
Page 1

Extensible Records in a
Pure Calculus of Subtyping

Luca Cardelli
Digital Equipment Corporation, Systems Research Center

130 Lytton Avenue, Palo Alto CA 94301

Abstract
Extensible records were introduced by Mitchell Wand while studying

type inference in a polymorphic λ-calculus with record types. This paper
describes a calculus with extensible records, F<:ρ, that can be translated
into a simpler calculus, F <:, lacking any record primitives. Given
independent axiomatizations of F<:ρ and F<: (the former being an
extension of the latter) we show that the translation preserves typing,
subtyping, and equality.

F<:ρ can then be used as an expressive calculus of extensible records,
either directly or to give meaning to yet other languages. We show that
F<:ρ can express many of the standard benchmark examples that appear in
the literature.

Like other record calculi that have been proposed, F<:ρ has a rather
complex set of rules but, unlike those other calculi, its rules are justified
by a translation to a very simple calculus. We argue that thinking in terms
of translations may help in simplifying and organizing the various record
calculi that have been proposed, as well as in generating new ones.

SRC Research Report 81, January 3, 1992. Revised January 1, 1993.
 Digital Equipment Corporation 1992,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all applicable portions of the
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

Page 2

Contents

1. Introduction
2. System F<:

2.1 Syntax
2.2 Rules

3. Basic encodings
3.1 Booleans
3.2 Products
3.3 Enumerations
3.4 Tuples

4. Records
4.1 Simple records
4.2 Extensible records

5. System F<:ρ
5.1 Syntax
5.2 Rules
5.3 Properties
5.4 Some useful extensions

5.4.1 Recursive types
5.4.2 Label sets
5.4.3 Definitions

5.5 Examples
6. Translation of F<:ρ into F<:
7. The translation preserves derivations
8. Conclusions
Acknowledgements
References

Page 3

1. Introduction
Extensible records, and the associated notion of row variables, were introduced by

Mitchell Wand while he was studying the problem of type inference in a polymorphic λ-
calculus with record types [Wand 87]; a row variable is a type variable ranging over the
possible field-extensions of a record type. Many calculi of row variables have been
produced since then [Jategaonkar Mitchell 88] [Rémy 89] [Wand 89] [Harper Pierce 90] [Cardelli

Mitchell 91], and many more can be imagined. As we try to increase the expressiveness of
these calculi, the axiomatization techniques become more and more divergent and
complex. To be able to compare and discuss these different calculi, we feel the need of
some more fundamental framework. This paper suggests that a very simple calculus of
subtyping can be used as a basis for studying much more complex calculi of extensible
records.

In the search for a unifying framework, we can adopt the following working
hypothesis: every reasonable calculus of row variables should be reducible to a calculus
without row variables, via a well-behaved translation. The purpose of this hypothesis is
not to eliminate row variables completely, since the translated programs would become
too verbose to be useful; the purpose is to gain insights in the study of calculi with row
variables. Even if our working hypothesis turns out to be false, which it may well be, we
will have distinguished the easier features that can be translated from the more complex
ones that cannot.

To carry out this plan, we need to fix a suitable target calculus for the translation.
Since we are studying type variables, a likely choice would seem to be the second-order
λ-calculus (system F [Girard 71] [Reynolds 74]). To express the idea that the translation is
well-behaved, we require some basic soundness properties such as the preservation of
typing, subtyping, and equality relations. But, in order to preserve subtyping relations, we
need to translate to a target calculus that still has a notion of subtyping; otherwise we
would gain little insight about the complex subtyping relations induced by extensible
records. For a similar reason, we are not interested in untyped target calculi, for which
translations are easily obtainable.

As target calculus we use therefore an extension of F with subtyping, called F<: (F-
sub), which has been studied recently [Curien 90] [Curien Ghelli 91] [Cardelli Martini Mitchell

Scedrov 91]. The fact that a translation of extensible records into F<: is at all possible also
gives us new evidence about the expressiveness of F<:, and reinforces our feeling that
F<: can be regarded as a canonical calculus of subtyping.

Before the main discussion, we briefly review the motivations that led to the notions
of row variables and extensible records.

In a calculus with records, a program may contain expressions like r.l where r denotes
a record value and the label l denotes a field of that record; then the record selection r.l
denotes the value of the field labeled l in record r.

Page 4

Given the expression r.l we can infer that r has a type of the form Rcd(l:A), that is, a
record type having a field labeled l of type A; the type A is to be determined later. Given
another expression r.l' in the same program, we can then infer that r has a type of the
form Rcd(l:A,l':A'), and so on.

This form of typing, though, becomes insufficient when considering record updates.
The expression r.lóïôa denotes a record similar to r, except that the value of its l
component is updated to a. Consider now the program:

p @ λ(r) r.lóïôa

Assuming a:A, and for any type B, we can infer the typing:

p: Rcd(l:B)îïñRcd(l:A)

Given a record value rcd(l=b,l'=b'), having two fields labeled l and l' with respective
values b and b', we consider legal the expression p(rcd(l=b,l'=b')) because the argument
has all the fields required by the type of p. This expression then receives the type
Rcd(l:A), because of the typing of p above. Unfortunately, by this typing we have
forgotten that the argument of p, and hence its result, has another component labeled l'.
This is unsatisfactory.

To capture the kind of polymorphism required by the record update operation, we
introduce row variables. Record types are extended to the more general form
Rcd(l1:A1,..,ln:An,X), where X is a row variable intended to represent “all the other fields”
of a given record type; in this case all the fields except the ones labeled l1..ln. We can
then assign to the program p the more informative type:

p: Rcd(l:B,X)îïñRcd(l:A,X)

Now, in p(rcd(l=b,l'=b',l"=b")), where b':B' and b":B", the row variable X is bound to
l':B',l":B" (a row type), producing the expected result type Rcd(l:A,l':B',l":B") by
substitution of l':B',l":B" for X.

In this form of type inference we must keep track of constraints on the row variables,
such as the fact that X in the example above must not come to contain l components
(otherwise we would have a duplicate label). These constraints can be made manifest by
adopting a type system featuring explicit polymorphism; then program p receives the
typing:

p : Ó(Y) Ó(X¶l) Rcd(l:Y,X)îïñRcd(l:A,X)

Here X¶l means that X is undefined at label l (that is, X can be bound only to row types
that have no l components). Appropriate types and rows must then be explicitly supplied
as arguments to p, as in:

p(B)(l':B',l":B")(rcd(l=b,l'=b',l"=b"))

Page 5

This is finally a satisfactory typing of p, although for practical reasons we may require
some type inference to avoid writing down the type arguments (B) and (l':B',l":B"). We
do not discuss type inference here, which we consider as a pragmatic variation on the
basic calculus.

In Wand's original view, and in further developments [Rémy 89] [Harper Pierce 90], row
variables are type variables of a different kind. In contrast, in [Cardelli Mitchell 91] we
studied an explicitly polymorphic type system where both row variables and type
variables are instances of second-order type variables, therefore unifying the two
concepts. In this paper we go back to the original view that row variables are separate, but
we show that they can ultimately be expressed as ordinary type variables.

In outline, this paper shows how a calculus with row variables, F<:ρ, can be
represented in a simpler calculus without row variables, F<:, via a translation. Given
independent axiomatizations of F<:ρ and F<: (the former being an extension of the latter)
we prove that the translation is well-behaved, in that it preserves typing, subtyping, and
equality.

The paper is organized as follows. Sections 2 and 3 recall the definition of F<: and its
expressive power (borrowing from [Cardelli Martini Mitchell Scedrov 91]). Section 4 gives the
main intuitions of the encoding of extensible records in F<:. Section 5 describes F<:ρ.
Section 6 gives the translation of F<:ρ into F<:, and finally section 7 shows that the
translation is sound.

Examples of the expressive power of F<:ρ and comparisons with other calculi are
delayed until section 5.5. We show there that F<:ρ can express many of the standard
benchmark examples that appear in the literature. We encourage readers to examine these
examples whenever convenient.

Readers who wish to learn about F<:ρ as a language of records but who are not
interested in the translation into F<:, may confine themselves to sections 1, 2.0, 2.1, 2.2,
5.0, 5.1, 5.2, 5.4, 5.5, and 8.

2. System F<:
In this section we describe the target calculus, F<:, for the translation that will follow.

F<: can be translated in turn into a trivial extension of F called F1 [Breazu-Tannen Coquand

Gunter Scedrov 89]. However, the known translations from F<: to F1 do not preserve
subtyping in F<: [Martini 90]; this reinforces the point that translating to F<: is more
informative than translating directly to F.

F<: is obtained by extending F with a notion of subtyping (<:). This extension allows
us to remain within a pure calculus. That is, we introduce neither the basic types nor the
structured types normally associated with subtyping in programming languages. Instead,
we show that these programming types can be obtained via encodings within the pure
calculus. In particular, we can encode record types with their subtyping relations [Cardelli

88].

Page 6

2.1 Syntax
The syntax of F<: extends the syntax of F as follows. A new type constant Top

denotes the supertype of all types. Second-order quantifiers acquire a subtype bound:
Ó(X<:A)A' (bounded quantifiers [Cardelli Wegner 85]). Ordinary second-order quantifiers
are recovered by setting the quantifier bound to Top; we use Ó(X)A for Ó(X<:Top)A. The
syntax of values is extended by a constant top of type Top, and by a subtype bound on
polymorphic functions, λ(X<:A)a. We use λ(X)a for λ(X<:Top)a.

Syntax

A,B ::= Types
X type variable
Top the supertype of all types
AîïñB function space
Ó(X<:A)B bounded quantification

a,b ::= Values
x value variable
top canonical value of type Top
λ(x:A)b function
b(a) application
λ(X<:A)b bounded type function
b(A) type application

 A subtyping judgment is added to F 's judgments. Moreover, the equality judgment on
values is made relative to a type; this is important since values in F<: can have many
types, and two values may or may not be equivalent depending on the type those values
are considered as possessing.

Judgments

∫ E env E is a well-formed environment
E ∫ A type A is a type
E ∫ A <: B A is a subtype of B
E ∫ a : A a has type A
E ∫ a óïñ b : A a and b are equal members of type A

We use dom(E) for the set of variables defined by an environment E.
As usual, we identify terms up to renaming of bound variables; that is, using

C{XóïôD} for the substitution of D for X in C :

Ó(X<:A)B 7 Ó(Y<:A)B{XóïôY}
λ(x:A)b 7 λ(y:A) (b{xóïôy})
λ(X<:A)b 7 λ(Y<:A) (b{XóïôY})

Page 7

These identifications can be made directly on the syntax, that is, without knowing
whether the terms involved are the product of formal derivations in the system. By
adopting these identifications, we avoid the need for a type equality judgment.

Environments, however, are not identified up to renaming of variables in their
domains; environment variables are kept distinct by construction. A more formal
approach would use de Bruijn indices for free and bound variables [deB 72].

2.2 Rules
The inference rules of F<: are listed below; we now comment on their most

interesting aspects.
The subtyping judgment, E ∫ A<:B, defines, for any E, a reflexive and transitive

relation on types with a subsumption property: a member of a type is also a member of
any supertype of that type. Every type is a subtype of Top. The function space operator
îïñ is antimonotonic in its first argument and monotonic in its second. A bounded
quantifier is antimonotonic in its bound and monotonic in its body.

The rules for the typing judgment, E ∫ a:A, are the same as the corresponding rules in
F, except for the extension to bounded quantifiers. However, additional typing power is
hidden in the subsumption rule, which for example allows a function to take an argument
having a subtype of the function's input type.

Most of the equivalence rules, E ∫ aóïñb:A, are unremarkable. They provide
congruence over the syntax, and β and η equivalences. Two rules, however, stand out.
The first, (Top collapse), states that any two terms are equivalent when “seen” at type
Top. Since no operations are available on members of Top, all values are
indistinguishable at that type; this fact will have many interesting consequences in the
sequel. The second, (Eq appl2), is the congruence rule for polymorphic type application,
giving general conditions under which two expressions b'(A') and b"(A") are equivalent at
a type C. This rule also has many intriguing consequences, but these will not be explored
here. They are described in [Cardelli Martini Mitchell Scedrov 91].

 Environments

(Env) (Env x) (Env X)

E ∫ A type xÌdom(E) E ∫ A type XÌdom(E)
 ———— —————————– —————————–

∫ env ∫ E,x:A env ∫ E,X<:A env

Types

(Type X) (Type Top)

∫ E,X<:A,E' env ∫ E env
————————– —————

E,X<:A,E' ∫ X type E ∫ Top type

Page 8

(Type îïñ) (Type Ó)

E ∫ A type E ∫ B type E,X<:A ∫ B type
—————————— ————————

E ∫ AîïñB type E ∫ Ó(X<:A)B type

Subtypes

(Sub refl) (Sub trans)

E ∫ A type E ∫ A<:B E ∫ B<:C
 ————— —————————–

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Top)

∫ E,X<:A,E' env E ∫ A type
 ———————— —————

E,X<:A,E' ∫ X<:A E ∫ A <: Top

(Sub îïñ) (Sub Ó)

E ∫ A'<:A E ∫ B<:B' E ∫ A'<:A E,X<:A' ∫ B<:B'
 —————————— —————————————

E ∫ AîïñB <: A'îïñB' E ∫ Ó(X<:A)B <: Ó(X<:A')B'

Values

(Subsumption) (Val x) (Val top)

E ∫ a:A E ∫ A<:B ∫ E,x:A,E' env ∫ E env
———————— ——————– —————

E ∫ a : B E,x:A,E' ∫ x:A E ∫ top : Top

(Val fun) (Val appl)

E,x:A ∫ b:B E ∫ b : AîïñB E ∫ a:A
 ———————— ——————————

E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B

(Val fun2) (Val appl2)

E,X<:A ∫ b:B E ∫ b : Ó(X<:A)B E ∫ A'<:A
 ——————————— —————————————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A') : B{XóïôA'}

Equivalence

(Eq symm) (Eq trans)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
 —————– —————————————

E ∫ b óïñ a : A E ∫ a óïñ c : A

(Eq x) (Eq collapse)

E ∫ x:A E ∫ a : Top E ∫ b : Top
 —————— ——————————

E ∫ x óïñ x : A E ∫ a óïñ b : Top

(Eq fun) (Eq appl)

E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB E ∫ aóïña' : A
—————————————— ——————————————

E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B

Page 9

(Eq appl2)

(Eq fun2) E ∫ b'óïñb" : Ó(X<:A)B E ∫ A',A"<:A
E,X<:A ∫ bóïñb' : B E ∫ B{XóïôA'}, B{XóïôA"} <: C

————————————————— —————————————————

E ∫ λ(X<:A)b óïñ λ(X<:A)b' : Ó(X<:A)B E ∫ b'(A') óïñ b"(A") : C

(Eq Eta) (Eq Eta2)

E ∫ b óïñ b' : AîïñB yÌdom(E) E ∫ b óïñ b' : Ó(X<:A)B YÌdom(E)
————————————— ————————————————

E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y<:A)b(Y) óïñ b' : Ó(X<:A)B

(Eq Beta) (Eq Beta2)

E,x:A ∫ b óïñ b' : B E ∫ a óïñ a' : A E,X<:A ∫ b óïñ b':B E ∫ A' <: A
——————————————— ———————————————————

E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X<:A)b)(A') óïñ b'{XóïôA'} : B{XóïôA'}

This calculus was first extracted by Pierre-Louis Curien from the one in [Cardelli

Wegner 85] and studied by him and Giorgio Ghelli [Curien Ghelli 91] under the name F≤. The
present F<: is a refinement of F≤, achieved mostly by extending the (Eq appl2) rule. It is
studied in [Cardelli Martini Mitchell Scedrov 91].

The following derived rules will be needed later. Their proofs follow from the
lemmas listed in section 5.3 for F<:ρ. (Those lemmas hold for F<: as well, when
restricted to the syntax of F<:.)

Lemma (subsumption equivalence)
The subsumption rule extends to the equality judgment:

 (Eq subsumption)

E ∫ a óïñ a' : A E ∫ A <: B
————————————

E ∫ a óïñ a' : B

Lemma (domain restriction)
If f: AîïñB, then f is equivalent to its restriction f |A' to a smaller domain A'<:A, when

they are both seen at type A'îïñB. That is:

(Eq fun')

E ∫ A'<:A E ∫ B<:B' E,x:A ∫ bóïñb' : B
——————————————————

E ∫ λ(x:A)b óïñ λ(x:A')b' : A'îïñB'

Lemma (bound restriction)
If f: Ó(X<:A)B, then f is equivalent to its restriction f |A' to a smaller bound A'<:A,

when they are both seen at type Ó(X<:A')B. That is:

Page 10

(Eq fun2')

E ∫ A'<:A E,X<:A' ∫ B<:B' E,X<:A ∫ bóïñb' : B
——————————————————————

E ∫ λ(X<:A)b óïñ λ(X<:A')b' : Ó(X<:A')B'

3. Basic encodings
Since F<: is an extension of F, it can express all the standard encodings of algebraic

data types that are possible in F [Böhm Berarducci 85]. However, it is not clear that anything
of further interest can be obtained from the subtyping rules of F<:, which involve only an
apparently useless type Top and the simple rules for îïñ and Ó.

In this section we begin to show that we can in fact encode rich subtyping relations on
familiar data structures. In section 4 the encodings become more involved; this increase
in complexity then motivates the switch to an independently axiomatized system (F<:ρ)
in section 5.

3.1 Booleans
In the sequel of section 3 we concentrate on inclusion of structured types, but for this

to make sense we need to show that there are some non-trivial inclusions already at the
level of basic types. We investigate here the type of booleans, and in the process we
illustrate some interesting consequences of the F<: rules.
 Starting from the encoding of Church's booleans in F, we can define three subtypes of
Bool as follows (cf. [Fairbairn 89]):

Bool @ Ó(A) AîïñAîïñA
True @ Ó(A) AîïñTopîïñA
False @ Ó(A) TopîïñAîïñA
None @ Ó(A) TopîïñTopîïñA

where:

None <: True, None <: False, True <: Bool, False <: Bool

Looking at all the closed normal forms (that is, the elements) of these types, we have:

trueBool : Bool @ λ(A) λ(x:A) λ(y:A) x
falseBool : Bool @ λ(A) λ(x:A) λ(y:A) y
trueTrue : True @ λ(A) λ(x:A) λ(y:Top) x
falseFalse : False @ λ(A) λ(x:Top) λ(y:A) y

We obtain four elements of type Bool; in addition to the usual two, trueBool and falseBool ,
the extra trueTrue and falseFalse have type Bool by subsumption. However, we can show
that trueBool and trueTrue are provably equivalent at type Bool, by using the domain
restriction lemma ((Eq fun'), section 2.2).

Page 11

E,A<:Top,x:A,y:Top ∫ x óïñ x : A E ∫ A<:Top
 ———————————————————

E,A<:Top,x:A ∫ λ(y:Top) x óïñ λ(y:A) x : AîïñA (Eq fun')
 —————————————————————————

E,A<:Top ∫ λ(x:A) λ(y:Top) x óïñ λ(x:A) λ(y:A) x : AîïñAîïñA
 ————————————————————————————

E ∫ λ(A) λ(x:A) λ(y:Top) x óïñ λ(A) λ(x:A) λ(y:A) x : Ó(A) AîïñAîïñA
 ————————————————————————————

E ∫ trueTrue óïñ trueBool : Bool

Similarly, we can show that E ∫ falseFalse óïñ falseBool : Bool. Hence, there really are
only two different values in Bool.

3.2 Products
The standard encoding for pairs in F already exhibits useful subtyping properties:

A×B @ Ó(C)(AîïñBîïñC)îïñC

Since both A and B occur in monotonic positions in A×B (being twice on the left of an
arrow), we obtain the expected monotonic inclusion of products as a derived rule:

E ∫ A <: A' E ∫ B <: B'
 ———————————

E ∫ A×B <: A'×B'

The operations on pairs are defined, as usual, as:

pair : Ó(A) Ó(B) AîïñBîïñA×B
@ λ(A) λ(B) λ(a:A) λ(b:B) λ(C) λ(f:AîïñBîïñC) f(a)(b)

fst : Ó(A) Ó(B) A×BîïñA
@ λ(A) λ(B) λ(c:A×B) c(A)(λ(x:A)λ(y:B)x)

snd : Ó(A) Ó(B) A×BîïñB
@ λ(A) λ(B) λ(c:A×B) c(B)(λ(x:A)λ(y:B)y)

We often use the following abbreviations, disambiguated by context:

a,b 7 a,A×Bb 7 pair(A)(B)(a)(b)
fst(c) 7 fstA×B(c) 7 fst(A)(B)(c)
snd(c) 7 sndA×B(c) 7 snd(A)(B)(c)

3.3 Enumerations
Enumeration types (that is, finite sets) form another collection of base types with

interesting inclusion relations. We describe them here because they show an interesting
use of the Top type, and hint at the encoding of tuples in the next section.

The enumeration of zero elements can be defined as:

N0 @ Ó(A) TopîïñA

This type has no closed normal forms, hence no “elements”.

Page 12

The enumeration of one element is defined as:

N1 @ Ó(A) A×TopîïñA

This type has just one closed normal form:

one1 : N1 @ λ(A) λ(x:A×Top) fst(x)

Moreover, N0 <: N1 because A×Top<:Top.
The enumeration of two elements is defined as:

N2 @ Ó(A) A×A×TopîïñA

This type has the two closed normal forms:

one2 : N2 @ λ(A) λ(x:A×A×Top) fst(x)
two2 : N2 @ λ(A) λ(x:A×A×Top) fst(snd(x))

Moreover, N1 <: N2, and by subsumption:

one1 : N2

We find that N2 has three elements. As for booleans, we can prove that two of these are
equal in N2:

∫ one1 óïñ one2 : N2

At this point the pattern of enumeration types should be clear:

Nn @ Ó(A) A×..×A×TopîïñA
 n times

with Nn <: Nn+1, where Nn has n distinct elements.

3.4 Tuples
A tuple type Tuple(A1,...,An,C) denotes an iterated product type. Its last slot, C, can be

filled with any type. When C is a type variable, we have an extensible tuple type . When it
is Top, we have a simple tuple type.

Tuple(C) @ C
Tuple(A1,...,An,C) @ A1×(...×(An×C)..) n≥1

Hence we have:

Tuple(A1,...,An,Tuple(B1,...,Bm,C)) 7 Tuple(A1,...,An,B1,...,Bm,C)

with derived rule:

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ C <: D
 ——————————————————

E ∫ Tuple(A1,...,An,C) <: Tuple(B1,...,Bn,D)

As a special case we obtain the rule for simple tuples:

Page 13

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ An+1 type ... E ∫ Am type
 —————————————————————————

E ∫ Tuple(A1,...,An,...,Am,Top) <: Tuple(B1,...,Bn,Top)

For example:

Tuple(A, B, Top) <: Tuple(A, Top)
since A <: A, B×Top <: Top, and × is monotonic.

We note here that the type Top assumes a very useful role, in allowing a longer tuple
type to be a subtype of a shorter tuple type. The intuition is that a longer tuple value can
always be regarded as a shorter tuple value, by “forgetting” the additional components,
and this is possible since everything is forgotten in Top.

For tuple values we have:

tuple(c) @ c
tuple(a1,...,an,c) @ a1,(...,(an, c)..) n≥1

tuple(a1,...,an,tuple(b1,...,bm,c)) 7 tuple(a1,...,an,b1,...,bm,c)

with derived rules:

E ∫ a1 : A1 ... E ∫ an : An E ∫ a : A
 ————————————————

E ∫ tuple(a1,...,an,a) : Tuple(A1,...,An,A)

E ∫ a1óïñb1 : A1 ... E ∫ anóïñbn : An E ∫ aóïñb : A
 ————————————————————————

E ∫ tuple(a1,...,an,a) óïñ tuple(b1,...,bn,b) : Tuple(A1,...,An,A)

The basic tuple operations are: ai, dropping the first i components of tuple a; and a.i,
selecting the i-th component of a. These are defined by iterating product operations; we
use the abbreviations:

ai 7 aAi
i 7 dropi(Ai)(a) 7 sndi(a)

a.i 7 a.Ai
i 7 seli(Ai)(a) 7 fst(ai)

More precisely:

drop0 : Ó(A0) A0îïñA0
@ λ(A0) λ(t:A0) t

sel0 : Ó(A0) A0×TopîïñA0
@ λ(A0) λ(t:A0×Top) fstA0×Top(drop0(A0×Top)(t))

drop1 : Ó(A1) Top×A1îïñA1
@ λ(A1) λ(t:Top×A1) sndTop×A0

(drop0(Top×A1)(t))
sel1 : Ó(A1) Top×A1×TopîïñA1

@ λ(A1) λ(t:Top×A1×Top) fstA1×Top(drop1(A1×Top)(t))
etc...

We obtain the derived rules:

Page 14

E ∫ a : Tuple(A0 ,..,Ai-1,A) E ∫ a : Tuple(A0 ,..,Ai,A)
 ——————————— ——————————

E ∫ ai : A E ∫ a.i : Ai

E ∫ a0 : A0 ... E ∫ ai-1 : Ai-1 E ∫ a : A E ∫ a0 : A0 ... E ∫ ai : Ai E ∫ a : A
 ———————————————— ———————————————

E ∫ tuple(a0 ,...,ai-1,a)i óïñ a : A E ∫ tuple(a0 ,...,ai,a).i óïñ ai : Ai

Example:

let f: Ó(X<:Tuple(B,Top)) Tuple(A,X)îïñTuple(A,A,X) =
λ(X<:Tuple(B,Top)) λ(t:Tuple(A,X)) tuple(t.0, t.0, t1)

f(Tuple(B,C,Top))(tuple(a,b,c,top)) óïñ tuple(a,a,b,c,top)
: Tuple(A,A,B,C,Top)

We have now developed the necessary techniques for encoding record types; this is
the subject of the next section.

4. Records
The general plan, carried out in later sections, is to axiomatize the rules for records

independently, and then provide a translation (encoding) into a calculus without records.
In this section we are a bit more informal, and we discuss the encoding of record types
without first discussing their derived type rules. Some pathologies caused by this
approach will disappear later.

4.1 Simple records
 Let L be a countable set of labels, enumerated by a bijection ιÏLîïñNat. We indicate
by li, with a superscript, the i-th label in this enumeration. Often we need to refer to a list
of n distinct labels out of this enumeration; we then use subscripts, as in l1..ln. So we may
have, for example, l1,l2,l3 = l5,l1,l17. More precisely, l1..ln stands for lσ(1),..,lσ(n) for some
injective σ Ï 1..nîïñNat.

A record type has the form Rcd(l1:A1, .., ln:An, C), where the final type C will
normally be either Top or a type variable. Once the enumeration of the set of labels L is
fixed, a record type is encoded as a tuple type where the record components are allocated
to tuple slots as determined by the index of their labels. That is, the component of label li
is allocated to the i-th tuple slot; the remaining slots are filled with Top “padding”. For
example:

Rcd(l2:C, l 0:A, D) @ Tuple(A, Top, C, D)

Since record type components are canonically sorted under the encoding, two record
types that differ only in the order of their components will be equal under the encoding.
Hence we can consider record components as unordered.

Page 15

As an artifact of the encoding, a missing record field of label li is equivalent to a field
li : Top. However, the type rules for these two situations will differ, and in the former
case the extraction of the label li will not be allowed.

A record type whose final component is Top is called a simple record; one whose
final component is a type variable, is called an extensible record, or simply a record.
Only these two situations will be allowed by the type rules for records; for example,
notice that Rcd(l 0:A, Rcd(l1:B, C)) is not very meaningful under the translation.

From the encoding, we can derive the familiar rule for simple records [Cardelli 88]:

E ∫ A1 <: B1 ... E ∫ An <: Bn E ∫ An+1 type ... E ∫ Am type
 ——————————————————————————

E ∫ Rcd(l1:A1,..,ln:An,..,lm:Am,Top) <: Rcd(l1:B1,..,ln:Bn,Top)

The conclusion holds because any additional field lk:Ak (n<k≤m) on the left of <: is
absorbed either by the Top padding on the right, if ι(lk)<max(ι(l1)..ι(ln)), or by the final
Top, otherwise. For example:

Rcd(l 0:A, l1:B, l2:C, Top) 7 Tuple(A, B, C, Top)
<: Tuple(Top, B, Top) 7 Rcd(l1:B, Top)

Record values are similarly encoded, for example:

rcd(l2=c, l 0=a, d) @ tuple(a, top, c, d)

from which we obtain the rules for simple records:

E ∫ a1 : A1 ... E ∫ an : An
 —————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïña'1 : A1 ... E ∫ anóïña'n : An
 ————————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) óïñ rcd(l1=a'1,..,ln=a'n,top) : Rcd(l1:A1,..,ln:An,Top)

Record selection is encoded as follows:

r.li @ r.ι(li)

with the rule:

E ∫ r : Rcd(l:A,Top)
 —————————

E ∫ r.l : A

By subsumption, we have the following derived rules:

E ∫ a1 : A1 ... E ∫ an : An ... E ∫ am : Am
 ————————————————————————

E ∫ rcd(l1=a1,..,ln=an,..,lm=am,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïñb1 : A1 ... E ∫ anóïñbn : An
E ∫ an+1 : Bn+1 ... E ∫ ap : Bp E ∫ bn+1 : Cn+1 ... E ∫ bq : Cq

 ————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,..,lp=ap,top) óïñ rcd(l1=b1,..,ln=bn,..,lq=bq,top)

Page 16

: Rcd(l1:A1,..,ln:An,Top)

E ∫ r : Rcd(l1:A1,...,ln:An,Top) iÏ1..n
 ————————————

E ∫ r.li : Ai

The second rule above is particularly interesting. It expresses a form of observational
equivalence: two records are equivalent at a given type if they coincide with the
components that are observable at that type. Ultimately, this is because any two values
are equivalent at type Top.

An interesting question about simple records remains: what is the equivalent of the
operator on tuples? To answer this, we must turn to extensible records.

4.2 Extensible records
In the next section we fully axiomatize a system with row variables, F<:ρ. To

understand that axiomatization better, it may be useful to have an idea of the translation
into F<: that will follow. In this section we sketch the main ideas of that translation, but
the reader can skip to section 5 at any point.

As we have done with tuples, we would like to place a type variable at the end of a
record to capture all the “additional” components.

Tuple(A, B, C, X) X represents all the other tuple components
Rcd(l 0:A, l2:C, X) X represents all the other record components

When translating these records into tuples, we see that, to achieve the desired effect, the
final type variable must split into a set of type variables. (We use the symbol 1 to mean,
informally, “translates to”.)

Rcd(l 0:A, l2:C, X) 1 Tuple(A, X1, C, X3)

Here X cannot be bound to a single (record) type; it must be bound to a labeled
collection of types that fills the slots X1 and X3 exactly. We call these collections type
rows, and X a row (type) variable.

Consider, for example:

Rcd(l 0:A, l2:C, l4:E, X)

Here the row variable X can be instantiated only to a type row that does not contain
components labeled l 0, l2, or l4, since these are already accounted for. For example, X can
be instantiated to the type row l1:B, l3:D, Top.

We express this constraint on the instantiations of X by saying that X must have kind
“¶l 0,l2,l4”, which reads “... is undefined (exactly) at l 0,l2,l4” or “... does not cover
(exactly) l 0,l2,l4”.

A constrained row variable X¶L is hence translated to a sequence of type variables
with “gaps” at L; for example:

Page 17

X¶() 1 X0

X¶l 0 1 X1 X¶l 0,l1 1 X2

X¶l1 1 X0, X2 X¶l 0,l2 1 X1, X3

X¶l2 1 X0, X1, X3 X¶l1,l2 1 X0, X3

Therefore, the first step in extending F<: with row types is to allow constrained row
variables in environments:

E', X¶L, E" ∫ ...

Then, if X¶L 1 X1, ..., Xn we translate:

E',X¶L ∫ Rcd(l1:A1, ..., lm:Am, X) type
1 E',X1, ..., Xn ∫ Tuple(B1, ..., Bn+m-1, Xn) type

where the Bi are the X1...Xn-1 and the A1...Am, in the proper order.
To manipulate type rows and row variables we introduce a new judgment form

(described in detail in the next section):

E ∫ R ¶L

where R is a type row (including a row variable), and L is the set of labels that are not
covered by the row R. In general we need to translate not just records, but rows, which
may have missing components:

(l 0:A, l2:C, X) ¶l1,l4 1 A, - , C, X3, - , X5 (a row missing 1st and 4th).

Once row variables are allowed in environments, they give rise naturally to
quantifiers Ó(X¶L), and binders λ(X¶L). These row quantifiers and row binders must
decompose under translation into sequences of type quantifiers and type binders. For
example, we have:

Ó(X¶l1) Rcd(l1:A; X) îïñ B
1 Ó(X0) Ó(X2) Tuple(X0,A,X2) îïñ B

We now come to the most important issue of the translation: matching the number of
arguments of a row type function λ(X¶L)a to the number of parameters in a row type
application (λ(X¶L)a)(R¶L). The application form for a function b: Ó(X¶L)B will have
the shape:

b(R¶L) : B{XóïôR} for R¶L

where B{XóïôR} is a row substitution such that (for ξ a row variable or Top):

 Rcd(l1:A1,...,ln:An, X) {Xóïô(l'1:B1,...,l'm:Bm, ξ)} =
Rcd(l1:A1,...,ln:An,l'1:B1,...,l'm:Bm, ξ)

We have seen that the translations of Ó(X¶L)B and λ(X¶L)b convert the single
parameter X¶L into a sequence of parameters whose length can depend only on L. We

Page 18

call this length ∂L: the dimension of L. When translating an application b(R¶L) we must
then produce a sequence of applications of size ∂L, irrespectively of the actual parameter
R. This may require some regrouping of the components of an argument row R. For
example:

b(l2:A2,Y ¶l1l3) (where b:Ó(X¶l1l3)B and Y¶l1l2l3 1 Y0,Y4

1 b(Y0)(A2)(Y4) and l2:A2,Y ¶l1l3 1 Y0,A2,Y4)

b(l3:A3,Y ¶l1l2) (where b:∀(X¶l1l2)B and Y¶l1l2l3 1 Y0,Y4

1 b(Y0)(Tuple(A3,Y4)) and l3:A3,Y ¶l1l2 1 Y0,A3,Y4)

In the second case, b(Y0)(A3)(Y4) would be wrong; we must group A3 and Y4 into
Tuple(A3,Y4), to match the two parameters (X0 and X3) expected by b. For uniformity in
the translation, we always take the last parameter to be a tuple (since Tuple(A)7A), so the
first case above becomes:

b(l2:A2,Y ¶l1l3)
1 b(Y0)(A2)(Tuple(Y4))

In conclusion, we can say informally that row variables translate to rows of variables,
row types to rows of types, row quantifiers to rows of quantifiers, row applications to
rows of applications, etc. The main difficulty in the translation is to ensure that all these
rows match properly. For this, the precise relation between a row R¶L and its dimension
∂L, will be discussed in section 6.

We now turn to a formal system based on the intuitions about the translation of
records into tuples developed in this section.

5. System F<:r
We now extend F<: with records and row variables, as discussed in section 4; the

resulting system is called F<:ρ.

5.1 Syntax
 Types in F<: are augmented by the following: record types Rcd(R), where R is a row
type that must be defined at all labels; row function types R¶L îïñ B from an input of row
type R¶L to an output of type B; and row variable quantifications Ó(X¶L)B, where L is a
set of labels at which X is undefined.

A row type is either the constant Etc, standing for an “empty row” (more precisely, an
unnamed extension of the current row type); a type variable X, standing for an extension
of the current row type; or l:A,R, extending the row type R by a field of type A and label l.

Values are augmented by the following: records rcd(r), where r is a row value defined
at all labels; row functions λ(xaR¶L)b accepting a row value for x of row type R¶L; and
row type functions λ(X¶L)b accepting a row type for X that is undefined at L. Record

Page 19

selection a.l can be used on a record a that is defined at l. A row function b can be applied
via b(r¶L) to a row value r undefined at L. A row type function b can be instantiated via
b(R¶L) to a row type R undefined at L.

Finally, a row value is either the constant etc, standing for an “empty row” (or, an
unnamed extension of the current row value); a row variable x; an extension l=a,r,
extending row value r by a field of value a and label l; or a restriction a\L, producing a
row value undefined at L from a record a.

Syntax

L ::= l1, .., ln Label set

A,B ::= ... Types as in F<:, plus:
Rcd(R) record type
R¶LîïñB row function space
Ó(X¶L)B row quantification

R,S ::= Row types
X row type variable
Etc empty row type
l:A,R row type R plus field A labeled l

a,b ::= ... Values as in F<:, plus:
rcd(r) record value
a.l record selection
λ(xaR¶L)b row value function
b(r¶L) row value application
λ(X¶L)b row type function
b(R¶L) row type application

r,s ::= Row values
x row value variable
etc empty row value
l=a,r row value r plus field a labeled l
a\L row value of record a without fields in L

As discussed in section 2, we identify terms up to renaming of bound variables:

Ó(X¶L)B 7 Ó(Y¶L)B{XóïôY}
λ(X¶L)b 7 λ(X¶L)b{XóïôY}
λ(xaR¶L)b 7 λ(yaR¶L)b{xóïôy}

Moreover, we identify rows up to reordering of labeled components:

 l:A,l':A',R 7 l':A',l:A,R
 l=a,l'=a',r 7 l'=a',l=a,r

Page 20

and we identify terms up to any permutation L' of a label set L:

Ó(X¶L)B 7 Ó(X¶L')B R¶LîïñB 7 R¶L'îïñB
λ(X¶L)b 7 λ(X¶L')b b(R¶L) 7 b(R¶L')
λ(xaR¶L)b 7 λ(xaR¶L')b b(r¶L) 7 b(r¶L')
a\L 7 a\L'

Again, these identifications are legitimate because they depend only on the syntax of
terms, and not on their derivations.

Given the identification of label sets above, we adopt the following notational
convention used in the inference rules:

l.L @ {l}∪L where lÌL

We now add to F<: four judgments about rows, which all involve a set L at which the
rows are undefined.

Judgments

... Judgments as in F<:, plus:
E ∫ρ R ¶L R is a row type not covering L
E ∫ρ raR ¶L r has row type R¶L
E ∫ρ R <a S ¶L R is a subrow of S, both not covering L
E ∫ρ r óïñ r'aR ¶L r is equal to r' at row type R¶L

It is important to notice that the L information is preserved exactly in F<:ρ
derivations, in the sense that E ∫ρ ϑ ¶L öõú E ∫ρ ϑ ¶L' is never derivable for L≠L' for any
of the four judgments. Hence, when we say that a row is undefined at L, we always mean
undefined exactly at L.

5.2 Rules
We indicate by ∫ρ the judgments in F<:ρ, to distinguish them from the judgments ∫ in

F<:. The rules of F<:ρ consist of a copy of the rules of F<: (with ∫ replaced by ∫ρ) plus
the ones listed below. We now briefly comment on the F<:ρ rules.

A row type is formed by starting with a row variable X¶L, or with a row Etc¶L, and
then prefixing fields l:A with lÏL, at each step discarding l from L. Note that Etc can be
assumed to lack any set of labels to start with. Informally, we can imagine either that an
element of Etc¶L is a collection of n=#L empty slots that are later “filled in”, or that an
element of Etc¶L is an infinite row with “gaps” corresponding to L, and with all the other
components filled with an error value.

A record type can be formed only from a complete row R¶(), one lacking no labels.
(We call R¶() complete even though we have only finite information about the labels of
R; for example, Etc¶() is complete but entirely unknown.) This completeness
requirement is probably not essential, but gives us a simpler calculus where record types

Page 21

carry only positive information, while row variables carry only negative information
[Harper Pierce 90].

The subrow judgment, E ∫ρ R <a S ¶L, is mainly an auxiliary one used to define
subtyping on records. According to this judgment, every row is a subrow of Etc; then we
have componentwise subtyping on fields having the same label. Hence, a longer row
ending in Etc is a subrow of a shorter row ending in Etc if their corresponding
components are in subtype relation. Rows ending with the same type variables must have
the same length (otherwise, assuming X¶l, what could L be in E ∫ρ l:A,X <a X ¶L ?).
Rows ending in distinct type variables are unrelated, since we have no information about
the labeled types that may be substituted for the variables.

Record values can be created only from complete rows, as discussed above. Given a
record a : Rcd(l:A,R) we can select its l component by a.l : A. Moreover, given a record a
: Rcd(l1:A1..ln:An,R) we can extract a row a\L a R¶L from it by removing all the
components with labels in L.

In F<: any two values are equivalent in Top. Similarly, in F<:ρ any two row values
are equivalent in Etc.

Environments

(Env x ¶L) (Env X ¶L)

E ∫ρ R ¶L xÌdom(E) ∫ρ E env XÌdom(E)
—————————— ——————————

∫ρ E,xaR¶L env ∫ρ E,X¶L env

Types

(Type Rcd) (Type îïñ ¶L) (Type Ó ¶L)

E ∫ρ R ¶() E ∫ρ R ¶L E ∫ρ B type E,X¶L ∫ρ B type
 ———————— —————————— —————————

E ∫ρ Rcd(R) type E ∫ρ R¶LîïñB type E ∫ρ Ó(X¶L)B type

Row types

(Type X) (Type Etc) (Type cons)

∫ρ E',X¶L,E" env ∫ρ E env E ∫ρ R ¶l.L E ∫ρ A type
 ————————— ————— ———————————

E', X¶L,E" ∫ρ X ¶L E ∫ρ Etc ¶L E ∫ρ l:A,R ¶L

Subtypes

(Sub Rcd) (Sub îïñ ¶L) (Sub Ó ¶L)

E ∫ρ R <a R' ¶() E ∫ρ R'<aR ¶L E ∫ρ B<:B' E,X¶L ∫ρ B <: B' type
 —————————— ——————————— ——————————————

E ∫ρ Rcd(R) <: Rcd(R') E ∫ρ R¶LîïñB <: R'¶LîïñB' E ∫ρ Ó(X¶L)B <: Ó(X¶L)B' type

Page 22

Subrows

(Sub Row refl) (Sub Row trans)

E ∫ρ R ¶L E ∫ρ R <a S ¶L E ∫ρ S <a T ¶L
 ——————— ——————————————

E ∫ρ R <a R ¶L E ∫ρ R <a T ¶L

(Sub Etc) (Sub cons)

E ∫ρ R ¶L E ∫ρ A <: B E ∫ρ R <a S ¶l.L
 ———————— —————————————

E ∫ρ R <a Etc ¶L E ∫ρ l:A,R <a l:B,S ¶L

Values

(Val rcd) (Val sel)

E ∫ρ raR ¶() E ∫ρ a : Rcd(l:A,R)
 ————————— ————————

E ∫ρ rcd(r) : Rcd(R) E ∫ρ a.l : A

(Val fun ¶L) (Val appl ¶L)

E,xaR¶L ∫ρ b : B E ∫ρ b : R¶LîïñB E ∫ρ raR ¶L
———————————— —————————————

E ∫ρ λ(xaR¶L) b : R¶LîïñB E ∫ρ b(r¶L) : B

(Val fun2 ¶L) (Val appl2 ¶L)

E,X¶L ∫ρ b : B E ∫ρ b : Ó(X¶L)B E ∫ρ R ¶L
 ——————————— —————————————

E ∫ρ λ(X¶L)b : Ó(X¶L)B E ∫ρ b(R¶L) : B{XóïôR}

Row values

(Row Subsumption) (Val x ¶L)

E ∫ρ raR ¶L E ∫ρ R <a S ¶L ∫ρ E',xaR¶L,E" env
 ————————————— ——————————

E ∫ρ raS ¶L E',xaR¶L,E" ∫ρ xaR ¶L

(Val etc) (Val cons) (Val restr)

∫ρ E env E ∫ρ raR ¶l.L E ∫ρ a:A E ∫ρ a : Rcd(l1:A1..ln:An,R)
 ——————— ————–—————— ————————————

E ∫ρ etc a Etc ¶L E ∫ρ l=a,r a l:A,R ¶L E ∫ρ a\ l1..ln a R ¶l1..ln

Value equivalence

(Eq rcd) (Eq sel) (Eq Eval sel)

E ∫ρ r óïñ r' a R ¶() E ∫ρ aóïña' : Rcd(l:A,R) E ∫ρ raR ¶l E ∫ρ aóïña':A
 ————————————— —————————— ———————————

E ∫ρ rcd(r) óïñ rcd(r') : Rcd(R) E ∫ρ a.l óïñ a'.l : A E ∫ρ rcd(l=a,r).l óïñ a' : A

(Eq fun ¶L) (Eq appl ¶L)

E,xaR¶L ∫ρ bóïñb' : B E ∫ρ bóïñb' : R¶LîïñB E ∫ρ róïñr'aR ¶L
—————————————————— ————————————————

E ∫ρ λ(xaR¶L)b óïñ λ(xaR¶L)b' : R¶LîïñB E ∫ρ b(r¶L) óïñ b'(r'¶L) : B

Page 23

(Eq fun2 ¶L) (Eq appl2 ¶L)

E,X¶L ∫ρ b óïñ b' : B E ∫ρ b óïñ b' : Ó(X¶L)B E ∫ρ R ¶L
 ———————————————— ———————————————

E ∫ρ λ(X¶L)bóïñλ(X¶L)b' : Ó(X¶L)B E ∫ρ b(R¶L) óïñ b'(R¶L) : B{XóïôR}

(Eq Beta ¶L) (Eq Eta ¶L)

E,xaR¶L ∫ρ b óïñ b' : B E ∫ρ róïñr'aR ¶L E ∫ρ b óïñ b' : R¶LîïñB yÌdom(E)
————————————————— ————————————————

E ∫ρ (λ(xaR¶L)b)(r) óïñ b'{xóïôr'} : B E ∫ρ λ(yaR¶L)b(y¶L) óïñ b' : R¶LîïñB

(Eq Beta2 ¶L) (Eq Eta2 ¶L)

E,X¶L ∫ρ b óïñ b' : B E ∫ρ R ¶L E ∫ρ b óïñ b' : Ó(X¶L)B YÌdom(E)
——————————————————— ————————————————

E ∫ρ (λ(X¶L)b)(R¶L)óïñb'{XóïôR} : B{XóïôR} E ∫ρ λ(Y¶L)b(Y¶L)óïñb' : Ó(X¶L)B

Row value equivalence

(Eq Row symm) (Eq Row trans)

E ∫ρ róïñsaR ¶L E ∫ρ róïñsaR ¶L E ∫ρ sóïñtaR ¶L
 ——————— ——————————————

E ∫ρ sóïñraR ¶L E ∫ρ r óïñ t a R ¶L

(Eq Row Subsumption) (Eq Row collapse)

E ∫ρ róïñr'aR ¶L E ∫ρ R <a S ¶L E ∫ρ raEtc ¶L E ∫ρ saEtc ¶L
 —————————————— —————————————

E ∫ρ róïñr'aS ¶L E ∫ρ r óïñ s a Etc ¶L

(Eq x ¶L) (Eq etc) (Eq cons)

E ∫ρ x a R ¶L ∫ρ E env E ∫ρ róïñr'aR ¶l.L E ∫ρ aóïña':A
 ———————— —————————— ——————————————

E ∫ρ x óïñ x a R ¶L E ∫ρ etc óïñ etc a Etc ¶L E ∫ρ l=a,r óïñ l=a',r' a l:A,R ¶L

(Eq restr) (Eq Eval restr)

E ∫ρ aóïña' : Rcd(l1:A1..ln:An,R) E ∫ρ róïñr'aR ¶l1..ln E ∫ρ a1:A1 ... E ∫ρ an:An
—————————————— ———————————————————

E ∫ρ a\ l1..ln óïñ a'\ l1..ln a R ¶l1..ln E ∫ρ rcd(l1=a1..ln=an,r)\ l1..ln óïñ r' a R ¶l1..ln

Example derivations

∫ρ E env ∫ρ E,X¶l3,l5 env
 ————— ————————

E ∫ρ Etc ¶l3,l5 E ∫ρ A type E,X¶l3,l5 ∫ρ X ¶l3,l5 E ∫ρ A type
 ————————––——— ———————–———————

E ∫ρ l3:A,Etc ¶l5 E ∫ρ B type E,X¶l3,l5 ∫ρ l3:A,X ¶l5 E ∫ρ B type
 ——————————––— —————————–—————

E ∫ρ l5:B,l3:A,Etc ¶() E,X¶l3,l5 ∫ρ l5:B,l3:A,X ¶()
 ——————————— ——————————————

E ∫ρ Rcd(l5:B,l3:A,Etc) type E,X¶l3,l5 ∫ρ Rcd(l5:B,l3:A,X) type

5.3 Properties
We now state some basic lemmas about the properties of F<:ρ derivations (and,

implicitly, of F<: derivations). Unless otherwise noted, these are all proven by induction
on the derivations; the proofs are long, but straightforward if done in the order indicated.

Page 24

Notation
Let ϑ be any of

C type, S ¶M, C<:C', S<aS' ¶M, c:C, saS ¶M, cóïñc':C, sóïñs'aS ¶M

Lemma (renaming)
Let <ξ,ξ',ß,ß'> stand for either <X, Y, X<:D, Y<:D>, <X, Y, X¶M, Y¶M>,
<x, y, x:D, y:D>, or <x, y, xaT¶M, yaT¶M>.
Assume ξ'Ìdom(E,ß,E').

∫ρ E,ß,E' env öõú ∫ρ E,ß',E'{ξóïôξ'} env
E,ß,E' ∫ρ ϑ öõú E,ß',E'{ξóïôξ'} ∫ρ ϑ{ξóïôξ'}

Lemma (implied judgments 1)
(J/env) ∫ρ E,F env öõú ∫ρ E env

E,F ∫ρ ϑ öõú ∫ρ E env
(env/type) ∫ρ E,X<:D,E' env öõú E ∫ρ D type

∫ρ E,x:D,E' env öõú E ∫ρ D type
(env/rowtype) ∫ρ E,xaR¶L,E' env öõú E ∫ρ R ¶L

Lemma (bound change)
∫ρ E,X<:D',E' env, E ∫ρ D type öõú ∫ρ E,X<:D,E' env
E,X<:D',E' ∫ρ C type, E ∫ρ D type öõú E,X<:D,E' ∫ρ C type
E,X<:D',E' ∫ρ S ¶M, E ∫ρ D type öõú E,X<:D,E' ∫ρ S ¶M

Lemma (weakening)
Let ß stand for either X¶L, X<:D, x:D, or xaT¶L.
Assume ∫ρ E,ß env, and X,xÌdom(E'); then

∫ρ E,E' env öõú ∫ρ E,ß,E' env
E,E' ∫ρ ϑ öõú E,ß,E' ∫ρ ϑ

Assume ∫ρ E,F env and dom(F)∩dom(E')=; then
∫ρ E,E' env öõú ∫ρ E,F,E' env
E,E' ∫ρ ϑ öõú E,F,E' ∫ρ ϑ

Lemma (implied judgments 2)
(sub/type) E ∫ρ C<:C' öõú E ∫ρ C type, E ∫ρ C' type
(subrow/typerow) E ∫ρ S<aS' ¶M öõú E ∫ρ S ¶M, E ∫ρ S' ¶M

Lemma (bound weakening)
Let <ß,ß'> stand for either

<X<:D, X<:D'>, <x:D, x:D'>, or <xaR¶L, xaR'¶L>.
Assume E ∫ρ D'<:D and E ∫ρ R'<aR ¶L.

∫ρ E,ß,E' env öõú ∫ρ E,ß',E' env
E,ß,E' ∫ρ ϑ öõú E,ß',E' ∫ρ ϑ

Page 25

Lemma (type substitution)
Assume E ∫ρ D'<:D; then

∫ρ E,X<:D,E' env öõú ∫ρ E,E'{XóïôD'} env
E,X<:D,E' ∫ρ ϑ öõú E,E'{XóïôD'} ∫ρ ϑ{XóïôD'}

Assume E ∫ρ S ¶M; then
∫ρ E,X¶M,E' env öõú ∫ρ E,E'{XóïôS} env
E,X¶M,E' ∫ρ ϑ öõú E,E'{XóïôS} ∫ρ ϑ{XóïôS}

Lemma (value substitution)
Assume E ∫ρ d:D; then

∫ρ E,x:D,E' env öõú ∫ρ E,E' env
E,x:D,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôd}

Assume E ∫ρ taT ¶N; then
∫ρ E,xaT¶N,E' env öõú ∫ρ E,E' env
E,xaT¶N,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôt}

Lemma (value strengthening)
Assume xÌFV(ϑ); then, for ϑ ≠ cóïñc':C

∫ρ E,x:D,E' env öõú ∫ρ E,E' env
E,x:D,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ{xóïôd}

Assume xÌFV(ϑ); then, for ϑ ≠ róïñr'aR ¶L
∫ρ E,xaT¶N,E' env öõú ∫ρ E,E' env
E,xaT¶N,E' ∫ρ ϑ öõú E,E' ∫ρ ϑ

Lemma (implied judgments 3)
(val/type) E ∫ρ c : C öõú E ∫ρ C type,
(rowval/rowtype) E ∫ρ saS ¶M öõú E ∫ρ S ¶M,
(eq/val) E ∫ρ cóïñc' : C öõú E ∫ρ c : C, E ∫ρ c' : C,
(roweq/rowval) E ∫ρ sóïñs'aS ¶M öõú E ∫ρ saS ¶M, E ∫ρ s'aS ¶M,

Lemma (subsumption equivalence)
E ∫ρ cóïñc' : C, E ∫ρ C<:D öõú E ∫ρ cóïñc' : D

Proof By subsumption and beta; see [Cardelli Martini Mitchell Scedrov 91] M

Lemma (implied judgments 4)
(val/eq) E ∫ρ c : C öõú E ∫ρ cóïñc : C
(rowval/roweq) E ∫ρ saS ¶M öõú E ∫ρ sóïñsaS ¶M

Lemma (exchange)
Let ß stand for either X<:D, Y¶M, x:D, or xaT¶M.
Let ß' stand for either X'<:D', Y'¶M', x':D', or x'aT'¶M'.
Assume ∫ρ E,ß' env.

∫ρ E,ß,ß',E' env öõú ∫ρ E,ß',ß,E' env
E,ß,ß',E' ∫ρ ϑ öõú E,ß',ß,E' ∫ρ ϑ

Page 26

We can now show that an observational equivalence rule for records is derivable.
This rule asserts that two record values are equal at a given type if all the equally-labeled
fields that can be observed at that type are equal.

Proposition (observational equivalence for records)
E ∫ρ a1óïñb1:A1 ∧ ... ∧ E ∫ρ anóïñbn:An ∧ E ∫ρ raR ¶l1..ln ∧ E ∫ρ saS ¶l1..ln

öõú E ∫ρ rcd(l1=a1,..,ln=an,r) óïñ rcd(l1=b1,..,ln=bn,s) : Rcd(l1:A1,..,ln:An,Etc)
Proof

Let L7l1..ln.
E ∫ρ raR ¶L öõú ∫ρ E env (implied judgment)
E ∫ρ raR ¶L öõú E ∫ρ R ¶L (implied judgment)

E ∫ρ R ¶L öõú E ∫ρ R <a Etc ¶L (Sub Etc)
E ∫ρ raR ¶L ∧ E ∫ρ R <a Etc ¶L öõú E ∫ρ raEtc ¶L (subsumption equiv.)

∫ρ E env öõú E ∫ρ etcóïñetcaEtc ¶L (Eq etc)
E ∫ρ raEtc ¶L ∧ E ∫ρ etcaEtc ¶L öõú E ∫ρ róïñetcaEtc ¶L (Eq Row collapse)
E ∫ρ saS ¶L öõú E ∫ρ etcóïñsaEtc ¶L (similarly)
E ∫ρ róïñetcaEtc ¶L ∧ E ∫ρ etcóïñsaEtc ¶L öõú E ∫ρ róïñsaEtc ¶L (Eq trans)

E ∫ρ raR ¶l1..ln ∧ E ∫ρ saS ¶l1..ln öõú E ∫ρ róïñsaEtc ¶l1..ln (above)

E ∫ρ a1óïñb1:A1 ∧ ... ∧ E ∫ρ anóïñbn:An ∧ E ∫ρ róïñsaEtc ¶l1..ln
 öõú E ∫ρ l1=a1,..,ln=an,r óïñ l1=b1,..,ln=bn,s a l1:A1,..,ln:An,Etc ¶() (Eq Row cons)
 öõú E ∫ρ rcd(l1=a1,..,ln=an,r)óïñrcd(l1=b1,..,ln=bn,s):Rcd(l1:A1,..,ln:An,Etc) (Eq rcd) M

5.4 Some useful extensions
In preparation for examples in the next section, we discuss some useful extensions of

our system: recursive types, label-set variables, and definitions. These extensions are not
treated in the formal part of the paper.

5.4.1 Recursive types
In order to introduce recursive types, we need to add type equivalence judgments to

the system along with rules (omitted here) for making type equivalence into a congruence
over the syntax:

E ∫ρ A óïñ B type A and B are equivalent types
E ∫ρ R óïñ S ¶L R and S are equivalent row types

A recursive type is, syntactically, a term µ(X)A where A is contractive in X (written
A(X). This means that A≠X, and if A=µ(Y)B then B(X. We immediately identify
recursive types up to renaming of bound variables:

µ(X)A 7 µ(Y)A{XóïôY}

Page 27

Then, the rules for recursive types [Amadio Cardelli 91] are:
 (unfold)

E,X<:Top ∫ρ A type A(X E ∫ρ µ(X)A type
 ——————————— ——————————————

E ∫ρ µ(X)A type E ∫ρ µ(X)A óïñ A{Xóïôµ(X)A} type

E,X<:Top ∫ρ A óïñ B type A(X B(X
————————————————

E ∫ρ µ(X)A óïñ µ(X)B type
 (contract)
E ∫ρ A óïñ C{XóïôA} type E ∫ρ B óïñ C{XóïôB} type C(X
————————————————————————

E ∫ρ A óïñ B type

E ∫ρ µ(X)A type E ∫ρ µ(Y)B type E,Y<:Top,X<:Y ∫ρ A<:B
 —————————————————————————

E ∫ρ µ(X)A <: µ(Y)B

A recursive value is, syntactically, a term µ(x:A)a, with the identification:

µ(x:A)a 7 µ(y:A)a{xóïôy}

The standard rules for recursive values are:

E,x:A ∫ρ a : A E,x:A ∫ρ a : A E,x:A ∫ρ aóïñb : A
 ——————— —————————————— ———————————

E ∫ρ µ(x:A)a : A E ∫ρ µ(x:A)a óïñ a{xóïôµ(x:A)a} : A E ∫ρ µ(x:A)a óïñ µ(x:A)b : A

5.4.2 Label sets
The next extension involves variables W ranging over sets of labels. We allow these

in environments, under an assumption WπL that W does not contain any of the labels in L.

E ∫ρ L π M E ∫ρ L π M E ∫ρ L π l.M
————— ————— —————

E ∫ρ M π L E ∫ρ L π E ∫ρ L π M

∫ρ E env E ∫ρ L π l.M
———————— —————

E ∫ρ π l1. .. ln. E ∫ρ l.L π M

E ∫ρ L π WÌdom(E) ∫ρ E, W π L env
 ——————————— —————————

∫ρ E, W π L env E, W π L, E' ∫ρ W π L

The rules of F<:ρ that involve label sets L, are extended to require Lπ, to make sure that
L is well-formed. We do not define quantifiers or functions over label-set variables
because we do not know how to translate them into F<:; label-set variables will be used
only in definitions.

5.4.3 Definitions
We now extend the system with various flavors of definitions. The simplest

definitions are value and row value definitions (let's):

Page 28

E ∫ρ a : A E,x:A ∫ρ b : B E ∫ρ a : A E,x:A ∫ρ b : B
 ——————————— ———————————————

E ∫ρ let x : A = a in b : B E ∫ρ let x : A = a in b óïñ b{xóïôa} : B

E ∫ρ r a R ¶L E,xaR¶L ∫ρ b : B E ∫ρ r a R ¶L E,xaR¶L ∫ρ b : B
 —————————————— ————————————————

E ∫ρ let x a R ¶L = r in b : B E ∫ρ let x a R ¶L = r in b óïñ b{xóïôr} : B

There are several kinds of type-level definitions (Let's); we may give a definition of
either a type variable, a row type variable, or a label-set variable, in the scope of either a
type, a row type, a value, a row value, or a label-set.

To compress several cases into one, we use the abbreviations:

X,Y are either type, row type, or label-set variables;
A,B,C are either types, row type, or label sets;
Aa,Bb,Cc are either values, row values, types, row types, or label-sets;
pred is either : A, a R ¶L, type, ¶L, or πL.
ÏK is either <:A, ¶L, or πL (we often omit <:Top);
Aa{X} means X may occur in Aa; then Aa{B} stands for Aa{XóïôB}

For type, row type, and label-set definitions, in various scopes, we have the rules:

Let X = A in bB{X} 7 Let X’ = A in bB{X’}

E ∫ρ AÏK E ∫ρ Bb{A} pred E ∫ρ AÏK E ∫ρ Bb{A} pred
 ————————————— —————————————————

E ∫ρ Let XÏK = A in Bb{X} pred E ∫ρ Let XÏK = A in Bb{X} óïñ Bb{A} pred

Note that, unlike value definitions, we do not require E,XÏK ∫ρ Bb{X} pred; this might not
be typeable on its own.

We also introduce parametric type-level definitions, for example:

Let X[Y,Z] = A{Y,Z} in ... X[B1,C1] ... X[B2,C2] ...
óïñ ... A{B1,C1} ... A{B2,C2} ...

for which we omit the obvious but technically complicated definitions.
Finally, we use top level declarations, in the following way:

let x : A = a
let y : B = b stands for let x : A = a in let y : B = b in c
c

and similarly for Let.
We now have enough useful features, and we can turn to examples.

5.5 Examples
Many examples in this section are adapted from [Canning Cook Hill Olthoff Mitchell 89]

[Harper Pierce 90] and [Cardelli Mitchell 91].

Page 29

We start with a list of standard test cases and compare them with other calculi.

¢ Extracting a field from a record that is known to possess it.

let selectx : Rcd(x:Nat,Etc)îïñNat =
λ(a:Rcd(x:Nat,Etc)) a.x

selectx(rcd(x=3,y=true,etc)) óïñ 3 : Nat

¢ Extracting a field from a record that is not known to possess it.
This is a typing error in all the calculi that have been proposed.

¢ Removing a field from a record that is known to possess it.

let restrictx : Ó(X¶x) Rcd(x:Nat,X)îïñ ...X... =
λ(X¶x) λ(a:Rcd(x:Nat,X)) ... a\x ... (in a row context)

restrictx(y:Nat,Etc¶x)(rcd(x=3,y=true,etc))

¢ Removing a field from a record that is not known to possess it.
This is the crucial feature in [Cardelli Mitchell 91]. It is not possible here because the

translation (section 6) requires exact knowledge of the missing fields.

¢ Adding a field to a record that is known not to possess it.
Not applicable; all records are already “complete”. However, we can add a field to a

row that is known not to possess it:

λ(raR¶x.L) ... x=b,r ... (in a row context)

¢ Adding a field to a record that is not known to possess it.
Not applicable; all records are already “complete”. Moreover, even for rows, “not

knowing” is not a sufficient condition for adding a field. This operation is possible in
[Wand 87], [Rémy 89], and [Cardelli Mitchell 91].

¢ Updating a field of a record that is known to possess it.
Although adding a field under these conditions is not possible because all records are

“complete”, there is no problem with updating. Note that type information about
additional input fields is preserved. This example motivated the work [Cardelli Mitchell 91].

let replacex : Ó(X¶x) Ó(A) Rcd(x:Top,X)îïñAîïñRcd(x:A,X) =
λ(X¶x) λ(A) λ(r:Rcd(x:Top,X)) λ(a:A) rcd(x=a,r\x)

replacex(y:Bool,Etc¶x)(String)(rcd(x=3,y=true,etc))("str")
 óïñ rcd(x="str",y=true,etc) : Rcd(x:String,y:Bool,Etc)

A restricted version, called consistent updating, preserves the type of the field being
updated.

 let updatex : Ó(X¶x) Ó(A) Rcd(x:A,X)îïñAîïñRcd(x:A,X) =
λ(X¶x) λ(A) λ(b:Rcd(x:A,X)) λ(a:A) rcd(x=a,b\x)

Page 30

An interesting example of update occurs when “moving” the x field of a point. In this
case we want to preserve the type of the y field (whatever subtype of Int that may be) and
all the additional fields. If the input type of the x field is 0..9 (a proper subtype of Int), the
corresponding output type must be Int, otherwise we could exceed the range 0..9 for x.

let movex : Ó(Y<:Int) Ó(Z¶x,y) Rcd(x:Int,y:Y,Z) îïñ Rcd(x:Int,y:Y,Z) =
λ(Y<:Int) λ(Z¶x,y) λ(p:Rcd(x:Int,y:Y,Z)) rcd(p.x+1,p\x)

p:Rcd(x:0..9,y:0..9,c:Color,Etc)
movex(0..9)(c:Color,Etc)(p) : Rcd(x:Int,y:0..9,c:Color,Etc)

A more challenging task is to update “deep” in a structure, while preserving all the
type information of the input. Here it can be achieved as follows, for a second-level
boolean update.

let deep-updatexy :
Ó(X¶x) Ó(Y¶y) Rcd(x:Rcd(y:Bool,Y),X)îïñRcd(x:Rcd(y:Bool,Y),X) =
λ(X¶x) λ(Y¶y) λ(a:Rcd(x:Rcd(y:Bool,Y),X))

rcd(x=rcd(y=not(a.x.y),a.x\y),a\x)

deepUpdatexy(z:Nat,Etc¶x)(w:Nat,Etc¶y)(rcd(x=rcd(y=true,w=3,etc),z=4,etc))
 óïñ rcd(x=rcd(y=false,w=3,etc),z=4,etc)

: Rcd(x:Rcd(y:Bool,w:Nat,Etc),z:Nat,Etc)

¢ Updating a field of a record that is not known to possess it.
Again, “not knowing” is not a sufficient condition here.

 ¢ Renaming.
Renaming is not possible in general. Consider, for example, Rcd(x:A,X)îïñRcd(y:A,X);

what would be the constraint on X?

We now pass to standard examples of “class hierarchies” and “methods”. We use
parametric type definitions, explained in section 5.4, to model record type extension, as in
[Harper Pierce 90]. This technique compensates, up to a point, for the lack of the type
operations of [Cardelli Mitchell 91].

 ¢ Points and color points
A point has components x:Int, y:Int, while a color point also has a component

c:Color. The challenge is to define the ColorPoint type and values by reusing the Point
type and values. Here we can reuse types in two steps by defining a parametric version of
each type. (Similarly for values.) This is an instance of a powerful generator technique,
widely employed in [Cook 89].

Let PointPlus[Z¶x,y] =
Rcd(x:Int, y:Int, Z)

Page 31

Let Point =
PointPlus[Etc] (7 Rcd(x,y:Int, Etc))

Let ColorPointPlus[Z¶x,y,c] =
PointPlus[c:Color, Z] (7 Rcd(x,y:Int, c:Color, Z))

Let ColorPoint =
ColorPointPlus[Etc] (7 Rcd(x,y:Int, c:Color, Etc))

let originPlus: Ó(Z¶x,y) Z¶x,yîïñPointPlus[Z] =
λ(Z¶x,y) λ(zaZ¶x,y) rcd(x=0, y=0, z)

let origin : Point =
originPlus(Etc¶x,y)(etc¶x,y)

let whiteOriginPlus : Ó(Z¶x,y,c) Z¶x,y,cîïñColorPointPlus[Z] =
λ(Z¶x,y,c) λ(zaZ¶x,y,c) originPlus(c:Color, Z ¶x,y)(c=white, z ¶x,y)

let whiteOrigin : ColorPoint =
whiteOriginPlus(Etc¶x,y,c)(etc¶x,y,c)

 ¢ Total orders
Here we have a record type TO of total orders. The ordering is represented as a

method leq: TOîïñBool, that compares another element of TO to the self value. The type
TO is then recursive in the input type of its only method.

The definition of TO is done in three steps; first we introduce a generator with open
recursion (the Self type parameter), then a generator derived from it where the recursion is
closed, and finally the actual type TO. In general, the last two steps are obtained
uniformly from the first. This technique is a bit complex, but it should be seen as a
standard way of translating a “class” written in some more amenable language.

Let TOGenPlus[Self, X¶leq] =
Rcd(leq: SelfîïñBool,X)

Let TOPlus[X¶leq] =
µ(Self) TOGenPlus[Self, X] (7 µ(Self) Rcd(leq: SelfîïñBool, X))

Let TO =
TOPlus[Etc] (7 µ(Self) Rcd(leq: SelfîïñBool, Etc))

Next we define the total order of Naturals (by reusing TOGenPlus), as:

Let NatTOGenPlus[Self, X¶leq,val,add] =
TOGenPlus[Self, (val:Nat, add:SelfîïñSelf, X)]

(7 Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, X))
Let NatTOPlus[X¶leq,val,add] =

µ(Self) NatTOGenPlus[Self, X]
(7 µ(Self) Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, X))

Page 32

Let NatTO =
NatTOPlus[Etc]

(7 µ(Self) Rcd(leq:SelfîïñBool, val:Nat, add:SelfîïñSelf, Etc))

let zero : NatTO =
rcd(val=0, add=λ(other:NatTO) other,

leq=λ(other:NatTO) 0≤other.val, etc)

(The methods of zero are too specialized to be inherited; this problem can be amended by
defining a value generator with open recursion and, for example, leq=λ (other: NatTO)
self.val≤other.val.)

We now discover that, although NatTO was obtained by adding components to TO, it
is not a subtype of TO by the rules for recursive types. Hence we have the unpleasant
situation that operations defined on TO may not apply to particular total orders.

The solution is to define those operations on TOPlus instead of TO. (As pointed out in
[Harper Pierce 90] this can be done even without F-bounded quantification [Canning Cook Hill

Olthoff Mitchell 89] in a calculus of “negative information”, such as F<:ρ.) We can say that
NatTOPlus is a subclass of TOPlus [Cook 89].

let min : Ó(X¶leq) TOPlus[X]îïñTOPlus[X]îïñTOPlus[X] =
λ(X¶leq) λ(a: TOPlus[X]) λ(b: TOPlus[X])

if a.leq(b) then a else b

We can then specialize min to NatTO:

let minNat: NatTOîïñNatTOîïñNatTO =
min(val:Nat, add: NatTOîïñNatTO, Etc ¶leq)

to see that this typechecks, compute:

TOPlus[val:Nat, add: NatTOîïñNatTO, Etc]
7 µ(Self) TOGenPlus[Self, (val:Nat, add: NatTOîïñNatTO, Etc)]
7 µ(Self) Rcd(leq: SelfîïñBool, val:Nat, add: NatTOîïñNatTO, Etc) (A)
óïñ NatTO (B)

The step from formula A to formula B proceeds as follows, using the rules for recursive
types given in section 5.4. By unfolding, we have:

A óïñ Rcd(leq: AîïñBool, val:Nat, add: BîïñB, Etc)
B óïñ Rcd(leq: BîïñBool, val:Nat, add: BîïñB, Etc)

Consider the contractive context C[X]:

C[X] 7 Rcd(leq: XîïñBool, val:Nat, add: BîïñB, Etc)

Then A óïñ C[A] and B óïñ C[B]; hence AóïñB by the contract rule.

Page 33

¢ Movables
Following the three-step schema, we now give type definitions for “things that can be

moved”. For added flexibility, the first step defines a row type instead of a record type,
using a label-set parameter (explained in section 5.4).

Let MovableGenPlus[Self, L πmove, X¶move.L] ¶L =
move: IntîïñIntîïñSelf, X

Let MovablePlus[X¶move] =
µ(Self) Rcd(MovableGenPlus[Self, , X])

(7 µ(Self) Rcd(move: IntîïñIntîïñSelf, X))
Let Movable =

MovablePlus[Etc] (7 µ(Self) Rcd(move: IntîïñIntîïñSelf, Etc))

let translate : Ó(X¶move) MovablePlus[X]îïñIntîïñIntîïñMovablePlus[X] =
λ(X¶move) λ(m:MovablePlus[X]) λ(dx:Int) λ(dy:Int) m.move(dx)(dy)

We can see that in this case Movable is a rather useless type. The interesting
definition is MovablePlus, which however must be instantiated before it can be used.
Hence, we combine movables with points:

Let PointPlus[Z¶x,y] =
Rcd(x:Int, y:Int, Z)

Let Point =
PointPlus[Etc] (7 Rcd(x:Int, y:Int, Etc))

Let MPointGenPlus[Self, X¶x,y,move] =
PointPlus[MovableGenPlus[Self, (x,y), X]]

(7 Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, X))
Let MPointPlus[X¶x,y,move] =

µ(Self) MPointGenPlus[Self, X]
(7 µ(Self) Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, X))

Let MPoint =
MPointPlus[Etc] (7 µ(Self) Rcd(x:Int, y:Int, move: IntîïñIntîïñSelf, Etc))

let move : Ó(X¶x,y,move) MPointPlus[X]îïñIntîïñIntîïñMPointPlus[X] =
λ(Z¶x,y,move) λ(self:MPointPlus[X] λ(dx:Int) λ(dy:Int)

rcd(x=self.x+dx, y=self.y+dy, self\x,y)

let mOrigin : MPoint =
µ(self:MPoint) rcd(x=0, y=0, move=move(Etc¶x,y,move)(self), etc)

translate(x:Int,y:Int,Etc ¶move)(mOrigin)(1)(1) : MPoint

Note that in MPointGenPlus we have successfully reused the definitions for both
points and movables. Moreover, move can be inherited by subclasses (as opposed to
subtypes) of MPointPlus, by defining appropriate generators.

Page 34

¢ Concatenation
Record concatenation can be handled by adapting a technique of Rémy [Rémy 91].

With an extra level of encoding, record concatenation can be modeled by function
composition; in our system, this idea can be realized as follows.

We first define segments, as extensible records parameterized by their potential
extensions:

Seg(l1:A1,..,ln:An) @ Ó(Z¶l1..ln) Z¶l1..lnîïñRcd(l1:A1,..,ln:An,Z)
seg(l1=a1,..,ln=an) @ λ(Z¶l1..ln) λ(zaZ¶l1..ln) rcd(l1=a1,..,ln=an,z)

A field of a segment can be extracted by precipitating the segment to a record:

s.li @ s(Etc¶l1..ln)(etc¶l1..ln).li where s : Seg(l1:A1,..,ln:An), iÏ1..n

Then, given two segments with distinct sets of labels:

s : Seg(l1:A1,..,ln:An) 7 Ó(Z¶l1..ln) Z¶l1..lnîïñRcd(l1:A1,..,ln:An,Z)
t : Seg(k1:B1,..,km:Bm) 7 Ó(Z¶k1..km) Z¶k1..kmîïñRcd(k1:B1,..,km:Bm,Z)

we can define their concatenation (∏) as follows:

s ∏ t @
λ(Z¶l1..lnk1..km) λ(zaZ¶l1..lnk1..km)

s(k1:B1,..,km:Bm,Z ¶l1..ln)
 (t(l1:Top,..,ln:Top,Z ¶k1..km)(l1=top,..,ln=top,z ¶k1..km)\ l1..ln)

so that we have:

s ∏ t : Seg(l1:A1,..,ln:An,k1:B1,..,km:Bm)

It would now be possible to axiomatize an extension of F<:ρ with segments and
concatenation, and define a translation of this extended calculus into F<:ρ.

6. Translation of F<:r into F<:
In this section we define the promised translation from a calculus with rows to one

without rows. The basic idea is that row variables, row types, row values, and row
judgments become rows or sequences of, respectively, variables, types, values, and
judgments.

We start with some familiar notation from previous sections:

Notation
L the set of labels
ι : LîïñNat (a bijection) a fixed enumeration of labels
li @ ι-1(i) the label whose index is i in the fixed enumeration
L,M... finite sets of labels
#S size of a finite set

Page 35

Next we define the set of indices of a set of labels, and its maximum index:

Definition (indices and maximum index of a set of labels)
ιL @ {ι(l)|lÏL} = {i|liÏL}
ÂL @ max(ιL), where Â{} @ -1

Finite sets of labels L are used mostly in contexts like ¶L, describing the labels a row
lacks. If we need to talk about the labels a row has, we can consider the complement L-L.
This, though, is an infinite set, and the part beyond ÂL is uninteresting. Hence, it is
natural to take its most interesting finite prefix, κL:

Definition (finite complement prefix of a finite set of labels)
κL @ {i|i<ÂL ∧ liÌL}

A central concept in the sequel is that of the dimension of (the tuple translation of) a
row. Take any row that is undefined at L; that is, any row whose tuple translation
sketched in section 4.2 has gaps at L. Then the labeled components to the right of the last
gap (ÂL) are contiguous, and they can be collected into a single tuple; we call the result a
normal row. The dimension ∂L of any row that has gaps at L is then defined as the
number of components of the corresponding normal row. We emphasize that for any row
raR ¶L or R ¶L, its dimension depends only on L, and not on the structure of r or R.
Hence ∂L can be defined very simply as:

Definition (dimension of a row undefined at L)
∂L @ #(κL)+1

When adding a new item to a row, the row dimension changes depending on whether
the new item fills the last gap of the row or not. In the former case, a whole set of
components may be compacted in the final tuple and the dimension decreases; in the
latter case, the dimension increases by one. The following lemma is formulated in terms
of adding or removing a gap.

Lemma (row dimension)
For liÌL,

if i<ÂL then ∂(li.L)=∂L-1;
if i>ÂL then ∂(li.L)=∂L+(i-(ÂL+1)).

We now need some notation for describing complex sequences and rows, and for this
purpose we use a notation similar to set comprehension. For example, we use iÜi|2≤i≤4á
to denote the sequence 2,3,4 in this order; the idea is that the superscript index i is
increased monotonically to generate the elements of the sequence.

 Notation (sequences)
#(S) length of a sequence
S,S' sequence concatenation

Page 36

iÜϕ(i)|Φ(i)á sequence comprehension; the sequence, generated by
increasing i, whose elements are ϕ(i) for iÏNat ∧ Φ(i).

A row is a sequence of labeled elements, sorted by label index, of length greater than
zero. The last element of a row is special; as discussed in section 4.2 this is the rest of the
row. For bookkeeping purposes, we use the special label q for this last element, where q
is intuitively the index of the beginning of the uninteresting part of the row (as we can see
from the row structure lemma below).

Notation (rows)
A type row R is a sequence of the form:

l1:A1..ln:An where n≥1 and ln 7 q for some q.
A value row r is a sequence of the form:

l1=a1..ln=an where n≥1 and ln 7 q for some q.

#(l1:A1..ln:An) @ n; #(l1=a1..ln=an) @ n size
li:Ai Ï l1:A1..ln:An; li=ai Ï l1=a1..ln=an membership (iÏ1..n)

l:A Òñ R @ iÜ(li:Ai)|(li:Ai)7(l:A) ∧ (li:Ai)ÏRá sorting (if l:BÌR for any B)
l=a Òñ r @ iÜ(li=ai)|(li=ai)7(l=a) ∧ (li=ai)Ïrá sorting (if l=bÌr for any b)

We can now define some basic sequences and rows that will be used in the
translation. All these have dimension ∂L.

Definition (basic sequences and rows)
VarSeq(X,¶L) @ iÜXi|iÏκLá, XÂL+1

VarRow(X,¶L) @ iÜ(li:Xi)|iÏκLá , (ÂL+1:XÂL+1)
TopRow(¶L) @ iÜ(li:Top)|iÏκLá , (ÂL+1:Top)

varSeq(x,¶L) @ iÜxi|iÏκLá, xÂL+1

varRow(x,¶L) @ iÜ(li=xi)|iÏκLá , (ÂL+1=xÂL+1)
topRow(¶L) @ iÜ(li=top)|iÏκLá , (ÂL+1=top)
selRow(a,¶L) @ iÜ(li=a.i)|iÏκLá , (ÂL+1=aÂL+1)

Examples
VarRow(X,¶()) = 0:X0 TopRow(¶()) = 0:Top
VarRow(X,¶l 0) = 1:X1 TopRow(¶l 0) = 1:Top
VarRow(X,¶l1) = l 0:X0, 2:X2 TopRow(¶l1) = l 0:Top, 2:Top
VarRow(X,¶l 0,l2) = l1:X1, 3:X3 TopRow(¶l 0,l2) = l1:Top, 3:Top

In defining the full translation, [-], we need an auxiliary translation, ^ - ¶L_, for
converting row types R ¶L, and row values r ¶L, into rows of types and values,
respectively. The results of ^ - ¶L_ are unnormalized, in the sense that they may have a
dimension greater than ∂L; that is, the final tupleable components of the results need not
be grouped together into a tuple. This auxiliary translation refers back to the proper
translation, [-], but for exposition purposes we present it first.

Page 37

Definition (translation, part 1; auxiliary row translation)
^X ¶L_ @ VarRow(X,¶L)
^Etc ¶L_ @ TopRow(¶L)
^l:A,R ¶L_ @ l:[A] Òñ ^R ¶l.L_

^x ¶L_ @ varRow(x,¶L)
^etc ¶L_ @ topRow(¶L)
^l=a,r ¶L_ @ l=[a] Òñ ̂ r ¶l.L_
^a\ l1..ln ¶L_ @ selRow([a],¶L)

Hence, for the base cases ^X ¶L_ and ^Etc ¶L_ of the row type translation, we
produce rows of X 's or Top's of size ∂L. For ^l:A,R ¶L_ we first compute ̂ R ¶l.L_, which
has an additional gap for l, and we sort l:[A] into the result.

Similarly for the row value translation. In addition, ^a\ l1..ln ¶L_ produces a row of
record selections; the idea here is that eliminating l1..ln from a is the same as selecting
and reassembling all the other components of a. (The type rules will ensure (l1..ln)7L, if
a\ l1..ln ¶L is well-typed.)

Here is an example of the translation:

^X ¶l 0,l1,l3,l6_ 7
l2:X2, l4:X4, l5:X5, 7:X7 (of size ∂(l 0,l1,l3,l6))

^(l1:A1, l6:A6, X) ¶l 0,l3_ 7
l1:A1, l2:X2, l4:X4, l5:X5, l6:A6, 7:X7 (of size greater than ∂(l 0,l3))

Next, we provide a kind of normal form for row types l1:A1..ln:An,ξ, based on the
translations ^R ¶L_ (under typing assumptions). As we have seen, the translation returns
rows whose length (which depends both on L and l1..ln) may exceed ∂L. The normal form
reveals that the portion beyond ∂L-1 has in fact no gaps and therefore can be collected
into a tuple to form a single ∂Lth element. Similarly for value rows.

Lemma (row structure)
(1) Let R7l1:A1..ln:An,ξ where ξ=X or ξ=Etc.

Assume E ∫ρ R ¶L.
Then ^R ¶L_ has the following shape, for some B's:

iÜ(li:Bi)|iÏκLá , jÜ(l j:Bj)|ÂL<j<qá, (q:Bq)
with q = (ÂL+1) + (∂(l1..ln.L)+n - ∂L) (q > ÂL)

(2) Let r7l1=a1..ln=an, ξ where ξ=x, ξ=etc, or ξ=a\M.
Assume E ∫ρ r a R ¶L.
Then ^r ¶L_ has the following shape, for some b's:

iÜ(li=bi)|iÏκLá , jÜ(l j=bj)|ÂL<j<qá, (q=bq)
with q = (ÂL+1) + (∂(l1..ln.L)+n - ∂L) (q > ÂL)

Considering the previous example:

Page 38

^(l1:A1, l6:A6, X) ¶l 0,l3_ 7
(l1:A1, l2:X2), (l4:X4, l5:X5, l6:A6), 7:X7

of size ∂(l 0,l3)-1
tupleable, ∂(l 0,l3)th item

 Now we are ready for the full translation. The translation of the F<: fragment of F<:ρ
is uninteresting, but we list it for completeness.

Definition (translation, part 2; F<: fragment)

Environments Values
[∫ρ E env] @ ∫ [E] env [E ∫ρ a : A] @ [E] ∫ [a] : [A]
[] @ [x] @ x
[E,x:A] @ [E],x:[A] [top] @ top
[E,X<:A] @ [E],X<:[A] [λ(x:A)b] @ λ(x:[A])[b]

Types [b(a)] @ [b]([a])
[E ∫ρ A type] @ [E] ∫ [A] type [λ(X<:A)b] @ λ(X<:[A])[b]
[X] @ X [b(A)] @ [b]([A])
[Top] @ Top Value equivalence
[AîïñB] @ [A]îïñ[B] [E ∫ρ a óïñ a' : A] @ [E] ∫ [a] óïñ [a'] : [A]
[Ó(X<:A)B] @ Ó(X<:[A])[B]

Subtypes
[E ∫ρ A<:B] @ [E] ∫ [A] <: [B]

Finally, we can give the translation of the proper F<:ρ judgments and terms. An F<:ρ
judgment E ∫ρ ϑ ¶L becomes a sequence of size ∂L of F<: judgments. A row variable
X¶L in an environment becomes a sequence of ∂L type variables. The domain of row
function space R¶LîïñB becomes a sequence of ∂L domains; similarly for λ(xaR¶L),
with b(r¶L) becoming a sequence of ∂L applications. A row quantifier Ó(X¶L) becomes
a nesting of ∂L type quantifiers; similarly for an abstraction λ(X¶L), with b(R¶L)
becoming a nesting of ∂L type applications. Record types and values are translated by
applying ^ - ¶L_ to the respective rows, and then normalizing the results to size ∂L.

Definition (translation, part 3; F<:r proper)

Environments (continued)
[E,X¶L] @ let X1..X∂L =VarSeq(X,¶L) in [E],X1,..,X∂L
[E,xaR¶L] =

let x1..x∂L= varSeq(x,¶L) and A1..A∂L=[R ¶L] in [E],x1:A1..x∂L:A∂L
Types (continued)

[Rcd(R)] @ [R ¶()]
[R¶LîïñB] = let A1..A∂L =[R ¶L] in A1îïñ..îïñA∂Lîïñ[B]
[Ó(X¶L)B] @ let X1..X∂L = VarSeq(X,¶L) in Ó(X1)..Ó(X∂L)[B]

Page 39

Type rows
[E ∫ρ R ¶L] @ let A1..A∂L = [R ¶L] in [E] ∫ A1 type ... [E] ∫ A∂L type
[R ¶L] @ let (l1:A1..l∂L:A∂L..ln:An) =^R ¶L_ in A1..A∂L-1,Tuple(A∂L..An)

Subrows
[E ∫ρ R<aS ¶L] @

let A1..A∂L = [R ¶L] and B1..B∂L = [S ¶L]
in [E] ∫ A1 <: B1 ... [E] ∫ A∂L <: B∂L

Values (continued)
[rcd(r)] @ [r ¶()]
[a.l] @ [a].ι(l)
[λ(xaR¶L) b] =

let x1..x∂L=varSeq(x,¶L) and A1..A∂L=[R ¶L] in λ(x1:A1)..λ(x∂L:A∂L) [b]
[b(r¶L)] = let a1..a∂L =[r ¶L] in [b](a1)..(a∂L)
[λ(X¶L)b] @ let X1..X∂L = VarSeq(X,¶L) in λ(X1)..λ(X∂L)[b]
[b(R¶L)] @ let A1..A∂L =[R ¶L] in [b](A1)..(A∂L)

Value rows
[E ∫ρ raR ¶L] @

let a1..a∂L = [r ¶L] and A1..A∂L = [R ¶L] in [E] ∫ a1:A1 ... [E] ∫ a∂L:A∂L
[r ¶L] @ let (l1=a1..l∂L=a∂L..ln=an) =^r ¶L_ in a1..a∂L-1,tuple(a∂L..an)

Value row equivalence
[E ∫ρ r óïñ r' a R ¶L] @

let a1..a∂L = [r ¶L] and a'1..a'∂L = [r' ¶L] and A1..A∂L = [R ¶L]
in [E] ∫ a1óïña'1:A1 ... [E] ∫ a∂Lóïña'∂L:A∂L

Examples

[λ(xa(l 0:A,Etc)¶l1) rcd(l1=b,x)] =
λ(x0:[A]) λ(x2:Top) tuple(x0,[b],x2)

[λ(xa(l2:A,Etc)¶l1) rcd(l1=b,x)] =
λ(x0: Top) λ(x2:Tuple([A],Top)) tuple(x0,[b],x2)

[λ(X¶l 0,l1) λ(xa(l 0:A,X)¶l1) rcd(l1=b,x)] =
λ(X2) λ(x0:[A]) λ(x2:X2) tuple(x0,[b],x2)

[λ(X¶l1,l2) λ(xa(l2:A,X)¶l1) rcd(l1=b,x)] =
λ(X0) λ(X3) λ(x0: X0) λ(x2:Tuple([A],X3)) tuple(x0,[b],x2)

Using the row structure lemma, we can now show that the translation is well-defined,
provided that the translated terms are well-typed.

Lemma (translation dimensions)
#(VarSeq(X,¶L)) = #(VarRow(X,¶L)) = #(TopRow(¶L))

= #(varSeq(x,¶L)) = #(topRow(¶L)) = #(varRow(x,¶L)) = #(selRow(a,¶L))
= ∂L.

Page 40

If E ∫ρ R ¶L then #(̂ R ¶L_) ≥ ∂L.
If E ∫ρ R ¶L then #([R ¶L]) = ∂L.
If E ∫ρ raR ¶L then #(̂ r ¶L_) ≥ ∂L.
If E ∫ρ raR ¶L then #([r ¶L]) = ∂L.

Lemma (good translation)
If a judgment J is derivable, then the translation [J] is well-defined.
That is, all the assumptions made in the translation about sizes of rows,
are justified.

The row structure lemma is also the key to the following row analysis lemma, which
is then used in the proof of all the technical lemmas in the next section. The row analysis
lemma describes in detail what happens when a single element is added to a row, or
removed from it.

Lemma (row analysis)
(1) Assume E ∫ρ l:A,R ¶L.

Let B1..B∂l.L = [R ¶l.L] and C1..C∂L = [l:A,R ¶L]
If ι(l)<ÂL then ∂(l.L)=∂L-1, and:

C1..C∂L = B1..Bk-1,[A],Bk..B∂L-1
where k = #{i|iÏκL ∧ i<ι(l)} ≤ ∂L-1.
If ι(l)>ÂL then ∂(l.L)=∂L+(ι(l)-(ÂL+1)), and:

C1..C∂L-1 = B1..B∂L-1 C∂L = Tuple(B∂L..B∂l.L-1,[A],B∂l.L)
where ∂(l.L) ≥ ∂L.

(2) Assume E ∫ρ l=a,raR ¶L.
Let b1..b∂l.L = [r ¶l.L] and c1..c∂L = [l=a,r ¶L]
If ι(l)<ÂL then ∂(l.L)=∂L-1, and:

c1..c∂L = b1..bk-1,[a],bk..b∂L-1
where k = #{i|iÏκL ∧ i<ι(l)} ≤ ∂L-1.
If ι(l)>ÂL then ∂(l.L)=∂L+(ι(l)-(ÂL+1)), and:

c1..c∂L-1 = b1..b∂L-1 c∂L = tuple(b∂L..b∂l.L-1,[a],b∂l.L)
where ∂(l.L) ≥ ∂L.

(3) Assume E ∫ρ a\LaR ¶L.
Let b1..b∂l.L = [a\ l.L ¶l.L] and c1..c∂L = [a\L ¶L]
If ι(l)<ÂL then ∂(l.L)=∂L-1, and:

c1..c∂L = b1..bk-1,[a.l],bk..b∂L-1
where k = #{i|iÏκL ∧ i<ι(l)} ≤ ∂L-1.
If ι(l)>ÂL then ∂(l.L)=∂L+(ι(l)-(ÂL+1)), and:

c1..c∂L-1 = b1..b∂L-1 c∂L = tuple(b∂L..b∂l.L-1,[a.l],b∂l.L)
where ∂(l.L) ≥ ∂L.

Page 41

7. The translation preserves derivations
In this section we show that the translation from ∫ρ to ∫ is sound. That is, if a judg-

ment J is derivable in ∫ρ, then all the judgments in the sequence [J] are derivable in ∫.
The following group of lemmas is used in the hardest cases of the soundness proof.

These lemmas are complicated by the fact that the translations are well-defined only
under typing assumptions. First we have lemmas regarding rows; they have the structure
of some of the inference rules, but concern the translation of those rules.

Lemma (soundness of row inference rules)

(type row cons)
Assume E ∫ρ R' ¶l.L and E ∫ρ A type.
If [E ∫ρ R' ¶l.L] and [E ∫ρ A type] then [E ∫ρ l:A,R' ¶L].

(sub row cons)
Assume E ∫ρ A<:B and E ∫ρ R'<aS' ¶l.L.
If [E ∫ρ A<:B] and [E ∫ρ R'<aS' ¶l.L] then [E ∫ρ l:A,R' <a l:B,S' ¶L].

(row cons)
Assume E ∫ρ a:A and E ∫ρ raR ¶l.L.
If [E ∫ρ a:A] and [E ∫ρ raR ¶l.L] then [E ∫ρ l=a,ral:A,R ¶L].

(selection)
Assume E ∫ρ a : Rcd(l:A,S).
If [E ∫ρ a : Rcd(l:A,S)] then [E ∫ρ a.l : A].

(restriction)
Assume E ∫ρ a\L a l:A,S ¶L.
If [E ∫ρ a\L a l:A,S ¶L] then [E ∫ρ a\ l.L a S ¶l.L].

(eq-cons)
Assume E ∫ρ r óïñ r' a R ¶l.L, and E ∫ρ aóïña':A.
If [E ∫ρ r óïñ r' a R ¶l.L] and [E ∫ρ aóïña':A]
then [E ∫ρ l=a,r óïñ l=a',r' a l:A,R ¶L]

(eq-selection)
Assume E ∫ρ aóïña' : Rcd(l:A,S).
If [E ∫ρ aóïña' : Rcd(l:A,S)] then [E ∫ρ a.l óïñ a'.l : A].

(eval-selection)
Assume E ∫ρ raR ¶l and E ∫ρ aóïña':A.
If [E ∫ρ raR ¶l] and [E ∫ρ aóïña':A] then [E ∫ρ rcd(l=a,r).l óïñ a' : A].

(eq-restriction)
Assume E ∫ρ a\Lóïña'\L a l:A,S ¶L.
If [E ∫ρ a\Lóïña'\L a l:A,S ¶L] then [E ∫ρ a\ l.Lóïña'\ l.L a S ¶l.L].

Page 42

(eval-restriction)
(1) Assume E ∫ρ r óïñ r' a R ¶().

If [E ∫ρ r óïñ r' a R ¶()] then [E ∫ρ rcd(r)\ óïñ r' a R ¶()].
(2) Assume E ∫ρ rcd(l=a,r)\L óïñ l=a,r' a l:A,R ¶L.

If [E ∫ρ rcd(l=a,r)\L óïñ l=a,r' a l:A,R ¶L]
then [E ∫ρ rcd(l=a,r)\ l.L óïñ r' a R ¶l.L].

Next we have substitution lemmas for all possible combinations of variables and
terms.

Lemma (soundness of substitution)

(type in type)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ B type.
Then [B{XóïôA'}] is well-defined.
Then [B]{Xóïô[A']} 7 [B{XóïôA'}].

(type in row-type)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ S ¶M.
Then [S{XóïôA'} ¶M] is well-defined.
Let B1..B∂M = [S ¶M] and C1..C∂M = [S{XóïôA'} ¶M].
Then B1{Xóïô[A']} 7 C1 ... B∂M{Xóïô[A']} 7 C∂M .

(row-type in type)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ B type.
Then [B{XóïôR}] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Then [B]{X1óïôA1}..{X∂LóïôA∂L} 7 [B{XóïôR}].

(row-type in row-type)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ S ¶M.
Then [S{XóïôR} ¶M] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Let B1..B∂M = [S ¶M] and C1..C∂M = [S{XóïôR} ¶M]
Then Bi{X1óïôA1}..{X∂LóïôA∂L} 7 Ci for i in 1..∂M.

(type in value)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ b : B
Then [b{XóïôA'}] is well-defined.
Then [b]{Xóïô[A']} 7 [b{XóïôA'}].

(type in row-value)
Assume E ∫ρ A'<:A and E,X<:A,E' ∫ρ s a S ¶¶¶M
Then [s{XóïôA'} ¶M] is well-defined.

Page 43

Let b1..b∂M = [s ¶M] and c1..c∂M = [s{XóïôA'} ¶M] .
Then b1{Xóïô[A']} 7 c1 ... b∂M{Xóïô[A']} 7 c∂M

(row-type in value)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ c : C.
Then [c{XóïôR}] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Then [c]{X1óïôA1}..{X∂LóïôA∂L} 7 [c{XóïôR}].

(row-type in row-value)
Assume E ∫ρ R ¶L and E,X¶L,E' ∫ρ s a S ¶M.
Then [s{XóïôR} ¶M] is well-defined.
Let X1..X∂L = VarSeq(X,¶L) and A1..A∂L = [R ¶L]
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{XóïôR} ¶M]
Then bi{X1óïôA1}..{X∂LóïôA∂L} 7 ci for i in 1..∂M.

(value in value)
Assume E ∫ρ a : A and E,x:A,E' ∫ρ b : B
Then [b{xóïôa}] is well-defined.
Then [b]{xóïô[a]} 7 [b{xóïôa}].

(value in row-value)
Assume E ∫ρ a : A and E,x:A,E' ∫ρ s a S ¶M
Then [s{xóïôa} ¶M] is well-defined.
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{xóïôa} ¶M]
Then b1{xóïô[a]} 7 c1 ... b∂M{xóïô[a]} 7 c∂M .

(row-value in value)
Assume E ∫ρ r a R ¶L and E,xaR¶L,E' ∫ρ c : C.
Then [c{xóïôr}] is well-defined.
Let x1..x∂L = varSeq(x,¶L) and a1..a∂L = [r ¶L]
Then [c]{x1óïôa1}..{x∂Lóïôa∂L} 7 [c{xóïôr}].

(row-value in row-value)
Assume E ∫ρ r a R ¶L and E,xaR ¶L,E' ∫ρ s a S ¶M.
Then [s{xóïôr} ¶M] is well-defined.
Let x1..x∂L = varSeq(x,¶L) and a1..a∂L = [r ¶L]
Let b1..b∂M = [s ¶M] and c1..c∂M = [s{xóïôr} ¶M]
Then bi{x1óïôa1}..{x∂Lóïôa∂L} 7 ci for i in 1..∂M.

Finally we have the soundness theorem, divided into mutual induction groups.

Page 44

Theorem (soundness)
(1) ∫ρ E env öõú [∫ρ E env]

E ∫ρ A type öõú [E ∫ρ A type]
E ∫ρ R ¶L öõú [E ∫ρ R ¶L]

(2) E ∫ρ A <: B öõú [E ∫ρ A <: B]
E ∫ρ R <a S ¶L öõú [E ∫ρ R <a S ¶L]

(3) E ∫ρ a : A öõú [E ∫ρ a : A]
E ∫ρ r a R ¶L öõú [E ∫ρ r a R ¶L]

(4) E ∫ρ a óïñ a' : A öõú [E ∫ρ a óïñ a' : A]
E ∫ρ r óïñ r' a R ¶L öõú [E ∫ρ r óïñ r' a R ¶L]

Proof
The proof is by simultaneous induction on the derivations, using the lemmas above in

the hard cases. M

8. Conclusions
We have defined a calculus of row variables, F<:ρ, and translated it into a simpler

calculus with subtyping, F<:. The constraints imposed by the translation have forced us
into a restricted subset of the features that have been proposed for calculi of extensible
records, but we can still express many benchmark examples.

The particular mixture of features chosen for F<:ρ is not uniquely determined. For
example we might have attempted to incorporate bounds on row quantifiers
(Ó(X<aR¶L)B), row-valued functions (Aîïñ¶LR), or record concatenation (sketched in
section 5.5). The point is that many possible variations can be described and evaluated
within a single basic framework. Underlying all these variations and bridging between
them there is F<:, often extended with recursion. This approach could provide us with a
fundamental and unified framework in which to study complex features of object-oriented
languages.

Acknowledgements
I would like to thank Martín Abadi for his careful reading of the draft.

Page 45

References

[Amadio Cardelli 91] R.M.Amadio, L.Cardelli: Subtyping recursive types, Proceedings of the ACM
Conference on Principles of Programming Languages, ACM Press, 1991.

[Böhm Berarducci 85] C.Böhm, A.Berarducci: Automatic synthesis of typed l-programs on term
algebras, Theoretical Computer Science, 39, pp. 135-154, 1985.

[Breazu-Tannen Coquand Gunter Scedrov 89] V.Breazu-Tannen, T.Coquand, C.Gunter, A.Scedrov:
Inheritance and explicit coercion , Proc. of the Fourth IEEE Symposium on Logic in Computer
Science, pp 112-129, 1989.

[Canning Cook Hill Olthoff Mitchell 89] P.Canning, W.Cook, W.Hill, W.Olthoff, J.C.Mitchell: F-bounded
polymorphism for object-oriented programming, Proc. ACM Conference on Functional Programming
and Computer Architecture, ACM Press, 1989.

[Cardelli Martini Mitchell Scedrov 91] L.Cardelli, J.C.Mitchell, S.Martini, A.Scedrov: An extension of
system F with subtyping, to appear.

[Cardelli Mitchell 91] L.Cardelli, J.C.Mitchell: Operations on records, Proc. of the Fifth Conference on
Mathematical Foundations of Programming Language Semantics, New Orleans, 1989. To appear in
Mathematical Structures in Computer Science, 1991.

[Cardelli Wegner 85] L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism,
Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[Cardelli 88] L.Cardelli: A semantics of multiple inheritance, in Information and Computation 76, pp 138-
164, 1988. (First appeared in Semantics of Data Types, G.Kahn, D.B.MacQueen and G.Plotkin Ed.
Lecture Notes in Computer Science n.173, Springer-Verlag 1984.)

[Cook 89] W. Cook: A denotational semantics of inheritance, Ph.D. thesis, Technical Report CS-89-33,
Brown University, 1989.

[Curien Ghelli 91] P.-L.Curien, G.Ghelli: Coherence of subsumption, Mathematical Structures in
Computer Science, to appear.

[de Bruijn 72] N.G.de Bruijn: Lambda-calculus notation with nameless dummies, in Indag. Math. 34(5),
pp. 381-392, 1972.

[Fairbairn 89] J.Fairbairn: Some types with inclusion properties in Ó, îïñ, m , Technical report No 171,
University of Cambridge, Computer Laboratory.

[Girard 71] J-Y.Girard: Une extension de l'interprétation de Gödel à l'analyse, et son application à
l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second
Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-Holland, 1971.

[Harper Pierce 90] R.Harper, B.Pierce: A record calculus with symmetric concatenation, Technical Report
CMU-CS-90-157, CMU, 1990.

[Jategaonkar Mitchell 88] L.A.Jategaonkar, J.C.Mitchell: ML with extended pattern matching and
subtypes, Proc. of the ACM Conference on Lisp and Functional Programming, pp.198-211, 1988.

[Martini 90] S.Martini: personal communication.

[Rémy 89] D. Rémy: Typechecking records and variants in a natural extension of ML, Proc. of the 16th
ACM Symposium on Principles of Programming Languages, pp.77-88, 1989.

[Rémy 91] D. Rémy: Record concatenation for free, to appear.

Page 46

[Reynolds 74] J.C.Reynolds: Towards a theory of type structure, in Colloquium sur la programmation pp.
408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[Wand 87] M.Wand: Complete Type Inference for Simple Objects, Proc. of the Second IEEE Symposium
on Logic in Computer Science, pp 37-44, 1987.

[Wand 89] M.Wand: Type inference for record concatenation and multiple inheritance, Proc. of the
Fourth IEEE Symposium on Logic in Computer Science, pp. 92-97, 1989.

