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Abstract

We sketch a method for deduction-oriented software and system development The
method incorporates formal machine-supported specification and verification as activ-
ities in software and systems development. We describe experiences in applying this
method. These experiences have been gained by using the LP, the Larch proof assistant,
as a tool for a number of small and medium size case studies for the formal development
of software and systems. LP is used for the verification of the development steps. These
case studies include

ž quicksort,

ž the majority vote problem,

ž code generation by a compiler and its correctness,

ž an interactive queue and its refinement into a network.

The developments range over levels of requirement specifications, designs and abstract
implementations. The main issues are questions of a development method and how to
make good use of a formal tool like LP in a goal-directed way within the development.
We further discuss of the value of advanced specification techniques, most of which are
deliberately not supported by LP and its notation, and their significance in development.
Furthermore, we discuss issues of enhancement of a support system like LP and the value
and the practicability of using formal techniques such as specification and verification
in the development process in practice.
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Chapter 1

Introduction

Achieving reliable, provably correct programs and system designs seems impossible.
Formal methods of specification and verification are advocated for doing the impossible.
However, so far, in practice, formal methods have been considered too difficult and
too costly. Moreover, many advocates of formal methods of program development
have dealt only with small examples, often just toy examples. When more complex
examples have been treated the complexity has been only in their logical structure, not
their size. So there have been (and are) considerable doubts about, whether formal
techniques can be of help in practice and if they scale up. Nevertheless, in recent years
there has been considerable interest in formal hardware verification. Serious attempts
have been undertaken to verify hardware designs (cf. [MacKenzie 91]).

1.1 Significance of Formal Verification

Formal methods are advocated as helpful for improving the reliability of software
systems. In the early days of formal methods, the verification of programs (often
called “post mortem verification”) was one of the main issues. However, it soon
became obvious that it is much more appropriate not to wait until a program has
been fully developed to verify it, but to start from a given formal specification of
the problem and then to construct program and correctness proof step by step1. This
makes the verification simpler (and in many applications is the only way to manage the
construction of the correctness proof at all) and, even more important, directly supports
the construction of a correct program. Program transformations have been advocated
for a rigorous machine-supported top down approach along these lines (cf. [CIP 84]).

1Most programs designed in a conventionalway turn out to be incorrect, anyhow, so a verification cannot
be successful.

1



CHAPTER 1. INTRODUCTION 2

1.2 Significance of Formal Specification

Even the most advanced verification techniques cannot solve the problem of reliability
of software as such. The reliability of “correct” (formally verified) programs crucially
depends on the adequacy of their formal specifications. Only if the requirements are
properly captured formally, can the verification make sense2. Clearly, the assumption
of a given formal specification is academic. In practical applications, it is a major
task in development to capture all requirements and to work out a formal requirement
specification from vague and often contradictory informal specifications. Moreover, it
is often necessary to change and refine the initial specification during the development
process (if tolerable from the application point of view) taking new insights into account
and to get more useful, more efficient or more elegant solutions.

So the derivation of requirement specifications plays a crucial role in development.
It is necessary to pay more attention to the derivation of an adequate requirement
specification. Consequently, requirement engineering or specification engineering is
one of the most important areas of applying formal methods.

The use of formal techniques, including verification techniques, has advantages at
the level of requirement engineering. However, it needs a quite different type of
development method. And as a consequence it needs quite different support tools.

Many applications of software engineering, especially in technical domains, have elab-
orate models and theories. This is called domain specific knowledge. In some domains
this knowledge is formalized. Often, however, the domain specific knowledge is for-
malized only partially or not at all. This brings additional problems for programming
and formal methods. The domain specific knowledge has to be captured by the software
engineer and brought into forms such that this knowledge can be used both for a formal
specification and for the representation in a program.

In particular, when applying formal methods, it cannot be the task of the software
engineer to replay all the theoretical proofs of the specific domain of application. What
is needed is the capture of the theories and theorems of the application domain by
formalisms that are adequate for the further development and where the validity of
this formalization can be checked in a validation step as easily as possible. What is
needed is a well-defined interface between the world of application and the world of
programming. Axiomatic specification can provide such an interface.

1.3 Using LP: The Case Studies

Larch (cf. [Guttag et al. 85]) has been proposed as a family of axiomatic specification
languages. Larch interface languages for a variety of programming languages (cf.

2So the remark above about the expected incorrectness of programs can be repeated when talking about
the validity of specifications: most specifications do not capture the problem adequately, anyhow.
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[Garland, Guttag 90], [Guttag, Horning 86a], [Guttag, Horning 86b]) are now available.
For the technical details of the LP, the Larch proof assistant, (cf. [Garland, Guttag 91]),
an introduction to Larch and how to use it practically we refer to the cited reports. A
comprehensive presentation of Larch and LP is given in [Guttag, Horning 93].

The LP is a tool that supports proofs about axiomatic specifications. LP is based on the
concept of rewriting. Larch and also LP follow the philosophy to keep everything as
simple as possible.

LP does not provide a decision procedure. LP mainly provides a convenient notation and
machinery for defining rewrite rules by axiomatic techniques and applying them. All
proofs are carried out by applying the rewrite rules, proofs by case splitting, induction,
contradiction, and application of rules of inference. Also the logical derivations are
carried out by applying rewrite and deduction rules.

The user of LP has to guide the system. LP can find rather simple proofs (which
nevertheless can be quite time consuming when carried out by hand) without user
interaction. The construction of a proof and the debugging of the specification and the
implementation are done hand in hand.

The following four examples of the use of the LP as a tool for requirement engineering
and deduction-oriented program development are treated:

ž quicksort,

ž the majority vote problem,

ž a compiler and its correctness,

ž an interactive queue and its refinement into a network.

Formal specifications are given for the examples and steps of developments as well as
proofs of their correctness. Throughout the examples, the properties and adequacy of
the LP as a tool for program development are discussed.

This study has been carried out to also gain further insights what kind of advanced
specification languages and support systems are needed when working with rigorously
formal methods in program development. The author is currently in charge of a project
for developing a deduction oriented program development methods and an advanced
specification language for its support. The specification language under development
is called SPECTRUM (cf. [SPECTRUM 92]). One purpose of this study is to understand
and document where advanced specification concepts and languages like SPECTRUM

may have impacts and advantages when using them in a development oriented style.



Chapter 2

What LP Does Not Have

When designing a specification language or a verification support system, there are
always conflicting goals. One goal is to keep everything as simple and small as
possible. Then things are easy to learn, to understand and to start to use. Another goal
is to provide a lot of functionality and a lot of support for specific steps of development
and proof. Then powerful support can be given, even in difficult cases of development.

2.1 Basic Philosophy of Larch and LP

Larch and LP are deliberately kept extremely simple. This has a great number of
advantages. First of all, Larch and LP are very simple to learn, especially for someone
familiar with the basics of algebraic specifications. The LP notation for specification
supports sorts, function symbols (even in infix notation), variables and equations. In
contrast to classical logics, in LP there are two versions of equality “=” which is the
equality test and “==” which is the main operator of an equation. Semantically, there
is no difference. Operationally, with respect to the calculus, there is a big difference.

The LP notation is a specification language of the first generation. Of the fancy
features, as described below, LP includes only a limited infix notation and function
symbol overloading.

Larch and LP are based on the concept of loose semantics. Moreover, the logics at
the level of axioms and the logics at the level of Booleans are identified. Therefore,
although LP (version 2.1) does not have conditional equations in the sense of rewrite
rules, it does have full propositional equational logic, since equality as an operation is
always available. One is not allowed to write

x DD y ^ y DD z ) x DD z

4



CHAPTER 2. WHAT LP DOES NOT HAVE 5

However, one may write instead:�
.x D y ^ y D z/) x D z

Ð DD t rue

LP does not support, however, the following specification concepts that can be found
in a number of advanced specification languages.

2.2 Advanced Specification Concepts

The specification and design language SPECTRUM is under development at the Technical
University of Munich (see [SPECTRUM 91]).

Like LP, SPECTRUM is based on the concept of loose semantics. This means that
specifications are seen as systems of signatures and axioms. Every algebra of proper
signature that fulfills the axioms is accepted as model. No general constraints like
initialityor terminality is preimposed. We consider loose semantics as more appropriate
for development and refinement oriented specification techniques. In loose semantics
one may refine specifications by adding properties in terms of additional axioms to
specifications with the effect that the class of models of the refined specification is
always included in the class of models of the original one. In terms of logic the proof
systems are monotone: adding sorts, function symbols, and properties never invalidates
logical properties of the given specifications. This is not true for initial or terminal
semantics. Induction techniques are available in both in LP and in SPECTRUM only if
they are explicitly stated by special axioms.

SPECTRUM is intended to support in addition to the concepts of the LP specification
formalism the following features:

ž a logic of partial functions and definedness: often in software specifications
partial operations occur. In Larch and LP it is suggested to handle these partial
functions by total functions and by underspecification. This means that the value
of a function is deliberately left unspecified for some arguments. However, due
to the totality assumption it is known that the function has a regular value for
those arguments. This assumption does not work, however, in connection with
full recursion (compare the compiler example and the example of the interac-
tive queue). Therefore SPECTRUM includes a full logic of partial functions and
definedness.

ž higher order elements: often it is helpful to reason about functions as elements
(compare the example of compiler correctness). This gives a lot of expressive
power. Therefore SPECTRUM supports functional sorts and ½-notation. However,
the carrier sets associated with functional sorts are not, in general, the full function
spaces but just subsets of the classical mathematical function spaces.

ž fixed point theory and infinite objects: often it is useful to define elements
by recursion which technically means as fixed points of monotonic or even
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continuous functions. This leads to “infinite” objects and fixed point reasoning
(compare the examples of compiler correctness, and of interactive queues). Such
concepts are not explicitly supported by LP, but are in SPECTRUM.

ž full predicate logic of quantifiers: for abstract specifications quantifiers are ex-
tremely helpful. Also the logical reasoning often gets more transparent when
quantifiers are used. SPECTRUM supports full first-order predicate logic with ar-
bitrary nesting of existential and universal quantifiers. This extension is planned
for LP.

ž polymorphism: when dealing with general concepts of specifications like se-
quences it is convenient to allow to write Seq X for arbitrary sorts X (so that one
can write Seq Nat as well as Seq Char and even Seq Seq Nat ) and to use always
the same function names with polymorphic axioms such as ( f irst .x@s/ D x
for all x of arbitrary sort) for manipulating these sequences. This makes spec-
ifications shorter and more readable (see [Cardelli, Wegner 85], [Cardelli 87]).
In LP overloading is supported, which allows to use the same function names
for different sorts, but for sequences over different sorts always new sort names
have to be invented and axioms (and proofs) have to be repeated (see the ex-
ample of compiler correctness where sequences are used for representing labels,
programs, stacks etc.). SPECTRUM supports full ad-hoc-polymorphism1 (a poly-
morphic form of overloading), which includes also parametric polymorphism.

ž inheritance and subsorting: there are situations, where sorts are conveniently
defined as subsorts of other sorts (let Nat be a subsort of Int ) and the operations
are inherited. LP does not support subsorting nor inheritance. In the examples,
neither subsorting nor inheritance were seen to be extremely helpful2. However,
subsorting and inheritance may show their full power in large scale commercial
applications using object-oriented techniques. The current version of SPECTRUM

includes inheritance and subsorting in a restricted form, although we have some
doubts about their significance.

ž advanced combining forms for specifications as a concept for specifying in the
large: for specifying larger systems appropriate concepts for composing specifi-
cations are needed. LP does not support any forms of composing specifications.
Therefore, it is fair to say that LP supports only reasoning in the small. This does
not apply to Larch, where a number of concepts for composing specifications are
included. SPECTRUM provides a number of operators for composing specifica-
tions. An important issue is a logical framework for reasoning about composed
specifications (called reasoning in the large). This is also a goal of SPECTRUM

(cf. [Wirsing 91]). In the examples treated in this report, reasoning in the large

1It is not so clear what parametric polymorphism looks like at the specification level where it is not
possible to distinguish between a defining and an applied occurrence of a function symbol.

2In the example of the interactive queue, it might be helpful to see the set of data messages as a subsort
of the set of messages including the request signal.
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was hardly needed, since the examples are relatively small. Only in the cases of
compiler correctness, support for reasoning in the large might have been of some
convenience.

ž parameterization: parameterized specifications are considered an important topic
by many researchers in axiomatic specification techniques. Nevertheless, ex-
plicitly parameterized specifications can be completely replaced by adequate
concepts for composing specifications. Consequently, neither Larch nor LP nor
SPECTRUM offer explicit parameterization for specifications.

All the listed concepts are believed to be helpful for certain specification tasks especially
when dealing with large and complicated systems. However, they also make the
language and the design calculus more complicated and more difficult to learn and to
use.

It is the purpose of this study to understand better the implications of the simplicity
of Larch and LP and where certain concepts that are not available turn out actually to
be painfully missing in the development process. The treated examples were chosen
especially to study aspects of development that are related to this question.



Chapter 3

Method

Formal techniques are not easy to understand, to learn, and to use. To be able to
apply particular formal techniques, one has to understand the basic theory behind them.
Furthermore, one has to learn how to apply the rules of the formal technique correctly.
Finally, one has to understand how to apply a couple of rules to achieve a particular
goal. Structuring the work towards an overall goal into subgoals and organizing the
work in steps to achieve these subgoals is what a method should provide.

3.1 Avoiding Methodological Strait-Jackets

A method is not supposed to make life harder, although, unfortunately, many methods
proposed in the area of formal techniques do make it harder.

Numerous beautiful formal derivations and verifications for impressively complex
examples have been published as milestones of systematic software design and applying
formal techniques. Quite clearly, the authors did not find the elegant derivations they
finally presented in their papers in their first attempts. In most cases, the authors worked
very hard to find finally the elegant solution, and its nice presentation as published.
They were surely messing around, trying this and that, following dead ends, writing
down specifications or assumptions that were inconsistent or otherwise flawed. This
is not bad. It is the way solutions in science and technology are generally found and
explored. Writing down an incorrect hypothesis or giving an inconsistent set of axioms
is not harmful – if careful analysis then finds the flaws.

Of course, it would be inadequate (and sometimes offensive) to publish all the failing
and incorrect attempts in a development in addition to the final solution. However,
it is not very honest to present the final polished version of a derivation as if it had
been found in a straightforward top down manner right away. And it can be harmful to
advocate that development should be done just in the way the derivation was presented.

8



CHAPTER 3. METHOD 9

Every innocent victim that tries to use such a method will come to the conclusion that
he/she is a fool or, more rightly, that the author cheated. It is not surprising that software
engineers often get frustrated in this way when trying out formal techniques in practice.

In the following a methodological framework is introduced, very much along the
lines of experiences that I gained in using formal techniques on small to medium size
case studies. Observing my own proceeding when tackling a problem I came to the
conclusion that appropriate methods should leave room for freedom and flexibility in
experimenting with solutions and trying out ideas, but should also help to organize the
work such that the rigor of formal techniques pays and that after a successful ending of
the development there remain no doubts about its correctness and that finally a proved
solution is established.

Of course, a method cannot guarantee to guide the developer to a solution1. However,
methods should support the developer in his/her task such that the validity of the devel-
opment is assured after all steps of a development have been carried out successfully
following the method.

3.2 A Method for Deduction Oriented Design

In deduction oriented program design the phases of requirement capture, design, veri-
fication, and the construction of an implementation are integrated and supported by the
goal-directed use of formal techniques. All these activities are merged in an appropriate
goal directed proceeding. Such a method is sketched in the following.

We use well established algebraic or more general axiomatic techniques for representing
specifications. We use the usual notion of a signature, that is a family of sorts (names
for carrier sets) and a family of function symbols (names for functions). Furthermore,
in specifications we write formulas for a given signature. We use a logical calculus
that allows to deduce (prove) formulas from given ones. As usual in logics for sets of
formulas1 and 2:

1 ` 2
we write in order to express that the formulas in 2 can be logically deduced from
the formulas in 1 by the deductive theory. The deductive theory is assumed to be
monotonic, such that from

1 ` 2
and

1 � Q1
we may be conclude

Q1 ` 2
This requirement of monotonicity of the deductive theory is fulfilled in LP.

1Otherwise, the design could be completely automated.
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In principle, we propose a method that works with just three classes of development
steps called enrich, verify, and revise. We consider specifications S D .6;1;2/,
where

ž 6 is a signature, that is a family of sorts (names for carrier sets) and a family of
function symbols (names for functions) with given functionalities,

ž 1 is a set of formulas (based the signature6) called axioms,

ž 2 is a set of formulas (based the signature 6) called theorems, which can be
deduced from the axioms, formally 1 ` 2. This requirement is to be checked
using LP.

We call specifications enjoying these properties well-formed. The idea of axioms and
theorems is directly supported in Larch by the “implies” clause.

We are interested in an incremental method for constructing specifications. Therefore
we assume that we start with a specification where the set of theorems is empty and then
step by step prove theorems. By proving a logical formula before putting it into the set
of theorems we can be sure that the derived specifications are always well-formed.

We use the following three classes of development steps:

ž enrich: in an enrichment step we freely add sorts, functions, and axioms to the
specification under development. Of course, this is dangerous in the sense that
we might obtain an inconsistent specification that way. However, we will never
transform a well-formed specification into a nonwell-formed specification, since
our deductive theory is monotonic.

ž derive: a derivation is used for proving a theorem. This way we can add a
theorem to the set of theorems. A special case is the elimination of an axiom
by its derivation from the remaining axioms. In this case we have identified the
axiom as being redundant and we can delete it from the axioms and add it to the
theorems. In both cases, we turn a well-formed specification into a well-formed
specification by a derivation.

ž revise: often a development will lead to a stage where certain design decisions
in the requirement capture and in the design are recognized as inadequate with
respect to the requirements or simply as inconsistent. Then, to get rid of these
problems in a revision, we set back the development to an earlier version of
the development process. This is such a simple idea that in many methods it
is not mentioned explicitly. However, if we recognize a decision (an enrich
step) as inadequate and take it back only after a long sequence of development
steps, it is unacceptable for us to throw away all the work carried out in between.
Certainly some of the work has to be thrown away. But large portions of the work
done after the inadequate enrichment might be usable (“reused”) in the revised
development.
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In practice, a strong support of revision as a step in development may be the most
important prerequisite for the cost effective applicability of formal methods.

We have carried out the case studies given in the following along the lines of a stepwise
development method including roughly the following substeps:

ž domain theory specification,

ž requirement capture and specification,

ž design specification,

ž implementation.

For some of the case studies, not all steps of this development scheme are carried out
actually in the following.

Larch and LP are used in combination with interface specification languages designed
for individual programming languages such as C or Modula 3. In contrast, we follow a
more purist approach, and also present programs at the level of LP. Intuitively speaking,
a program at the level of LP is a specification where all the axioms are of a constructive
form, that is, can be interpreted as rewrite rules or recursive declarations.

3.3 How to Ensure Consistency

A specification is called contradictory, if from its axioms every formula can be deduced.
In particular, then t rue DD f alse can be deduced in LP. A contradictory specification
does not have a model and is therefore inconsistent. Notice that we do not accept a
mathematical structure as a model where t rue DD f alse is valid. The fundamental
problem with the axiomatic approach to program and system development is the prob-
lem of ensuring adequacy and proving the consistency of a specification. An academic
solution to this problem would be that consistency is proved by giving a specification
where all axioms are in a constructive form (for which consistency can be assumed by
fixed point arguments). In practical developments (even for toy examples) inconsis-
tent specifications are often written. This is not an unsolvable problem. As soon as
inconsistencies are identified in the course of a development a revision is carried out
by backtracking to a previous (hopefully consistent) version and then taking a different
path of enrichment.

Of course, we are only interested in specifications that are not contradictory. Unfortu-
nately, there is no way to prove the consistency of a specification within LP. A proof
t rue 6D f alse for a specification in LP does not say that the specification is consistent.
It might be the case that in addition we can prove t rue D f alse. So inconsistency, but
not consistency can be proved in LP.



CHAPTER 3. METHOD 12

This is a severe problem. If auxiliary functions and predicates are used in a proof,
then the proof may be valid only because of contradictions in the specifications of
the auxiliary functions. As a consequence, a proof in LP using auxiliary functions
is, strictly speaking, useless, if we cannot argue that the auxiliary equations of the
functions do not introduce inconsistencies.

Let us therefore briefly discuss the consistency of specifications. Clearly, we may
assume that a specification without any axioms is consistent. But specifications without
axioms are not very interesting. So let us ask, whether there is a way to enrich a
consistent specification while maintaining consistency.

One possible way to make sure that consistency is maintained is to consider only axioms
of a special form. An equation of the form

f .x1; :::; xn/ D t

where x1; :::; xn are variables and t is an arbitrary term that does not contain f is called
an explicit equation for f . If in a specification for a set of functions only one explicit
axiom is given for each function in the set, then the functions are called explicitly
specified.

A way for specifying functions quite similar to explicit specifications are specifications
by structural recursion. A function symbol f is said to be specified by structural
recursion, if f is described by axioms of the form (1 � i � m):

Ci ) f .Ei / D ti

where the function symbol f does not occur in the terms2 Ei .

A (consistent) model with given signature 6 is called fixed point algebra, if for any
functional enrichment by arbitrary systems of function symbols explicitly specified by
equations over 6 there exists an extension of that model (without adding elements to
sorts) such that the explicit equations are fulfilled.

The models of LP are not fixed point algebras, in general. For enrichments of LP spec-
ifications by functions specified by structural recursion the proposition that consistency
is maintained requires a proof showing that for all i; j; 1 � i � m; 1 � j � m (let x
and y be fresh variables):

Ci ^ Cj ^ x D Ei ^ y D Ej ) ti D tj

This proof, however, can be quite difficult, if the function symbol f occurs in the terms
ti .

2Often, it is required that only so called constructor functions occur in the terms Ei .
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3.4 Focus of the Case Studies

Our main interest in the little case studies presented in the following is not so much the
detailed description of all the steps and technicalities of the verification of the theorems
using LP, but rather the explanation of the overall structure of the developments and
proofs.

There are several phases of development that may be, or in the sense of a rigorous
method, must be, supported by proofs. The proofs can be structured into the overall
proof structure, also called the proof architecture, and a number of smaller straight-
forward proofs of subtheorems. We do not indicate and discuss technically, how we
verified the simpler subtheorems in LP.

Our main interest in the following is in discussing the techniques of LP, and where the
simplicity of LP forces one sometimes to find time-consuming auxiliary constructions
for expressing the required structures.

We also present in the following all the notation exactly as it appears in our proofs in
LP and do not give nicely edited formulas using the potentials of LATEX, since it might
be more interesting for the reader to see the formulas as they are seen at the screen of a
terminal when working with LP.



Chapter 4

Quicksort

In this chapter we develop a requirement specification and a program for quicksort and
verify the program (the algorithm presented in equational form) with respect to the
specification. We present both the program and the specification in LP.

4.1 The Domain Theory for Sorting

We start the development by providing a domain theory for sorting. It mainly consists
in the theory of linearly ordered sets and of sequences.

We do not give the axioms for natural numbers and sequences here. They can be
looked up in the appendix. Just note, i@s denotes the sequence obtained by putting
the element i in front of s, sˆr denotes the concatenation of the two sequences s and
r, nbr.s/ denotes the number of elements, also called the length, of sequence s, i#s
denotes the numbers of copies of i in the sequence s, and es denotes the empty sequence.

4.2 The Requirement Specification for Sorting

We start by giving the requirement specification for sorting. We introduce functions
issort and sorted .

dec op sorted : Seq -> Bool
issort : Seq, Seq -> Bool

..
assert issort(s, r) => ( (i#s) = (i#r) & sorted(r)) (1)

sorted(es)

14
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sorted(i@es)
sorted(i@(j@s)) = ((i =< j) & sorted(j@s))

..

Of course we would rather have written in full predicate logic:

issort .s; r/ D 8i 2 Nat : .i#s/ D .i#r/ ^ sorted.r/

However, because of the restriction of LP to logical expressions without quantification,
we are not allowed to specify issort that way in LP. We may write, however, in LP
quantification in when-clauses and add the following axiom for the predicate issorted:

assert when (forall i) (i#s) = (i#r) & sorted(r) (2)
yield issort(s, r)

..

This deduction rule alone, however, and the axiom (1) alone, provide only a loose
specification of the predicate issort . By (1) only constraints for the positive part of
issort are given. The assignment issort .s/ D f alse for all s is consistent with (1).
By (2) only the constraints for the negative part of issort are given. The assignment
issort .s/ D t rue for all s is consistent with (2). The logically strongest predicate1

that fulfills this axiom is exactly the predicate we are interested in. However, if we are
able to prove a property just based on the deduction rule above, the proof is valid for
all predicates and therefore also for the strongest one. This is an interesting aspect of
loose specifications that deserves further methodological analysis.

If we use both axioms (1) and (2) for issort , then issort is uniquely characterized.
It is an inconvenience in LP that due to missing quantifier notation we have to write
two axioms to define the function issort , when it is much more adequately and more
readably defined by one axiom.

The quantifier for issort can be avoided by introducing the data structure of bags and
by mapping sequences s by a function mb to bags mb.s/. Then the specification of
issort reads:

issort .s; r/ D .mb.s/ D mb.r/ ^ sorted.s//

but again we pay the price of introducinga new specification and an additional function.
Also the axiom of the function sorted looks nicer if specified by quantifiers:

sorted.s/ � 8s1; s2 2 Seq; i; j 2 Nat : s D s1ˆiˆ j ˆs2 ) i � j

In addition, using these forms of explicit specifications one can be sure not to introduce
any inconsistencies.

Based on the introduced predicates the requirement specification of quicksort can be
given.

1Note, false is stronger than true.
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dec op quicksort : Seq -> Seq

The basic requirement specification for quicksort then reads:

assert issort(s, quicksort(s)) (*)

We do not add this requirement specification for the function quicksort to the LP spec-
ification, although this would be perfectly correct for obtaining a sufficient requirement
specification for sorting. We rather go on with the development and give a constructive
description of quicksort and prove (*).

If higher order concepts were available (which is not the case in LP), we could introduce
a predicate:

sorter : .Seq ! Seq/! Bool

specified by the axiom:

sorter. f / D 8s 2 Seq; i 2 Nat : .i#s/ D .i# f .s// ^ sorted. f .s//

Then we can specify quicksort by the following formula:

sorter.quicksort/

The ability to write predicates on functions provides possibilities to express the re-
lationship between requirement and design specifications more explicitly within the
logic.

4.3 Design Specification

The next step is to give a more algorithmic (“constructive”) description of quicksort .
For doing this we use two functions lepart (“leftpart”) and ripart (“rightpart”) that
filter out those elements of a sequence that are less than a given element or not less than
a given element respectively. It reads as follows:

dec op lepart, ripart : Nat, Seq -> Seq

assert quicksort(es) = es
quicksort(i@s) =

quicksort(lepart(i, s))ˆ(i@quicksort(ripart(i, s)))
..

Again we might have preferred to introduce a predicate on functions:

isquick : .Seq ! Seq/! Bool
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where

isquick. f / D �8i; s : f .es/ D es ^ f .i@s/ D f .lepart .i; s//ˆ.i@ f .ripart .i; s///
Ð

Then we can express the correctness condition more explicitly by

isquick. f /) sorter. f /

The equations for quicksort as they are given here can be understood to provide an
inductive definition of quicksort . They can also be seen as recursive definitions as
used in a functional program for computing quicksort . However, in contrast to the
classical semantic interpretation of the semantics of programming languages, where a
least solution (a least fixed point) is associated with a recursive equation, in the loose
semantics of LP any solution can be chosen in a model. That in the case of quicksort
the solution is uniquely determined (in terms of fixed point theory: there exists just one
fixed point for the equation above) may not be obvious at a first sight2.

4.4 Implementation and Verification

In proceeding top down we might give only nonconstructive specifications for the
functions lepart and ripart such as the following formulas that can be read as the
requirement specifications for the functions lepart and ripart .

(i#ripart(j, s)) = if(j =< i, i#s, 0)
(i#lepart(j, s)) = if(i < j, i#s, 0)

In a more explorative, and therefore more realistic, scenario the necessity to assert or
to prove these propositions about lepart and ripart during the correctness proof for
quicksort might only be discovered while attempting to carry out this proof.

As with quicksort , we do not add these requirement specifications to our specification,
but rather give constructive specifications for the functions lepart and ripart such as:

assert
lepart(i, es) = es
lepart(i, (j@s)) = if( j < i, j@lepart(i, s), lepart(i, s))

ripart(i, es) = es
ripart(i, (j@s)) = if( i =< j, j@ripart(i, s), ripart(i, s))
..

2In fixed point algebras for functions that are specified just by one equation of the form f .x/ D :::

solutions do always exist, or, in other words, adding functions with just explicit equations to a consistent
fixed point algebra does not introduce inconsistencies. This does not hold in LP, but in SPECTRUM. This will
be discussed in more detail in the conclusions.
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It is a straightforward proof by induction on s in LP to show that the constructive
specifications imply the nonconstructive formulas given above for the functions lepart
and ripart . The nonconstructive formulas are also useful in the correctness proof for
quicksort .

In the proof of the correctness of quicksort, we need a number of auxiliary lemmas.
Of course, the need for these lemmas is again perhaps only discovered when trying to
carry out the correctness proof for quicksort . Nevertheless, we list the lemmas here
separately.

when i < j yield (i#ripart(j, s)) = 0
when j =< i yield (i#ripart(j, s)) = (i#s)
when i < j yield (i#lepart(j, s)) = (i#s)
when j =< i yield (i#lepart(j, s)) = 0

nbr(lepart(j, s)) =< nbr(s)
nbr(ripart(j, s)) =< nbr(s)

These lemmas turned out to be not particularly difficult to prove in LP. All require
induction on s. The proofs are rather straightforward.

For proving that the result of quicksort is sorted we have to prove that lepart and
ripart do a proper split according to the size of the elements in their arguments. For
being able to formulate this property we introduce the following auxiliary operators.

dec op << : Seq, Nat -> Bool
=<< : Nat, Seq -> Bool

..
assert es << i

((j@s) << i) = ((j < i) & (s << i))

i =<< es
(i =<< (j@s)) = ((i =< j) & (i =<< s))

..

We would rather have specified the operators in a more descriptive explicit style by
axioms of the form:

.s << i/ D 8 j : 0 < . j #s/) j < i

This is not possible in LP due to the very restricted ways of using quantifiers. Again
the consistency of the explicit specification is obvious, while the implicit specification
given above requires a short analysis.

It is straightforward, however, that the consistency of our specification is not destroyed
by the axioms used to specify these auxiliary operators, since they are defined induc-
tively on the set of sequences. Based on the introduced operators we prove a couple of
further lemmas by induction on s. They read as follows.
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((i =< j) & (j =<< s)) = ((i =< j) & (i =<< s) & (j =<< s))
sorted(i@s) = ((i =<< s) & sorted(s))

when i =< j yield i =<< ripart(j, s)
when j =< i yield lepart(j, s) << i
when i =< j yield (i =<< lepart(j, s)) = (i =<< s)
when j < i yield lepart(j, s) << i
when j < i yield (ripart(j, s) << i) = (s << i)

((rˆs) << k) = ((r << k) & (s << k))

k =<< ripart(k, s)
lepart(k, s) << k

(i =<< (rˆs)) = ((i =<< r) & (i =<< s))

sorted(sˆ(i@r)) = (sorted(sˆ(i@es)) & sorted(i@r))
(sorted(j@s) & ((j@s) << i)) => sorted((j@s)ˆ(i@es))
(sorted(s) & (s << i)) => sorted(sˆ(i@es))

Having all these lemmas available we have nearly all at hand to complete the proof of
the main theorem. This proof consists of two independent parts: it requires the proof
of

prove sorted(quicksort(s))

as well as of

prove (i#quicksort(s)) = (i#s)

We start with the latter part. Unfortunately the proof is far from being straightforward
in LP. Certainly, it has to be a proof by induction. However, an induction proof using
the fact that sequences are generated by the empty sequence and the operation append
cannot be used directly. In LP a direct application of this induction principle for proving
for instance (as part of proving (*)):

prove (i#quicksort(s)) = (i#s)

is carried out by proving of the following two subgoals.

prove (i#quicksort(es)) = (i#es)
prove (i#quicksort(sc)) = (i#sc) =>

(i#quicksort(m@sc)) = (i#m@sc)
..
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According to the conventions of LP sc denotes a constant in LP. The first proposition is
trivial. Its proof in LP is straightforward. Unfortunately, the second proposition cannot
be proved (without induction), because quicksort .m@sc/ is rewritten by the second
axiom for quicksort as given above into a form that does not match

.i#quicksort .sc// D .i#sc/

Therefore, we prove the correctness of quicksort by induction on the natural numbers.
We carry out following proof tasks in LP by induction on m:

prove (nbr(s) =< m) => ((i#quicksort(s)) = (i#s))

Here nbr.s/ denotes the number of elements in the sequence s (the length or size of s
). The proofs require induction over the natural number m and in the induction step
then induction over the sequence s. After this formula has been proved, m can be
instantiated by nbr.s/ which makes the premise t rue and yields the required theorem.

Finally for proving that the result of quicksort is in fact sorted we prove the following
auxiliary lemmas by the same technique as above.

nbr(s) =< m => (k =<< quicksort(s)) = (k =<< s)
nbr(s) =< m => (quicksort(s) << k) = (s << k)

Given these lemmas we prove using LP the second basic formulas indicating the
correctness of quicksort.

prove (nbr(s) =< m) => sorted(quicksort(s))

A critical point to be mentioned again is the demonstration of the consistency of the
axioms for the auxiliary functions like << and =<<. Although the consistency of the
defining axioms is quite obvious, consistency is not and cannot be formally proved
within LP. Therefore the correctness of the machine checked proof for quicksort relies
on the consistency of these specifications.

It is quite obvious that it cannot be expected that even a very sophisticated verifier
could prove the correctness of quicksort without human interaction. The number of
auxiliary lemmas and operators is rather high and too specific.



Chapter 5

Majority Vote

The solution to the majority vote problem is a typical small, but logically intricate,
algorithm. The program published in [Misra, Gries 82] for computing the majority of
an array of elements is one of those programs that are hard to understand when given
only in optimized form. The program reads as follows (let b[0 : n � 1] be the array of
elements for which the absolute majority is computed):

i; c :D 0; 0I
do i 6D n! if v D b[i] ! c; i :D c C 2; i C 1

2 c D i ! c; i; v :D c C 2; i C 1; b[i]
2 c 6D i ^ v 6D b[i] ! i :D i C 1
fi

od

The postcondition for this program reads as follows:

Only v may occur more than n ł 2 times in b.

Even after studying the verification of this program, given in the assertion method style,
it may be clear that, but not why, the algorithm works. This algorithm, which we are
going to develop using specification and verification techniques, was discovered by
Boyer and Moore (see [Boyer, Moore]).

We are interested in the algorithm as a nice example of specification and verification.
Our main concern is giving a convincing and simple to understand presentation of
the basic ideas used in the algorithm. We give here a deduction-oriented derivation
for this example and a correctness proof for the derivation steps that was constructed
interactively with the help of LP.

21
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5.1 The Domain Theory

We basically use numbers and bags as our domains. The specification of numbers is
given in the appendix. The specification of bags is given in the following.

declare sort Bag, Data

dec var b, b0, b1, b2 : Bag
dec var d, d0, d1, d2 : Data

dec op ebag : -> Bag
@@ : Data, Bag -> Bag

makebag : Data -> Bag
++ : Bag, Bag -> Bag
-- : Bag, Bag -> Bag

nbr : Bag -> Nat
# : Data, Bag -> Nat

..
assert ac ++
assert Bag generated by ebag, @@
assert

d1 @@ (d2 @@ b) = d2 @@ (d1 @@ b)

d#ebag = 0,
(d#(d0 @@ b)) = if( d = d0, succ(d#b), d#b)
(d#(b1 ++ b2)) = ((d#b1) + (d#b2))

nbr(ebag) = 0
nbr(d @@ b) = succ(nbr(b))

makebag(d) = (d @@ ebag)

b -- ebag = b
(d @@ b) -- (d @@ b0) = b -- b0
(d#b) = 0 => b -- (d @@ b0) = b -- b0

..

The following theorems can be easily obtained by simple proofs in LP.

(nbr(b) = 0) = (b = ebag)

(not(b = ebag)) = (0 < nbr(b))
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nbr(b1 ++ b2) = nbr(b1) + nbr(b2)

b ++ ebag = b
(b1 ++ (d @@ b2)) = d @@ (b1 ++ b2)

((d @@ b1) = (d @@ b2)) = (b1 = b2)

(d#b) = 0 => b -- makebag(d) = b

(b -- (b1 ++ b2)) = (b -- b1) -- b2
b1 -- b1 == ebag

(b++b0) -- b0 = b
((d @@ b) -- (d @@ ebag)) = b
when 0 < (d#(b -- b0)) yield 0 < (d#b)

An interesting extension of bags is obtained by the introduction of a function any that
selects an element from a nonempty bag and a complementary function drop that drops
this element from the bag.

dec op any : Bag -> Data
drop : Bag -> Bag

assert any(d @@ b) = d | (not(b = ebag) & any(d @@ b) = any(b))
drop(b) = b -- makebag(any(b))

According to the semantic models of LP specifications the functions any and drop are
not nondeterministic, but underspecified. In every model of bags we have that for every
bag b the element any.b/ is the same. But in different models any.b/ can compute
different results. We obtain the following theorem:

prove b = ebag | b = any(b) @@ drop(b)

This theorem is proved in a straightforward manner in LP.

5.2 The Requirement Specification

In the requirement specification we describe the basic problem we want to deal with.
Given a bag b an element i is called an absolute majority of b, if the following formula
holds:

nbr.b/ < 2ð .i#b/

Obviously if there exists an absolute majority it is unique. The basic requirement of
the majority problem is to compute the absolute majority of a bag in linear time, if it
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exists. If a bag has no absolute majority we call it anarchic. The majority vote problem
can be rephrased as follows: develop an algorithm for computing the function

maj or : Bag! Data

that fulfills the following requirement: if the bag b is not anarchic, then the function
maj or returns the element which is the absolute majority in b.

In LP the requirement specification along these lines reads as follows:

dec op major : Bag -> Data
anarchic : Bag -> Bool

..
assert (nbr(b) < (2 * (d#b))) => not(anarchic(b))

not(anarchic(b)) => (nbr(b) < (2 * (major(b)#b)))
..

Contraposition for the first axiom gives:

prove anarchic(b) => ((2 * (d#b)) =< nbr(b))

It is not obvious that the specification of the predicate anarchic is complete. The
completeness of the specification can be shown as follows. We distinguish two cases.
Assume that that there exists an absolute majority d for a bag b. Then according to
the first axiom anarchic.b/ is f alse. Now assume that that there does not exist an
absolute majority for a bag b. Then according to the second axiom anarchic.b/ is
t rue, since otherwise maj or.b/ would deliver a majority for b. Therefore, assuming
that the specification is not contradictory, the predicate anarchic is uniquely specified.

A better specification of anarchic is obtained, if we use existential quantification:

anarchic.b/ D :9d 2 Data : nbr.b/ < 2.d#b/

By this specification the predicate anarchic trivially is uniquely determined. Further-
more it is clear that by the specification no contradictions are introduced. The function
maj or in the LP specification can be seen as the Skolem function for the existential
quantifier in this explicit specification of the predicate anarchic. Again this explicit
version of a specification for the predicate anarchic seems more readable.

Notice, if a bag b is anarchic, nothing is required about the value maj or.b/. The
function maj or is deliberately not uniquely specified. The majority vote problem is
underspecified.

5.3 Design Specification

In the design specification we formulate the basic ideas for a solution. In the case of
the majority vote the basic idea is to compute the majority by splitting the given bag b
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into two bags such that one of these bags is anarchic and the other one is homogeneous.
A bag is called homogeneous, if all its elements are equal. In LP the notion of a
homogeneous bag is easily defined.

dec op homo : Bag -> Bool

assert (homo(b) & (0 < (d#b))) => (any(b) = d)
(not(d1 = d2) & (0 < (d1#b)) & (0 < (d2#b))) =>

not(homo(b))
..

Again an explicit specification of the predicate homo can be given as follows when
using quantifiers:

homo.b/ � 8d1; d2 2 Data : 0 < .d1#b/ ^ 0 < .d2#b/) d1 D d2

Next let us define the splitting of bags. We introduce the sort PairofBag for pairs of
bags.

dec sort PairofBag
dec op cb : Bag, Bag -> PairofBag

p1, p2 : pairofbag -> Bag
..
assert p1(cb(b1, b2)) = b1

p2(cb(b1, b2)) = b2
..

We introduce the splitting operation called dis (for “dissection”) and give the basic
axioms for it.

dec op dis : Bag -> PairofBag
assert p1(dis(b)) ++ p2(dis(b)) = b

homo(p2(dis(b)))
anarchic(p1(dis(b)))

..

It is not obvious that the specification of the function dis is free of contradictions. In
other words, it is not obvious that there exists a function dis that fulfills the specifications
above. We do not enter into the discussion of the consistency of the specification of
dis here. We return to that question in the following section. At the moment, we just
want to be sure about the correctness of the design idea, provided it is consistent. The
correctness of the design idea is indicated by the following main theorem.

prove not(anarchic(b)) => (nbr(b) < (2 * (any(p2(dis(b)))#b)))
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The theorem shows that any.p2.dis.b///has exactly the property required for maj or.b/
and therefore we may solve our problem by defining:

maj or.b/ D any.p2.dis.b///

For proving the main theorem in LP we proved a few additional theorems in LP. Three
of them are:

prove ((d#p1(dis(b))) + (d#p2(dis(b)))) = (d#b)
prove not(anarchic(b)) => not(p2(dis(b)) = ebag)
prove (nbr(b) < ( 2 * (d#b))) => ( 0 < (d#p2(dis(b))))

Based on these theorems the main theorem showing the correctness of the design
specification has been proved in LP.

5.4 Implementation

In the design specification the function dis was only specified. Now we give a con-
structive specification for it. We do not include the assertions given in the requirement
specification, but start again with a specification based on the specification of bags.
We introduce a function scan and specify it by an explicit axiom. The function scan
computes the second component of the result of the function dis.

declare op scan : Bag -> Bag

The dissection of a bag along the lines described in the previous section is not uniquely
determined. We now give a constructive description of the function scan based on the
functions any and drop.

For the empty bag the function scan obviously has to deliver the empty bag as result:

scan.ebag/ D ebag

The empty bag is both homogeneous and anarchic.

Let now a nonempty bag b be given. For an algorithm to compute the function scan we
look for a method to compute scan.b/ from scan.drop.b//. Inductively let us assume
that scan.drop.b// is homogeneous and that drop.b/ � scan.drop.b// is anarchic.
We distinguish two cases:

(1) The bag a @@ scan.drop.b// is homogeneous; then we simply define

scan.b/ D a @@ scan.drop.b//

since clearly a @@ scan.drop.b// is homogeneous and b � scan.b/ is anar-
chic provided drop.b/� scan.drop.b// is anarchic, which we may assume by
inductive arguments.
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(2) The bag a @@ scan.drop.b// is not homogeneous; then we define

scan.b/ D drop.scan.drop.b///

Clearly then scan.b/ is homogeneous provided scan.drop.b// is homogeneous.
Moreover b�scan.b/ is anarchic provided drop.b/�scan.drop.b// is anarchic,
since b � scan.b/ is obtained from drop.b/ � scan.drop.b// by adding two
different elements. If we add two different elements to a bag that is anarchic the
resulting bag is anarchic, too.

These considerations lead to following constructive axioms for scan:

assert
scan(ebag) = ebag
scan(any(b) @@ drop(b)) = if(homo(any(b) @@ scan(drop(b))),

any(b) @@ scan(drop(b)),
drop(scan(drop(b))) )

..

Based on the function scan we can define the function dis as given in the previous
section in a straightforward way:

dis.b/ D cb.b � scan.b/; scan.b//

Then the first specifying equation for dis is trivially fulfilled. Now we could go on
and prove the other two equations based on the specifications of the functions homo
and anarchic. However, that would not show that our specification is consistent, since
the axioms for the functions homo and anarchic might be inconsistent. Therefore,
we prove instead the consistency of the axioms of these functions, too, by giving
constructive specifications for the functions homo and anarchic and then proving the
defining axioms as theorems. So we give a new specification based just on bags.

dec op major : Bag -> Data
anarchic, homo : Bag -> Bool

..
assert major(b) = any(scan(b))

homo(ebag)
homo(makebag(d))
homo(d @@ (d0 @@ b)) = ((d = d0) & homo(d0 @@ b))

..
dec op comp : Bag, Nat -> Bool
assert comp(ebag, i) = true

comp(makebag(d), i) = (succ(0) < i)
comp(d @@ b, i) = (((d#(d @@ b)) =< i) & comp(b, i))
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anarchic(b) = comp(b, nbr(b))
..

Based on this specification we proved the basic theorems of the correctness of the the
design and the consistency of the specification in LP:

prove not(anarchic(b)) => (nbr(b) < (2 * (major(b)#b)))
prove (nbr(b) < (2 * (d#b))) => not(anarchic(b))
prove (homo(b) & (0 < (d#b))) => (any(b) = d)
prove (not(d1 = d2) & (0 < (d1#b)) & (0 < (d2#b))) =>

not(homo(b))

The proofs are not particularly difficult to carry out in LP. They mostly are done by
induction on b and by cases.

The theorems above prove not only the correctness, but also the consistency, of the
developed solution.

The procedural program as given in [Misra, Gries 82] can easily be obtained from
the constructive equation for scan by representing bags by arrays and homogeneous
bags by a pair consisting of a data element and a number, where the number indicates
how often the given data element occurs in the represented homogeneous bag. In the
program given at the beginning of this chapter the homogeneous bag is represented as
follows: b[i] represents the element in the homogeneous bag (if it is not empty) and
c� i represents the number of elements in it.



Chapter 6

Code Generation

The verification of the correctness of compilers is a tempting problem which is far from
being trivial. Compiler correctness is essential, since, if a compiler is not correct, then
the correctness of a program in the source language is not sufficient to guarantee the
correctness of the generated target language code.

We concentrate in the followingon correctness of code generation and ignore all aspects
of compilers having to do with scanning, parsing and context checking. To keep our
case study manageable, we use a fairly simple source language and a quite simple target
language.

A similar specification of code generation has been verified by Heinrich Hußmann (see
[Hußmann 91]) using the RAP system (see [Geser, Hußmann 91]) and the TIP verifier
(see [Fraus, Hußmann 91]) on top of it, but full recursion was not treated, there.

6.1 Correctness Issues in Code Generation

Compiler correctness is difficult for the following two reasons. First of all, compilers are
rather large and complex pieces of software. Their specification includes a specification
of all the details of two programming languages, namely the source and the target
language, including context-free syntax, context conditions1, and semantics. The
specification of a compiler must say that syntactically well-formed programs written
in the source language are translated into syntactically correct programs in the target
language and that the results of executing the generated programs are equivalent to the
results of evaluating the source programs.

A functional language that provides full computability such that all computable func-
tions can be expressed necessarily introduces the possibility of recursion and looping

1Often called also “static semantics”, which is bad terminology.

29
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computations. The critical problem of looping computations and recursion is that a call
of a recursive function may lead to an infinite computation. We speak of divergence and
of a diverging (evaluation of) function application. It is well known that in a program-
ming language supporting full computability the problem of diverging computations
cannot be avoided.

In the proof of the correctness of code generation we wish to prove that converging
function calls are correctly evaluated by the generated code. For diverging calls we
cannot expect that the execution of the generated code converges. So, although the
function that does the code generation is total (every syntactically correct program
is translated into a finite assembler code program) the code generator necessarily
translates (at least certain) diverging programs into diverging code. Divergence is
generally undecidable and therefore there is no hope for a compiler that recognizes
divergence and treats it by some form of error handling. The possibility of divergence
makes the correctness arguments for code generation essentially more difficult.

6.2 The Semantic Basis

In this section we give the specification of the semantic basis that is used both for the
source language and for the target language of our compiler.

The semantic basis consists of the sorts and operations that are used to give meaning to
our source and target language. Since LP is a first order language we have to encode
higher order functions by first order functions, introducing sorts that stand for sets of
functions. We use following semantic basis:

declare sort
Data, % data elements
Fct, % functions PairDD -

> Data
Fsb, % set of function symbols
FctFctFct, % functionals Fct -

> Fct
PairDD % pairs of data

..
declare var d, d0, d1, d2 : Data

o, o0, o1, o2 : Fct
f, f0, f1, f2 : Fsb
t, t0, t1, t2 : FctFctFct
a, a0, a1, a2 : PairDD

..
declare op

! : Fct, PairDD -> Data % function application
cFct : Fsb -> Fct % interpretation of Fsb
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test : Data -> Bool % data as conditions

cons : Data, Data -> PairDD % pairing function

! : FctFctFct, Fct -> Fct % functional application

fix : FctFctFct -> Fct % fixed point operator

Def : Data -> Bool % Definedness of data
Def : PairDD -> Bool

bottom : -> Data % undefined
..

The general rules of extensionality of functions (functions are identical if for all argu-
ments their results are identical) and of the fixed point operator ( f ix.t/ is a fixed point
of the function t ) are formulated by the following axioms:

assert PairDD generated by cons
assert when (forall o) (t1!o) = (t2!o) yield t1 = t2
assert when (forall a) (o1!a) = (o2!a) yield o1 = o2
assert (t!fix(t)) = fix(t)

For treating divergence in fixed point theory, it is common to introduce a special
semantic element ? called bottom, representing the result of diverging computations.
Then all carrier sets D (in our case the set Data of data elements and the set Pair D D D
Datað Data) are extended by ?:

D? D D [ f?g
On every extended set D? the so called flat ordering v is introduced as follows (for
x; y 2 D?) :

x v y � .x D? _ x D y/

In the proof, we replace this ordering by a predicate:

Def : D! Bool

where
Def .x/ � .x 6D?/

Then we write
Def .x/) x D y

instead of
x v y
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This allows us to make better use of the mechanisms in LP.

This semantic basis of an uninterpreted sort of data elements and binary functions is
used to describe the semantics both of the source and the target language.

6.3 The Source Language

The source language in our example is a functional language, called FP in the following,
with recursive function declaration. For simplicity we consider a language where
all function symbols are binary with fixed interpretations. Each function symbol is
associated with a single binary function. Only one function symbol can be declared
recursively. Moreover, we use only a fixed pair of “standard” identifiers, namely x1

and x2, for parameters. This allows us to write a code generator without having to go
into a discussion of symbol tables. Nevertheless, the code generator confronts us with
all the principal problems of treating recursion.

declare sort Exp, % expressions
Fp % functional programs

..
declare var e, e0, e1, e2, e3, e4 : Exp

fp : Fp
..
declare op % the functional language FP
cst : Data -> Exp
x1, x2 : -> Exp
eif : Exp, Exp, Exp -> Exp
eap : Fsb, Exp, Exp -> Exp

letrec : Fsb, Exp, Exp -> Fp

val : Exp, Fsb, Fct -> Fct % interpretation of FP

fu : Fsb, Exp -> FctFctFct % functional for FP programs
mean : Fp -> Fct % meaning function
mean : Fsb, Exp -> Fct
..

A functional program has always the following simple form

letrec(f, e, e0)

In a notation providing more syntactic sugar that reads

½x1; x2 : e0 where letrec f D ½x1; x2 : e
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For instance a function f that computes x1 Ł .x1C 1/Ł ::: Ł .x2� 1/Ł x2 can be defined
as follows:

letrec(f,
eaf(less(x2,x1), cst(1), mult(x1, f(add(x1,cst(1)), x2))),
f(x1, x2)
)

The semantics of FP is formalized by the following axioms. First it is stated how
expressions and FP programs are generated. This is used later as the basis for proofs by
structural induction on the structure of terms. Then a specification of the definedness
predicate Def is given, followed by the specification of the function val. Finally the
function f u is specified and the meaning function mean for programs.

assert Exp generated by cst, x1, x2, eif, eap
assert Fp generated by letrec
assert % definedness axioms
Def(cons(d1, d2)) = (Def(d1) & Def(d2))
Def(f!a) => Def(a) % strictness assumption
Def(val(cst(d), f, o)!a) = (Def(d) & Def(a))
Def(val(x1, f, o)!a) = Def(a)
Def(val(x2, f, o)!a) = Def(a)

Def(val(eif(e0, e1, e2), f, o)!a) =
(Def(val(e0, f, o)!a) &
((test(val(e0, f, o)!a) & Def(val(e1, f, o)!a)) |
(not(test(val(e0, f, o)!a)) & Def(val(e2, f, o)!a))))

Def(val(eap(f0, e1, e2), f, o)!a) =
(Def(val(e1, f, o)!a) &
Def(val(e2, f, o)!a) &
Def(if(f0 = f, o, cFct(f0))!

cons( val(e1, f, o)!a, val(e2, f, o)!a)))

(val(cst(d), f, o)!a) = if (Def(a), d, bottom)
(val(x1, f, o)!cons(d1, d2)) = if(Def(d1) & Def(d2), d1, bottom)
(val(x2, f, o)!cons(d1, d2)) = if(Def(d1) & Def(d2), d2, bottom)
(val(eif(e0, e1, e2), f, o)!a) =

if(Def(val(e0, f, o)!a),
if(test(val(e0, f, o)!a),

val(e1, f, o)!a, val(e2, f, o)!a),
bottom)

(val(eap(f0, e1, e2), f, o)!a) =
(if(f0 = f, o, cfct(f0))!cons(val(e1, f, o)!a, val(e2, f, o)!a))
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..
assert (fu(f, e)!o) = val(e, f, o)
assert mean(letrec(f, e, e0)) = val(e0, f, mean(f, e))

mean(f, e) = fix(fu(f, e))
..

Function application is strict in FP such that an application of a function always
evaluates to bot tom if one of the arguments is bot tom. We use an uninterpreted
functional semantic basis for describing the meaning of the functional programming
language. Hence our proof of compiler correctness can be applied to any semantic
structure with strict basic functions.

6.4 The Target Language

The target language is a simple assembler language ASP for a computer that has a
stack and exactly two storage cells for carrying the values of actual parameters of the
functional programs. It is not difficult to extend both the target language and the target
machine to a more elaborate concept of storage.

The most delicate question for the assembler language is the treatment of the labels for
the goto statements. We decided to use symbolic addresses in gotos. Therefore a set of
labels is introduced. Labels are strings of markers where markers are elements of the
set f0; 1; 2; 3g.

declare sort
Asp, % assembler programs
Com, % commands of ASP
Mark % markers for labels
Label % labels

..
declare op % commands

lab : Label -> Com
apcst : Fsb -> Com
jump, cjump : Label -> Com
push1, push2 : -> Com
return, swap : -> Com
pushD : Data -> Com
pushL : Label -> Com

% assembler programs
null : -> Asp
@ : Com, Asp -> Asp
ˆ : Asp, Asp -> Asp
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init : -> Label % labels
@ : Mark, Label -> Label

0, 1, 2, 3 : -> Mark
..

The meaning of ASP is specified by an abstract machine called ASPM. We introduce the
sort of configurations representing the control and the data state space for this machine.
A configuration consists of

ž the global program being executed,

ž the stack of data and labels,

ž the program counter,

ž a pair of data.

Usually a machine executes a program text with the help of a program counter rep-
resented by, say, a natural number. The number identifies a position in the program.
Initially the counter is 0 and by every instruction it is updated. For our machine we
prefer not to introduce natural numbers explicitly to represent program counters. We
use a very abstract representation instead. In our machine the program counter is rep-
resented by an ASP program that is a postfix of the global program text. Of course,
it is rather simple to replace this form of a program counter given by a postfix in the
global program by a natural number pointing at the position of the postfix in the global
program.

For defining the operational semantics of ASP and ASPM a single-step function is
introduced that specifies the steps of execution. The function goto computes for a
given label and a given ASP program the continuation, which is again an ASP program.
The specification of the function step that specifies one execution step of the machine
follows classical patterns.

declare sort
Stack, % stacks of labels and data
Label, % sets of labels
Conf % configurations

..
declare op

empty : -> Stack
@ : Data, Stack -> Stack
@ : Label, Stack -> Stack

step : Conf -> Conf



CHAPTER 6. CODE GENERATION 36

goto : Label, Asp -> Asp

cnf : Asp, Stack, Asp, PairDD -> Conf
..
declare var

p, p0, p1, p2, pc : Asp
c, c0, c1, c2 : Com
m, m0, m1, m2 : Label
s, s0, s1, s2 : Stack
k, k0, k1, k2 : Mark
cf, cf0 : Conf

..
assert
step(cnf(p, s, lab(m)@pc, a)) =

cnf(p, s, pc, a)
step(cnf(p, d0@(d@s), apcst(f)@pc, a)) =

cnf(p, (cFct(f)!cons(d0, d))@s, pc, a)
step(cnf(p, d0@(d@s), swap@pc, cons(d1, d2))) =

cnf(p, d1@(d2@s), pc, cons(d0, d))
step(cnf(p, d@(m@(d1@(d2@s))), return@pc, a)) =

cnf(p, d@s, goto(m, p), cons(d1, d2))
step(cnf(p, s, jump(m)@pc, a)) =

cnf(p, s, goto(m, p), a)
Def(d) =>
step(cnf(p, d@s, cjump(m)@pc, a)) =

if(test(d), cnf(p, s, goto(m, p), a),
cnf(p, s, pc, a))

step(cnf(p, s, pushD(d)@pc, a)) =
cnf(p, d@s, pc, a)

step(cnf(p, s, pushL(m)@pc, a)) =
cnf(p, m@s, pc, a)

step(cnf(p, s, push1@pc, cons(d1, d2))) =
cnf(p, d1@s, pc, cons(d1, d2))

step(cnf(p, s, push2@pc, cons(d1, d2))) =
cnf(p, d2@s, pc, cons(d1, d2))

..

The execution of a goto statement uses the function goto. It is easily axiomatized.

assert goto(m, null) = null
goto(m, lab(m0)@p) = if(m = m0, p, goto(m, p))
goto(m, apcst(f)@p) = goto(m, p)
goto(m, swap@p) = goto(m, p)
goto(m, return@p) = goto(m, p)
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goto(m, jump(m0)@p) = goto(m, p)
goto(m, cjump(m0)@p) = goto(m, p)
goto(m, pushD(d)@p) = goto(m, p)
goto(m, pushL(m0)@p) = goto(m, p)
goto(m, push1@p) = goto(m, p)
goto(m, push2@p) = goto(m, p)

..

The execution of a program is carried out by iterating the execution steps until the
program counter becomes null. The iteration of executing steps is defined recursively.
The function exec iterates the step function until the program counter is null. For
particular programs this execution may run forever.

The function cycle as specified in the following takes as an argument an iteration
function w mapping configurations to configurations. If a configuration c is terminal
(if the program counter is null), then cycle.w/.c/ D c, otherwise cycle.w/.c/ D
w.step.c//. The least fixed point of the function cycle has the fixed point property
f ix.cycle/ D cycle. f ix.cycle//. Hence, if a configuration c is terminal (if the
program counter is null), then f ix.cycle/.c/ D cycle. f ix.cycle//.c/ D c, otherwise
cycle. f ix.cycle//.c/ D f ix.cycle/.step.c//. This shows that the application of the
function f ix.cycle/ to a configuration c leads to an iterated application of the function
step until the program counter of the configuration is null. If this never happens, then
the execution does not terminate.

declare sort
FctCC, % functions Conf -> Conf
FctFCCFCC % functions FctCC -> FctCC

..
declare op

exec : -> FctCC

fix : FctFCCFCC -> FctCC
cycle : -> FctFCCFCC

! : FctFCCFCC, FctCC -> FctCC
! : FctCC, Conf -> Conf

..
declare var

w, w0, w1, w2 : FctCC
r, r0, r1, r2 : FctFCCFCC

..
assert

(r!fix(r)) = fix(r)
exec = fix(cycle)
((cycle!w)!cnf(p, s, null, a)) = cnf(p, s, null, a)
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((cycle!w)!cnf(p, s, c@pc, a)) =
(w!step(cnf(p, s, c@pc, a)))

..

The result of a computation is the top element of the stack when the execution comes
to a halt. It can be obtained as follows.

declare op
result : Conf -> Data

assert result(cnf(p, d@s, pc, a)) = d

As we have already pointed out, for our simple machine ASPM a control state is
represented by a pair .p0; p1/ where p0 is the “global program” and p1 is a postfix of
p0 representing the program counter. We write p1 ¼ p0 to indicate that p1 is a postfix
of p0. If p1 is a postfix of p0 then p1 uniquely determines a natural number i with
0 � i � length.p0/ which can be seen as the more realistic representation of a control
counter. It is not difficult to replace the pair .p0; p1/ by a pair .p0; i/ where i is a
natural number with 0 � i � length.p0/.

6.5 Code Generation

Code generation can be easily expressed in LP by equations for the source language
constructs. In the following the compilation function is specified in LP. For a FP program
letrec. f; e; e0/ code is produced that contains code (generated from the expression e)
for the recursively declared function identified by the function symbol f and for the
expression e0. The produced code always contains the code for the recursively declared
function followed by the code for for evaluating the expression e0. We use the label
init to label the code for the recursively declared function the label 1@init to label the
code for for evaluating the expression e0. The introduced functions serve the following
purposes (let e be an expression, f be a function symbol, and m be a label).
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t rans.e;m; f / yields the ASP code for computing the value of e using the
label m (and contains only labels obtained from m by prefixing
m by markers); for all function symbols in the expression e
distinct from the function symbol f , code is produced that
corresponds to calls of the respective primitive function, while
for the function symbol f , recursive calls are generated,

comp.p/ yields the ASP code generated for program p,

rectrans. f; e/ yields the ASP code for the recursive declaration of the func-
tion symbol f by e,

etrans.e; f / yields the ASP code for computing the value of e.

The LP specification of these functions is straightforward.

declare op
trans : Exp, Label, Fsb -> Asp
comp : Fp -> Asp
etrans : Exp, Fsb -> Asp
rectrans : Fsb, Exp -> Asp

..
assert
trans(cst(d), m, f) = (pushD(d) @ null)
trans(x1, m, f) = (push1 @ null)
trans(x2, m, f) = (push2 @ null)

trans(eif(e0, e1, e2), m, f) =
( trans(e0, 0@m, f) ˆ % condition
( cjump(m) @
( trans(e2, 1@m, f) ˆ % else-part
( jump(3@m) @
( lab(m) @ % then-part
( trans(e1, 2@m, f) ˆ
( lab(3@m) @
null )))))))

trans(eap(f0, e1, e2) , m, f) =
trans(e2, 2@m, f) ˆ

( trans(e1, 1@m, f) ˆ
if(f0 = f, swap @ % recursive call

( pushL(m) @
( jump(init) @
( lab(m) @
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null ))),

apcst(f0) @
null ))

comp(letrec(f, e, e0)) = rectrans(f, e) ˆ etrans(e0, f)

rectrans(f, e) = ( lab(init) @
( trans(e, (0@init), f) ˆ
( return @
null )))

etrans(e0, f) = ( trans(e0, (1@init), f) ˆ
null )

..

The code generator generates first the code for the recursive function declaration and
then the code for the expression. Recall that there is only one recursive function per
program.

All labels are different in the generated code. This is used by the following assertions.
We introduce the postfix relation between ASP programs explicitly as follows.

declare op =< : Asp, Asp -> Bool % postfix ordering
assert p =< p
assert when ((p0ˆpc) =< p) yield (pc =< p)
assert when ((c@pc) =< p) yield (pc =< p)

The rule for computing continuations then reads as follows.

assert when ((lab(m)@p1) =< comp(fp))
yield goto(m , comp(fp)) = p1

..

This assertion can easily be proved with the axioms given for the function goto. It
is certainly part of the correctness proof for code generation to prove these assertions.
We do not describe here how to carry out this proof, but rather concentrate on the main
proof of correctness of code generation.

6.6 Verification

Having specified the compiler function we can assign a meaning to programs in the
source language by translating them to ASP programs, executing them and taking the
result as the meaning of the source program. In LP this is expressed as follows.
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declare op cmean : Fp -> Fct
xi : Fsb, Exp, Exp, FctCC, Stack -> Fct

..
assert
cmean(letrec(f, e, e0)) = xi(f, e, e0, exec, empty)

(xi(f, e, e0, w, s)!a) =
result(w!cnf(comp(letrec(f, e, e0)), s, etrans(e0, f), a))

..

Compiler correctness now can be specified as follows. Our compiler is correct, if for
every FP program and every pair of arguments for this program, whenever this program
terminates, so does the execution of the generated code and the results coincide.

Of course, before starting a more sophisticated proof, an idea, how to organize the
proof, must be found. We speak of the architecture of a proof. Such a proof idea
often needs careful investigation of the specifications under consideration, especially
for finding out as early as possible whether a proof idea does not work.

If the specifications are large and complex, a tuned notation is extremely helpful.
Therefore we introduce in addition to the LP notationa more sophisticated mathematical
one that hopefully makes the discussion of the proof principles more comprehensible.
The introductionof such a tuned mathematical shorthand is of significant help in finding
the correctness proof.

Let us first formulate the correctness condition for code generation. Let e; e0 be
expressions and f be a function symbol. The program

letrec. f; e0; e1/

stands for the function (note, once more, the parameters are always denoted by the
identifiers x1; x2; therefore every expression containing only these two variables can
be read as representing a binary function in the arguments x1 and x2):

½x1; x2 : e0 where letrec f D ½x1; x2 : e

The recursive declaration for f associates a function Qf with the function symbol f by
the fixed point operator where

Qf D f ix.− e
f / where − e

f [ Qf ] D val.e; f; Qf /

Here val.e; f; Qf / stands for the value obtained by evaluating the expression e while
using the function Qf as the interpretation of the function symbol f .

The functional cycle is abbreviated by ¦ in the following. It has the functionality

¦ : .Conf ! Conf /! .Conf ! Conf/
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where for all configurations c:

.¦ [w]/.c/ D step.c/

if the program counter of the configuration c is not null and

.¦ [w]/.c/ D c

otherwise. If the program counter is null, result .c/ gives the top data element of the
stack in configuration c.

The fundamental theorem indicating the correctness of the compiler reads as follows
(remember, in the specification of ASPM the function fix.¦/ was abbreviated by exec):

val.e0; f; f ix .− e
f // D ¾ e;e0

f . f ix.¦//

where
¾

e;e0
f .g/:a D result .g.cnf.p; s; p0; a///

where a is a pair of arguments and

p D rectrans. f; e/ˆp0

p0 D etrans.e0; f /

The core of the correctness proof for code generation is therefore a proof of the
equivalence of two recursively defined functions.

Basically, as well-known from fixed point theory, there are the following proof rules
available for proving properties about recursively defined functions. Let − be a contin-
uous function.

Fixed Point Rule:
f ix.− / D − [ f ix.− /]

Least Fixed Point Rule:
g D − [g]) f ix.− / v g

Computational Induction:

tf fi : i 2 Ng D f ix.− / where f0 D �; fiC1 D − [ fi ]

Here � stands for the function ½x : ?.

When trying to carry out a proof it is very important to recognize whether a proof
technique might be successful or not. It is a major decision for the correctness proof
for the code generator which of the rules are to be applied.

Since LP is equation oriented, a proof based just on the fixed point rule would be
most convenient. However, a careful inspection of our basic theorem shows that a
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proof purely based on the fixed point rule cannot work. f ix.¦/ represents repetitive
recursion. Therefore, if an application f ix.¦/ diverges for a given argument nothing
can be said about the value that other fixed points of ¦ may yield for this argument.

Consider for the moment the natural numbers for the sort Data and the rather stupid
recursive declaration:

letrec f .x1; x2/ D f .x1; x2/C 1

There is no solution for f besides f D �. For the function exec where exec D f ix.¦/
we obtain:

exec.cnf.p; s; t rans.eap. f; x1; x2//; a// D
exec.cnf.p; Qs; t rans.eap. f; x1; x2//ˆc; a//

where Qs is obtained from s by pushing a number of labels and parameter values onto
the stack s and c is some code.

Certainly there are many functions that fulfill the equation for exec above. So pure
fixed point reasoning cannot be sufficient for proving the correctness of f ix.¦/. It is
the least fixed point of the function ¦ that should have the required property. Therefore
we use the following rule that is a generalization of transformational induction. Let �
be a continuous function.

Transformational Induction:

.8 Qf : �[ Qf ] v ¾ ) �[− [ Qf ]] v ¾ /) �[ f ix.− /] v ¾

The correctness of this rule can be proved in a straightforward way by computational
induction (for − ). From

8 Qf : �[ Qf ] v ¾ ) �[− [ Qf ]] v ¾
we obtain for Qf0 D �; QfiC1 D − [ Qfi ] by induction on i that

�[ Qfi ] v ¾
Therefore

�[ f ix.− /] D �[tf Qfi : i 2 Ng] v ¾
This rule, in contrast to computational induction, has the advantage that we do not have
to introduce the natural numbers explicitly into the proof.

By this rule we can show that, whenever f ix.− e
f /.d1; d2/converges, so does f ix.¦/.cnf.:::; cons.d1; d2//

and both coincide. This means that we prove the somewhat weaker theorem:

val.e0; f; f ix.− e
f // v ¾ e;e0

f . f ix.¦//

To prove this theorem by induction on the structure of the expressions we need an
appropriate embedding.
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We formulate this embedding and based on it the correctness theorem. In the following
we consider the program

letrec. f; e0; e1/

in the source language FP; let the following abbreviations be introduced:

p0 D comp.letrec. f; e0 ; e1//

− D f u. f; e0/

¹[ Qf ; e] D val.e; f; Qf /
�m[e] D t rans.e;m; f /
�[s; p1] D ½a : f ix.¦/.cnf.p0; s; p1; a//;

Note, f stands for a function symbol while Qf stands for a function. The correctness of
code generation is implied by the following formula:

8e : 2[ f ix[− ]; e]

where2[ Qf ; e] is an abbreviation for:

�m[e]ˆp1 ¼ p0 ) �[¹[ Qf ; e].a/ˆs; p1].a/ v �[s; �m[e]ˆp1].a/

A first attempt to carry out the proof is to use computational induction to prove:

Qf v − [ Qf ] ^2[ Qf ; e]) 2[− [ Qf ]; e]

by induction on the structure of the expression e. When trying to carry out this proof,
then we have to face the following nasty problems.

ž In the induction step for the case e D eap. f; e3; e4/we have to prove the theorem
for e D e0 where e0 is the body of the recursive declaration. For e0 an induction
hypothesis is not available, since e0 is not a subexpression of e, in general, and
therefore the proof gets stuck.

In our first version of the proof of compiler correctness this problem was overcome
by structuring the proof into two steps treating recursive calls and nonrecursive calls
separately. Then a complicated rephrasing of the semantics of FP was used such that the
compiler correctness for this semantics could be proved in LP as well as the equivalence
of the orignal semantical definition for FP with the rephrased one.

After the proof was finished, Birgit Schieder studied it and discovered a more direct
proof that avoided the rephrasing of the semantics of the source language, by proving
a more general formula using quantifiers explicitly (see [Schieder 92]). As Schieder
pointed out to me the proof can be greatly simplified by proving the following main
theorem

Qf v − [ Qf ] ^ 8e : 2[ Qf ; e]) 8e : 2[− [ Qf ]; e]
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instead of the theorem above. Clearly, this theorem also implies by computational
induction:

8e : 2[ f ix[− ]; e]

but it turns out that it is much simpler to prove. Technically it means that we apply
computational induction first and then apply structural induction on the structure of the
expressions, rather than the other way around. In LP the main theorem reads as follows:

prove
when
(forall a, s, p1, m1, e)
((Def((val(e, f, o) ! a) ) &
((trans(e, m1, f) ˆp1) =< p0))
=>
((exec!cnf(p0, s, trans(e, m1, f) ˆp1, a)) =
(exec!cnf(p0, (val(e,f,o)!a) @ s, p1, a)))) -> true,
p0 -> comp(letrec(f,e0,e1))
yield
((Def(val(e, f, o) ! cons(d1, d2)) &
((trans(e, m, f)ˆp1) =< p0) )
=>
(exec!cnf(p0, s, trans(e, m, f) ˆp1, cons(d1, d2) )) =
(exec!cnf(p0, (val(e,f,o)!cons(d1,d2) ) @ s, p1, cons(d1, d2))))
..

The proof requires some definedness reasoning that is introduced in the following
paragraph.

6.7 Logic of Definedness

When proving theorems by computational induction we have to reason about defined-
ness. The introduction of the definedness reasoning into the LP specification reads as
follows.

declare op =< : Data, Data -> Bool
assert (d1 =< d2) = ((d1 = bottom) | (d1 = d2))
assert Def(d1) = not(d1 = bottom)

For functions the partial ordering is introduced as follows:

declare op =< : Fct, Fct -> Bool
assert when (forall a) (o1 ! a) =< (o2 ! a) yield o1 =< o2
assert o1 =< o2 => (o1!a) =< (o2!a)
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Furthermore the monotonicity of the involved functions is required.

assert (a1 =< a2) => ((o!a1) =< (o!a2))
assert (o1 =< o2) => ((t!o1) =< (t!o2))

These rules are used in the correctness proof.

6.8 Proof of the Main Theorem

Finally we proved the main theorem in LP using the axioms of definedness. The proof
itself is not particularly difficult. It just is a long proof by structural induction taking
into account all the forms expressions in FP can have.

Proving the correctness of a compiler is a quite serious proof task. It requires in
particular techniques from domain and fixed point theory. The consistency of the LP
specification for the compiler correctness proof is not obvious at all. It is basically
justified by the consistency of fixed point theory. Also the correct application of the
rules from fixed point theory has not been checked within LP.

Proving compilers correct is a task that has been investigated by many researchers (see
the pioneering paper [London 71], and furthermore, for instance, [Manasse, Nelson 84],
[Bevier 89], [Hußmann 91], [Reeves 91], [Rus 90]), however, a rigorous formal proof
of the correctness of recursive functions was always considered to be one of the more
difficult aspects.

The correctness proof for code generation involves, in general, the following forms of
induction:

1. computational induction,

2. induction on the structure of the expressions.

In the proof presented above, both induction principles were combined to prove a
carefully selected generalized theorem, from which the main theorem of compiler
correctness can be deduced.



Chapter 7

Interactive Queues

LP is a functional specification language. Properties about interactive systems can be
proved with the help LP, if we give functional representations for such systems. Of
course, we can define state transition systems by functional means and therefore treat
such systems with the help of LP. Another way to reason about interactive systems,
also supported by LP, is offered by functional system descriptions along the lines of
[Broy 90].

In the following sections we specify an interactive queue, give an implementation in
terms of states and an implementation by an infinite network. We prove the correctness
of the implementations within LP. The example is taken from [Broy 88] where the
theoretical background is described in detail.

7.1 The Domain Theory

We use the the data types of streams and of messages. For simplicity we just use
natural numbers as messages (for every natural number i by dt .i/ we denote the
message consisting of i) and a special message rq as a request signal. The set of
messages reads as follows:

declare sort Message
declare var m, m1, m2 : Message
declare op rq : -> Message
declare op dt : Nat -> Message
assert (rq = dt(i)) = false
assert Message generated by rq, dt

Streams are sequences of messages. The specifications of streams reads in LP as
follows:

47
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declare sort Stream
declare var s, r, s1, s2, r1, r2 : Stream

m, m1, m2 : Message
..
declare op es : -> Stream % empty stream

ˆ : Message, Stream -> Stream % prefixing
ˆ : Stream, Stream -> Stream % concatenation

..
assert esˆs = s

sˆes = s
(mˆs)ˆr = (mˆ(sˆr))

((mˆs) = (m1ˆs1)) = ( m = m1 & s = s1 )
(es = (mˆs)) = false

(sˆr)ˆs1 = sˆ(rˆs1)
(sˆs1 = sˆs2) = (s1 = s2)
(s1ˆs = s2ˆs) = (s1 = s2)

..
assert stream generated by es, ˆ:Message, Stream -> Stream

The sort Stream as introduced here includes only finite streams, not infinite streams as
the domain of streams as used in [Broy 90].

7.2 The Requirement Specification

The behavior of interactive system components can be described using the concept of
streams. We do not go deeper in this subject and just refer to [Broy 90].

An interactive queue that is initially empty can be specified based on the concept of
streams in LP as follows. Here the predicate norq is used as an auxiliary construct.
The proposition norq.s/ is t rue, if and only if the stream s does not contain the signal
rq .

declare op q : Stream -> Stream
declare op norq : Stream -> Bool
assert

q(rqˆs) = rqˆq(s)
norq(r) => q(dt(i)ˆ(rˆ(rqˆs))) = dt(i)ˆq(rˆs)
norq(s) => q(s) = es

norq(es) = true
norq(rqˆs) = false
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norq(dt(i)ˆs) = norq(s)
norq(rˆs) = norq(r) & norq(s)

..

The specification of the function q basically expresses the following properties:

ž when a request signal rq is received while the queue is empty then this signal is
sent back and the queue remains empty;

ž when a request signal rq is received after receiving a data message dt .i/ followed
by a finite sequence r of data messages, then the first data message in the input
stream, which is dt .i/, is sent in response;

ž as long as there are no request signals in the input there is no output.

This describes the behavior of a queue in terms of finite histories of interactions. The
function q is uniquely specified this way.

In the following we give two constructive descriptions for interactive queues. The first
one is based on a state concept. The second one uses an infinite network of cells.

7.3 State Based Implementation

A more constructive description of q is obtained by basing q on an auxiliary function
qs that is specified in a more state-oriented form as follows

declare op qs : Stream, Stream -> Stream
assert qs(es, es) = es

qs(es, rqˆs) = rqˆqs(es, s)
qs(dt(i)ˆr, rqˆs) = dt(i)ˆqs(r, s)
qs(r, dt(i)ˆs) = qs(rˆ(dt(i)ˆes), s)

..

The first parameter of qs should be seen as a sequence (or more appropriately as an
element of sort Queue) rather than as a stream. It can be understood as the state of the
interactive queue. A more adequate way to express this would be to associate with qs
the functionality

qs : Queue! .Stream! Stream/

where Queue is the sort of sequences equipped with the operations for queues.

The function qs provides an implementation of the function q . This is proved in LP by
proving:

prove q(s) = qs(es, s)
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Figure 7.1: Graphical representation of the component cl

For carrying out this proof we proved following auxiliary theorems in LP.

prove norq(r) & norq(s) => qs(r, s) = es
prove norq(r1) => qs(rˆr1, s) = qs(r, r1ˆs)
prove norq(r) => q(rˆs) = qs(r, s)

All these proofs are carried out in LP by rather straightforward induction on r and s.

7.4 Interactive Queues as Infinite Networks of Cells

A queue as specified above can be implemented by an infinite (or better an unbounded)
network of storage cells, each of which can store at most one data item.

7.4.1 Storage Cells

A storage cell is an interactive component that has two input channels and two output
channels. It can be modeled by a function that receives two input streams and produces
two streams as output. We describe a storage cell by a ternary function cl. In an
application cl.m; s; y/ the first argument m represents the state of the cell (the message
stored in the cell). The other two parameters are the input streams. The most adequate
functionality for cl therefore would be:

Message! .Stream ð Stream ! Stream ð Stream/

This functionality can be obtained from the functionality of cl by currying. A graphical
representation of a cell cl is given in Figure 7.1. Initially, the cell is empty. This is
modeled by specifying that rq is stored in the cell initially.

The behavior of a cell can be informally described as follows. If the cell that has
currently stored the data message rq , which, as pointed out, indicates that the cell is
empty, gets a message m on channel s then:
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ž if m D rq , then the signal rq is echoed back on channel n to indicate that the
cell is empty and therefore cannot satisfy the request and the value rq remains
the value stored in the cell;

ž if m D dt .i/; then the data element dt .i/ becomes the value stored in the cell.

If the cell that has currently stored the data message dt . j / gets a message m on channel
s then:

ž if m D rq , then the data element dt . j / is sent on channel n in response and a
request is sent on channel r; the message received in response to this request on
channel y gets the new value stored in the cell;

ž if m D dt .i/, then the data element dt .i/ is sent further on channel y; the value
dt . j / remains the value stored in the cell.

This behavior can be expressed in LP as follows (clh is introduced just for technical
reasons as an auxiliary function):

declare sort PairofStream
declare op cons : Stream, Stream -> PairofStream

p1, p2 : PairofStream -> Stream
cl : Message, Stream, Stream -> PairofStream
clh : Stream, Stream -> PairofStream

..
assert p1(cons(s, r)) = s

p2(cons(s, r)) = r

cl(m, es, r) = cons(es, es)

cl(rq, dt(i)ˆ s, r) = cl(dt(i), s, r)
cl(rq, rqˆs, r) =
cons(rqˆp1(cl(rq, s, r)), p2(cl(rq, s, r)))

cl(dt(j), rqˆs, r) =
cons(dt(j)ˆp1(clh(s, r)), rqˆp2(clh(s, r)))
clh(s, mˆr) -> cl(m, s, r)
clh(s, es) = cons(es, es)
cl(dt(j), dt(i)ˆs, r) =
cons(p1(cl(dt(j), s, r)), dt(i)ˆp2(cl(dt(j), s, r)))

..

For these functions a number of theorems are proved in LP that will be used in the
correctness proofs for the network given below:
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Figure 7.2: Graphical representation of the network of cells

prove norq(r) => p1(cl(m, r, s1)) = es
prove norq(r) => p1(cl(dt(i), rˆ(rqˆs1), r1)) =

(dt(i)ˆp1(clh(s1, r1)))
prove norq(r) => p1(cl(dt(i), rˆs1, r1)) =

p1(cl(dt(i), s1, r1))

prove norq(r) => p2(cl(dt(i), r, s1)) = r
prove norq(r) => p2(cl(rq, dt(i)ˆ(rˆs1), s)) =

rˆp2(cl(rq, dt(i)ˆs1, s))

These theorems actually show interesting properties of the cell. They allow a better
understanding of the behavior of the cell.

7.4.2 The Network

An infinite network of cells can be used to implement an interactive queue. A graphical
representation of such an infinite network of cells is given in Figure 7.2. The network
can be logically described by a recursive definition for streams.

We introduce two function symbols qn and qr. For a stream s the stream qn.s/ denotes
the output produced by the network and the stream qr.s/ denotes the stream produced
inside the network as output by the left cell in the network used as input for its right
neighbor.

declare op qn, qr: Stream -> Stream

The network can be described by recursive equations for qr and qn in terms of the cell
function cl:

.qn.s/; qr.s// D cl.rq; s; qn.qr.s///

We do not simply use these equations as assertions in LP. The reason is as follows: in
the theoretical framework as given in [Broy 88] fixed points are guaranteed to exist by
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the monotonicity of the functions involved. Therefore we simply could state qr and qs
by the equations shown above. Since we did not introduce the theoretical framework
of fixed point theory explicitly, we do not give fixed point definitions for qn and qr.
We just introduce predicates as abbreviations for the fixed point equations.

declare op fpr : stream -> bool
assert fpr(s) == (qr(s) = p2(cl(rq, s, qn(qr(s)))))
declare op fpn : stream -> bool
assert fpn(s) == (qn(s) = p1(cl(rq, s, qn(qr(s)))))

The correctness of the network given above is proved in two steps. In the first step
we prove partial correctness, also called safety properties. In the second step we prove
liveness properties.

7.4.3 Safety

The network is basically described by equations for streams. We prove safety properties
by giving explicit specifications for the functions qn and qr proving that the functions
qn and qr as specified above form a fixed point of the equation describing the network.

Again an auxiliary function qc is introduced just for convenience for specifying qr.

declare op qn, qr: Stream -> Stream
qc: Stream, Stream -> Stream

assert qn(es) = es
qn(rqˆs1) = (rqˆqn(s1))
norq(s1) => qn(s1) = es
norq(r) =>
qn(dt(i)ˆ(rˆ(rqˆs))) = (dt(i)ˆqn(rˆs))

qr(s) = qc(es, s)

qc(es, (dt(i)ˆs)) = qc((dt(i)ˆes), s)
qc(es, (rqˆs)) = qc(es, s)

qc(r, es) = es
qc(dt(j)ˆs, rqˆs1) = (rqˆqc(s, s1))
qc(dt(j)ˆs, dt(i)ˆs1) =

(dt(i)ˆqc((dt(j)ˆs)ˆ(dt(i)ˆes), s1))
norq(r) => qc(es, (dt(i)ˆr)) = r
norq(r) => qc(dt(i)ˆ(s1), rˆs) =

rˆqc(dt(i)ˆ(s1ˆr), s)
..
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For proving the required safety properties of the network we prove that the specified
functions qn and qr are indeed fixed points. For carrying out this proof in LP we
proved the following lemmas:

prove fpr(es)
prove fpr(s) => fpr((rqˆs))
prove fpr((dt(i)ˆes))
prove norq(r) => fpr(dt(i)ˆr)
prove fpr(s) => fpr((dt(j)ˆ(rqˆs)))
prove norq(r) => (fpr(dt(i)ˆ(rˆs)) =>

fpr(dt(j)ˆ(dt(i)ˆ(rˆ(rqˆs)))))

prove fpn(es)
prove fpn(s) => fpn((rqˆs))
prove norq(r) => fpn((dt(i)ˆr))
prove fpn(s) => fpn((dt(j)ˆ(rqˆs)))
prove norq(r) => (fpn(dt(i)ˆ(rˆs)) =>

fpn(dt(j)ˆ(dt(i)ˆ(rˆ(rqˆs)))))

These theorems then allow us to prove the basic safety property:

prove fpn(s)
prove fpr(s)

This concludes the safety proof. In the proof of the safety properties a number of
properties of the function cl are required as well as certain properties of the function
clh. For doing the proofs certain skolem functions have been introduced. Their
description is given in the appendix. Note, again, the proof gets more tedious, since
in LP we cannot assume that there are fixed points of the functions involved. Simply
giving the axioms

f pn.qn.s// ^ f pr.qr.s//

as definitions for qr and qs might already have introduced an inconsistency in LP. In
SPECTRUM the semantic theory ensures that monotonic functions have fixed points and
therefore a consistency proof is not necessary.

7.4.4 Liveness

We prove the liveness properties for the network by proving that the output has the
required length.

This is probably not the most elegant way of proving liveness. However, since we
were interested in getting experience with LP in carrying out those types of proofs,
we constructed the proof this way. For doing the proof we introduce two auxiliary
functions.
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declare op nbr, nbrrq : stream -> nat
assert nbr(es) = 0

nbr(mˆs) = succ(nbr(s))
..
assert

nbrrq(es) = 0
nbrrq((rqˆs)) = succ(nbrrq(s))
nbrrq(dt(i)ˆs) = nbrrq(s)

..

Then we have: nbr.s/ denotes the number of elements, the length, of stream s.
nbrrq.s/ denotes the number of occurrences of the signal rq in the stream s.

For proving the liveness properties we do not include the assertions about qn and qr
as given explicitly in the safety part, but assert that the functions qn and qr are fixed
points1:

assert fpr(s) & fpn(s)

Now, we observe that for the function q as introduced in the requirement specification
we have (a proof by induction is straightforward):

nbr.q.s// D nbrrq.s/

In the safety part we have already shown that q is a fixed point. It remains to show that
it is the least fixed point. Therefore it is sufficient to show the following lemma:

f pr.s/ ^ f pn.s/) nbrrq.s/ � nbr.qn.s//

The liveness proof is quite straightforward. It uses a number of properties of cl and clh
that are listed in the following. Again these properties are verified by straightforward
(mostly induction) proofs in LP. Finally we prove in LP:

prove nbr(p2(cl(m, s, r))) =< nbr(s)
prove nbr(p2(cl(rq, m ˆ s, r))) < nbr(m ˆ s)
prove nbrrq(p2(cl(m, s, r))) < succ(nbr(r)) =>

nbr(p1(cl(m, s, r))) = nbrrq(s)

Based on these properties we proved the following theorem in LP by induction on i:

prove nbr(s) < i => nbrrq(s) =< nbr(qn(s))

This theorem immediately implies:

1Since we have already proved in the safety part that fixed points exist we can be sure that this does not
cause inconsistencies.
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prove nbrrq(s) =< succ(nbr(qn(s)))

This concludes the liveness part of the correctness proof for the implementation of the
interactive queue by a network.

7.4.5 Fixed Point Reasoning

A more elegant and simpler proof for the correctness of the network is obtained by
defining the function qn as follows:

qn.s/ D p1. f ix ½c : cl.rq; s; qn.p2.c////

where s denotes a stream and c denotes a pair of streams and p1 and p2 denote the first
and second projection function for pairs of streams and f ix denotes the fixed point
operator. The following rule is justified by fixed point arguments (let Qc be a pair of
streams and Qcˆc denote the elementwise concatenation of the pairs of streams Qc and c
and f be a function from pairs of streams to pairs of streams):

f ix ½c : Qcˆ f .c/ D Qcˆ f ix ½c : f . Qcˆc/

Using this rule the three defining equations for interactive queues as given in section
7.2 can be derived in LP in a rather straightforward way by fold/unfold techniques for
the recursive definition of qn as given above. Since LP does not support ½-notation and
higher order functions (such as f ix), some parts of ½-calculus had to be axiomatized
explicitly in LP to carry out the proof along these lines. Although we have carried out
these proofs in LP, too, we do not give the LP version of the proof, because we do not
wish to go into the axiomatization of ½-calculus within LP here.

This concludes the example of the interactive network of storage cells implementing
an interactive queue.
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Conclusion

All the examples of developments as treated in the previous chapters were carried out
using LP to prove all the theorems. The purpose of this work was not, of course, to be
sure about the correctness of the examples, but rather to get experience in deduction
oriented program and system development using a tool like LP.

Finally, we want to discuss more general aspects of formal techniques in software
and system development and draw at least a number of conclusions in the light of the
treatment of the examples.

8.1 Discussion of Formal Techniques

The most basic questions, generally asked in connection with formal techniques and
verification support systems, are listed in the following:

(1) Is formal specification and verification possible, in principle?

(2) What does it cost?

(3) How does it pay?

(4) Can it be applied, in practice?

It was, of course, apart from technical and scientific aspects, one of the purposes of this
study is to obtain input for answers to these questions.

The answer to question (1) is definitely “yes” from my point of view. I cannot imagine
a piece of software, where formal specification and verification is, in principle, not
possible. Our specification techniques and verification techniques are developed far
enough, today. However, certainly there are applications where formal specifications
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may not be adequate1. And whether specification and verification is practically possible
and useful when working with large programs is an open question. The difficulties of
scaling up formal techniques is a crucial problem.

The second question cannot be answered very generally. The study for the examples
given in the previous sections was carried out during a stay of 14 weeks at SRC in
Palo Alto during the summer and autumn 1991. The work on the verification and
specification of the examples certainly took less than 4 manweeks. Of course, the
examples studied are toy examples and therefore the time for constructing the proofs
seems rather long. On the other hand, this time includes all the steps of the problem
specification. Moreover, if in a more practical software production environment similar
applications are treated again and again, then specifications and proof techniques may
be reused in a much higher degree. Formal techniques may help to produce high quality
software such that reuse is more attractive than for software nowadays. If in a particular
area of application the domain theory is formalized by specifications and a number of
theorems and proof techniques have been established, then the overhead in tackling
new, but related development tasks is drastically reduced.

The answer to question (3) is even more difficult. Certainly, a lot of bugs in program
development can be caught by specification and verification techniques. However, it is
necessary to emphasize that a formally specified and verified program is not necessarily
correct in the pragmatic sense. The specification may not capture the requirements
properly, the proof itself may be carried out not properly (even when using support
systems errors can occur in stating the axioms, not to speak about the correctness of the
support system itself). On the other hand, when observing how much time and energy
is wasted in testing, debugging and maintaining incorrect badly documented software,
we may conclude that even when formal techniques are expensive they may pay.

Question (4) again leads to two answers. In principle, formal techniques can be
practically applied, right now. However, when trying to apply formal techniques,
in practice, the following problems will give software engineers pioneering in the
application of formal methods a hard time:

ž lack of experience and well educated people,

ž lack of a well worked out methods,

ž lack of tool support for organizing the work.

Nevertheless, for a number of areas of application formal techniques might nevertheless
already be applicable and cost-effective.

1What is the formal specification of a pattern recognition procedure for handwritten letters or for spotting
koala bears in the jungle.
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8.2 Areas of Enhancement for LP

When using a tool like LP an interesting question concerns aspects for further de-
velopment. It is certainly important to underline here that the suggestions of further
development are not to be misunderstood as a criticism of the design decisions that
have led to the current version of LP. I am perfectly in agreement with a strategy to
start with a simple and basic tool first, to gather some experience and than do a next
step (“little steps for little feet” as Jim Horning says).

We have already discussed the significance of language features in chapter 2. Here a lot
can be added, especially features already available in Larch, to make the LP notation
more comfortable. In the following we rather concentrate on questions of deduction
and proof support.

8.2.1 More Power for the Proof Machinery

First of all, it has to be stated already that LP is a proof machinery that needs a lot of
interaction. LP gives practically no hints for finding proofs with respect to the proof
structure. The basic proof idea has to be completely provided by the user. However, LP
is much more than just a proof checker, although it can be and has been used that way.
When carrying out the basic proof steps, the information displayed in the interactive
development of a proof is valuable for designing the proof. It, in particular, gives hints
why a certain proof step fails, and in some cases, may indicate that the conjecture that
is to be proved may be not a theorem, after all.

At the moment, often it takes a painfully large number of steps of interaction (including
failing attempts) to carry out quite simple proofs of rather obvious propositional formu-
las. Here time consuming proofs by cases are often needed. Certainly, additional proof
machinery that can be invoked, when a level of detail is reached during the construction
of a proof that allows to complete the proof by purely propositional reasoning and by
instantiating a number of axioms would be very helpful. This could be done by an
efficient decision procedure.

When dealing with constructive specifications, induction proofs become crucial. In LP,
induction on the term structure is well supported. More sophisticated techniques of
induction can be envisaged, including complete induction and induction over terms, as
well as variables.

Another source of frustration is the amount of input needed by the LP system when
instantiating formulas. Although the “critical pairs” concept can help here, I found its
use rather indirect. More explicit commands offered by LP would be welcome.



CHAPTER 8. CONCLUSION 60

8.2.2 Support of More Refined Logical Theories

LP supports just a subset of first order predicate logic plus induction. This is quite
powerful and, in principle, sufficient. More sophisticated logical concepts like higher
order functions, full quantifiers, logic of partial functions, fixed point theory and much
more can be implemented by specifications on top of LP.

However, this proceeding has disadvantages. As it can be seen by the compiler example,
it makes a difference, whether a sort for representing functions is introduced or whether
functional sorts are available. The same applies for reasoning about partial functions.

It would be nice to make a number of theory and logic transformers available on top
of LP, such that by invoking these transformers more refined logical theories are made
available to the users.

In any case full first order predicate logic with full treatment of quantifiers should be
supported.

8.2.3 Advanced Proof Support

Certain proof techniques are very well supported by LP. For instance, all kinds of
rewriting proofs can be easily carried out. Other proof techniques are less adequately
supported.

For instance, proofs where for a transitive relation� a proposition

t0 � tn

is proved by giving a sequence of terms ti such that:

t0 � t1 � ::: � tn

have to be carried out in LP by instantiating the law of transitivity over and over again.

Such proofs are needed in many applications of computer science. Here more tuned
proof techniques might be provided.

Often it is helpful to declare a number of abbreviations for formulating a theorem and
carrying out a prove. Such local declarations might also be supported.

Abbreviations for formulas are also often helpful to make proofs more transparent.

8.2.4 Supporting the Theory Management

When dealing with formal specifications and verification very soon we have to deal
with a large number of units of information, such as the axioms of the domain theories,
already verified lemmas, and local assumptions in proofs. This brings two kinds
of problems: storing the information (and the different versions) in an adequately
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structured way and displaying the information during the construction of a proof. Both
problems are crucial when dealing with larger examples.

So far in LP the specifications and proofs are stored in files, the file management is
done by the user. Axioms are named and can be displayed by name. More associative
forms of information retrieval might be helpful.

Of course, it would be more convenient, if all the file management and the storage and
retrieval of information in interactive specifications and proofs were taken care of by a
more sophisticated LP interface.

The question of revisions and replay of proofs may play a decisive role in developments.
At the moment, when some basic axioms in LP specifications are modified, the only
thing a user can do is rerun all his/her proofs, identifying problems and fixing them, if
possible. More sophisticated support can be imagined here.

8.2.5 Methodological Support

LP provides a specification language and an interactive verification system based on
rewriting. So far, it does not provide any method nor even hints how to use such a tool
in practical applications.

I believe strongly that for practical applications the question of how to organize the
work, and when to specify what and to how much detail, and when to prove what, is
decisive. More work and more support is needed here.

The problem of consistency should be taken care of. A method should point out which
conditions are to be proved to ensure consistency of a specification under development.

8.3 Lessons Learned

Working with a mechanical interactive proof support system is, in spite of all frustra-
tions, fun. It provides many valuable insights, not only about proof support systems,
but also about the organization of proofs and the structuring of specifications.

As it turns out, many theoretical issues are much less relevant than we expected when
practically working with a system. Other aspects that are theoretically less significant
become more relevant. The feedback obtained by carrying out even moderate size case
studies is mandatory for ensuring practical relevance of theoretical work.

More experimentation is badly needed. Only if more case studies and additional
practical projects are done in trying out the formal techniques, can it be hoped to bring
formal techniques closer to practice in the long run.
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Appendix A

Appendix: Specifications Used

In the following we give a number of specifications as they have been used in the
examples.

A.1 Specification of the Natural Numbers

An LP specification of the natural numbers reads as follows:

declare sort Nat
declare var i, j, k : Nat
declare op 0, 1, 2 : -> Nat

succ : Nat -> Nat
+, * : Nat, Nat -> Nat
=<, < : Nat, Nat -> Bool

..
assert Nat generated by 0, succ
assert ac +
assert ac *
assert 1 = succ(0)

2 = succ(1)
(succ(i) = 0) = false
(succ(i) = succ(j)) = (i=j)

(i+0) = i
(i+succ(j)) = succ(i+j)

(0 * j) = 0

63



APPENDIX A. APPENDIX: SPECIFICATIONS USED 64

(succ(i) * j) = (j + (i * j))

(i =< i) = true
(succ(i) =< i) = false
(succ(i) =< succ(j)) = (i =< j)

(i =< j) => (i =< succ(j))
not(i =< j) => not(succ(i) =< j)

((i =< j) & (j =< i)) = (i = j)
((i =< j) & (j =< k)) => i =< k

(i < j) = (succ(i) =< j)

(i * (j + k)) = ((i * j) + (i * k))

(i < (i + k)) = (0 < k)
(succ(i) * j) = (j + (i * j))

(i =< (i+k))
(succ(i) < (k + i)) = (1 < k)
not(0 < i) = (0 = i)

..

Some of these axioms are in fact theorems that can be proved, mainly by induction, in
a straightforward way.

A.2 Specification of Sequences

The specification of sequences that is used in the example of quicksort reads as follows:

declare sort Seq, Nat
declare var s, r, s1, s2, r1, r2 : Seq

m, m1, m2 : Nat
..
declare op es : -> Seq

@ : Nat, Seq -> Seq

rt : Seq -> Seq
ft : Seq -> Nat

ˆ : Seq, Seq -> Seq
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nbr : Seq -> Nat

# : Nat, Seq -> Nat
..
assert

esˆs -> s
sˆes -> s
(m@s)ˆr -> (m@( sˆr))

((m@s) = (m1@s1)) = (m = m1 & s = s1)
(es = (m@s)) = false

(sˆr)ˆs1 = sˆ(rˆs1)
(sˆs1) = (sˆs2) == (s1 = s2)
(s1ˆs = s2ˆs) == (s1 = s2)

nbr(es) = 0
nbr(m@s) = succ(nbr(s))

(i#es) = 0
(i#(j@s)) = if(i = j, succ(i#s), i#s)

..
assert seq generated by es, @

Based on this specification the following theorems were proved using LP.

prove (nbr(s) < succ(0)) == (s = es)
prove nbr(s) < nbr(m@s)
prove nbr(rˆs) < nbr(rˆ(m@s))
prove nbr(m@s) < nbr((m1@s1)) = nbr(s) < nbr(s1)
prove (i#(sˆr)) = ((i#s) + (i#r))

These theorems can be proved mainly by induction in a straightforward way.

A.3 Functions Used in the Safety and Liveness Proof

To be able to prove the theorems in the example of the implementation of an interactive
queue by a network we introduced a bunch of auxiliary functions and prove some basic
properties about them as listed in the following.

prove (nbr(s) < succ(0)) == (s = es)
prove nbr(s) < nbr(mˆs)
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prove nbr(rˆs) = nbr(r)+nbr(s)
prove nbr(rˆs) < nbr(rˆ(mˆs))
prove nbr(mˆ s) < nbr((m1ˆs1)) = nbr(s) < nbr(s1)
prove nbr(rˆs) < nbr(rˆ(mˆs))

prove nbrrq(rˆs) = nbrrq(r)+nbrrq(s)
prove nbrrq(rˆs) < nbrrq(rˆ(rqˆs))
prove nbrrq(s) < succ(nbr(s))
prove nbrrq(rˆs) < nbr(rˆ(rqˆs))
prove nbrrq(rˆ(dt(i)ˆs)) = nbrrq(rˆs)..

declare op rt, dhd, rtl, fdm, rdm : stream -> stream
declare op ft : stream -> message
declare op fdi : stream -> nat
assert dhd(es) = es

dhd(rqˆs) = es
dhd(dt(i)ˆs) = (dt(i)ˆdhd(s))

rtl(es) = es
rtl(rqˆs) = s
rtl(dt(i)ˆs) = rtl(s)

ft(mˆs) = m
rt(mˆs) = s

fdm(es) = es
fdm(dt(i)ˆs) = (dt(i)ˆes)
fdm(rqˆs) = es

rdm(es) = es
rdm(dt(i)ˆs) = s
rdm(rqˆs) = (rqˆs)

fdi(dt(i)ˆs) = i
..

For these auxiliary functions the following theorems have been proved. They are used
in the correctness proof for the safety properties of the network implementation of
queues.

prove s = es | s = (rqˆrt(s)) | s = (dt(fdi(s))ˆrt(s))
prove (nbrrq(s) < succ(0)) = norq(s)
prove ((dhd(s) = es) & not(norq(s))) =>

(dt(i)ˆs) = (dt(i)ˆ(rqˆrtl(s)))
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prove when ((dhd(s) = es) & not(norq(s)))
yield (dt(i)ˆs) = (dt(i)ˆ(rqˆrtl(s)))

..
prove nbr(rtl(s)) < nbr(s) | nbr(rtl(s)) = nbr(s)
prove (nbr(s) < succ(i)) => nbr(rtl(s)) < succ(i)
prove br(s) < i => (nbr(dhd(s))+nbr(rtl(s))) < i
prove ((not(dhd(s) = es) & not(norq(s)) &

(nbr(s) < succ(i)))) =>
((nbr(dt(j)ˆ(dhd(rt(s))ˆrtl(s)))) < succ(i) = true)

assert norq(dhd(s)) = true
assert when ((not(dhd(s) = es) & not(norq(s))))

yield (dt(i)ˆs) = dt(i)ˆ(dt(j)ˆ(dhd(rt(s))ˆ(rqˆrtl(s))))
assert not(norq(s)) =>

(dt(i)ˆs) = (dt(i)ˆ(dhd(s)ˆ(rqˆrtl(s))))
assert when norq(r) yield dhd(r) = r
assert when not(norq(s)) yield nbr(rtl(s)) < nbr(s)
prove s = es | nbr(rt(s)) < nbr(s)

These theorems can be proved in LP mainly by induction in a straightforward way.
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