
SRC Technical Note
1997 - 004a
June 27, 1997

Fully Dynamic 2-Edge Connectivity Algorithm in

Polylogarithmic Time per Operation

Monika Rauch Henzinger and Valerie King

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved

Abstract

This paper presents the first dynamic algorithmthat maintains 2-edge connectivity in polylogarithmic
time per operation. The algorithm is a Las-Vegas type randomized algorithm.

The expected time forp = �(m0 + n) insertions or deletions of edges isO(p log5 n), wherem0 is
the number of edges in the initial graph withn nodes. The worst-case time for a query isO(logn). If
only deletions are allowed then the cost forp updates isO(p log4 n) expected time.

1 Introduction

We consider the problem of maintaining 2-edge connectivity during an arbitrary sequence of edge insertions
and deletion. Two nodes are2-edge connectediff there are two edge-disjoint paths between them. Given
ann-vertex graphG, thefully dynamic 2-edge connectivity problemis to maintain a data structure under an
arbitrary sequence of the following update operations:

insert(u,v): Add the edge{u, v} to G.

delete(u,v):Remove the edge{u, v} from G.

query(u,v): Return true iffu andv are 2-edge connected inG.

In 1991 [5], Fredrickson introduced a data structure known astopology treesfor the fully dynamic 2-
edge connectivity problem with a worst case cost ofO(

√
m) per update, wherem is the number of edges in

the graph at the time of the update. His data structure permitted 2-edge connectivity queries to be answered
in O(logn) time. In 1992, Eppstein et. al. [1, 2] improved the update time toO(

√
n) using thesparsification

technique. If only edge insertions are allowed, the Westbrook-Tarjan data structure [11] maintains the 2-
edge connectivity in timeO(α(m, n)) per insertion or query. If only edge deletions are allowed (“deletions-
only”), then no algorithm faster than the�(

√
n) fully dynamic algorithm was known.

Using randomization, we give the first polylogarithmic-time algorithm for the problem: we present a
fully dynamic 2-edge connectivity problem in amortized expected timeO(log5 n) per update andO(logn)
worst case time per 2-edge connectivity query. If the problem is restricted to edge deletions only, our
algorithm runs in amortized timeO(log4 n). 1

Let T be a spanning forest of the graph. An edgee of T is coverediff there exists a nontree edge{x, y}
such thate lies on the tree path betweenx andy.

Two nodesu andv are 2-edge connected iff all edges on the tree path between them are covered. This
leads to a first naive approach for maintaining 2-edge connectivity dynamically: Keep for each edgee a
”coverage count”, i.e., the number on nontree edges coveringe. If T is stored in a dynamic tree data
structure with the coverage count as cost [9], then after the insertion and deletion of a nontree edge all
coverage counts can be updated in timeO(logn). However when a tree edge is deleted and a nontree edge
becomes a tree edge,�(n) coverage counts can change and it is not known how to update the dynamic tree
efficiently.

We avoid this problem as follows. (1) When a tree edgee is deleted, we firstswapit with a nontree edge
e′ such that the cycle induced bye′ in T containse. This meanse′ becomes a tree edge ande becomes a
nontree edge. Then we delete the nontree edgee. (2) We do not keep a coverage count, but remember for
each tree edge simply whether it is covered or not, i.e. acoverage bit. This requires a more complicated

1A preliminary version of this result appeared in [6].

1

routine for deleting nontree edges than when keeping coverage counts. However it has the advantage that the
coverage bit of tree edges are not modified during a swap. Thus we reduced the problem of arbitrary edge
deletions to the problem of maintaining the coverage bit. We show below how to solve the latter problem.

2 A Deletions-only 2-Edge Connectivity Algorithm

Let F be a spanning forest ofG. We give an algorithm with amortized expected timeO(log4 n).

2.1 A Deletions-only Algorithm

Definitions and notation:Edges ofF are calledtreeedges and the tree path betweenu andv is denoted by
π(u, v). A nontree edge{u, v} coversa tree edgee iff e lies on the tree path betweenu andv. A bridgeis
an edge ofF that is not covered by nontree edge ofG. Two nodesu andv are 2-edge connected iff all edges
onπ(u, v) are covered [5].

Throughout the algorithm, the nontree edges ofG are partitioned into levelsE1, . . . , El , l = d2 logne.
Let Fi denote a forest of subtrees ofF which are 2-edge connected inGi = (V, (∪j≤i Ej) ∪ F). Then
Fi ⊆ Fi+1 and an edge is a bridge inG iff it is in F \ Fl . The level of a tree edge eis defined to be the
smallesti such thate is covered inGi .

If T is the tree ofFj containing an edgee and a nodeu, let Tu \ e denote the subtree ofT \ e containing
u. Let theweightw(T) of a spanning tree be two times the number of nontree edges with both endpoints in
T plus the number of nontree edges with exactly one endpoint inT . Thesize s(T) of a spanning tree is the
number of nodes in it.

We maintain the following data structures:

• F is stored in a dynamic tree data structureD(F) whose edges are labeled only while processing a
deletion [9].

• For each leveli , F is stored in a dynamic tree data structureB(i) in which each edge ofFi has cost 1
and all others have cost 0.

• For each leveli , the trees ofFi are stored in an ET-tree in which all nontree edges ofEi are stored,
referred to as the ET-trees of leveli . The weight of an ET-tree is the number of nontree edge stored
there. (See appendix for a full description of ET-trees.)

• For G we keep a dynamic minimum spanning tree data structureD(MST) in which edges are
weighted by their level number. The edges in the initial spanning forestF are weighted 0. When
an edge is added toF , its weight is decreased to 0. An efficient data structure for maintaining a
minimum spanning tree with a small number of weights can be found in [6, 7].

In addition, we keep for each nontree edge a pointer to where it is stored and for each tree edge, its
level number and a pointer to its location in each data structure in which it appears. We keep the following
invariant.

Invariant:

1. In B(i) an edge ofF has cost 1 iff it is inFi and otherwise it has cost 0.

2

To initialize the data structures:Initially, put all nontree edges intoE1. The remainingEj , j 6= i are empty.
Compute the 2-edge connected components ofG. Let F1 be the 2-edge connected subforest ofF . Then
F1 = F2 = ... = Fl . Construct the data structures accordingly.

To answer the query: “Are u andv 2-edge connected?”:To test ifu andv are 2-edge connected, output
“yes” iff every edge on the path betweenu andv has weight greater than 0 inB(l). This test takes time
O(logn).

To update the data structure after a deletion of edge e= {u, v}:
Case A: e∈ F : If e /∈ Fl (thene is a bridge), removee from all data structures representingF . Otherwise,
let i be the level ofe. Use D(MST) to find a replacement edgee′ in Ei for e, makee a nontree edge ofEi

ande′ an edge ofF by callingswap(e, e′) and continue as in Case B.

Case B: e∈ Ei :
The Delete Nontree(e, i) algorithm keeps a listL of edge disjoint paths ofF containing possible

bridges. InitiallyL is empty.

DeleteNontree (e, i)

1. Deletee from the ET-tree in which it is stored if it is present.

2. Addπ(u, v) to L.

3. while L 6= ∅, remove any pathπ(a, b) from L and doTest Path(a, b, i).

4. if π(u, v) was not covered on leveli andi < l , doDelete Nontree(e, i + 1).

The procedureTest Path(u, v, i) either determines that all edges inπ(u, v) are covered by a sequence of
random samples; or finds one tree edgef in level i which is suspected of being “sparsely covered” by edges
in Ei . If indeed, f is sparsely covered, the algorithm removesf from Fi and moves toEi+1 those nontree
edges which cross the cut induced byf ’s removal. The edges in paths ofF covered by these nontree edges
are in turn marked as possible bridges. Thus the tree inFi containing f is split into two subtreesT1, T2, and
the data structures representingFi are modified accordingly. With very low probability, f is not sparsely
covered. In this casef is not removed fromFi . In either case, the smaller ofT1, T2 is searched exhaustively
to determine which of its edges have become bridges inGi . All paths in L contained in the searched tree
are removed fromL; the one path containingf is replaced by its subpath in the lighter component.

Test Path (u, v, i)
Let T denote the tree ofFi containingu andv.

1. iu = 0 andiv = 0;

2. Repeat untiliu andiv are both greater than lgw(T)− 1 or the algorithm stops.

(a) Find the furthest edgeeu from u onπ(u, v) such thatw(Tu\eu) ≤ 2iu . If this cut was previously
examined, incrementiu and repeat.
Find also the closest edgee′u to u onπ(u, v) such thatw(Tu \ e′u) > 2iu−1.

(b) If iu ≤ lgw(T)− 1 then ifSample(u, v, e′u, eu, i) returnsfalse, stop.

(c) Find the furthest edgeev from v onπ(u, v) such thatw(Tv \ev) ≤ 2iv . If this cut was previously
examined, incrementiv and repeat.
Find also the closest edgee′v to v onπ(u, v) such thatw(Tv \ e′v) > 2iv−1.

3

(d) If iv ≤ lgw(T)− 1 then ifSample(v, u, e′v, ev, i) returnsfalse, stop.

3. if i u > lgw(T)− 1 andiv > lgw(T)− 1 thenfπ(u, v) is covered.g Removeπ(u, v) from L.

Sample(z, w, e′z, ez, i) requires that the path connectinge′z andez (includinge′z andez) is in Fi and that
e′z andez belong toπ(z, w). Let c andc′ be constants to be determined later. Letx andy be the endpoints
of e′z andez which are furthest from each other such thatx is closer toz thany. Let T denote the tree ofFi

containingx andy.

Sample(z, w, e′z, ez, i):

1. Choose a sample set X:If w(Tx \ ez) < c log2 n then letX be the set of all nontree edges incident to
Tx \ ez. Otherwise the setX is built by samplingc log2 n times from the set of edges ofEi incident to
nodes ofTz\ ez. Each edge with endpoints inTx \ ez is picked with probability between 1/w(Tx \ ez)

and 2/w(Tx \ ez)

2. Test if all tree edges in leveli on the pathπ(x, y) are covered by edges inX by performingtest cover(π(x, y), i−
1, X). If so, incrementiz and returntrue.

3. Else let f = {x′, y′} be the uncovered such edge nearest tox.

(a) ConstructS = fedges ofEi connectingTx \ f andTy \ f g: For each edgee in Ei incident to
Tx \ f , do test(e, f, i) to determine ife connectsTx \ f andTy \ f . If so, adde to S.

(b) If 0 ≤ |S| ≤ w(Tx \ f)/(15c′ logn) thenff is sparsely coveredg,

i. Do remove(f, i) to remove f from Fi ;

ii. For each edgee= {a, b} in S:

A. Do move up(e, i) to movee from Ei to Ei+1;

B. Add suitable subpaths of the pathπ(a, b) to L by callingaddL(a, b).

(c) If s(Tx \ f) > s(Ty \ f) then letT ′ beTy \ f and doaddL(z, x′);
else setT ′ to Tx \ f and doaddL(y′, w).
Do checkbridges(i, T ′) to find all edges ofT ′ which are no longer 2-edge connected inGi and
remove all paths inL which are contained inT ′ from L.

(d) Returnfalse.

2.2 Proof of Correctness

We show first that ifiu > lgw(T) − 1 andiv > lgw(T) − 1 then indeed all edges ofπ(u, v) are covered.
This implies the correctness ofTest Path.

Lemma 2.1 If in Test Path iu and iv are greater thanlgw(T)− 1 then all edges onπ(u, v) are covered.

Proof: We have to show that all edges onπ(u, v) have been covered. Letev be the furthest edge
fromv onπ(v, u) such thatw(Tv\ev) ≤ w(T)/2. Leteu be the furthest edge fromu onπ(u, v) such
thatw(Tu\eu) ≤ w(T)/2 and lete′u be its incident edge closer tov. Note thatw(Tu\e′u) > w(T)/2.
Thusw(Tv \ e′u) ≤ w(T)/2, i.e., eithere′u = ev or ev is further fromv thane′u. Thus, the longest
path tested “foru” and the longest path tested “forv” either touch or overlap.

4

We next show that all nontree edges are contained in∪i≤l Ei , i.e., whenT est Path(u, v, l) is called,
and Step 3 of Sample is executed, no nontree edge is inserted intoEl+1. This fact implies that the trees of
Fl span the 2-edge connected components ofG.

Lemma 2.2 With probability at least2 1− 1/n2, when Step 3 inSample is executed, then|S| ≤ w(Tz \
f)/(15c′ logn).

Proof: For each edgee′ ∈ π(x, y) note thatw(Tx \ez)/2 ≤ w(Ty \e′). Thus, when we sample from
Tx\ez, we are sampling fromTx\e′ with probability at least 1/2. Theneach nontree edge is sampled
with probability at least 1/(2w(Tx\e′)). Let us test the hypothesis that|S| ≤ w(Tx\e′)/(15c′ logn).
The error probability, i.e., the probability that|S| > w(Tx \ e′)/(15c′ logn), but no edge ofS is
selected is

(1− 1/(30c′ logn))c log2 n = O(1/n5)

for c ≥ 150c′.

Thus the probability that|S| > w(Tx \ e′)/(15c′ logn) for any of the at mostn edges onπ(x, y) is
at most 1/n4, implying that that the probability is at most 1/n2 that it happens at any deletion.

Thus with high probability step (3a) of sample is carried out only once for a subtree before it is split off
from its tree. In the following we denoteTx \ f by T1. Note thatw(T1) ≤ w(T)/2. Letmi be the number
of edges ever inEi .

Lemma 2.3 For all smaller trees T1 on level i,
∑
w(T1) ≤ 15mi logn.

Proof: We use the “bankers view” of amortization: Every edge ofEi receives a coin whenever it
is incident to the smaller treeT1. We show that the maximum number of coins accumulated by the
edges ofEi is 15mi logn.

Each edge ofEi has two accounts, astart-up accountand aregular account. Whenever an edgee
of Ei is moved to leveli > 1, the regular account balance of the two edges on leveli with maximum
regular account balance is set to 0 and all their coins are paid intoe’s start-up account. Whenever an
edge ofEi is incident to the smaller treeT1 in a split ofT , one coin is added to its regular account.

We show by induction on the steps of the algorithm that a start-up account contains at most
10 logn coins and a regular account contains at most 5 logn coins. The claim obviously holds at the
beginning of the algorithm. Consider stepk+1. If it moves an edge to leveli , then by induction the
maximum regular account balance is at most 5 logn and, thus, the start-up account balance of the
new edge is at most 10 logn.

Consider next the case that stepk+ 1 splits treeT1 off T and charges one coin to each edgee of
Ei incident toT . Letw0 be the weight ofT whenT was created. We show that if there exists an edge
e such thate’s regular account balance was not reset since the creation ofT , thenw(T1) ≤ 3w0/4.
This implies that at most 2 log4/3 n < 5 logn splits can have charged toe after e’s last reset. The
lemma follows.

Edges incident toT at its creation are reset before edges added to leveli later on. Sincee was
not reset, at mostw0/2 many inserts into leveli can have occurred since the creation ofT0. Thus,
immediately before the split,w(T) ≤ 3w0/2. Sincew(T1) ≤ w(T)/2, the claim follows.

2The probability can be increased for 1− 1/nd for any constantd by increasing the number of sampled edges by a constant
factor

5

Lemma 2.4 For any i, mi ≤ m/c′i−1.

Proof: We show the lemma by induction. It clearly holds fori = 1. Assume it holds forEi−1.
When summed over all smaller treesT1,

∑
w(T1)/(15c′ logn) edges are added toEi . By Lemma

2.3,
∑
w(T1) ≤ 15mi−1 logn. This implies that the total number of edges inEi is no greater than

m/c′i−1.

Choosingc′ = 2 gives the following corollary.

Corollary 2.5 All nontree edges of G are contained in some Ei for i ≤ l, i.e. El+1 is empty.

The following relationship, which will be useful in the running time analysis, is also evident.

Corollary 2.6
∑

i mi = O(m).

Finally we show that the invariant is maintained.

Theorem 2.7 In B(i) a tree edge has cost 1 iff it is in Fi and otherwise has cost 0.

Proof: The correctness of the invariant depends on the fact that two nodes are 2-edge connected iff
they are joined by a path of spanning tree edges which are covered by nontree edges.

When a tree edgee is swapped, if the tree edge is not a bridge, then leti be the minimum index
such thate is contained inFi . Since the endpoints ofe are 2-edge connected inFi , the D(MST)
returns a replacement edgee′ in Ei .

For Fj , j < i , the swap causes no change to the coverage, ase′ is not contained in anyEj , j > i ,
and there is no change to the structure ofFj as the two subtrees ofF joined bye remain in separate
components ofFj .

For levelsj ≥ i , eachGj contains the fundamental cycle formed bye′ with edges ofF . Hence
we observe that whene is swapped with its replacement edgee′, e′ is covered and all other tree
edges’ coverage remains unchanged.

When a nontree edgee′ is deleted, we observe that the only path in which coverage may change
is the tree path betweene′’s endpoints. Our deletions algorithm either finds edges covering the path
or removes from the appropriateFi those edges in the path which are no longer covered.

2.3 Details of the Implementation

We describe the basic operations available on the two types of data structures we use: dynamic trees, ET-
trees, and thek-weight MST dynamic data structure.

For dynamic trees, we can do the following, each inO(logn) time:

• link(e): links two trees with a new tree edgee.

• cut(e): removese from a tree, splitting it into two.

• increment(a, b): adds 1 to the cost of each edge onπ(a, b).

• decrement(a, b): subtracts 1 from the cost of each edge onπ(a, b).

6

• add(p, x): addsx to each edge on pathp.

• subtract(p, x): subtractsx from each edge on pathp

• min(P): returns the first minimal cost edge on the pathP.

• max(P): returns the first maximal cost edge on the pathP.

• label(e): returns the cost of edgee.

• midpoint(u, v): returns the middle edge ofπ(u, v). This is not a standard dynamic tree operation,
but can be easily implemented by storing, in each node of the balanced search tree used to implement
dynamic tree, the number of leaves in its subtree.

In addition, in timeO(log2 n), we can do:

• pathwt (u, v, wt): returns the furthest edgee from u onπ(u, v) such thatw(Tu \ e) ≤ wt . This can
be implemented inO(log2 n) time by performing a binary search onπ(u, v) using no more than lgn
applications ofmidpointand tests comparingw(Tu \ e) towt .

We use ET-trees to represent dynamically changing trees. AnET-sequenceis a sequence generated from
a tree by listing each vertex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a balanced binary tree. For each vertex we choose one designated
occurrence of the vertex in the sequence and call it theactive occurrence. Each nontree edge is stored twice,
with the active occurrence of each of its two endpoints. At each internal node of the ET-tree, we keep the
number of nontree edges incident to active occurrences in its subtree and the number of active occurrences
contained in the subtree. The ET-tree imposes an ordering on the edges of the tree being represented, and
on the nontree edges as well. Using ET-trees, we can do the following, each in timeO(logn):

• link(e): inserts a tree edgee which links up the two ET-trees containing its endpoints.

• cut(e): removes a tree edge, splitting an ET-tree into two.

• insert nontree(e): inserts nontree edgee into an ET-tree which contains an endpoint of the edge.

• deletenontree(e): remove a nontree edgee from the ET-tree in which it is stored.

• f ind nontree(i, T): return thei th nontree edge stored in the ET-treeT .

• test(a, b, i): tests if nodesa andb are in the same tree ofFi .

TheD(MST)maintains a minimum spanning tree while allowing two operations:

• insert(e, w): inserts an edgee of weightw and returns the replaced edge, if an edge is replaced.

• delete(e): deletes an edgee from the graph and returns the edge which replacese in the MST, ife is
replaced.

For each edge which is deleted or inserted or whose weight is changed by a combination of these opera-
tions, the amortized expected update cost of the fully dynamic MST algorithm when there arek weights is
O(k log2 n), so that the cost per deletion isO(log3 n) (see [6, 7]).

To maintainL we use a dynamic treeD(F) representingF . All edges in paths ofL have labels naming
the path it is in.

7

• addL(a, b): adds toL the maximal subpaths ofπ(a, b) which are edge-disjoint from the other ele-
ments ofL. It is implemented by repeatedly applyingmin andmax to find the start and end of each
subpath ofπ(a, b) with cost 0 inD(F). These subpaths are added toL. Each edge in a subpathp is
labeled inD(F) with the namex of the subpath by doingadd(p, x). The cost ofaddL is O(logn)
times to number of subpaths added toL.

We describe how to implement the operations specified in the algorithm.

• swap(e, e′) swaps a tree edgee with a nontree edgee′: For each dynamic tree and each ET-tree
containinge, docut(e), link(e′),givee′ cost 1 inB(i), and givee′ weight 0 inD(MST). Eachswap
operation costsO(logn) per level orO(log2 n) in total.

• test cover(p, j , X) covers the pathp in B(j) with edges ofX and returns the first edge in the path
which is not inFj and is not covered, if there is such an edge. To implement, useB(j). For each edge
{a, b} in X, do increment(a, b); then domin(p). If the cost of the edge returned bymin(p) is 0,
return that edge. To restoreB(j), reverse the process by decrementing the costs on each path. The
cost oftest cover is O(|X| logn).

• remove(f, i) removesf from Fi . Rundecrement(f) in B(i).
Do cut(f) on the ET-tree containingf for Fi . Decrement the weight off in D(MST). The cost is
O(log3 n).

• move up(e, i) moves a nontree edgee from Ei to Ei+1. Do deletenontree(e) from the ET-tree
containinge for Fi and insert nontree(e) on the ET-tree forFi+1 which containse’s endpoints.
Increment the weight of the edge in the connectivity data structureD(MST). The cost is dominated
by the cost of the last operation, which isO(log3 n).

• checkbridges(i, T ′) checks every tree edge inT ′ to determine if it has become a bridge inGi .

1. For each edge{a, b} in Ei which is incident to a node inT ′, do increment(a, b) in B(i − 1).

2. For each (tree) edgee in T ′, if label(e) 6= 0, then removelabel(e) from L and dosubtract(label(e), label(e)).

3. For each (tree) edgee in T ′ which has cost 0 inB(i − 1) (it is a bridge inGi) do remove(e, i).

4. RestoreB(i−1) by decrementing the paths which were previously incremented incheckbridges.

The cost isO((s(T ′)+w(T ′)) logn) plus O(log3 n) for each bridge inT ′.

2.4 Analysis of Running Time

We show that the amortized cost per edge deletion isO(log4 n) if there arem+ n deletions.
The cost of initializing data structures isO(n logn) per level plusO(m logn), for a total cost of

O(n log2 n+m logn).
The cost of Case A is dominated by the costO(log3 n) of finding a replacement edge fore, plus the cost

of Case B.
For Case B, the cost of the calls toTest Path dominate the running time.
In the case where the path is completely covered by a sequence of sampled edges, (Test Path runs

to completion), there are less than 2 logw(T) points in the path during which the nontree edges are sam-
pled. Each point is discovered usingpathwt in O(log2 n) time. At each point, the sampling and testing

8

involve O(min(w(T), log2 n)) edges at a cost ofO(logn) per edge, for a total cost, for the whole path, of
O(logw(T)(log2 n+ logn min(w(T), log2 n)) = O(min(w(T), log2 n) log2 n).

To analyze the number of timesTest Path runs to completion, we need the following:

Lemma 2.8 Let s be the number of times addL is called in one call toDelete Nontree. Let t be the number
of subpaths added to L during that call toDeleteNontree. Then t≤ 2s− 1.

Proof: To see this, letv be the number of connected components ofF induced by the labeled edges
in D(F). Considert + v. Initially, v = t = 0. When two components are disconnected they are not
reconnected and may be regarded as the same component for the purpose of this analysis.

If addL(a, b) results inr subpaths added toL thenπ(a, b) connects upr − 1 labeled subtrees,
reducingv by r − 2. Hence eachaddL adds at most 2 tot + v. Sincev ≥ 1, t ≤ 2s− 1.

Consider a fixed leveli . ProcedureTest Path is run once for each path removed fromL. Hence, the
number of calls toTest Path on level i , is no greater than the numberq of paths added toL during a call
to Delete Nontree (e, i). From the lemma we know thatq is at most twice the number of calls toaddL on
level i minus 1. We show below that the number of calls toaddL on level i is bounded by the number of
edges moved to leveli + 1 plus one. Thus,q, and hence the calls toTest Path, is at most twice the number
of edges moved to leveli + 1 plus one. If subsequentlyDeleteNontree(e, i + 1) is called, then at least one
of the calls toTest Path on level i did not run to completion and thus the number of calls that did run to
completion is at most twice the number of edges moved to leveli + 1. Thus the cost ofTest Path on all
levels running to completion isO(log4 n) per deletion andO(mi log4 n) for each level during all deletions,
for a total ofO(log4 n

∑
i mi) = O(m log4 n) during all deletions.

Consider next the case where the path is not completely covered, i.e.,Test Path does not run to com-
pletion. Let f be the first uncovered edge in step 3. LetT1 = Tx \ f . We claim that the cost of all the
successful sampling up to the point of the exhaustive search isO(w(T1) log2 n). Let T (0), T (1), . . . , T (p) be
the sequence of subtrees inT previously sampled. Noww(T (j)) ≤ w(T (j+2))/2, andw(T (p)) ≤ w(T1).
The successful sampling inT (j) has costO(w(T (j)) log2 n). Thus the total cost of successful sampling is
O(
∑

j w(T
(j)) log2 n) = O(w(T1) log2 n).

When f is indeed sparsely covered,T is split into two trees and an exhaustive search ofT ′ using
checkbridgesis carried out, whereT ′ is the smaller in size ofTx \ f andTy \ f . ThenTest Path stops.
The cost ofcheckbridges is O((s(T ′) + w(T ′)) logn) plus O(log3 n) for each new bridge. Note that
w(T1) ≤ w(T)/2 and therefore,w(T ′) ≥ w(T1). Thus, the cost of the successful sampling up to the time
the split is made plus the cost ofcheckbridgesis O(w(T ′) log2 n + s(T ′) logn) plus O(log3 n) for each
new bridge.

Now each time a node is in a component ofFi which is exhaustively searched and split, the size of its
component is at least halved. Hence, it can be in no more than lgn T′’s. Similarly, the endpoints of an edge
can be in no more than lgn T′’s. Hence,

∑
T ′ s(T

′) + w(T ′) ≤ (n +mi) logn so that the total cost of all
check path’s on leveli is bounded above byO((n log2 n+ mi log3 n) plus O(log3) for each new bridge.
Noting that an edge ofFi can become a bridge only once, this implies a bound ofO(n log3 n+ mi log3 n)
per level orO(n log4 n+m log3 n) over all.

As shown in Lemma 2.1, the probability that during the course of the algorithm, an edgef that is
suspected of being sparsely covered is not sparsely covered is no greater than 1/n2. Thus this case adds no
more thanO((n+m) log2 n/n2) = O(log2 n) to the expected cost of the algorithm.

We conclude that the total cost over the course of the algorithm for deleting edges inEi is O((n +
m) log4 n).

9

3 A Dynamic 2-Edge Connectivity Algorithm

The basic idea is to insert edges into the last level andrebuild levels as necessary. This follows the technique
used in the fully dynamic connectivity algorithm of [6].

Let F be a spanning forest ofG. We definel , Ei , andFi as in the deletions-only section. Initially, all
nontree edges ofG are put intoE1 and the otherEi are empty.

We representFi for each leveli as labeled subtrees in a dynamic tree data structure representingF .
Unlike the deletions-only algorithm, we also keep a compressed versionFc

i of Fi with size proportional to
the size ofEi , so that the ET-trees for a level representFc

i , rather thanFi . The node set ofFc
i is calledVc

i ,
its edges are calledsuperedges.

Initially and duringeach rebuild of leveli , the compressed forestFc
i = (Vc

i , Ec) is constructed using
Ei . For each edge{x, y} in Ei , we mark the path{x, y} in F and call the resulting marked subforestFm.
Let Vc

i contain all nodes which are leaves and all nodes which have degree at least three inFm. A superedge
{x, y} is in Fc

i iff x, y ∈ Vc
i , the path betweenx andy is in Fm and there are no other nodes inVc

i which
are on the pathπ(x, y).

We note that a component ofFi may contain several components ofFc
i . As the algorithm proceeds, we

allow there to be additional superedges in leveli which cover paths covered inFj , j < i , and which are not
covered by edges inEi . We describe below which exact invariants hold forFc

i .
We say thatpathπ(x, y) is represented bysuperedge{x, y}. We say anode is represented in Fci if it is

contained in a path which is represented inFc
i . The node need not be inVc

i . Theweightw(T) of a spanning
treeT in Fc

i is two times the number of nontree edges with both endpoints inT plus the number of nontree
edges with exactly one endpoint inT . Thesize s(T) of a spanning tree is the number of nodes ofVc

i in it.
We keep for each leveli :

• a dynamic tree data structureN(i) storing F , where each tree edgee which is represented by a
superedge ofFc

i is labeled with its name.

• a dynamic tree data structureN′(i) storing F , where each nodev ∈ V which is not inVc
i , but is

represented by a superedge is labeled with the name of the superedge.

Note that this means that in the dynamic tree data structureN′(i) vertices rather than edges have costs.
Operations analogous to those defined for dynamic trees with edge costs can be implemented with the
same time bounds [10].

• a dynamic tree data structureC(i) storingF where an edgeehas costci (e) if it is represented byci (e)
superedges inFj , j ≤ i .

• for each 2-edge connected component ofFc
i , an ET-tree data structure in which all nontree edges of

Ei are stored, referred to as the ET-trees of leveli .

In additon, we keep a dynamic tree data structure forF , D(F) which is only marked during the course
of a deletion, and a fully dynamic minimum spanning tree data structureD(MST). Both are used as in
the deletions-only algorithm. We also keep for each nontree edge a pointer to where it is stored, for each
tree edge, its level number and a pointer to its location in each data structure in which it appears, for each
superedge a pointer to its location in each ET-tree in which it appears, and a list of all nodes in in eachVc

i .
We keep the following invariants.

Invariants:

10

1. For each edgee in Ei , all edges ofF which are covered bye are represented inFc
i .

2. Vc
i contains every node which is represented inFc

i by more than one superedge and the endpoints of
every edge inEi . The intermediate nodes in a path that is represented by a superedge cannot be inVc

i .
(Consequently, each edge inF is represented by at most one superedge.)

3. All edges ofF which are represented by a superedge inFc
i must be inFi .

4. If two nodes ofVc
i are connected inFc

i , they remain connected inFc
i until either they are no longer

connected inFi or level j , j ≤ i is rebuilt.

5. In C(i), an edge ofF has costc(e) if it is represented by exactlyc(e) superedges inFc
j , j ≤ i .

3.1 Subroutines

In addition to the basic operations on dynamic trees, ET-trees, and the dynamic minimum spanning tree data
structure, in the fully dynamic data structure,

We introduce the following subroutines for operations on compressed forests:

• removeS(e, i): This assumese= {u, v} is a superedge inFc
i and removes it fromFc

i .

1. Removee from the ET-tree representingFc
i .

2. For j ≥ i , decrementπ(u, v) in C(j).

3. Remove the name ofe fromπ(u, v) in N(i) andN′(i).

• insertS(e, i): This inserts the superedgee = {u, v} into Fc
i . It assumes no intermediate node of

π(u, v) is represented inFc
i andu andv are inVc

i .

1. Insert the tree edgee into the ET-tree representingFc
i .

2. For j ≥ i , incrementπ(u, v) in C(j).

3. Labelπ(u, v) with its name inN(i) andN′(i).

• insertV(u, i):

1. If u is represented inFc
i andu /∈ Vc

i :

(a) Let{x, y} = label(u);

(b) Do removeS({x, y}, i); addu to Vc
i ; insertS({x, u}, i); insertS({u, y}, i).

2. Else ifu /∈ Vc
i :

(a) Create an ET-tree containing onlyu.

• connect(e, i): Let e= {u, v}. This routine either inserts a superedge betweenu andv into Fc
i or, if

π(u, v) is partially represented by superedges inFc
i , the whole path is now represented, by connecting

up the represented segments by new superedges. It addsu andv to Vc
i if they are not already inVc

i .

1. Do insertV(u, i).

2. If u = v stop.

11

3. If the first edge of the path{u, v} is represented inFc
i , then find the first edge{s, t} in π(u, v)

which is not represented. Doconnect({s, v}, i).
4. Elsefthe first edge of the path{u, v} is not representedg do:

(a) If there is no next node inπ(u, v) which is represented then
do insertV(v, i) andinsertS({u, v}, i).

(b) Else leta be the next nodeπ(u, v) which is represented.

i. Do insertV(a, i).

ii. Do insertS({u, a}, i).
iii. Do connect({a, v}, i).

• insert F(e): connects two previously unconnected components ofF by inserting a new tree edgee.
This operation applieslink(e) to each data structure containingF andinsert(e, 0) to D(MST). The
cost ofinsert F(e) is dominated by the last operation which has costO(log3 n).

• deleteF(e, i): splits a tree ofF into two trees by deleting edgee. This operation involvescut(e)
applied to each data structure containingF on levelsj ≥ i and doesdelete(e) on D(MST). The cost
of deleteF(e, i) is dominated by the last operation which has costO(log3 n).

3.2 Insertions

When edgee is inserted intoG then if e connects two unconnected components ofF , e is inserted into
the data structures representingF usinginsert F(e). If e is a nontree edge then doinsert nontree(e, l) to
inserte into an ET-tree on levell ; connect(e, l); inserte into theD(MST) by calling insert(e, l).

After each operation, we incrementI , the number of operations modular 2d2 logne since the start of the
algorithm. Letj be the greatest integerk such that 2k|I . After an edge is inserted, a rebuild of levell − j −1
is executed. If we representI as a binary counter whose bits areb1, ..., bl−1, whereb1 is the most significant
bit, then a rebuild of leveli occurs each timebi bit flips to 1. Note that levell is emptied of nontree edges
every time an edge is inserted, and fori < l , no more than 2l−i−1 operations occur before a rebuild on level
i or lower occurs.

3.3 Rebuilding leveli :

During a leveli rebuild, we remove all nontree edges fromEj j > i and put them intoEi . For each such
nontree edge, we increase its weight inD(MST) to i . ThenFi = Fl , i.e., it is the 2-edge connected forest
of G.

For each levelj ≥ i , for all superedgese in Fc
j do removeS(e, j); also discard the ET-trees. Construct

the new compressed graphFc
i by applyingconnect(e, i) for each edge ofEi . We construct the compressed

graphFc
i in the same way at the start of the algorithm.

3.4 Deletions

• Test Path(u, v, i) runs onFc
i rather thanFi which implies that only subtrees of the treeTu in Fi

may be represented inFc
i . In Delete Nontree(e, i) we may need to add superedges toFc

i in order to
connect portions of the pathπ(u, v) which were (before the deletion) connected inFi .

Thus, we add the following toDelete Nontree(e, i):

12

0. connect(e, i).

• In Sample, we resetc′ to 4. Consequently, each level receives no more than 1/4 of the edges in the
previous level, and we prove a lemma analogous to Lemma 2.4 below.

• addL(a, b) is unchanged. We note that the endpoints of subpaths added toL on a leveli are inVc
i ,

so that all edges represented by the same superedge are labeled the same.

• swap(e, e′): Let i be the level of the tree edge. Lete= {s, t}.
1. deletenontree(e′, i)

2. If there is a superedgeej = {u, v} in Fc
j which represents a path containinge, then doremoveS(ej , j)

for all j ≥ i ; doconnect(u, s) andconnect(t, v).

3. DodeleteF(e, i) to deletee from F .

4. Do insert F(e′) to inserte′ into F .

5. Do insert nontree(e, i).

6. Doconnect(e, j) for all j ≥ i .

• Sampling is unchanged.

• In test cover we useC(j) instead ofB(j). In C(j) a tree edge has cost greater than 0 iff it is covered
on a levelj , j > i . The only difference is that costs greater than 0 may also be greater than 1.

• remove(f, i) removes a superedgef from Fc
i . Do removeS(f, i).

• move up(e, i) moves a nontree edgee from Ei to Ei+1. Do the same operation as in the deletions-
only version, followed byconnect(e, i).

• checkbridges(i, Tc) checks every superedge inTc to determine if it contains a bridge inGi .

1. For each superedge{a, b} in Fc
i which is incident to a node inTc, do increment(a, b) in C(i −

1).

2. For each superedgee in Tc, let e′ be any edge represented bye. If label(e′) > 0, then remove
label(e′) from L and dosubtract(label(e′), label(e′)). (Recall that all the edges represented
by a superedge have the same label.)

3. For each superedgee in Tc which represents a path that contains an edge of cost 0 inC(i − 1)
(the edge is a bridge inGi) do removeS(e, i).

4. RestoreC(i−1) by decrementing the paths which were previously incremented incheckbridges.

The cost isO((s(Tc)+ w(Tc)) logn) plusO(log3 n) for each bridge inTc.

3.5 Queries

To test whetheru andv are 2-edge connected: Find the path fromu to v in F as stored inC(l) and output
“yes” iff c(e) > 0 for all e in the path.

13

3.6 Proof of correctness

We first show:

Lemma 3.1 For any i, mi ≤ (5/4)n2/2i .

Proof: When leveli is rebuilt, since no more thann2/2i operations have occurred, no more than
n2/2i new edges are added toEi and no more thanm/4i edges are already contained inEi , so that
mi ≤ (5/4)n2/2i .

Corollary 3.2 All nontree edges of G are contained in some Ei for i ≤ l, i.e. El+1 is empty.

ThereforeGl = G andFl spans the 2-edge connected components ofG.
We show next that the invariants hold.

Lemma 3.3 For each edge e in Ei , all edges of F which are covered by e are represented in Fc
i .

Proof: Note that if the claim holds before a call toconnect(e, i), it will also hold afterwards. Note
further that after the call toconnectall edges on the path inFi between the endpoints ofe are
represented by a superedge and the endpoints ofe are added toVc

i if they are not already there.

During an insertion of a nontree edgee, e is inserted intoEl andconnect(e, l) is called, ensuring
the invariant holds for levell . The other levels are unchanged.

Sinceconnectis called for each edge inEi during a rebuild of leveli , it follows that the claim
holds right after rebuilding leveli .

Consider next a deletion. There are three cases to consider: moving down an edge toEi , updating
whenever a tree edgee is swapped withe′, and removing a superedge fromFc

i . In move down(e, i),
connect(e, i) is called and the claim holds.

When a tree edgee= is swapped with a nontree edge, ife is represented by a superedge{a, b},
{a, b} is removed fromFc

i , e becomes a nontree edge andconnect(e, i) is called. The calls to
connectensures that the remaining tree edges previously represented by{a, b} are again covered
and that the path now covered bye is represented by superedges.

We next consider the case when a superedgee = {u, v} is removed fromFc
i . This occurs

during aDeleteNontree. By the invariants, we know that no nontree edges inEi which cover an
edge inπ(u, v) have endpoints which are intermediate nodes inπ(u, v) or which are in subtrees
of intermediate nodes inπ(u, v). Otherwise there would be a node inπ(u, v) which is either an
endpoint of a nontree edge or represented by two superedges and therefore inVc

i . Thus, each nontree
edge covering edges ofπ(c, d) covers all edges ofπ(c, d). We show next thatTest Path removes
all such edges. The lemma follows.

By connectingu andv in DeleteNontree, we ensure thatTest Path runs on treeTc
u which

containsu andv and represents a subtree ofT . Since the pathπ(u, v) is represented inTc
u , every

nontree edge which covers a portion of the pathπ(u, v) is incident to the treeTc, by Invariant (1).
Thus,Tx \ f andTy \ f , where f is the set of edges inπ(c, d), contain all the edges which might
coverπ(c, d). It follows that the setS connectingTc

x \ f andTc
y \ f is exactly the set of edges

14

crossing the cut betweenTx \ f andTy\ f . WhenS is removed, the edges inπ(c, d) are not covered
by any nontree edges inEi .

Lemma 3.4 Vc
i contains every node which is represented in Fc

i by more than one superedge and the end-
points of every edge in Ei . The intermediate nodes in a path that is represented by a superedge cannot be in
Vc. (Consequently, each edge in F is represented by at most one superedge.)

Proof: Each time a nontree edge is added toFc
i connectputs its endpoints inVc

i if they are not
already there. Each time a superedge is added toFc

i , if the path covered by the superedge contains
a node which is already represented, it is added toVc

i and the superedges containing that node are
split.

Lemma 3.5 In C(i), an edge of F has cost c(e) if it is represented by exactly c(e) superedges in Fcj , j ≤ i.

Proof: Note that every time an edge is added to or removed fromFi
j , C(i) is updated accordingly.

The lemma follows by induction over the steps of the algorithm.

Lemma 3.6 All edges of F that are represented by a superedge in Fc
i must be in Fi .

Proof: Superedges are added by aconnect(e, i) operation which adds superedges which cover only
paths between the endpoints ofe. New superedges may also be created by splitting old ones, but
these do not change the edges represented inFc

i . The operationconnect(e, i) is called whene is
added toEi during the execution ofswap, move up(e, i − 1), or in Ei during a rebuild. In these
cases, clearly, the invariant is not violated sincee covers the edges represented by the newly created
superedges.

The operationconnect({u, v}, i) is also called before a call toTest Path(u, v, i). Immediately,
Test Path either covers the path{u, v} or removes any superedges representing an edge with cost 0
in C(i − 1) and not covered by edges inEi . An edge has cost greater than 1 inC(i − 1) only if it
is covered by a superedge inFc

j , j > i . If we assume the invariant held true forFc
i−1 then we can

conclude that all superedges which are not removed cover paths which are inFj j ≤ i which implies
they are inFi .

Lemma 3.7 If two nodes in Vci are connected in Fci , they remain connected until either they are no longer
connected in Fi or level j , j ≤ i, is rebuilt.

Proof: Note that neither aninsertS(e, i) nor a connect(e, i) disconnects previously connected
nodes inFc

i , only aremoveS(e, i) does. AremoveS(e, i) is executed either (a) during a rebuild on
level j ≤ i , (b) when removing a superedge from leveli , (c) during a swap, or (d) ininsertV. In
case (b), the path between the endpoints of the superedge is no longer inFi . In case (c), as shown in
the proof of Lemma 3.3, any edges which were represented before are still represented. In case (d),
the endpoints ofe are immediately reconnected by twoinsertSoperations. Therefore, until level
j ≤ i is rebuilt, the endpoints must remain disconnected to preserve the previous invariant.

15

3.7 Analysis of the Running Time.

The cost of initializing data structures is the same as for the deletions-only algorithm,O(n log2 n+m logn).
The routinesinsertS(e,i)and removeS(e,i)take O(logn) time per level orO(log2 n) time. Routine

insertV(v,i)takes timeO(log2 n). The routineconnect(e,i)takesO(log2 n) time per superedge which is
inserted. The number of superedges inserted is proportional to a constant plus the number of components of
Fc

i connected up.
Insertions take timeO(log3 n) plus the cost ofconnectwhich isO(log2 n) times the number of compo-

nents ofFc
i connected up. If a tree edge is inserted theninsert F is called for a cost ofO(log3 n).

A rebuild on leveli requires aremoveSfor each superedge on levelj > i , aconnectfor each edge in
the newEi and a weight change to the edge inD(MST). We will show the number of superedges inFc

i is
proportional tomi . Thus the total cost isO((log3 n)mi).

The analysis ofTest Path is almost the same as in the deletions-only algorithm, except for the costs of
connectwhich is analyzed below.

As in the deletions-only analysis, the cost ofTest Path’s which run to completion isO(mi log4 n) per
level andO(log4 n) per deletion.

We next analyze the cost whenTest Path does not run to completion. It is possible that when we search
a component ofFi , we are searching only a portion of the component since that is all that is connected in
Fc

i , and we may in fact be searching a portion of the larger component ofFi , rather than the smaller. Yet the
size of this portion must be no greater than the size of the smaller component ofFi ; therefore the number of
times the coverage of a nontree edge is looked at is bounded as in the deletions-only algorithm.

Thus the analysis of the amortized costs of splits charged to a leveli between two consecutive rebuilds
of levelsi or lower is the same as in the deletions-only algorithm except that the maximum number of nodes
and superedges on a leveli is O(mi) rather thann. Therefore the cost per level isO(mi log3 n).

The total cost ofTest Path’s is thusO(mi log4 n) for level i plus O(log4 n) per deletion, plus the cost
of connect’s.

The cost ofconnect’s on a level isO(log2 n) times the number of superedges inserted on this level.

Lemma 3.8 The total number t of superedges inserted into a level i between two consecutive rebuilds of
any levels j, j ′ ≤ i is linear in mi plus the number of operations since the rebuild.

Proof: Let s be the number of timesconnecton leveli is called between two consecutive rebuilds
of any levelsj , j ′ ≤ i . Then we showt ≤ 4s− 3. To see this, letv be the number of connected
components ofFc

i . Considert + 3v.

Note that initially,v = 0 and that by Invariant 4, when two components are disconnected they
are not reconnected and may be regarded as the same component for the purpose of this analysis. If
connect(π(a, b), i) results inr additional new superedges thenπ(a, b) connects up at least(r−1)/3
components ofFc

i , reducingv by (r −1)/3−1. Hence eachconnectadds at most 4 tot+3v. Since
v ≥ 1, t ≤ 4s− 3.

The number of timesconnectis called on leveli is proportional to the number of operations
between rebuilds (once perDeleteNontree, once per edge insertions, and three times perswap)
plus the number of nontree edges moved to leveli or O(mi).

After an edge is inserted intoG, it participates at most once per level in a rebuild of a level. Thus,
each edge may be charged for the cost of the number of levels timesO(log4 n) to pay for the amortized

16

costs ofTest Path, giving a total amortized cost per insertion ofO(log5 n), over a sequence of�(n+m0)

operations, wherem0 is the initial number of edges in the graph.

4 Acknowledgements

We would like to thank Madhukar Reddy Korupolu for bringing to our attention errors in the fully dynamic
portion of the preliminary version of this algorithm.

References

[1] D. Eppstein, Z. Galil, G. F. Italiano, “Improved Sparsification”, Tech. Report 93-20, Department of
Information and Computer Science, University of California, Irvine, CA 92717.

[2] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A Technique for Speeding up
Dynamic Graph Algorithms”Proc. 33rd Symp. on Foundations of Computer Science, 1992, 60–69.

[3] S. Even and Y. Shiloach, “An On-Line Edge-Deletion Problem”,J. ACM28 (1981), 1–4.

[4] G. N. Frederickson, “Data Structures for On-line Updating of Minimum Spanning Trees”,SIAM J.
Comput., 14 (1985), 781–798.

[5] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-edge-connectivity andk smallest
spanning trees”Proc. 32nd Annual IEEE Symposium on Foundation of Comput. Sci., 1991, 632–641.

[6] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Polylogarithmic Time
per Operation.Proc. 27th ACM Symp. on Theory of Computing, 1995, 519–527.

[7] M. R. Henzinger and M. Thorup. Improved Sampling with Applications to Dynamic Graph Algo-
rithms. To appear inProc. 23rd International Colloquium on Automata, Languages, and Program-
ming (ICALP), Springer-Verlag 1996.

[8] H. Nagamochi and T. Ibaraki, “Linear time algorithms for finding a sparsek-connected spanning
subgraph of ak-connected graph”,Algorithmica7, 1992, 583–596.

[9] D. D. Sleator, R. E. Tarjan, “A Data Structure for Dynamic Trees”J. Comput. System Sci.24 (1983),
362–381.

[10] R. E. Tarjan,Data Structures and Network AlgorithmsSIAM (1983), 57–70.

[11] J. Westbrook, R. E. Tarjan, “Maintaining Bridge-Connected and Biconnected Components On-Line”
Algorithmica7(5) (1992), 433–464.

5 Appendix

We encode an arbitrary treeT with n vertices using a sequence of 2n− 1 symbols, which is generated as
follows: Root the tree at an arbitrar y vertex. Then callET(root), whereET is defined as follows:

ET(x)

17

visit x;
for each childc of x do

ET(c);
visit x.

Each edge ofT is visited twice and every degree-d vertexd times, except for the root which is visited
d + 1 times. Each time any vertexu is encountered, we call this anoccurrenceof the vertex and denote it
by ou.

New encodings for trees resulting from splits and joins of previously encoded trees can easily be gener-
ated. LetET(T) be the sequence representing an arbitrary treeT .

Procedures for modifying encodings

1. To delete edge{a, b} from T : Let T1 andT2 be the two trees which result, wherea ∈ T1 andb ∈ T2. Let
oa1, ob1, oa2, ob2 represent the occurrences encountered in the two traversals of{a, b}. If oa1 < ob1 and
ob1 < ob2 thenoa1 < ob1 < ob2 < oa2. ThusET(T2) is given by the interval ofET(T) ob1, . . . , ob2

andET(T1) is given by splicing out ofET(T) the sequenceob1, . . . , oa2.

2. To change the root ofT from r to s: Let os denote any occurrence ofs. Splice out the first part of the
sequence ending with the occurrence beforeos, remove its first occurrence (or), and tack it on to the
end of the sequence which now begins withos. Add a new occurrenceos to the end.

3. To join two rooted treesT and T ′ by edgee: Let e = {a, b} with a ∈ T and b ∈ T ′. Given any
occurrencesoa andob, rerootT ′ atb, create a new occurrenceoan and splice the sequenceET(T ′)oan

into ET(T) immediately afteroa.

If the sequenceET(T) is stored in a balanced search tree of degreeb, and heightO(logn/ logb) then
one may insert an interval or splice out an interval in timeO(b logn/ logb), while maintaining the balance
of the tree, and determine if two elements are in the same tree, or if one element prece des the other in the
ordering in timeO(logn/b).

18

