: Let γ = δ/4. It is simpler to describeQδ first.
The construction is depicted in Figure 4. Every node has the same indegree as
outdegree, i.e., there are no sinks. ProblemQδ consists of subproblemsQγ

i and
Rγi , for 1≤ i ≤ γ , connected by chainsCγ

i andDγ

i , for 1≤ i ≤ γ , whose interior
nodes each have an additional outgoing edge.

TheC-chains andQ-subproblems are interleaved as follows. The two edges
leaving the interior nodes ofCγ

1 point into Qγ

1 . In general, the edges leaving the
interior nodes ofCγ

i point into Qγ
i . The same holds for theD-chains andR-

subproblems. The first edge ofCγ

i and of Dγ

i are incoming edges ofQδ, for
i = 1, and start inQγ

i−1, for 1 < i ≤ γ , on a node of the leftmost subproblem
Q1 contained inQγ

i−1. Recall that this problem consists of one chain with two
additional incoming and outgoing edges. One of these outgoing edges is the first
edge ofCγ

i and the second outgoing edge is the first edge ofDγ
i .

Additionally, the subproblems are connected as follows. Recall thatγ edges
leaveRγi . For i = 1, the edges leavingRγi are outgoing edges ofQγ . For 1< i ≤
γ , two edges leavingRγi point to the interior edges ofDγ

i−1. Additionally, there are
γ − 2 edges leavingRγi and pointing intoRγi−1 such that every node inRγi−1 that
hask more outgoing than incoming edges, fork > 0, receivesk edges fromRγi .
The same holds forQγ

i with Cγ
i−1. The problemQγ

γ hasγ incoming edges which
are incoming edges forQδ, the problemRγγ hasγ − 2 incoming edges which are
incoming edges forQδ.

There are 4γ + 2= δ + 2 outgoing edges inQδ: The last edge ofCγ
i and the

last edge ofDγ

i , for 1≤ i ≤ γ , all edges leavingRγ1 , all but two edges leavingQγ

1
(the other two are the incoming edges ofDγ

2 andCγ

2 ), and two edges leavingQγ
γ .

There are alsoδ + 2 incoming edges: the first edge ofCγ

1 and of Dγ

1 , the edges
pointing to the two interior nodes ofCγ

γ andDγ
γ , theγ incoming edges ofQγ

γ , the
γ − 2 incoming edges ofRγγ , and 2γ − 2 incoming edges ending at the startnodes
of Cγ

i andDγ

i , for 2≤ i ≤ γ .

A problem Pδ consists of 2γ chainsCγ
i and Dγ

i , 1 ≤ i ≤ γ , as well as
two subproblemsPγi , γ ≤ i ≤ γ + 1, and 2(γ − 1) subproblemsQγ

i and Rγi ,

8



1 ≤ i ≤ γ −1. These components are assembled in the same way as inQδ, except
that Qγ

γ is replaced byPγγ+1, andRγγ is replaced byPγγ . ProblemsPγγ and Pγγ+1

each have only two incoming edges fromCγ
γ andDγ

γ , respectively.

There are 4γ = δ outgoing edges inPδ: The last edge ofCγ
i and the last edge

of Dγ

i , for 1≤ i ≤ γ , all but two edges leavingQγ

1 (the other two are the incoming
edges ofDγ

2 andCγ

2 ), all all edges leavingRγ1 . There are two incoming edges in
Pδ. The first edge ofCγ

1 and ofDγ
1 are incoming edges in every problemPδ. The

following δ − 2 nodes are sinks forPδ: the two interior nodes ofCγ
γ and ofDγ

γ ,
the 2γ − 2 startnodes ofCγ

i andDγ
i , for 2≤ i ≤ γ , theγ − 2 sinks ofPγγ and the

γ − 2 sinks if Pγγ+1.

A problem Rδ is a problemPδ with an incoming edge into all sinks ofPδ.
Thus there areδ incoming andδ outgoing edges.

Figure 4: The subproblemsQδ andPδ

We analyzeGeneralized-Greedyon G. For simplicity we only discuss the
exploration of a problemQδ. The argument forPδ andRδ is analogous. As before,
let γ = δ/4. We show inductively that the symmetric construction ofQγ

i andRγi
attached toCγ

i andDγ

i as well as the definition ofGeneralized-Greedyimply that
Qγ

i andRγi are explored symmetrically. That is, during two consecutive traversals

9



of C (in order to resume exploration inQγ
i or Rγi ), Generalized-Greedyproceeds

once intoQγ

i and once intoRγi , whereC is the chain at which chainsCγ

i andDγ

i
start. This obviously holds fori = 1. Assume it holds fori and we want to show
it for i + 1. Note thatQγ

i and Rγi differ only in the last chain thatGeneralized-
Greedyexplores inQγ

i , rep. Rγi . Thus, until the traversal of the earlier of the last
chain of Qγ

i and the last chain ofRγi , Generalized-Greedydoes not distinguish
Qγ

i from Rγi . Hence we can assume without loss of generality thatGeneralized-
Greedytraverses first the last chain ofRγi and afterwards the last chain ofQγ

i .
(Think of an adversary “giving” toGeneralized-Greedyfirst the last chain ofRγi
and then the last chain ofQγ

i .) ThenGeneralized-GreedyexploresCγ

i+1 andDγ

i+1
and afterwardsQγ

i+1 and Rγi+1 symmetrically. Thus, whenGeneralized-Greedy
explores a subproblemRγi , 1 ≤ i ≤ γ , subproblemsRγj with 1 ≤ j < i are
already finished.

WheneverGeneralized-Greedygets stuck inRγi , 1 ≤ i ≤ γ , and has to leave
Rγi in order to resume exploration, it also has to leave the “parent problem”Qδ

(or Pδ, Rδ). This is because the chainsDγ
i , 1 ≤ i ≤ γ , prevent the algorithm

from reaching a chain inQγ
j , 1 ≤ j ≤ i , from where unfinished chains inQδ,

(Pδ, Rδ) can be reached. On the way fromRγi to an outgoing edge of the parent
problem,Generalized-Greedycan traverse problemsRγi , j ≤ i . As shown above,
the subproblems are finished, no further exploration ofRγj is possible. The same
arguments hold when the algorithm gets stuck in a problemPγγ .

For anyδ, 4 ≤ δ ≤ d, let N(δ) be the number of timesGeneralized-Greedy
generates a chain inPδ or Rδ, gets stuck and has to leavePδ or Rδ in order to
continue exploration. ThenN(δ) ≥ γ N(γ ) = δ/4N(δ/4). SinceN(1) ≥ 1, we
have N(d) ≥ d�(logd) and hence the edge leaving nodev is traversedd�(logd)

times.

3 TheBalancealgorithm

3.1 The algorithm

We present an algorithm that explores an unknown, strongly connected graph with
deficiencyd, without knowingd in advance. First we give some definitions. At
the start of the algorithm, all edges areunvisitedor new. An edge becomesvisited
whenever the robot traverses it. A node isfinishedwhenever all its outgoing edges
are visited. The robot isstuckat a nodey if the robot enters a finished nodey on
an unvisited edge. A sink isdiscoveredwhenever the robot gets stuck at the sink
for the first time. We assume that whenever the robot discovers a new sink, the

10



subgraph of explored edges is strongly connected. This does not hold in general,
but by properly restarting the algorithm at mostd times the problem can be reduced
to the case described here. Details are given in the Appendix.

Assume the algorithm knew thed missing edges(s1, t1), (s2, t2), . . . , (sd, td)
and a path from eachsi to ti . Then a modified version of the Eulerian algorithm
could be executed: Whenever the original Eulerian algorithm traverses an edge
(si , ti ), the modified Eulerian algorithm traverses the corresponding path fromsi

to ti . Obviously, the modified algorithm traverses each edge at most 2d+ 2 times.
Thus, the problem is to find the missing edges and corresponding paths.

Our algorithm tries to find the missing edges by maintainingd edge-disjoint
chains such that the endnode of chaini is si and the startnode of chaini is our
currentguessof ti . As the algorithm progresses paths can be appended at the start
of each chain. At termination, the startnode of chaini is indeedti . To mark chain
i all edges on chaini are colored with colori .

The algorithm consists of two phases.

Phase 1:Run the algorithm of [12] for Eulerian graphs. SinceG is not Eu-
lerian, the robot will get stuck at a sinks. At this point stop the Eulerian graph
algorithm and goto Phase 2. The part of the graph explored so far contains a cycle
C0 containings [12]. We assume that at the end of Phase 1 all visited nodes and
edges not belonging toC0 are marked again as unvisited.

Phase 2:Phase 2 consists ofsubphases. During each subphase the robot visits
a current nodex of a current chainC and makes progress towards finishing the
nodes ofC. The current node of the first subphase iss, its current chain isC0. The
current node and current chain of subphasej depend on the outcome of subphase
j − 1.

A chain can be in one of three states:fresh, in progress, or finished. A chainC
is finishedwhen all its nodes are finished;C is in progressin subphasej if C was a
current chain in a subphasej ′ ≤ j andC is not yet finished;C is freshif its edges
are explored, butC is not yet in progress.

At the same time up tod + 1 chains in progress and up tod fresh chains
can exist. The invariant that there are always at mostd + 1 chains in progress
is convenient but not essential in the analysis of the algorithm. The invariant that
there exist always at mostd fresh chains in crucial. Every startnode of a fresh chain
has more visited outgoing that visited incoming edges and, thus, the robot can get
stuck there. In the analysis we require that there always exist at mostd such nodes.

The algorithm marks the current guess forti with a tokenτi , for 1 ≤ i ≤ d.
In fact, every startnode of a fresh chain represents the current guess for someti ,
1 ≤ i ≤ d, and thus has a tokenτi . To simplify the description of the relocation

11



process, each token is also assigned anownerwhich is a chain that contains the
node on which the token is placed. Note that a node can be the current guess for
more than one nodeti and, thus, have more than one token.

¿From a high-level point of view, at any time, the subgraph explored so far is
partitioned into chains, namelyC0 and the chains generated in Phase 2. During the
actual exploration in the subphases, the robot travels between chains. While doing
so, it generates or extends fresh chains, which will be taken into progress later, and
finishes the chains currently in progress.

We give the details of a subphase. First, the algorithm tests ifx has an unvisited
outgoing edge.

1. If x does not have an unvisited outgoing edge andx is not the endnode ofC,
then the next node ofC becomes the current node and a new subphase is started.

2. If x has no unvisited outgoing edge andx is the endnode ofC, procedure
Relocateis called to decide which chain becomes the current chain and to
move the robot to the startnodez of this chain. Nodez becomes the current
node.

3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited edges
until it gets stuck at a nodey. Let P be the path traversed. We distinguish four
cases:

Case 1:y = x
Cut C at x and addP to C. See Figure 5. The robot returns tox and the next
phase has the same current node and current chain.

Figure 5: Case 1

Case 2: y 6= x, y has a tokenτi and is the startnode of a fresh chainD (see
Figure 6)
AppendP at D to create a longer fresh chain, and move the token fromy to
x. The current chainC becomes theownerof the token, the previous owner
becomes the current chain, andy becomes the current node.

Case 3:y 6= x, y has a tokenτi but is not the startnode of a fresh chain.
This is the same as Case 2 except that no fresh chain starts aty. The algorithm
creates a new fresh chain of colori consisting ofP. It moves the token fromy

12



Figure 6: Case 2

to x andC becomes the owner of the token. The previous owner of the token
becomes the current chain andy becomes the current node.

Case 4:y 6= x andy does not own a token.
In this casebal(y) < 0. If bal(y) = −k, then this case occursk times for y.
Let i be the number of existing tokens. The algorithm puts a new tokenτi+1 on
x with ownerC, creates a fresh chain of colori + 1 consisting ofP (the first
chain with colori + 1), and moves the robot back tos. The initial chainC0

becomes the current chain,s becomes the current node.

This leads to the algorithm given in Figure 7. We usex to denote the current
node,C to denote the current chain,k the number of tokens used, andj the highest
index of a chain. Lines 4–17 of the code correspond to item 3 above. Line 6 and 7
correspond to Case 1, lines 8–13 correspond to Cases 2 and 3, and lines 14–16 to
Case 4. Lines 18 and 19 implement item 2 and item 1, respectively.

Additionally, the algorithm maintains a treeT such that each chainC corre-
sponds to a nodev(C) of T andv(C′) is a child ofv(C) if the last subpath ap-
pended toC′ was explored whileC was the current chain. Reversely, we useC(v)
to denote the chain represented by nodev. We useTv to denote the subtree ofT
rooted atv and sayC is containedin Tv if v(C) lies inTv. We also say a tokenτ or
an edgee is containedin Tv if owner(τ), respectively the chain ofe is contained
in Tv. If all chains inTv are finished, we say thatTv is finished. To representT , the
algorithm assigns aparentto each chain.

To relocate the robot needs to be able to move on explored edges from the end-
point of a chainC to its startnode. This is always possible, since at the beginning
of each subphase the explored edges form a strongly connected graph. To avoid
that an edge is traversed often for this purpose, we define for each chainC a path
closure(C) connecting the endnode ofC with the startnode ofC such that an edge
belongs toclosure(C) for at mostdO(logd) chainsC. Finally, we will show that
closure(C) is traversed at mostO(d2) times.

A pathQ is called aC-completionif it connects the endnode of a chainC with
the startnode ofC. A pathQ in the graph is calledi -uniformif it is a concatenation
of chains of colori . Letu be a node ofT . A pathQ in the graph isTu-homogeneous

13



Algorithm Balance
1. j := 0, k := 1, x := s, C := C0.
2. repeat
3. while C is unfinisheddo
4. while ∃ new outgoing edge atx do
5. Traverse new edges starting atx until stuck at a nodey. Call this pathP.
6. if y = x then
7. InsertP into C;
8. else ify has a tokenthen
9. if ∃ chainD of color i starting iny andD is freshthen
10. C′ := owner(τi ). ConcatenateP with D;
11. else
12. j := j + 1; Cj := chain that consists ofP;
13. Placeτi on x; owner(τi ) := C; x := y; C := C′;
14. else(∗ y 6= x andy has no token∗)
15. j := j + 1; Cj := chain that consists ofP;
16. k := k+ 1; Place tokenτk on x; owner(τk) := C; x := s; C := C0;
17. Move robot tox;
18. Move robot to first unfinished nodez that appears onC after its startnode;

x := z;
19. C := Relocate(C); x = startnode ofC;
20.until C = emptychain.

Figure 7: TheBalancealgorithm

if any maximal subpathR of Q that does not belong toTu is (a)i -uniform for some
color i ; (b) the edge ofQ precedingR is the last edge of a chain of colori ; and (c)
the edge ofQ after R is the first edge of a chain of colori .

We try to chooseclosure(C) to be “as local toC” as possible: LetS(C) be the
set of explored edges whenC becomes the current chain for the first time. Given
S(C), a(C) is the lowest ancestor ofv(C) in T such that aTa(C)-homogeneous
completion ofC exists inS(C). Note thata(C) is well-defined since each chain
has aTv(C0)-homogeneous completion. The pathclosure(C) is an arbitraryTa(C)-
homogeneous completion ofC using only edges ofS(C). The algorithm can com-
puteclosure(C) wheneverC becomes the current chain for the first time without
moving the robot.

We describe theRelocationprocedure, see Figure 8. In the relocation step, the
robot repeatedly moves from the current chain to its parent until it reaches a chain
C such thatTv(C) is unfinished. To move from a chainX to its parentX′, the robot

14



proceeds alongX to the endnode ofX and traversesclosure(X) to the startnode
of X, which belongs toX′. When reachingC, the robot repeatedly moves from
the startnode of the current chainX to the startnode of one of its children until it
reaches the startnode of an unfinished chain. It chooses the childX′ of X such that
among all subtrees rooted at children ofX and containing unfinished chains,Tv(X′)
has the minimum number of tokens.

Procedure Relocate(C)
1. if all chains are finishedthen return (empty chain).
2. elseMove robot to the startnode ofC alongclosure(C);
3. while C 6= C0 andTv(C) is finisheddo
4. Move robot to the startnode ofparent(C) alongclosure(parent(C));
5. C := parent(C);
6. while C is finisheddo
7. LetC1,C2, . . . ,Cl be the chains withparent(Ck) = C, 1≤ k ≤ l . Let

Ck be the chain such thatTv(Ck) contains the smallest number of tokens
among allTv(C1), . . . , Tv(Cl ) having unfinished chains;

8. C := Ck; x := startnode ofC;
9. Move robot tox;
10. if C is not in progressthen
11. Computeclosure(C);
12. return (C)

Figure 8: TheRelocationprocedure

3.2 The analysis of the algorithm

3.2.1 Correctness

Since the graph is strongly connected, all nodes of the graph must be visited during
the execution of the algorithm. When the algorithm terminates, all visited nodes
are finished. Thus, all edges must be explored. We show next that each operation
and each move of the robot are well-defined. Proposition 1 shows that if a chain of
color i is fresh, thenτi lies at the startnode of the chain. Thus, in line 10, tokenτi

lies ony. By assumption there exists a path from any finished node tos. Thus, the
move in line 17 is well-defined. In line 18, the robot moves to the next unfinished
node of the current chainC. It would be possible to walk alongclosure(C), but the
proof of Lemma 4 shows later thatclosure(C)is not needed.

15



3.2.2 Fundamental properties of the algorithm

Lemma 1 At most d tokens are introduced during the execution of the Balance
algorithm.

Proof: We say that the algorithm first introduces the tokenτk at y in line 16.

Let inv(v) andoutv(v) denoted the number of visited incoming and visited out-
going edges ofv, respectively. Lett (v) be the total number of tokens introduced on
nodev in line 16. We show inductively that max{inv(v)−outv(v), 0} = t (v). Since
at terminationinv(v) = in(v) andoutv(v) = out(v), it follows that−bal(v) ≥
t (v) if bal(v) < 0 andt (v) = 0, otherwise. Thus,d = −∑v,with bal(v)<0 bal(v) ≥∑

v t (v).

The claim max{inv(v)−outv(v), 0} = t (v) holds initially. LetP be the newly
explored path when the first token is placed onv, i.e. when the algorithm gets
stuck atv for the first time. BeforeP entersv, inv(v) = outv(v). TraversingP
incrementsinv(v) by 1 and setsinv(v)− outv(v) = 1. Thus, the claim holds. Let
P be the newly explored path when tokeni is placed onv. It follows inductively
that inv(v) − outv(v) = i − 1 beforeP entersv and traversingP increments the
value by 1 as before.

We prove next some invariants.

Proposition 1 1. For every chain C that is in progress or finished, parent(C)
is finished.

2. Let C be a chain of color i,1 ≤ i ≤ d. (a) If C is fresh, C does not own a
token,τi is located at the startnode of C, and parent(C) = owner(τi ). (b) If
C is in progress and not the current chain, then C is the owner of some token
τ .

3. Every chain C is the parent of at most d chains.

Proof: Part 1. ProcedureRelocateensures thatparent(C)is finished beforeC is
taken into progress.

Part 2a. WhenC is first created in line 12 or 15 ofBalance, τi is placed on the
startnode ofC. Whenever the robot gets stuck at the current startnode ofC and
removesτi , chainC is extended by a pathP becauseC is not in progress. Token
τi is placed on the new startnode ofC. Lines 13 and 16 ensure that the parent ofC
is always the owner ofτi .

Part 2b. We show that wheneverC is the current chain andBalanceleavesC
to continue work on an other chain,C becomes the owner of a token. ChainC

16



is unfinished. Thus, ifC is the current chain,Balancecan only leaveC to con-
tinue work on an other chain during lines 5–17 of the algorithm. In this situation,
Balanceplaces a token on a node ofC andC becomes the owner of that token.

Part 3. ChainC can become the parent of other chains whileC is in progress
and unfinished. During this time, every chainC′ with parent(C′) = C is unfinished
and not in progress, see Part 1. By Part 2a, the startnode of such a chainC′ holds a
token andC is the owner of that token. Since there are onlyd token, the proposition
follows.

The next lemma shows that our algorithm always balances the number of to-
kens contained in neighboring subtrees ofT . For a subtreeTv of T , let theweight
w(Tv) be the number of tokens contained inTv. Let active(Tv) = 1 if the current
chain is inTv; otherwise letactive(Tv) = 0.

Lemma 2 Let u, v ∈ T be siblings in T such that Tu and Tv contain unfinished
chains. Then|w(Tu)+ active(Tu)−w(Tv)− active(Tv)| ≤ 1.

Proof: Let act ive(C) = 1 iff C is the current chain, and letact ive(C) = 0
otherwise. Lettoken(C) be the number of tokens owned byC, and letg(C) =
token(C)+act ive(C). Finally, letg(v) =∑C,v(C)∈Tv g(C) = w(Tv)+active(Tv).
We show by induction on the steps of the algorithm that|g(u)− g(v)| ≤ 1.

The claim holds initially. For a subtreeTv of T , the valuesw(Tv) andactive(Tv)
only change in lines 13, 16, and 19 ofBalanceand in lines 4 and 9 of procedure
Relocate. Additionally,T changes in lines 10, 12, and 15.

Note first that changes inT do not affect the invariant: WheneverT changes,
v(C) receives a new child andC is not yet finished (or the algorithm has not yet
determined thatC is finished). Thus, the children ofC are not yet in progress, i.e.
they do not own any tokens by Proposition 1. Thus, the claim holds for any pair of
children ofv(C).

We consider next all changes tow(Tv) andactive(Tv).

Line 13: Let C be the current chain before the execution of line 13. Note that
token(C) increases by 1,act ive(C) becomes 0,token(C′) decreases by 1, and
act ive(C′) becomes 1. Thus,g(C) andg(C′), and, hence,g(v) is unchanged for
every nodev ∈ T .

Line 16: Note that (i)g(C) is unchanged by the same argument as for line 13,
(ii) g(C′) is unchanged, sincetoken(C′) andact ive(C′) are unchanged, and (iii)
g(C0) is increased by 1. SinceC0 only contributes tog(v(C0)) andv(C0) is the
root of T , the claim holds.

17



Line 19 of Balance/Line 4 and 9 of Relocate:Let C̄ be the current chain before
the execution of line 3 or 7 and letC be the current chain afterwards. In line 3, the
claim does not apply toTv(C), sinceTv(C) is finished. Thus, we are left with line 7.
Note thatact ive(C̄) drops to 0 andact ive(C) increases to 1. Thus, for every node
v such thatTv contains either both the parent and its child or neither the parent
nor its child,g(v) is unchanged. The only remaining subtree isTv(C). Before the
execution of line 7, for any siblingC′ of C, w(Tv(C)) ≤ w(Tv(C′)) ≤ w(Tv(C))+1.
Sinceact ive(C′) = 0, |w(Tv(C))−w(Tv(C′))+ act ive(C) − act ive(C′)| ≤ 1.

Lemma 3 Let C be a chain of color i,1 ≤ i ≤ d, and, at the time when C is taken
in progress, let u∈ T be the closest ancestor ofv(C) that satisfies the following
condition. The path from u tov(C) in T contains d nodes u1, u2, . . . , ud such that
each uj with 1 ≤ j ≤ d has a childvj

(a) Tvj contains a node of color i; and (b)v(C) /∈ Tvj .

If there is no such ancestor u, then let u bev(C0). Then there exists a Tu-homogeneous
C-completion.

Proof: By assumption, the graph of explored edges is strongly connected, which
implies that there exists aTv(C0)-homogeneousC-completion. Suppose that there
ared nodesu1, . . . , ud satisfying (a) and (b). Forj = 1, . . . , d, let Cuj be the
chain corresponding touj . If one of the nodesu1, . . . , ud, sayuk, is of color i ,
then there is the followingTuk-homogeneousC-completion: Follow edges of color
i until you reach the startnode ofCuk , then walk “down” inTuk along ancestors of
C to the startnode ofC.

Thus, we are left with the case that none of the nodesu1, . . . , ud has colori .
For j = 1, . . . , d, let Cj ,1 ∈ Tvj be a chain of colori such that no ancestor ofCj ,1

contained inTvj has colori . Let Cj ,2, . . . ,Cj ,l( j ) be the ancestors ofCj ,1 in Tuj .
More precisely, fork = 1, . . . , l( j ) − 1, Cj ,k+1 = parent(Cj ,k) andCj ,l( j ) = Cuj

is the chain corresponding touj .

Following the edges of colori gives aTu-homogeneous path fromC to every
chainCj ,1 for 1 ≤ j ≤ d. We want to show that there exists aTu-homogenous
path to a chainCj ,l( j ) . We consider the following game on ad × maxj l( j ) grid,
where for 1≤ j ≤ d, square( j , k) has the color ofCj ,k for 1 ≤ k ≤ l( j ) and no
color for k > l( j ). Thus, all squares( j , 1) have colori and no other squares have
color i . Initially all squares( j , 1) are checked, all other squares are unchecked. A
square is checked if the robot can move to the startnode of the corresponding chain
on aTu-homogeneous path. The rules of the game are: (Note that the startnode of
Cj ′ ,k′−1 belongs toCj ′,k′ .)

18



• A square( j , k) of color i′ gets checked whenever there exists a square( j ′, k′)
of color i′ such that square( j ′, k′ − 1) is checked and there exists a path of
color-i ′ edges from the endnode of Cj ′,k′ to the startnode of Cj ,k.

• The game terminates when one of the squares( j , l( j )) is checked or when
no more square can be checked.

We will show that one of the squares( j , l( j )) can be checked. This shows
that there is aTu-homogeneous path fromC to Cj ,l( j ) . Sinceuj is an ancestor
of v(C), the same argument as above shows that there exists aTu-homogeneous
C-completion.

We employ the pigeon-hole principle: Initially, there ared checked squares
( j , 1) for 1 ≤ j ≤ d and each square( j , 2) has a colori ′ 6= i . Since there are at
mostd− 1 other colors, there must be two squares(s, 2) and(t, 2) with the same
color i ′. Since the edges of colori ′ form a chain, there is either a path fromCs,2 to
Ct,2 or vice versa. Thus, one of the two squares can be checked. Inductively, there
ared checked squares( j , k( j )) such that( j , k( j )+ 1) is unchecked. None of the
squares( j , k( j )+ 1) has colori and thus, there must be two squares( j , k( j )+ 1)
with the same color, which leads to checking one of the two squares. The game
continues until one of the squares( j , l( j )) has been checked.

3.2.3 Counting the number of edge traversals

Lemma 4 Each edge is traversed at most d times during executions of line 17 and
at most2d+ 2 times during executions of line 18 of the Balance algorithm.

Proof: Let e be an arbitrary edge and letC be the chaine belongs to. Every time
e is traversed during an execution of line 17, a new token is placed on the graph.
Since a total ofd tokens are placed, the first statement of the lemma follows.

Next we analyze executions of line 18. Letx and y be the tail and the head
of e, i.e.e= (x, y). Let C1 be the portion ofC that consists of the path from the
startnode ofC to x. Similarly, letC2 be the path fromy to the endnode ofC.

Note that in line 18, edgee could only be traversed while nodes onC1 are
unfinished if the robot gets stuck at a nodey on C1, y having a token, and has
to move to an unfinished nodez on C1 that lies beforey. Sincey holds a token,
with C being the owner,y must have been the current node in a subphase when
C was current chain. However, the node selection rule in line 18 ensures that this
is impossible becausez is unfinished. This also implies that in line 18, the robot

19



can always reach the first unfinished node onC by following C, without traversing
closure(C).

Thus,e is traversed for the first time in line 18 when all nodes onC1 are fin-
ished and the robot moves to the next unfinished node onC2. The edgee can be
traversed again (a) if the robot gets stuck at a node onC1 and moves to the next
unfinished node ofC, or (b) if the robot traversesC from its startnode, since pro-
cedureRelocatereturned chainC. Every time case (a) occurs, a token is removed
from C1, and this token cannot be placed again onC1. Since there are onlyd to-
kens,e can be traversed at mostd more times in case (a) after it was traversed the
first time in that line. Every time case (b) occurs,token(C)+active(C) increases
by 1, while no other step of the algorithm can decrease this value as long asC is
unfinished. Thus, case (b) occurs at mostd+ 1 times.

Thus, it only remains to bound how often an edge is traversed inRelocate.
A chain C′ is dependenton a chainC if C′ ∈ Tv(C) andclosure(C′) is not Tu-
homogeneous for any true descendantu of v(C).

Lemma 5 For every chain C, there exist at most d2 logd+1 chains C′ ∈ Tv(C) that
are dependent on C.

Proof: Let ni (C) be the total number of chains of colori dependent onC. For a
color i , 1≤ i ≤ d, and an integerδ, 1≤ δ ≤ d, let

Ni (δ) = maxC{ni (C); Tv(C) contains at mostδ of thed tokens whenever
active(Tv(C)) = 1}.

We will show that for anyδ, 1≤ δ ≤ d, and any colori , (1) Ni (δ) ≤ d2Ni (bδ/2c)
and (2)Ni (1) = 1. This impliesNi (d) ≤ d2 logd. Since

∑d
i=1 Ni (d) ≤ d · d2 logd,

the lemma follows.

To prove (1), fix a colori and an integerδ. Consider a subtreeTv(C) that
contains at mostδ tokens whenactive(Tv(C)) = 1. Out of all chains dependent on
C, let C′ be the chain whose closure is computed last. We show that when the
algorithm computesclosure(C′), then the number of chains of colori that are
already dependent onC is at mostd(d − 1)Ni (bδ/2c). Thus,ni (C) ≤ d(d −
1)Ni (bδ/2c)+ 1 ≤ d2Ni (bδ/2c).

Let u1, u2, . . . , ul be the sequence of nodes (from lowest to highest) on the
path fromv(C′) to v(C) such that every nodeuj , j = 1, 2, . . . , l , has a childvj

with (a) Tvj contains a node of colori , and (b)v(C) /∈ Tvj . By Lemma 3,l ≤ d.
Suppose that nodeuj , 1 ≤ j ≤ d, hasc( j ) children,vj ,1, vj ,2, . . . , vj ,c( j ) with
v ∈ Tvj,1. By condition (b), 2≤ c( j ) ≤ d.

20



For fixed j andk ≥ 2, we have to show: Up to the time whenclosure(C′)
is computed, wheneveract ive(Tvj,k) = 1, thenw(Tvj,k) ≤ bδ/2c. Consider the
point in time whenclosure(C′) is computed. SinceTvj,1 containsC′, Tvj,1 is un-
finished. By Lemma 2,Balancedistributes the tokens contained inTuj evenly
among the subtreesTvj,1, Tvj,2, . . . , Tvj,c( j ) that contain unfinished chains. Thus, for
eachunfinished Tvj,k with k ≥ 2,w(Tvj,k) was up to now at mostbδ/2c whenever
active(Tvj,k) = 1. For eachfinished Tvj,k, consider the last point of time when an
unfinished chain ofTvj,k becomes the current chain. Sincevj ,1 exists,Tvj,1 is unfin-
ished and, by Lemma 2,w(Tvj,k) is up to this point in time at mostbδ/2c whenever
active(Tvj,k) = 1. We conclude that up to the time whenclosure(C) is computed,
Tvj,k contains at mostNi (bδ/2c) chains of colori that can be dependent on the
chain corresponding tovj ,k, and, thus, can be dependent onC. Summing up, we
obtain thatTv(C) contains at most

d∑
j=1

c( j )∑
k=2

Ni (bδ/2c) ≤ d(d− 1)Ni (bδ/2c)

chains of colori that can be dependent onC.

Finally we show thatNi (1) = 1. If a subtreeTv(C) contains at most one token
wheneveractive(Tv(C)) = 1, then each node inTv(C) has only one child, by Propo-
sition 1. SinceTv(C) never branches, it can contain at most one chain of colori that
is dependent onC.

Lemma 6 For every chain C, there exist at most d2 logd+1 chains C′ ∈ Tv(C) such
that closure(C′) uses edges of C.

Proof: Let C be an arbitrary chain and letv ∈ T be the node corresponding toC.
We show that if a chainC′ ∈ Tv(C) is not dependent onC, thenclosure(C′) does
not use edges ofC. Lemma 6 follows immediately from Lemma 5.

If a chainC′ ∈ Tv(C) is not dependent onC, then the pathclosure(C′) is Tu-
homogeneous for a descendantu of v. Suppose that aTu-homogeneous pathP
would use edges ofC. Let i be the color ofC. ChainC does not belong toTu.
Thus, afterP has visitedC, it may only traverse chains of colori until it reaches
again a chain of colori that belongs toTu. Note that all chains of colori that
are reachable fromC via edges of colori must have been generated earlier that
C. However, all chain inTu were generated later thanC. We conclude that a
Tu-homogeneous path cannot use edges ofC.

Lemma 7 For every chain C, there exist at most(d+2)d2 logd+2 chains C′ /∈ Tv(C)
such that closure(C′) uses edges of C.

21



Proof: A chainC′ needsa chainC if closure(C′) uses edges ofC andC′ is u-hard
if closure(C′) is Tu-homogeneous, but notTv-homogeneous for any childv of u.
For each chainC′ there exists a unique nodeu of T such thatC is u-hard. IfC′ is
dependent on chainC, thenC′ is u-hard for an ancestoru of v(C). If C′ is u-hard
andv is a descendant ofu and an ancestor ofv(C′), thenC′ is dependent onC(v).
To prove the lemma it suffices to show the following two claims:

Claim 1: There are at mostd2 logd+2 chainsC′ 6∈ Tv(C) such thatC′ needsC and
C′ is u-hard for some ancestoru of v(C).

Claim 2: There are at most(d+ 1)d2 logd+2 chainsC′ 6∈ Tv(C) such thatC′ needs
C andC′ is u-hard for some nodeu that is not an ancestor ofv(C).

Proof of Claim 1: If C′ needsC, thenC′ either does not yet exist or is un-
finished whenC is taken into progress. Consider the point in time whenC is
taken into progress. Letu1, u2, . . . , ul be the ancestors ofv(C) in T that fulfill the
following conditions: Each nodeuj has a childvj such that (a)Tvj contains unfin-
ished chains, and (b)v(C) /∈ Tvj . Thus, every chain that needsC lies in one of the
subtreesTvj . Note thatl ≤ d, since by Proposition 1, every subtree that contains
an unfinished chain not equal to the current chain must own a token. AssumeC′

belongs toTvj . Sinceuj is the least common ancestor ofv(C) andv(C′), andC′

is u-hard for an ancestoru of v(C), C′ is dependent onC(uj ). Since by Lemma
5 there are at mostd2 logd+1 chains that are dependent onC(uj ), there can be at
mostl · d2 logd+1 ≤ d2 logd+2 chainsC′ /∈ Tv(C) that needC and areu-hard for an
ancestor ofv(C).

Proof of Claim 2: Let i be the color ofC. Let us denote the concatenation of
all chains of colori as thepath of color i. Note that the path of colori introduces
a linear order on the chains of colori . We say a chainC lies betweentwo other
chains on the path of colori if C is not equal to one of the chains and lies between
them in the linear order. We define first the nearest predecessor of a chain. Then
we show (1) that for each chainC′ 6∈ Tv(C) that needsC and isu-hard for some
nodeu that is not an ancestor ofv(C), there exists a chainC1 of color i such that

• C lies on the path of colori betweenC1 and its nearest predecessor, and

• C1 fulfills the conditions of Claim 1, i.e.,C′ needsC1 andu is an ancestor
of v(C1).

We show next (2) that there exist at mostd chainsC1 of color i for which C lies
on the path of colori betweenC1 and its nearest predecessor. By Claim 1 and

22



Lemma 6, for eachC1 there exist at most(d+1)d2 logd+1 closures that are hard for
an ancestor ofv(C1). It follows that there are at mostd(d + 1) · d2 logd+1 chains
C′ that needC and areu-hard for some nodeu that is not an ancestor ofv(C).

Consider the point in time whenC is taken into progress. Leta(C) be the
closest ancestor ofv(C) such thatTa(C) contains a node of colori that is not equal
to v(C). Thenearest predecessorof C is the chainC′ 6= C of color i that was
taken into progress most recently inTa(C).

(1) The closure ofC′ introduces an order on the chains belonging to it. Let
C1 be the last chain ofTu beforeC on closure(C′) and letC2 be the first chain of
Tu afterC onclosure(C′), i.e. C lies on the path of color-i edges betweenC1 and
C2. We show below that the path of color-i edges betweenC1 andC2 is contained
in the path of color-i edges betweenC1 and its nearest predecessor. This implies
thatC lies on the path of color-i edges betweenC1 and its nearest predecessor and
completes the proof of (1).

SinceTu is a subtree that containsC1 andC2, i.e. C1 and another chain of
color i that was taken into progress beforeC1, Tu also must contain the nearest
predecessor ofC1. Following the path of color-i edges fromC1, C2 is the first chain
of Tu that is encountered. Thus, the color-i path betweenC1 andC2 is contained
in the color-i path betweenC1 and its nearest predecessor.

(2) We want to bound the number of color-i chainsC1 such thatC lies on the
path of colori betweenC1 and its nearest predecessor. Obviously,C1 was created,
after C was taken in progress (otherwise,C1 would have been appended toC).
Consider the point in time whenC is taken into progress. LetC1, . . . ,Cl be the
chains that are parents of fresh chains. All chains created afterwards must belong
to Tv(C) or to Tv(C1)

, . . . , Tv(Cl )
. Note (a) that for no color-i chain inTv(C), C can

lie on the color-i path between the chain and its nearest predecessor. Note (b) that
for k = 1, . . . , l , only for the color-i chainC(k) in Tv(Ck)

created first afterC was
taken into progress,C can lie betweenC(k) and its nearest predecessor. The nearest
predecessor of every color-i chainD created later belongs toTv(Ck)

and was created
afterC. Thus,C does not lie on the color-i path betweenD and its predecessor.
Thus, at mostl chains exists such thatC lies on the color-i path between the chain
and its predecessor. By Proposition 1,l ≤ d.

Theorem 2 Using the Balance algorithm, the robot explores an unknown graph
with deficiency d and traverses each edge at most(d+ 1)6d2 logd times.

Proof: Let e be an arbitrary edge of chainC. Edgee is traversed for the first
time when it is explored during an execution of line 5 of theBalancealgorithm.

23



By Lemma 4, it can be traversed 3d + 2 times during executions of lines 17 and
18. By Lemmas 6 and 7,e belongs to at mostd2 logd+1 + (d + 2)d2 logd+2 paths
closure(C′). We show that each pathclosure(C′) is traversed at mostd(d + 1)
times. The pathclosure(C′) is used at mostd times during an execution of line 2
of Relocate, since each time a token is removed from the finished chainC′. The
pathclosure(C′) can also be used at mostd2 times in line 4 ofRelocate, since each
time a token is removed from the finished subtreeTv(C′′) of a childC′′ of C′.

Finally, the edgee might be traversedd(d + 1) times in line 9 ofRelocate.
Whene is traversed in line 9, then (i) either the robot had moved toC0 after the
introduction of a new token (line 16) or (ii) there exists an ancestoru of v(C) with
a childx such that the robot was stuck at a node inTx andTx is finished. Thus, by
going “up” the treeT in lines 3–5, the robot reachedu. Case (i) occurs at mostd
times. WhenC becomes the current chain for the first time, letu1, . . . , ul be the
ancestors ofv(C) such that eachuj has a childvj with (a) Tvj contains unfinished
chains, and (b)v /∈ Tvj . By Proposition 1, the nodesu1, . . . , ul can have a total of
d children satisfying (a) and (b). Since each subtree rooted at one of these children
can contain at mostd tokens, case (ii) occurs at mostd2 times.

Thus, edgee is traversed at most

1+ 3d+ 2+d(d+1)(d2 logd+1+ (d+ 2)d2 logd+2)+d(d+ 1) ≤ (d+ 1)5d2 logd

times. Multiplying the bound byd to account for restarts shows the theorem.

The total number of edge traversals used byBalanceis alsoO(min{mn, dn2+
m}), wheren is the number of nodes in the graph. It is not hard to show that an
upper bound ofO(min{mn, dn2 + m}) is achieved by any exploration algorithm
satisfying the following two properties: (1) When the robot gets stuck, it moves on
a cycle-free path to some, i.e. arbitrary, node with new outgoing edges. (2) When
the robot is not relocating, it always traverses new edges whenever possible.

We show that any exploration algorithm satisfying (1) and (2) gets stuck at
most min{m, dn} times. The bound follows because, by Property (1), at mostn
edges are traversed during each relocation. Obviously, a robot gets stuck at most
m times. For the proof of the second bound, letinu(v) andoutu(v) be the num-
ber of unvisited incoming and unvisited outgoing edges ofv, respectively. Let
def(v) = min{0, inu(v) − outu(v)}. We show inductively that

∑
v∈G def(v) ≤ d.

This implies that, for every nodev, whenever the robot explores the last unvisited
edge out ofv, there are at mostd unvisited incoming edges atv. Thus the robot
gets stuck at mostd times at any nodev. Summing over all nodes inG gives the
desired bound ofdn.

24



The inequality
∑

v∈G def(v) ≤ d holds intitially. The invariant is maintained
whenever the robot relocates from a nodey, where it got stuck, to some nodez
with new outgoing edges because only visited edges are traversed. Whenever the
robot starts a new exploration at a nodez, visits a sequence of new edges and gets
stuck at a nodex, def(z) increases by at most 1,de f(x) decreases by 1 while at no
other node, thedef-value changes.

4 A tight lower bound for the Balancealgorithm and mod-
ifications

In this section we give first a lower bound for theBalancealgorithm and afterwards
we give lower bounds for modifications ofBalance.

Theorem 3 For every d≥ 1, there exists a graph G of deficiency d that is explored
by Balance using d�(logd)m edge traversals.

Proof: We show that there exists a graphG = (V, E) and an edgee ∈ E that
is traversedd�(logn) times whileBalanceexploresG. The theorem follows by
replacinge by a path of2(m) edges. We show the bound ord being a power of 5.
The bound for all values ofd follows by “rounding” down to the largest power of
5 smaller thand.

The graph is a union of chainsC, each of which consists of three edges, a
startnode, an endnode and twointerior nodesv1(C) andv2(C). The interior nodes
belong to exactly one chain and have up to one additional outgoing edge. We
describeG, see also Figure 9. GraphG contains (a) a cycleC0 that starts and
ends in a nodev (Balanceis started atv and findsC0 during Phase 1) and (b) a
recursively defined problemPd attached toC0.

In the following letδ, 1 ≤ δ ≤ d, be a power of 5. Aproblem Pδ, for any
integerδ ≥ 5, is a subgraph that has twoincomingedges whose startnodes do not
belong toPδ but whose endnodes do, andδ + 1 outgoingedges whose startnodes
belong toPδ but whose endnodes do not. A problemP1 has one incoming and
one outgoing edge. In the case ofPd, the two incoming edges start atv1(C0) and
v2(C0), respectively;d outgoing edges point tov and one outgoing edge points to
v1(C0).

For the definition ofPδ we also need problemsQδ. These problems are iden-
tical to Pδ except that, forδ > 1, Qδ has exactlyδ + 1 incoming edges.

25



Figure 9: The graphG

A problemP1 consists of a single chain; the first edge of the chain represents
an incoming edge and the last edge represents an outgoing edge. The interior nodes
have no additional outgoing edges. A problemQ1 is identical toP1.

For δ ≥ 5, letγ = δ/5. ProblemPδ consists of 3γ 2 chainsCγ

i,k , 1 ≤ i ≤ γ ,
1 ≤ k ≤ 3γ , as well asγ chainsDγ

i andγ recursive subproblemsQγ
i , 1 ≤ i ≤

γ − 1, andPγγ .

These components are assembled as follows. One of the incoming edges ofPδ

is the first edge ofCγ

1,1. We assume thatv1(C0) is the startnode ofCd/5
1,1 . Node

v1(Cγ

i,k) is the startnode ofCγ

i,k+1, 1 ≤ i ≤ γ , 1 ≤ k ≤ 3γ − 1. Nodev1(Cγ

i,3γ )

is the startnode ofCγ
i+1,1, 1 ≤ i ≤ γ − 1. The last edge ofCγ

1,k, 1 ≤ k ≤ 3γ , is
an outgoing edge ofPδ. The endnode ofCγ

i,k is equal to the startnode ofCγ

i−1,k ,
2 ≤ i ≤ γ and 1≤ k ≤ 3γ . Note that the last edge ofCγ

2,1 hence is an outgoing
edge ofPδ. Nodesv2(Cγ

i,k ), 1 ≤ i ≤ γ , 1 ≤ k ≤ 3γ − 1, have no additional
outgoing edge but nodesv2(Cγ

i,3γ ), 1 ≤ i ≤ γ − 1, do. ChainCγ

γ,3γ has no
additional outgoing edges.

The second incoming edge ofPδ is the first edge of a chainDγ

1 and, for 2≤
i ≤ γ , the edge leavingv2(Cγ

i−1,3γ ) is the first edge ofDγ
i . For 1≤ i ≤ γ , the

last edge ofDγ
i is an outgoing edge ofPδ. If δ = 5, then the first interior node of

26



the chainDγ
i = Dγ

1 has an additional outgoing edge pointing into a problemP1.
If δ > 5, then the two interior nodes ofDγ

i , 1 ≤ i ≤ γ , each have an additional
outgoing edge. For 1≤ i ≤ γ − 1, these two edges point intoQγ

i and, fori = γ ,
they point intoPγγ .

If δ = 5, then the outgoing edge of the only subproblemP1 is an outgoing
edges ofPδ = P5. If δ > 5, the problemsQγ

i , 1 ≤ i ≤ γ − 1, andPγγ each
haveγ + 1 outgoing edges. ForQγ

1, γ these edges are also outgoing edges ofPδ

and one edge points to the interior node ofDγ

1 that is the startnode ofCγ

1,1. For
2 ≤ i ≤ γ − 1, exactlyγ − 1 edges leavingQγ

i point into Qγ

i−1 such that every
node that hasl more outgoing than incoming edges, forl > 0, receivesl edges.
One outgoing edge points to the interior nodes ofDδ

i−1 that does not get an edge
from Qγ

i−1 and the remaining edge points to the interior node ofDγ
i that is the

startnode ofCγ

1,1. In the same way the edges leavingPγγ are connected withQγ

γ−1,
Dγ
γ−1 andDγ

γ .

We identify the sources ofPδ, i.e. the nodes having higher indegree than out-
degree. At each source, indegree and outdegree differ by 1. The startnodes of the
chainsDγ

i , 2≤ i ≤ γ , andCγ
γ,k , 1≤ k ≤ 3γ , represent a total of 4γ − 1 sources.

One interior node ofDγ
γ represents a source. Finally, the subproblemPγγ contains

γ − 1 sources.

A problemQδ, δ ≥ 5, is the same asPδ, except that the subproblemPγγ is
replaced by a problemQγ

γ . As mentioned before, a problemQδ receivesδ − 1
additional incoming edges. These edges point to the nodes that represent sources
in Pδ.

We analyze the number of edge traversals used byBalanceon G. Consider a
problemPδ, δ ≥ 5, and letγ = δ/5. WhenBalancegenerates the strand of chains
Cγ

i,1, . . . ,C
γ

i,3γ , for some 1≤ i ≤ γ , this strand contains 3γ > γ +1 tokens. Since
Dγ

i and the subproblem attached to it containγ tokensBalancedoes not explore
the unvisited edges out ofCγ

i,3γ before the subproblem attached toDγ

i is finished.
In the same way we can argue for a problemQδ.

Let N(δ) be the number of times the following event happens whileBalance
works on a problemPδ or Qδ: Balancegenerates a new chain, gets stuck and can-
not reach a node with new outgoing edges by using only edges inPδ resp.Qδ.
ProblemPδ containsγ subproblemsQγ

1 , . . . , Qγ
γ−1 andPγγ . Every timeBalance

gets stuck in one of these subproblems and has to leave it in order to resume ex-
ploration, it also has to leavePδ. This is because of the following facts: (1) When
BalanceexploresQγ

i , 1 ≤ i ≤ γ − 1, or Pγγ , the subproblemsQγ

1 , . . . , Qγ

i−1
resp.Qγ

1 , . . . , Qγ

γ−1 are already finished. (2) The chainsDγ

1 , . . . , Dγ
γ ensure that

27



Balancecannot reach any chainCγ
i,k , 1 ≤ i ≤ γ , 1 ≤ k ≤ 3γ , from where the

unfinished chains inPδ can be reached. Again the same holds for a problemQδ.
Thus, forδ ≥ 5, N(δ) ≥ γ N(γ ) = (δ/5)N(δ/5). SinceN(δ) = 1, for δ = 1, we
obtainN(d) = d�(logd). Finally, consider the edgee onC0 that leavesv. Balance
must traversee at leastN(d) = d�(logd) times.

We also modified theBalancealgorithm by relocating to other nodes with new
outgoing edges. Replace the choice ofCk in line 7 of by one of the following rules.

Round Robin: Let Ck be the chain amongC1, . . . ,Cl that was selected least
often in any execution of line 7.

Cheapest Subtree:Let Ck be the chain amongC1, . . . ,Cl , such thatTv(Ck)

contains the fewest number of dependent chains with respect to the current chain.

Theorem 4 For Round Robin and for Cheapest Subtree and for all d≥ 1, there
exist graphs of deficiency d that require d�(logd)m edge traversals.

Proof: The proof is identical to that ofGeneralized-Greedyin Theorem 1.

Acknowledgment

We thank Prabhakar Raghavan for bringing to our attention the literature on thes–t
connectivity problem.

References

[1] B. Awerbuch, M. Betke, R. Rivest and M. Singh. Piecemeal Graph Learning
by a Mobile Robot.Proc. 8th Conf. on Comput. Learning Theory, 321–328,
1995.

[2] E. Bar-Eli, P. Berman, A. Fiat and R. Yan. On-line navigation in a room.
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, 237–249, 1992.

[3] G. Barnes, J.F. Buss, W.L. Ruzzo and B. Schieber. A sublinear space, polyno-
mial time algorithms for directeds–t connectivity.Proc. 7th Annual Conf. on
Structure in Compexity Theory, 27–33, 1992.

[4] G. Barnes and J. Edmonds. Time-space lower bounds for directeds–t connec-
tivity on JAG models.Proc. 34th Symp. on Foundations of Computer Science,
228–237, 1993.

28



[5] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Ros´en and M. Saks. Random-
ized robot navigation algorithms.Proc. 7th ACM-SIAM Symp. on Discrete
Algorithms, 74–84, 1996.

[6] A. Blum and P. Chalasani. An on-line algorithm for improving performance
in navigation.Proc. 34th Symp. on Foundations of Computer Science, 2–11,
1994.

[7] A. Blum, P. Raghavan and B. Schieber. Navigating in unfamiliar geometric
terrain.Proc. 23rd Symp. on Theory of Computing, 494–504, 1991.

[8] M. Betke, R. Rivest and M. Singh. Piecemeal learning of an unknown envi-
ronment.Proc. 5th Conf. on Comput. Learning Theory, 277–286, 1993.

[9] M. Bender and D. Slonim. The power of teach exploration: two robots can
learn unlabeled directed graphs.Proc. 35th Symp. on Foundations of Com-
puter Science, 75–85, 1994.

[10] S.A. Cook and C.W. Rackoff. Space lower bounds for maze threadability on
restricted machines.SIAM Journal on Computing, 9:636–652, 1980.

[11] X. Deng, T. Kameda and C. H. Papadimitriou. How to learn an unknown
environment.Proc. 32nd Symp. on Foundations of Computer Science, 298–
303, 1991.

[12] X. Deng and C. H. Papadimitriou. Exploring an unknown graph.Proc. 31st
Symp. on Foundations of Computer Science, 356–361, 1990.

[13] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Revised
version of [12].

[14] J. Edmonds and C.K. Poon. A nearly optimal time-space lower bound for
directedst-connectivity on the NNJAG model.Proc. 27th Symp. on Theory
of Computing, 147–156, 1995.

[15] F. Hoffmann, C. Icking, R. Klein and K. Kriegel. A competitive strategy
for learning a polygon.Proc. 8th ACM-SIAM Symp. on Discrete Algorithms,
166–174, 1997.

[16] E. Koutsoupias. Result reported in [13].

[17] S. Kwek. On a simple depth-first search strategy for exploring unknown
graphs. To appear inProc. 5th Workshop on Algorithms and Data Structures
(WADS), 1997.

29



[18] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map.The-
oretical Computer Science, 84:127–150, 1991.

[19] R. Rivest. Problem formulation cited in [12].

5 Appendix

Lemma 8 After at most d restarts of the Balance algorithm, whenever a new sink
si , 1 ≤ i ≤ d, was discovered, we can ensure that the subgraph of explored edges
is always strongly connected.

Proof: Whenever theBalancealgorithm gets stuck in line 14 and there is no path
to s using edges that have been traversed before, then the algorithm stops and has to
be restarted as follows. Lets1, . . . , sk−1 be the already discovered sinks. Assume
the robot gets stuck aty on a pathP that doesnotbelong to any other chain created
since the last restart. Whenever this happens,y is a newly discovered sinksk and
must have occurred onP before (each node has degree≥ 2). Take the cycleC
between the two occurrences ofsk on P and restart the algorithm with current
nodey and current chainC with the following modification: All edges traversed
before the restart are marked ask − 1-visited. We show below that there exists
a path ofk − 1-visited edges from all previously visited sinks toy. Whenever
the algorithm started atsk encounters an already visited sinksi , i < k, then the
algorithm traverses thek− 1-visited edges on the path fromsi to sk as required in
lines 16 and 17 of the algorithm, i.e., the algorithm does not get stuck atsi , i < k.

Thus, whenever the modified algorithm restarts, it has discovered a new sink
sk. Hence, after at mostd restarts, all sinks have been discovered and there is a
path from the every sinksi with i < k to sk.

We show inductively that there exists a path from all previously explored sinks
to y. Obviously the claim holds initially. Whenevery = sj for j > 1, then obvi-
ously there exists a path fromsj−1 to sj , since this is how the previous algorithm
got stuck. Thus, by transitivity of the reachability relation, all previously visited
sinks can reachsj .

30


