
SRC Technical Note
1997 - 007

2 January 1997

Checking object invariants

K. Rustan M. Leino and Raymie Stata

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved

Abstract

When writing computer programs, programmers make assumptions about the
relations among variables. In object-oriented programs, these assumptions include
relations among the instance variables of a single object, relations often referred
to asobject invariants. It is a good idea to explicitly annotate a program with
these assumptions. Then, a static program-analysis tool can inspect the annotated
program to check that routines preserve object invariants. This paper considers
two issues that affect what object invariants a program analysis tool can check:
object construction and modular checking. The paper suggests some programming
idioms and program annotations that widen the range of object invariants that a
static program checker can check. The paper also suggests a simple extension to
the Java programming language that makes the language more amenable to object-
invariant checking.

KRML 74 -0

Checking object invariants

K. Rustan M. Leinoand Raymie Stata
2 January 1997

Digital Equipment Corporation Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
frustan, stata g@pa.dec.com

Abstract. When writing computer programs, programmers make assumptions about
the relations among variables. In object-oriented programs, these assumptions
include relations among the instance variables of a single object, relations often
referred to asobject invariants. It is a good idea to explicitly annotate a pro-
gram with these assumptions. Then, a static program-analysis tool can inspect
the annotated program to check that routines preserve object invariants. This pa-
per considers two issues that affect what object invariants a program analysis tool
can check: object construction and modular checking. The paper suggests some
programming idioms and program annotations that widen the range of object in-
variants that a static program checker can check. The paper also suggests a sim-
ple extension to the Java programming language that makes the language more
amenable to object-invariant checking.

0 Introduction

When writing programs, programmers make assumptions about the relations among
variables. In object-oriented programs, these assumptions include relations among the
instance variables of a single object, relations often referred to asobject invariants. As a
simple example, an object’s invariant might state that a given instance variable is never
null . A routine accessing this variable can assume the variable is notnull and thus can
safely dereference it, but the routine must take care not to set the variable tonull .

Unfortunately, preserving object invariants is often more tedious than simply taking
care that a single instance variable is notnull . It is all too easy to write buggy code
that mistakenly breaks object invariants. These bugs are hard to find because they man-
ifest themselves far from the actual coding errors. To avoid these bugs, a useful static
program checker would inspect a program to check that routines preserve object invari-
ants. Such a checker would take as input a program annotated with the invariants to be

KRML 74 -1

checked and perhaps other information. The checker would compare the code of rou-
tines against the annotations and report when the code fails to preserve invariants. Such
a checker must be capable of statically checking program assertions and thus would be
more like a program verifier than alint -like tool. However, unlike a verifier, such a
checker need not check for full, functional correctness, making it more viable for practi-
cal use. The Extended Static Checking (ESC) project has shown that such checkers are
feasible and useful for everyday programs [0].

This paper discusses two issues that arise when integrating object-invariant checking
into an ESC-like tool. The first issue is checking that invariants are established at object
creation, which depends heavily on the semantics of the language being checked. The
paper looks at the object-construction semantics of three languages, Modula-3, Java,
and Theta, and describes and compares the checking rules for all three languages. It
also describes a small addition to Java’s constructors that enhances the utility of checked
object invariants.

The second issue discussed by this paper is modular checking of object invariants.
Modular checking in this context means that a class can be checked once when it is im-
plemented and need not be re-checked in every program that instantiates it or subclasses
from it. Modular checking requires placing limitations on where object invariants can
be declared. The paper shows that a na¨ıve set of limitations is overly restrictive and
shows how to relax these restrictions by placing limitations on where instance variables
can be updated.

Section 1 describes object invariants in a little more detail. Section 2 looks at in-
variants of newly-constructed objects. Section 3 looks at the requirements of modular
checking. Section 4 discusses some related work, in particularrun-time assertion check-
ing, found in Eiffel and Anna, andvalidity variables, an alternative approach to static
checking of object invariants. Section 5 presents some concluding remarks.

1 Object invariants

An object invariant is a relation among the values of the instance variables of a single
object. Consider the following example.

classC {
int f ,g;
/* invariant f ≤ g ; */
...

}

KRML 74 -2

This program fragment declares a classC with two integer instance variables,f and
g . The class is annotated with an object invariantf ≤ g .

Object invariants are to hold at all routine boundaries, that is, on entry and exit to
all routines. This rule is enforced by an object-invariant checker. For example, suppose
classC declares a methodm:

methodm() {
f := f + 5 ;
g := g+ 5 ;
n() ;
if f 6= g then f := f + 1 end ;
} .

The checker assumes that the object invariantf ≤ g holds on entry to methodm,
and checks that the invariant holds at the next routine boundary, the call to methodn .
The checker assumes that the object invariant holds upon return fromn , and checks
that it holds at the following routine boundary, the end ofm’s method body. Note that
it is possible that the object invariant does not hold between the increments off and
g ; the requirement is only that it hold on routine boundaries. (It is possible to relax
the requirement that invariants hold atall boundaries, but for simplicity we avoid this
generalization.)

A method can have additional annotations that an object-invariant checker will take
into consideration. For example, consider the following additional method of classC :

methodk(int d) /* requires 0≤ d */ {
g := g+ d
} .

In showing that methodk maintains the object invariant, the checker assumes the pre-
condition 0≤ d , and in showing that clients ofC don’t mess upC ’s object invariant,
the checker enforces this precondition. We assume that any object-invariant checker un-
der consideration can handle method annotations like preconditions, but we don’t focus
on them in the paper.

A subclass inherits the instance variables and object invariants declared in its super-
classes. A subclass can declare additional instance variables and provide object invari-

KRML 74 -3

ants for them. For example,

classD extendsC {
T x;
/* invariant x 6= null ; */
...

}
declaresD to be a subclass of classC . Class D introduces a new instance variable
x of some object typeT , and declares as an object invariant thatx is non-null . The
object invariant for an object of typeD is the conjunction of the “local” object invariants
f ≤ g and x 6= null declared in classesC and D , respectively.

2 Establishing object invariants initially

Once a new object is allocated, the object’s invariant must be established initially. The
process of ensuring that an object’s invariant holds after the object has been initialized
poses some challenges to an object-invariant checker. The following Modula-3 fragment
illustrates:

t := new(T) ;
...

P() .

(0)

The constructnew(T) allocates storage for an object of classT and returns a reference
to that storage. Before returning, the call tonew sets each instance variable of the
object to some arbitrary value of the variable’s type. Code fragment (0) ends with a call
to some procedureP . At this procedure boundary, the invariant of the newly allocated
object t is required to hold. However, establishing this object invariant is tricker than
it may seem, because the code fragment may appear in a scope where not all of the
object’s instance variables can be accessed.

Languages differ greatly in their mechanisms for object creation and initialization, so
the challenges of ensuring that object invariants hold after initialization differ in different
languages. Further, from the perspective of checking invariants at object initialization
time, some languages are better than others. This is because different initialization
mechanisms require the checker to enforce different rules, and some rules allow more
invariants to be checked than do other rules.

This section looks at the object creation mechanisms of three object-oriented lan-
guages. For each, it explains what rules an object-invariant checker would enforce to

KRML 74 -4

ensure that object invariants are properly established during initialization. The section
also points out how some of these rules are more flexible than others.

Modula-3. In Modula-3, a new instance of a classT is allocated by callingnew(T) .
A program can associate with each instance variable a constant expression called the
variable’sdefault value. The call to new initializes each instance variable of the new
object to its default value if the variable has an associated default value, and to an arbi-
trary value of the variable’s type otherwise.

In Modula-3, a call tonew(T) may be placed in a scope where not all instance
variables ofT are visible. The code that immediately follows the call tonew is then
unable to affect the values of those variables. A programmer’s only hope is that the
default values of those variables satisfy the appropriate object invariants. Thus, rather
than checking each call tonew, an object-invariant checker performs a check for each
object-invariant declaration. The check enforces that the values assigned to instance
variables bynew satisfy the object invariant. Code that invokesnew can then simply
assume the new object to satisfy its object invariant.

The downside to default values is that they rule out many useful invariants. This is
especially true for instance variables that are references to other objects: the only con-
stant value for references isnull , so an invariant saying that an instance variable is not
null can never be satisfied by default values. To support checking of more interesting
invariants, a mechanism other than default values is needed.

Java. Java hasconstructors, code responsible for initializing newly allocated objects.
Constructors give class implementors more control over the initial values of objects than
do default values. However, details of a language’s constructor mechanism can greatly
affect the rules enforced by an object-invariant checker.

A class in Java declares a superclass, a list of instance variables, a set of methods, and
a set of constructors. In addition, instance variables can be associated withinitializers,
pieces of executable code that compute initial values for the variables. A class is allowed
to have several constructors taking different parameters; a client specifies which one of
the constructors to invoke by providing a list of parameters whose types match those of
the desired constructor. There is a syntactic restriction on the executable code given by
constructors: a constructor must start by calling a constructor of the superclass, or by
calling another constructor of the same class. The second of these is provided by the
language so that two constructors can share code conveniently by letting one constructor
call the other; the rest of this section focuses only on constructors of the first kind.

KRML 74 -5

A new instance of a classT is allocated by the expression

newT(. . . parameters to constructor. . .) .

Executing such an expression allocates space for the new object, sets every instance
variable of the new object to azero-equivalent constant(that is, 0 for integers,false
for booleans,null for objects,etc.), executes the constructor specified by the types of
the constructor parameters, and finally returns a reference to the object. A constructor
is executed as follows. First, the superclass constructor specified in the constructor’s
body is executed. Then, for each instance variable that the class declares, the associated
initializer is evaluated and the result is assigned to the instance variable. Finally, the rest
of the constructor body is executed.

In languages with constructors, it makes sense to require that the constructor of
a class take responsibility for establishing any object invariant that the class declares.
This rule is easy for programmers to remember, easy for an ESC-like invariant checker
to enforce, and ensures that all of an object’s invariants are established on return from
new.

The task of defining an object-invariant checker for Java is complicated somewhat
by liberal rules regarding the use of “this ” in initializer code and in constructor bodies.
In initializer code and constructor bodies, the special variablethis refers to the object
being constructed. However, during the execution of superclass constructors, neither
the initializer code nor the constructor bodies of subclasses have run yet, so instance
variables ofthis defined by subclasses have zero-equivalent constants. These constants
might not satisfy the invariants of subclasses, making any use ofthis in an initializer
or constructor body unsafe from the perspective of an object invariant checker. For ex-
ample, if a superclass constructor invokes a method that is overridden by a subclass, the
subclass’s code for the method will start executing before the subclass’s constructor has
had a chance to establish the subclass’s invariants. (In an attempt to avoid this problem,
C++ temporarily changes the method suite ofthis during the call to the superclass con-
structor so that method calls do not dispatch to subclass code. This does not solve the
problem completely in C++, and it also introduces new difficulties.)

An object-invariant checker can take two approaches to solving the problems posed
by uses ofthis during object construction. First, it can take the approach described
for Modula-3 above: restrict checkable object invariants to those that are true for the
default values of instance variables. However, in Java, the default values of instance
variables are the zero-equivalent constants, not programmer-defined constants. This
restricts checkable object invariants even more severely than in Modula-3, so severely
that very little useful checking is possible.

KRML 74 -6

The second approach is to outlaw most uses ofthis in initializers and constructor
bodies. In particular, no methods ofthis can be invoked, andthis cannot be assigned
to global locations or passed as a parameter. The only waythis can be used in these
contexts is to read and write its instance variables. The checker will check that the object
invariant for this holds on exit from constructors, but, because of the severe restrictions
on this in the constructor body, it need not check that the invariant holds before then.

Theta. Like Java, the programming language Theta [1] has constructors. However,
constructors in Theta were designed with object invariants in mind, avoiding the prob-
lems with uses ofthis found in Java (and other languages).

In Theta, constructors are terminated bymake statements, that is, likereturn state-
ments in ordinary methods,make statements terminate the invocations of constructors.
In addition to terminating the constructor,make statements initialize a new object.

The form of amake statement is

make {inits ; supercons} then
...

end ,

where inits is a sequence of assignments to the instance variables defined locally by the
class,superconsis a call to a superclass constructor, and the “then -block” is a block
of code, like any block of code found in method bodies. When amake statement is
executed,inits is executed to initialize the class’s local instance variables, the superclass
constructor is called to initialize the superclass’s instance variables, thethen -block
is executed, and finally the constructor returns to its caller. Thus, object construction
occurs in two phases: the first phase goes from subclasses to superclasses initializing
instance variables, and the second phase goes from superclasses to subclasses executing
then-blocks. In a Theta constructor, the special variable “self” can be used to refer to
the object being constructed, but only insidethen-blocks.

An object-invariant checker for Theta would ensure thatinits of make statements
establish invariants on the class’s own instance variables, and thatthen-blocks, like
method bodies, preserve (not establish) the class’s invariant. This design of constructors
is well suited for an object-invariant checker, sinceself cannot be used until the instance
variables of the object have been initialized and the object satisfies its object invariant.

One may ask whythen -blocks are included in constructors—after all, the construc-
tor has already established the object invariant by the time anythen-block is executed,
so what else should a constructor do? Object construction often involves more than es-
tablishing the object invariant. For example, sometimes it is desirable to add the new

KRML 74 -7

object to some global list of objects. In such cases, it is convenient to have a built-in
second phase of the construction, which is whatthen -blocks facilitate. Note that Java’s
constructors feature only one construction phase. Next, we explain how to extend Java
to be better suited for object-invariant checking; with this extension, the constructor
body emerges as a second-phase constructor.

Java extension. We can improve Java’s constructors from the perspective of checking
object invariants by borrowing some syntax from C++ and some semantics from Theta.
In constructor implementations, before the constructor body, initializers could be given
for instance variables after a colon. For example, the constructor of a classC with
instance variablesf and g might look like

C(. . . parameters to constructor. . .)
: f (E), g(E′)
{
. . . call to superclass constructor goes here. . .
. . . rest of body of constructor goes here. . .
} ,

whereE and E′ are expressions that are allowed to refer to the parameters of the con-
structor but not tothis . The semantics of such a constructor would be thatf and g are
first initialized to the results of evaluatingE and E′ , then the superclass constructor is
called, then the constructor body is executed. As in Theta, subclasses are given the op-
portunity to initialize their instance variables before the superclass constructor is called,
so an object-invariant checker can allow arbitrary uses ofthis inside the constructor
body.

These new initializers for instance variables obviate the need for Java’s old initializ-
ers that are associated with the instance variables themselves and are executed after the
superclass constructor is called. The new initializers have two advantages over the old
ones. First, by executing before the superclass constructor rather than after, they avoid
problems with usingthis in the constructor body. Second, by associating them with
constructor definitions rather than with instance-variable definitions, they can initialize
instance variables to values that depend on the constructor’s parameters. (The two kinds
of initializers do not interfere with one another, so Java’s old initializers could be kept
in the language for backward compatibility.)

Supporting the new initializers in the Java virtual machine would require a change
to the byte-code verifier. Currently, the verifier ensures that the byte-code of an object
constructor does not do anything to itsthis parameter until after the constructor has

KRML 74 -8

called a superclass constructor. To support the new initializers, the verifier has to be
relaxed to allow writing to instance variables ofthis while still disallowing other uses
of this . This change is simple, and it is backward-compatible with the current verifier.

3 Modularity and the placement of object invariants

To check that a program maintains its specified object invariants, an object-invariant
checker generatesverification conditionsfrom the program and the object invariants. A
verification condition is a logical formula that is valid only if the program maintains its
object invariants. The verification condition is passed to a theorem prover to see if it is
valid.

The information available in a given verification scope affects the generation of ver-
ification conditions in that scope. For example, if an instance variablef is constrained
by the object invariantf > 0 and is not visible in some verification scope, then the
verification conditions generated in that scope mentions neitherf nor its invariant. We
call this modular checking, since it allows scopes to be checked without having full
information about the program. Modular checking is said to besoundif the truth of a
modularly-generated verification condition implies the truth of the condition that would
have been generated in the presence of the full program [4]. To achieve soundness, each
scope must contain enough information to generate sufficiently strong verification con-
ditions. As an example of what goes wrong when not enough information is available,
if a scope contained the instance variablef but not the object invariantf > 0 , then
the verification conditions generated in that scope would not check that updates tof
maintain the invariant.

The placement of object-invariant declarations relative to the placement of instance-
variable definitions is crucial to the soundness of modular checking. Essentially, an ob-
ject invariant must be visible in any scope where any variable it mentions is visible. We
call this condition thevisibility requirement(cf. [4]). Unless the visibility requirement
is satisfied, updates of a variable in some scopes are not guaranteed to be constrained by
every invariant that mentions the variable.

As an example, consider a classReaderdeclared as

classReader{ int lo, cur, hi; . . . } ,

and one ofReader’s subclasses,BlankReader, declared elsewhere as

classBlankReaderextendsReader{ int max; . . . } .

KRML 74 -9

According to the visibility requirement, it would be legal to add the object invariant

lo ≤ cur ∧ cur ≤ hi

to classReader, and it would also be legal to add the object invariant

maxis a power of 2

to classBlankReader.
For some programs, the visibility requirement can be overly restrictive, ruling out

useful invariants. Consider, for example, the object invariant

hi ≤ max . (1)

This invariant cannot be written in either classReaderor BlankReader. It cannot be
written in classReaderbecause the instance variablemax is not visible there. It cannot
be written in classBlankReaderbecause there are scopes whereReader, and thushi ,
are visible but whereBlankReaderand max are not, violating the visibility require-
ment. Indeed, the methods ofReaderare in such a scope, so placing invariant (1) in
BlankReaderwould mean that a method of classReadermight inadvertently increase
hi beyondmax.

Invariant (1) is taken from a real piece of code, the Modula-3 input streams li-
brary [2]. Instance variablecur is the index of the next character to be returned by the
reader. Readers are buffered, andlo and hi are indices that bracket the characters that
are stored in the buffer.BlankReaderis a simple subclass ofReader. A BlankReader
is an input stream of lengthmax (which is specified during object construction) and its
contents is all blank characters. Even though object invariant (1) violates the visibility
requirement, this library is believed to be correct because theReader implementation
of the methods does not modify the instance variablehi . This example indicates that
the visibility requirement can be relaxed for an invariant if the checker has a mechanism
for “write protecting” instance variables in the invariant. Such a mechanism should en-
sure that code in scopes where the invariant is not visible does not modify any of the
invariant’s variables.

Relaxing visibility with write protection. Simple annotations can provide just such a
write-protect mechanism. We describe these annotations in the context of Java, although
they are applicable also to other object-oriented languages.

Like many object-oriented languages, Java features a slew ofaccess control modi-
fiers, such asprivate and public , that can be part of the declaration of instance vari-
ables. Ordinarily, the modifiers determine which scopes are allowed to read and write

KRML 74 -10

each instance variable. We propose that an object-invariant checker enforce slightly dif-
ferent rules. Under this proposal, the current access control modifiers are used to control
the reading of instance variables only, and the writing of instance variables is controlled
by additionalwrite modifiers.

For each read modifier, likeprivate , we introduce an analogous write modifier with
a similar name, likewritable-private . These write modifiers are included in comments
after the read modifier; if an instance variable declaration does not mention a write
modifier, the write modifier defaults to the one analogous to the given read modifier.
For example, a simple use of write modifiers is

classC { public /* writable-private */ int f ; . . . } .

This declares a classC with an instance variablef that is publicly readable and only
privately writable. (This is a common programming idiom, usually realized by declaring
f as private and introducing a public methodgetF that returns the value off .)

In addition to write modifiers that mirror existing read modifiers, we introduce a
special write modifier,writable-deferred , which designates that write access to the in-
stance variable is subclass-dependent. In particular, if an instance variablef is declared
in a superclassS as writable-deferred , then a subclassT is allowed to set the write
modifier of f , provided that no other superclass ofT has already done so. If a variable
is writable-deferred to a scope, then that scope is not allowed to write the variable;
stated differently,writable-deferred does not imply the privilege to write a variable.

The special write modifierwritable-deferred allows us to safely handle the anno-
tation of classesReaderand BlankReaderdescribed earlier. With write modifiers, the
classes can be declared as

classReader{
protected /* writable-deferred */ int lo, hi;
protected int cur;
...

} ,

and

classBlankReaderextendsReader{
/* writable-private Reader.lo, Reader.hi; */
private int max;
...

} .

KRML 74 -11

This declares that methods of classReadercan read instance variableslo , cur , and
hi , but can write onlycur . Subclasses ofReadercan read these instance variables too,
can write cur , and have the opportunity to define the write modifiers forlo and hi .
The subclassBlankReaderdefines the write modifiers oflo and hi in order that its
methods be able to write the instance variables. ClassBlankReaderalso introduces the
instance variablemax, whose read and write accesses are restricted to methods of class
BlankReader.

With write modifiers, the visibility requirement for object invariants can be relaxed
as follows: an object invariant must be visible in any scope where any variable it men-
tions can be written. Applied to theReaderand BlankReaderexample, this relaxed
visibility requirement allows classReaderto declare the invariant

lo ≤ cur ∧ cur ≤ hi

and allows classBlankReaderto declare the invariant

hi ≤ max .

The relaxed rule is sound because every scope that can update a variable is aware of the
invariants constraining the values of that variable.

Write protection and object initialization. Write protection adds a wrinkle to object
initialization. We said earlier that the constructors of a class are obliged to establish
any object invariant that the class declares. However, withwritable-deferred instance
variables, a class might not have permission to write to all the instance variables in its
invariants, making it hard for its constructors to establish its invariants. For example,
constructors for the classReadermust establish the condition

lo ≤ cur ∧ cur ≤ hi ,

but by declaringlo and hi as writable-deferred , class Readercan write only cur
and has given up the right to writelo and hi .

One way to deal with this wrinkle is an idiom in which constructors declare appro-
priate preconditions on variables likelo and hi , and leave it to subclasses to establish
those conditions. In the case of classReader, a precondition that suffices is

lo ≤ hi .

This allows the classReaderconstructor to establish its invariant, for example by setting
cur to lo . The precondition dictates that the constructor forBlankReaderinitialize the
instance variableslo and hi accordingly before theReaderconstructor is called.

KRML 74 -12

Unfortunately, this idiom does not work in languages like Java in which subclass
constructors do not have a chance to initialize their instance variables until after super-
class constructors are finished. (This is another reason to extend Java as suggested in
Section 2.) The idiom also does not work unless the subclass is allowed to provide an
initializer for instance variables declared (aswritable-deferred) in a superclass.

If the idiom above cannot be used with the language at hand, one can instead change
the semantics ofwritable-deferred somewhat to allow the constructors to assign initial
values to those instance variables that the class declares aswritable-deferred . Pro-
grammers can then use the following idiom to establish invariants initially: a subclass
constructor passes the initial values ofwritable-deferred instance variables as param-
eters to its superclass constructor. For example, theReader constructor would take
two parameters, saylow and high, and would specify the preconditionlow ≤ high
(which enablesReader to establish the object invariant it declares) and postcondition
lo = low ∧ hi = high (which enablesBlankReaderto establish the object invariant it
declares).

Further relaxing visibility. Even the relaxed visibility requirement is stricter than we
would like. In particular, either form of the visibility requirement makes it difficult
to check invariants that mention instance variables of instance variables. For example,
consider the following class:

classV {
int x,y,cx,cy;
int xCenter,yCenter;
invariant x≤ xCenter≤ x+ cx ∧ y≤ yCenter≤ y+ cy ;
...

} .

The invariant declared in this class satisfies the visibility requirement, because all of
the variables it mentions are declared in the same class as the invariant itself. However,

KRML 74 -13

suppose the first four fields were replaced by a single rectangle object of typeRect:

classV′ {
Rect r;
int xCenter,yCenter;
invariant r 6= null

∧ r.x ≤ xCenter≤ r.x+ r.cx
∧ r.y≤ yCenter≤ r.y+ r.cy ;

...

} .

This object invariant is not allowed because it violates the (relaxed) visibility require-
ment: theRect instance variablesx , y , cx, and cy are not declared in the same scope
as the invariant. This is potentially a real problem, because there can be code that mod-
ifies these fields of aRect object without knowing anything aboutxCenter, yCenter,
or the object invariant of classV′ .

Still, many programmers may find this a useful object invariant. A possible avenue
toward solving this problem is to introduce the notion ofinlined objects. The following
example illustrates the idea.

classV′′ {
/* inlined */ Rect r;
int xCenter,yCenter;
invariant r 6= null

∧ r.x ≤ xCenter≤ r.x+ r.cx
∧ r.y≤ yCenter≤ r.y+ r.cy ;

...

methodmoveX(int dx) {
r.transpose(dx,0) ;
xCenter:= xCenter+ dx ;
}
}

Here, instance variabler is declared to contain only inlined objects. That declaration
allows classV′′ to declare an object invariant that mentions the instance variables of
r , despite the fact that those are declared in classRect. Since the implementation
of classRect couldn’t reasonably be expected to maintain theV′′ object invariant, the
invocation of, for example, theRectmethodtransposein methodmoveXabove cannot

KRML 74 -14

be assumed to return in state where theV′′ object invariant holds. Instead, the checker
will expect the implementation ofmoveXto reestablish theV′′ object invariant before
the next routine boundary.

In order for this approach to be sound, one needs to worry about theleakingof r , that
is, roughly, the possibility that the object referenced byr is accessible from outside the
implementation of classV′ . This is a complicated problem which we will not attempt
to solve here. Instead, we simply note that the problem is quite related to the leaking
problems that arise in the context ofdynamic dependencies[5], a partial solution for
which is described in KRML 68 [3].

4 Related work

An alternative to checking object invariants statically is to check them dynamically via
run-time assertions. Programming systems often provide anassert pragma or macro
with which a programmer can manually insert run-time assertions at routine boundaries.
There are also more automated approaches; for example, invariants declared in Anna [7]
or Eiffel [8] compile into run-time checks at appropriate boundaries. Historically, static
checkers for object invariants have not been available, so all checking of object invari-
ants has been done dynamically.

The relative merits of static versus dynamic checking are well understood, and this
understanding applies equally to the checking of object invariants. Just as dynamic typ-
ing provides flexibility over static typing, dynamic checking of object invariants can
check a larger variety of invariants than can static checking. For example, dynamic
checking does not involve restrictions like those discussed for static checking in Sec-
tion 3. The major advantage of static checking is that it can find errors earlier in the
development cycle than can dynamic checking. A further advantage of static checking
is that it checks the program for all inputs. In contrast, the effectiveness of dynamic
checking depends on the selection of a good set of test cases, an arduous process that’s
often ignored.

The rest of this section discusses the object-invariant checking proposed in this paper
with the approach taken in ESC. ESC does not have a built-in notion of object invari-
ants. Instead, it takes a more general approach, encoding object invariants using the data
abstraction features of the ESC tool. The idiom used in ESC is to introduce an abstract
field valid for each object. The concrete representation ofvalid reveals a condition
under which the object is “valid”, that is, a condition describing the object invariant. An
advantage of this approach is that no special treatment of object invariants is needed;
reasoning about the program is done in terms of abstract variables, one of which is

KRML 74 -15

valid . A second advantage of thisvalidity approach, as we shall call it, is that program-
mers get full control in specifying when an object is assumed to be valid and when it is
not. Among other things, this second advantage allows classes to have “close” methods
that destroy the validity of object, perhaps by freeing some expensive system resources
that the object needs in order to be valid.

Building the concept of object invariants into the static checker requires special
mechanisms in the checker and does not allow as much flexibility when it comes to,
for example, allowing objects to be invalidated during their lifetime. The advantage of
built-in invariants is some simplicity over the validity approach:

• Fewer abstract variables. Since object invariants hold implicitly at every routine
boundary, there is no need to introduce an abstract variablevalid .

• Simpler public interfaces. The object invariant is implicitly part of every routine’s
pre- and postconditions. Thus, for example, one doesn’t need to manually specify
that every method requires validity.

• More manageable with recursive structures. Experience with ESC indicates that
there are problems with the performance of the underlying mechanical theorem
prover when one attempts to reason about programs that contain recursive data
structures such as trees and linked lists. Because an object invariant is local to one
object, rather than being a function of the validity of the “next” object, the same
performance problems do not arise with built-in object invariants.

The validity approach uses ESC’s data abstraction facility, so it is not surprising that
the issues that arose in designing that facility also arise when designing a checker that
checks directly for object invariants. For example, data abstraction requires a visibility
requirement similar to the one outlined in this paper [4]. Also, leaking is a problem for
data abstraction just as it is for object invariants [5]. Finally, the need to write protect
instance variables also arises in the validity approach. In the validity approach, write
protection is achieved through a specification idiom calledread-only by specification[6].

5 Conclusions

In this paper, we have outlined how the checking of object invariants can be built into
an ESC-like, static checker. We focused on two issues that arise when designing such
a checker: how object invariants are established initially, and in what scopes object
invariants are allowed to be declared.

KRML 74 -16

For the first focus, we showed how the details of a language’s design influence how
a checker ensures that invariants are established upon object creation. We pointed out
that careful language design can enable the checking of a wider range of invariants, and
suggested a backward-compatible extension to Java that improves the language in this
regard.

For the second focus, we showed that an object-invariant checker can allow a larger
variety of object invariants if the scopes in which instance variables can be updated is
limited. We showed a methodology of write protecting instance variables, introduc-
ing a special write modifier calledwritable-deferred . This methodology enables the
checking of a wider range of invariants.

References

[0] Extended Static Checking home page, Digital Equipment Corporation, Systems Re-
search Center. On the Web athttp://www.research.digital.com/SRC/
esc/Esc.html .

[1] Theta. On the Web athttp://clef.lcs.mit.edu/Theta.html .

[2] Mark R. Brown and Greg Nelson. I/O streams: Abstract types, real programs. In
Greg Nelson, editor,Systems Programming with Modula-3, Series in Innovative
Technology, pages 130–169. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[3] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep ex-
posure. KRML 68, Digital Equipment Corporation Systems Research Center, July
1996.

[4] K. Rustan M. Leino.Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

[5] K. Rustan M. Leino and Greg Nelson. Beyond stacks. KRML 54, Digital Equipment
Corporation Systems Research Center, July 1995.

[6] K. Rustan M. Leino and Greg Nelson. Read-only by specification. KRML 58,
Digital Equipment Corporation Systems Research Center, September 1995.

[7] David C. Luckham.Programming with Specifications: An Introduction to ANNA,
a Language for Specifying Ada Programs. Texts and Monographs in Computer
Science. Springer-Verlag, 1990.

KRML 74 -17

[8] Bertrand Meyer.Object-oriented Software Construction. Series in Computer Sci-
ence. Prentice-Hall International, New York, 1988.

