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Abstract

Aleliunas et al. [1] posed the following question: “The reachability problem
for undirected graphs can be solved in logspace and O.mn/ time [m is the number
of edges and n is the number of vertices] by a probabilistic algorithm that simulates
a random walk, or in linear time and space by a conventional deterministic graph
traversal algorithm. Is there a spectrum of time-space trade-offs between these
extremes?” We answer this question in the affirmative for graphs with a linear
number of edges by presenting an algorithm that is faster than the random walk by
a factor essentially proportional to the size of its workspace. For denser graphs,
our algorithm is faster than the random walk but the speed-up factor is smaller.
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1 Motivation and Results

We consider the problem of s-t connectivity on an undirected graph (USTCON). Given
a graph G with n vertices and m edges, and given two vertices s and t of G, we
are to decide if s and t are in the same connected component. We are interested in
space-bounded algorithms for USTCON, which is an important problem in the study of
space-bounded complexity classes [3, 9]. Throughout this paper, we assume that our
workspace takes the form of p registers, each capable of storing a log n-bit number.

There are two well-known approaches to solving USTCON: via a deterministic graph
search on G (e.g., depth-first search) and via a simulation of a random walk on G [1].
(The standard random walk on G is the stochastic process associated with a particle
moving from vertex to vertex according to the following rule: the probability of a
transition from vertex i, of degree di , to vertex j is 1=di if fi; j g is an edge in G and 0
otherwise.)

The first approach can be implemented to run in time O.m/ using space O.n/:The latter
requires space O.1/; and has been shown to decide USTCON with one-sided error in
time O.mn/ (i.e., if s and t are in the same connected component, the algorithm outputs
YES with probability at least 0.5; if they are in different components, the algorithm
outputs NO). For both these algorithms, the product of time and space is O.mn/:

Given space that is insufficient for depth-first search, can we decide USTCON faster
than via a random walk? More precisely, given space p � n; can we bridge the gap
between the depth-first search and the random walk by devising an algorithm that runs
in time O.mn=p/? Considering the time-space product achieved at the two extremes,
this seems a likely conjecture.

In this paper we present an algorithm that runs in time O.m2 log5 n=p/. Therefore, for
linear-sized graphs (i.e., m D O.n/), it achieves the bound conjectured above within a
poly-log factor. For denser graphs, our algorithm does not achieve the bound; but it is
faster than the random walk, at least, once p exceeds the average degree.

The basic idea of the new algorithm is to simulate a graph search, but only on a subset
of p vertices chosen independently at random according to the stationary distribution
of the random walk, together with the vertices s and t . (The stationary distribution of
the random walk is ³v D dv=.2m/ where dv is the degree of vertex v.)

We refer to the p randomly chosen vertices as leaders. A single step in graph search
is replaced by a random walk of an appropriate length. Assuming that the graph
is connected, we show that for a certain constant k1, a set of p walks of length
−1 D k1m2 ln3 n=p2, one from each leader, will visit every vertex in the graph with
high probability, and furthermore the walk from each leader reaches some other leader
thus proving that the two leaders are in the same component. With high probability all
leaders are proven connected within O.log n/ trial walks from each leader.

In order to deal with the case when the graph is composed of several connected
components we repeat the procedure above O.log n/ times with independent choices
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of leaders and also add random walks from s and t . (See section 3 for a pseudo-
algol description.) We show that with high probability, at least one choice results in
sufficiently many leaders in the component of interest (which contains both s and t ) to
ensure the success of the method. Thus we have an algorithm for USTCON with an
overall running time of O.m2 log5 n=p/. Notice that this algorithm resembles standard
search when p D n and the random walk when p D 0. (However, throughout this
paper we shall assume p > 0.)

There are three facts that must be proven in order to show that this algorithm works.
The first is to show that a set of p random walks of length −1, one from each of
the randomly chosen leaders, visits all the vertices of a connected graph with high
probability. Otherwise an adversary could choose s and t among those vertices unlikely
to be visited from the leaders and conceivably foil the algorithm. In other words, we need
to derive a bound on the expected time required by p parallel and independent random
walks to cover the graph, a problem of interest in its own right. Typically, results about
graph coverage rely heavily on the long-run behavior of the corresponding Markov
chain and its convergence to a limit distribution. Here we must prove something about
short-term behavior of the Markov chain and coverage of local neighborhoods in a
graph.

The second fact to prove is that if s and t are in the same component then they are linked
up through the leaders in a small number of trials from each leader if enough leaders
are chosen within the component. Coverage of the graph as described above does not
suffice to prove this because s and t may be visited by different walks. Indeed, all the
vertices in G could be visited by the walks even with s and t in different components.

The third fact is to show that, with high probability, within O.log n/ choices of the set
of leaders, the component containing s and t gets enough leaders at least once.

To aid the intuition of the reader, let us consider the case when G is a simple path
on n vertices. For p leaders chosen at random, the maximum gap between two
leaders is no more than n ln n=p with high probability; the expected time to cover
this maximum gap is2.n2 log2 n=p2/. Hence O.log n/ trials (random walks of length
O.n2 log2 n=p2/ from each leader) will almost surely cover all the gaps between them
for a total of 2.n2 log3 n=p/ steps. Extending this technique to even 3-regular graphs
requires considerably more complicated machinery and the general bound is weaker. (In
particular, the walks need to have length O.n2 log5 n=p2/ and we need to try O.log n/
choices for leaders.)

Our main results are:

Theorem 1 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a subset of pvertices chosen at random according to the stationary distribution.
Let Sv.t/ denote the set of vertices seen in a random walk of length t starting at v. The
random variable Cp is defined by

Cp D infft :
[
l2L

Sl.t/ D V g;

2



that is Cp is the time needed for p parallel random walks to visit all the vertices in the
graph. Then

E.Cp/ D O

�
m2 log3 n

p2

�
:

Theorem 2 There is an algorithm that,given an undirected graph G with n vertices,
m edges, and given two vertices s and t of G, decides USTCON with one-sided error
using space p and time O.m2 log5 n=p/. If s and t are in the same connected component,
the algorithm outputs YES with probability 1� O.n�1/, otherwise it outputs NO.

Remarks:

ž The upper bound on the parallel cover time given in Theorem 1 is an overestimate
by at most an O.log n/ factor, at least for linear-size graphs. This is easily seen
from the path graph example.

ž The algorithm mentioned in Theorem 2 runs in time that is within a log5 n factor
of our target time-bound of O.mn=p/ for linear-sized graphs. The polylog factor
arises from less than optimal bounds used in the analysis of our probabilistic
algorithm. However, the case of the path graph considered above shows that for
our algorithm this factor is at least log3 n.

2 Covering a Graph with p random walks

In this section we derive an upper bound on the time taken by p parallel and independent
walks to cover the graph (Theorem 1).

We denote by fv; wg the undirected edge between vertices v and w and by [v; w] its
directed version. For the purposes of the proof, we need to look at the random walk
in two ways: first, as a Markov chain Xt where each state is a vertex in G (the vertex
process); second, as a Markov chain Yt where each state is a directed edge (the edge
process). The transition rule for the vertex process is that if Xt D v, then XtC1 is
equally likely to be any of the neighbors of vertex v. The edge process is defined by
Yt D [Xt�1; Xt], t ½ 1. The stationary distribution of the vertex process, denoted ³ ,
is given by ³v D dv=.2m/ where dv is the degree of the vertex v, and the stationary
distribution of the edge process, denoted ³ 0, is given by ³ 0[v;w] D 1=.2m/.

Let Nv.u; T / (respectively Nv.[u; w]; T /) be the number of visits to the vertex u
(respectively traversals of [u; w]) in a random walk of length T starting at v. Let Sv.T /
(respectively Ev.T /) be the set of vertices (edges) visited in a random walk of length
T starting at v. Finally, let Hv.u/ (respectively Hv.[u; w]/ be the first time the vertex
u (the edge [u; w]) is encountered by a random walk starting from v. For all of these
random variables, a replacement of the subscript v with the subscript ³ (respectively
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[v; w]) denotes a random walk starting at the stationary distribution (respectively the
directed edge [v; w]).

Lemma 3 Let G be a connected, undirected graph on n vertices. Consider a
random walk of length − starting from the stationary distribution. Then for every
directed edge [v; w],

Pr
�

[v; w] 2 E³ .− /
�
½

E
�

N³ .[v; w]; − /
�

1C E
�

N[v;w].[v; w]; − /
�

Proof: Clearly

E
�

N³ .[v; w]; − /
�
D

X
1�t�−

Pr
�

H³ .[v; w]/ D t
��

1C E
�

N[v;w].[v; w]; − � t/
��

� Pr
�

H³ .[v; w]/ � −
� �

1C E
�

N[v;w].[v; w]; − /
��
:

But Pr
�

H³ .[v; w]/ � −
�
D Pr

�
[v; w] 2 E³ .− /

�
, yielding the lemma. 2

Lemma 4 Let G be a connected, undirected graph with n vertices and m edges.
Then, for every directed edge [v; w],

E
�

N[v;w].[v; w]; − /
�
� −

2m
C k2

p
− ln n;

where k2 is an absolute constant.

Proof: We consider the edge process Yt . From standard results in renewal theory [8]
we obtain that

E
�

N[v;w].[v; w]; − /
�
D ³ 0[v;w]

�
− C E

�
HY[v;w].−/.[v; w]/

��
: (1)

Clearly

E
�

HY[v;w].−/.[v; w]/
�
D E

�
HXw.−/.v/

�
C E

�
Hv.[v; w]/

�
: (2)

Let d.x; y/ be the distance (the length of the shortest path) between two vertices x and
y in G. Let c be a sufficiently large constant.

We first bound E
�

HXw.−/.v/
�

using the fact that d.Xw.−/; w/ is not likely to be more

than c
p
− ln n. By the law of total probability

E
�

HXw.−/.v/
�
D
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X
0�r�c

p
− ln n

E
�

HXw.−/.v/ j d.Xw.−/; v/ D r
�

Pr
�

d.Xw.−/; v/ D r
�

CE
�

HXw.−/.v/ j d.Xw.−/; v/ > c
p
− ln n

�
(3)

ð Pr
�

d.Xw.−/; v/ > c
p
− ln n

�
:

Since d.Xw.−/; v/ � 1C d.Xw.−/; w/, we obtain from the main result of [4] that

Pr
�

d.Xw.−/; v/ > c
p
− ln n

�
� Pr

�
d.Xw.−/; w/ ½ c

p
− ln n

�
�

X
x:d.w;x/½c

p
− ln n

2
�
³x

³w

� 1
2

exp
�
�d.w; x/2

2−

�

� 2n
3
2 exp

�
�c2− ln n

2−

�
� 1

n3
; (4)

for a sufficiently large c.

For any two vertices x and y in the same component we can apply the bound implicitly
proven in [1]

E
�

Hx .y/
�
� md.x; y/: (5)

Plugging equation (5) and equation (4) in equation (3) we obtain that

E
�

HXw.−/.v/
�
� cm

p
− ln n C 1 (6)

Turning to the second term of the right side of equation (2), we observe that

E
�

Hv.[v; w]/
�
� 2m C 1; (7)

because the expected time to return to v given that v was left through an edge other
than [v; w] is at most 2m=.dv � 1/ and the expected number of returns to v before
exiting through [v; w] is dv � 1. (The former fact follows from 2m=dv D E.Hv.v// ½
.dv � 1/=dv Ð E.Hv j v not left via [v; w]/.)

Combining equations (6), (7), and (2), we obtain that

E
�

HY[v;w].−/.[v; w]/
�
� cm

p
− ln n C 2m C 2:

Finally, from equation (1), because ³ 0[v;w] D 1=.2m/ for any edge [v; w]

E
�

N[v;w].[v; w]; − /
�
� −

2m
C 1

2
c
p
− ln n C O.1/:

From here, the Lemma follows with an appropriate value for c. 2
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Lemma 5 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p vertices (called leaders) in G chosen independently according to
the stationary distribution. For every constant c1 > 0 there exists a constant c2 such
that for every directed edge [v; w] a set of p walks of length c2m2 ln3 n=p2, one from
each of the leaders, satisfies

Pr
�

[v; w] 2
[
l2L

El .c2m2 ln3 n=p2/
�
½ 1� 1

nc1
:

Proof: For p D O.log n/ the conclusion is obvious. For larger p we start from

Pr
�

[v; w] =2
[
l2L

El .− /
�
D
Y
l2L

Pr
�

[v; w] =2 El .− /
�
;

and, since each vertex l is chosen according to the stationary distribution, Lemma 3

gives us a bound on Pr.[v; w] =2 El .− //. By Lemma 4 and because E
�

N³ .[v; w]; − /
�
D

−=2m; there exists a constant c3 > 0 such that

Pr
�

[v; w] =2
[
l2L

El .− /
�
�
�

1� c3
p
−

m
p

ln n

�p

;

provided that − D O.m2 log n/. Now taking − D c2m2 ln3 n=p2 yields the result. 2

Theorem 6 Let G D .V; E/ be a connected, undirected graph with n vertices and
m edges. Let L be a subset of p vertices chosen at random according to the stationary
distribution. Let Sv.t/ denote the set of vertices seen in a random walk of length t
starting at v. The random variable Cp is defined by

Cp D infft :
[
l2L

Sl.t/ D V g;

that is Cp is the time needed for p parallel random walks to visit all the vertices in the
graph. Then

E.Cp/ D O

�
m2 log3 n

p2

�
:

Proof: Corollary of the previous lemma. 2

In fact Lemma 5 implies the stronger result that the time needed for p parallel random
walks to traverse every edge in the graph is O

�
m2 log3 n=p2

Ð
.

3 An Algorithm for USTCON in O.p/ Space

We now present the algorithm for USTCON using O.p/ space. As a subroutine, we
use a standard Union/Find algorithm.
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algorithm stConn;
begin

(* k1, k3, and k4 are suitably large constants *)
do k4 ln n times begin

Let L be a set of p elements of V , chosen independently
at random according to the stationary distribution;

L :D L
Sfs; tgI

Construct a perfect hash function for the elements of L;
for every l in L do Set .l/ :D lI
do k3 ln n times begin

for every l in L do begin
Take a random walk Xl.T / of length k1m2 ln3 n=p2

from l;
At each step, if Xl.T / 2 L then

Union.Find.Xl .t//; Find.l//I
end ;

end ;
if Find.s/ D Find.t/

then return (“YES: s and t are connected”)

end ;

return (“NO: s and t don’t seem to be connected”) end .

Theorem 7 The algorithm stConn runs in time O.m2 log5 n=p/ using space O.p/.

Proof: Choosing a random set of p vertices according to the stationary distribution
can be done in O.m/ steps using O.p log n/ random bits and O.p/ space. Constructing
a perfect hash function for storing L requires expected time O.p/ [6]. If the unions
are weighted and each union causes path compression on all elements of the set, then
each find has cost O.1/. Since at most O.n/ non-trivial unions are performed, the
cost of all the unions is O.n logn/. Performing all O.log n/ random walks of length
O.m2 log3 n=p2/ takes time O.m2 log4 n=p2/ per leader for a total of O.m2 log4 n=p/
time. Since this is also the total number of finds and lookups performed, this is the
running time of each execution of the outermost loop. 2

Note that this algorithm is easily parallelizable using p processors and O.p/ space. The
parallel hashing scheme described in [7] can be used to implement a parallel version of
this algorithm that runs on p processors, nž � p � n1�ž , ž > 0, that are connected by
a bounded degree network. Briefly, storing the leader set using parallel hashing allows
for the p processors to execute parallel unions and parallel finds in time O.pž

0
/ for any

ž0 > 0, and consequently the random walks from each of the leaders can be executed
in parallel. The resulting parallel implementation of the stConn algorithm runs in time
O.m2Cž 0=p2/.
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4 The Correctness of stConn

Because our algorithm has one-sided error, it suffices to analyze its correctness in the
case when s and t are in the same component of G. If G is actually connected, the
results of section 2 show that, in one pass through the inner loop of stConn, every
edge is traversed with high probability. From this, it is possible to deduce that every
leader either discovers or is discovered by some other leader. As mentioned earlier,
however, this is not enough to prove that s and t become linked by a chain of leaders
after O.log n/ passes through this inner loop, since it may be that certain leaders always
discover each other. The rest of this section shows that s and t will be “linked up” with
high probability by the algorithm.

Theorem 8 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders, each chosen at random according to the stationary
distribution. Then for any c1 > 0 there is a constant c2 > 0 such that

Pr.L \ S[v;w].c2m2 ln3 n=p2/ 6D ;/ ½ 1� 1
nc1
;

where S[v;w].T / denotes the set of distinct vertices visited in a T step random walk
starting at [v; w].

Proof: The proof is very similar to that of Lemma 5. As before the case p D O.log n/
is trivial.

Let e be a directed edge chosen uniformly at random. By a proof virtually identical to
that of Lemma 3,

Pr.e 2 E[v;w].− // ½ E.N[v;w].e; − //

1C E.Ne.e; − //
:

Obviously, if e is chosen uniformly at random then

E.N[v;w].e; − // D −

2m
:

By Lemma 4

E.Ne.e; − // � −

2m
C k2

p
− ln n:

Hence, for e chosen uniformly at random, there exists a constant c3 such that

Pr.e 2 E[v;w].c2m2 ln3 n=p2// ½ c3
ln n

p
;

provided that P D �.log n/.

In order to choose a leader according to the stationary distribution, one can choose a
directed edge e uniformly at random and let the leader be the head of e. Since the
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probability of reaching a leader is greater than the probability of traversing the edge
chosen to determine it, we obtain that

Pr.L \ S[v;w].c2m2 ln3 n=p2/ D ;/ D.1 � Pr.e 62 E[v;w].c2m2 ln3 n=p2///p � 1

nc1
;

for a sufficiently large c2. 2

Corollary 9 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen at random according to the stationary distribution.
Then for any c1 > 0 there is a constant c2 > 0 such that

Pr.L \ Ss.c2m2 ln3 n=p2/ 6D ;/ ½ 1� 1

nc1
:

and

Pr.L \ St.c2m2 ln3 n=p2/ 6D ;/ ½ 1� 1
nc1
:

2

Let L be any set of p leaders. We say the set L is good if for an absolute constant k1

the following two properties hold:

1. The probabilitythat a set of p independent random walks of length k1m2 ln3 n=p2,
one from each leader in L, traverses every edge in G is at least 1� 1=n3.

2. For every edge [v; w] 2 G, the probability that a random walk of length
k1m2 ln3 n=p2 starting from [v; w] visits some leader in L is at least 1� 1=n3.

Lemma 10 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
distribution. Then Pr.L is good/ ½ 1� 1=n.

Proof: Say that a set of random walks, one from each of the leaders, is unsuccessful
for [v; w] if [v; w] is not visited by any of them. Letting c1 D 6 in Lemma 5 , we
see that at most 1=n3 of the possible leader sets can have probability greater than 1=n3

of yielding unsuccessful random walks for any fixed [v; w]. Similarly, letting c1 D 6
in Theorem 8, we see that at most 1=n3 of the possible leader sets have probability
greater than 1=n3 of remaining undiscovered in a random walk of length − from any
fixed edge [v; w]. The probability that a leader set is not good is bounded by the sum
of the probabilities that it isn’t good because it violates properties 1 or 2. Since there
are less than n2=2 edges, the probability that a leader set is bad is bounded by 1=n. 2

Lemma 11 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
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distribution. Suppose that L is a good set of leaders. Let A and B be a partition of
L into two nonempty subsets. Consider a random walk of length 2− from each of the
leaders in L. Then the probability that some leader in A is visited from some leader in
B or vice versa is greater than 1/18.

Proof: (Unless stated otherwise, all edges referred to in this proof are directed.) We
assign to each edge in the graph two labels: a “To” label T and a “From” label F. These
labels are subsets of the set fA; Bg. By definition, A 2 T .e/ (respectively B 2 T .e/)
if the probability that e is visited by a walk of length − emanating from each leader in
A (respectively walks from leaders in B) is greater than 1/3. Analogously, A 2 F.e/
(respectively B 2 F.e/) if the probability that some leader in A (respectively B) is
visited in a random walk of length − starting from e is at least 1/3.

Properties 1 and 2 of good leader sets imply that for each edge neither label is empty.
We now consider four cases:

1. There is some edge [v; w] with A 2 F.[v; w]/ and B 2 T .[v; w]/ or vice versa.

Then with probability 1/3 edge [v; w] is visited by one of the random walks of
length − originating in A and with probability 1/3 a leader in B is visited in the
remaining at least − steps. Hence, with probability at least 1/9 a leader in B is
visited from a leader in A.

After eliminating this case the only remaining possibility is that for every edge
F.[v; w]/ D T .[v; w]/ D fAg or F.[v; w]/ D T .[v; w]/ D fBg

2. There is some undirected edge fv; wg such that F.[v; w]/ D T .[v; w]/ D fAg,
and F.[w; v]/ D T .[w; v]/ D fBg.
Then with probability > 1/3, [v; w] is visited by one of the walks of length −
originating in A and hence the vertex v is visited by one of these walks with
probability at least 1/3. Since a leader in B is visited from [w; v] in − steps with
probability> 1/3, a leader in B is visited from v in − steps with proability> 1/3.
Hence with probability at least 1/9 a leader in B is visited from a leader in A.

3. No label in the graph contains A or no label in the graph contains B.

Without loss of generality, consider the first of the two conditions. Then every
edge directed towards leaders in A, has a “To” label of B. Therefore, with
probability 1/3, each such edge is visited by one of the random walks of length −
originating at B and a leader in A is immediately visited. Hence, with proability
at least 1/3, a leader in A is visited from a leader in B.

4. For every undirected edge fv; wg, we have either T .[v; w]/ D F.[v; w]/ D
T .[w; v]/ D F.[w; v]/ D fAg or we have T .[v; w]/ D F.[v; w]/ D
T .[w; v]/ D F.[w; v]/ D fBg
Since case 3 does not hold and the graph is connected, there must be a vertex v
that is simultaneously the endpoint of some all-A labeled edge and some all-B
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labeled edge. Assume without loss of generality that at least 1/2 of the undirected
edges with one endpoint at v have all their labels equal to B. Then since some
edge [w; v] has an A T -label, with probability at least 1/3 v is visited in the first −
steps of the random walks originating at A. Since the majority of edges leaving v
have a B F-label, with probabilityat least 1/2 one of these edges will be traversed
and then with probability at least 1/3, a leader in B will be reached during the
remaining at least − steps. Hence with probability at least 1/18 a leader in B is
visited from a leader in A.

2

We say that a subset of leaders forms a component, if during some prior phase of
the algorithm, they have all been connected up with one another. During a particular
phase, we say that a component C is successful if it discovers some other component or
some other component discovers it. The previous lemma proves, that if the leader set
is good, every component has probability at least 1/18 of being successful. The next
lemma shows that the number of separate components decreases exponentially with the
number of phases.

Lemma 12 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
distribution. Suppose that L is a good leader set. Let Ni be the number of components
after the ith phase. Then there exist constants Þ and þ, with 0 < Þ; þ < 1, such that if
Ni > 1 then

Pr.NiC1 > þNi / � Þ:

Proof: Plainly, NiC1 equals Ni minus the number of nonredundant links formed in
phase i. Since the number of such links formed in phase i exceeds one half the number
of successful components, and the previous lemma shows that the probability that a
component is successful is at least 1/18,

E.number of links formed in phase i/ ½ 1

2 Ð 18
Ni :

Hence,

E.NiC1/ � .1� 1
36
/Ni

and so there is a positive constant þ < 1 such that

Pr.NiC1 > þNi / � Þ:
2

Lemma 13 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
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distribution. Suppose that L is a good leader set. Let Ni be the number of components
after the ith phase. Then for any constant c1 > 0, there is a constant c2 > 0 such that

Pr.Nc2 ln n > 1/ � 1

nc1
:

Proof: We say that a phase is successful if NiC1 � þNi . Since the leader set is fixed
and good, successive phases are independent (the random walks are independent), and
by the previous lemma, phase i has probabilitygreater than 1�Þ of being successful for
each i. But the probability that Nc2 ln n is greater than one is bounded by the probability
that there are fewer than ln1=þ n successful phases out of c2 ln n phases. This in turn is
bound by the probability that there are fewer than ln1=þ n successes in c2 ln n Bernoulli
trials with probability greater than 1� Þ of success, which by Chernoff’s bound is less
than 1=nc1 , for appropriately chosen c2. 2

Theorem 14 The algorithm stConn decides USTCON using space O.p/ and time
O..m2 log5 n/=p/with one-sided error. If s and t are in the same connected component,
the algorithm fails to output YES with probability O.n�1/; if s and t are in different
components, it outputs NO.

Proof: If the graph consists of a single connected component, then we need only
consider one execution of the outer loop of the algorithm, wherein the algorithm can
fail to output YES when it should if either the leader set is not good, or the leader set
is good, but the number of components did not reduce to 1. By Lemma 10, the former
has probability at most 1=n and by Lemma 13 the latter, when choosing the constant k3

appropriately, has probability at most 1=n and so the theorem follows in this case.

The other case is when s and t are in a single component C containing Qn vertices and Qm
edges. If m2=p2 > Qm Qn, then in k3 ln n random walks of length k1m2 ln3 n=p2 starting
from s, the vertex t will be seen with overwhelming probability, since the expected
cover time of the component is bounded by Qm Qn.

Otherwise, if m2=p2 < Qm Qn, the algorithm can fail to output YES when it should if
either none of the c0 ln n selections of leaders include enough leaders that are in the
component C or if some selection of leaders includes enough leaders in C, but the
associated random walks do not succeed in connecting s to t . For the latter case, we
observe that, in each of the c0 ln n executions of the outer loop of the algorithm, the
expected number of leaders that are chosen from C is Qp D p Qm=m. If O. Qp/ leaders are
indeed chosen from C, then since

− D c3m2 ln3 n

p2
D c3 Qm2 ln3 n

Qp2
;

the analysis given for a single connected graph on Qn vertices and Qm edges with Qp leaders
yields a failure probability of O. Qn�1/. To bound the probability that none of the leader
selections are good, we note that the probability that fewer than Qp=2 leaders are chosen
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from C is bounded by exp.�.p Qm/= Qn/ � c, for some constant c < 1. Therefore, the
probability that less than Qp=2 leaders are chosen from C in every one of the k4 ln n
executions of the outermost loop is bounded by O.n�1/, for a sufficiently large constant
k4. 2

5 Open problems

Can the bound on the parallel cover time given in Theorem 1 be improved? Note that
we bound the cover time for all vertices by bounding the cover time for all edges. It is
not clear that this is necessary.

Theorem 2 shows that for p slightly larger than the average degree m=n, our algo-
rithm runs faster than the random walk. Devising an algorithm that runs in time
O.mn logk n=p/ is perhaps the most interesting open problem.

There is no fundamental reason why our upper bound is the best possible. We thus
hope that this work will spark interest in proving a time-space tradeoff for USTCON,
even in a restricted model of space-bounded computation such as the JAGs of Cook
and Rackoff [5]. For a restricted version of the JAG model, Beame et al. [2] have
shown that space p implies time �.n2=.p log n// for bounded-degree graphs.
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