
Report on the Larch Shared Language

Version 2.3

J.V. Guttag, J.J. Horning, and A. Modet

April 14, 1990

SRC Research Report 58

i

cDigital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose.

Permission to copy in part without payment of fee is granted for nonpro�t educational and

research purposes provided that all such whole or partial copies include the following:

a notice that such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the authors and

individual contributors to the work; and all applicable portions of the copyright notice.

Copying, reproducing, or republishing for any other purpose shall require a license with

payment of fee to the Systems Research Center. All rights reserved.

ii

Authors' Abstract

The Larch family of languages is used to specify program interfaces in a two-tiered

de�nitional style. Each Larch speci�cation has components written in two languages: one

that is designed for a speci�c programming language and another that is independent of

any programming language. The former are the Larch interface languages, and the latter

is the Larch Shared Language (LSL). Version 2.3 of LSL is similar to previous versions, but

contains a number of re�nements based on experience writing speci�cations and developing

tools to support the speci�cation process. This report contains an informal introduction

and a self-contained language de�nition.

This report supersedes Pieces II and III of Larch in Five Easy Pieces [Guttag, Horning,

and Wing 1985b] and \Report on the Larch Shared Language" [Guttag and Horning 1986].

iii

Report on the Larch Shared Language, Version 2.3

Chapter 1: Overview

1.1. Introduction

1.2. Simple Algebraic Speci�cations

1.3. Getting Richer Theories

1.4. Combining Traits

1.5. Renaming

1.6. Stating Intended Consequences

1.7. Recording Assumptions

1.8. Built-in Operators and Operator Overloading

1.9. Tuples, Enumerations, and Unions

1.10. Characters and Symbols

1.11. Further Examples

1.12. Signi�cant Decisions in the Design of LSL

1.13. Grammar

Chapter 2: Language De�nition

2.1. SCL: The Semantic Core Language

2.2. Simple Traits

2.3. Externals

2.4. Consequences

2.5. Converts

2.6. Positional Renaming

2.7. Implicit Signatures and Sorts

2.8. Mix�x Operators and Bracketing

2.9. Implicit Markers

2.10. Built-in Operators

2.11. Boolean Terms as Equations

2.12. Shorthands

Appendix I: Logical Details

Appendix II: Lexical Structure

Appendix III: Grammatical Notation

Acknowledgments

References

LSL 2.3 Reference Grammar

iv

Chapter 1

Overview

1.1. Introduction

The Larch family of speci�cation languages supports a two-tiered de�nitional approach

to speci�cation [Guttag, Horning, and Wing 1985a]. Each speci�cation has components

written in two languages: one designed for a speci�c programming language and another

independent of any programming language. The former are called Larch interface

languages, and the latter the Larch Shared Language (LSL).

Larch interface languages are used to specify the interfaces between program components.

Each speci�cation provides the information needed to use the interface and to write

programs that implement it. A critical part of each interface is how the component

communicates with its environment. Communicationmechanisms di�er from programming

language to programming language, sometimes in subtle ways. It is easier to be precise

about communication when the interface speci�cation language reects the programming

language. Speci�cations written in such interface languages are generally shorter than

those written in a \universal" interface language. They are also clearer to programmers

who implement components and to programmers who use them.

Each Larch interface language deals with what can be observed about the behavior of

components written in a particular programming language. It incorporates programming-

language-speci�c notations for features such as side e�ects, exception handling, iterators,

and concurrency. Its simplicity or complexity depends largely upon the simplicity or

complexity of the observable state and state transformations of its programming language.

For example, an interface speci�cation for a window system procedure to be implemented

in CLU [Liskov and Guttag 1986] might be

addWindow = proc (v : View, w : Window, c: Coord) signals (duplicate)

modi�es v

ensures vpost = addW(v , w , c)

except when w 2 v signals duplicate ensures vpost = v

To understand such a speci�cation, it is necessary to know both the meanings of

the interface language constructs (e.g., proc, signals, modi�es) and the meanings of

operators appearing in expressions (e.g., addW, 2). Larch Shared Language speci�cations

are used to de�ne the latter. Speci�ers are not limited to a �xed set of operators, but can

use LSL to create specialized vocabularies suitable for particular interface speci�cations.

An LSL speci�cation that de�ned the meaning of addW and 2 could be used to give precise

1

answers to questions such as what it means for a window to be in a view (visible or possibly

obscured?), or what it means to add a window to a view that may contain other windows

at the same location.

Larch encourages a separation of concerns, with mathematical abstractions in the LSL

tier, and programming pragmatics in the interface tier. We encourage speci�ers to keep

the di�cult parts in the LSL tier, for several reasons:

� LSL abstractions are more likely to be reusable than interface speci�cations.

� LSL has a simpler underlying semantics than most programming languages (and hence

than most interface languages), so that speci�ers are less likely to make mistakes.

� It is easier to make and check claims about semantic properties of LSL speci�cations

than about semantic properties of interface speci�cations.

This chapter is an informal introduction to the Larch Shared Language, Version 2.3. It

introduces all the features of the language, briey discusses how they are intended to be

used, and closes with a reference grammar. The following chapter is a rigorous de�nition

of the language.

1.2. Simple Algebraic Speci�cations

LSL's basic unit of speci�cation is a trait. A trait may describe an abstract data type or may

encapsulate a property shared by several data types. Consider the following speci�cation

of tables that store values in indexed places:

Table: trait

introduces

new: ! Tab

add: Tab, Ind, Val ! Tab

2 : Ind, Tab ! Bool

lookup: Tab, Ind ! Val

isEmpty: Tab ! Bool

size: Tab ! Card

asserts 8 i , i': Ind, val: Val, t: Tab

lookup(add(t , i , val), i') == if i = i' then val else lookup(t , i')

:(i 2 new)

i 2 add(t , i' , val) == i = i' _ i 2 t

size(new) == 0

size(add(t , i , val)) == if i 2 t then size(t) else size(t) + 1

isEmpty(t) == size(t) = 0

2

This is similar to a conventional algebraic speci�cation [Bidoit 1988; Dahl, Langmyhr,

and Owe 1986; Gaudel 1985; Guttag and Horning 1978; Wirsing 1989]. The part of the

speci�cation following introduces declares a list of operators (function identi�ers), each

with its signature (the sorts of its domain and range). Every operator used in a trait must

be declared; the signatures are used to sort-check terms (expressions) in much the same

way as function calls are type-checked in programming languages. The remainder of this

speci�cation constrains the operators by means of equations.

An equation consists of two terms of the same sort, separated by ==. Equations of the

form term == true can be abbreviated by simply writing the term; thus the second

equation in the trait above is an abbreviation for :(i 2 new) == true.

The characters \ " in an operator declaration indicate that the operator will be used

in mix�x expressions. For example, 2 is declared as a binary in�x operator. In�x,

pre�x, post�x, and distributed operators are integral parts of many familiar notations, and

their use can contribute substantially to the readability of speci�cations. LSL's grammar

for mix�x terms is intended to ensure that legal terms parse as readers expect|even

without studying the grammar. Writers of speci�cations should study the grammar in

Section 1.13|although fully parenthesized terms are always acceptable.1

The name of a trait is independent of the names that appear within it. In particular, we

do not use sort identi�ers to name units of speci�cation. A trait need not correspond to

an abstract data type, and often does not.

Each trait de�nes a theory (a set of formulas without free variables) in typed �rst-order

logic with equality. Each theory contains the trait's assertions, the conventional axioms of

�rst-order logic, everything that follows from them, and nothing else. This interpretation

guarantees that the formulas in the theory follow only from the presence of assertions

in the trait|never from their absence. This is in contrast to algebraic speci�cation

languages based on initial or �nal algebras [Ehrig and Mahr 1985; Goguen, Thatcher,

and Wagner 1978; Sanella and Tarlecki 1987; Wand 1979]. Our interpretation is essential

1 LSL has a very simple precedence scheme for operators: post�x operators consisting of a

period followed by an identi�er bind most tightly. Other user-de�ned operators and the

built-in Boolean negation operator (:) bind more tightly than the built-in in equational

operators (= and 6=), which bind more tightly than the built-in Boolean connectives (^,

_, and)), which bind more tightly than ==. For example, the term x + w.a.b = y _ z

is equivalent to ((x + ((w.a).b)) = y) _ z . LSL allows unparenthesised in�x terms with

multiple operators at the same precedence level only if they are the same; it associates

such terms from left to right. Thus x ^ y ^ z is equivalent to (x ^ y) ^ z , but x _ y ^ z

isn't allowed.

3

to ensure that all theorems proved about an incomplete speci�cation remain valid when it

is completed.

LSL requires that each trait be consistent: it must not de�ne a theory containing the

equation true == false. Consistency is often di�cult to prove, and is undecidable in

general. But inconsistencies are often easy to detect [Garland, Guttag, and Horning 1990],

and can be a useful indication that there is something wrong with a trait.

1.3. Getting Richer Theories

Equational theories are useful, but a stronger theory is often needed, for example, when

specifying an abstract data type. The constructs generated by and partitioned by

provide two ways of strengthening equational speci�cations.

A generated by clause asserts that all values of a sort can be generated by a given list of

operators, thus providing a \generator induction" schema for the sort. For example, the

natural numbers are generated by 0 and successor, and the integers are generated by 0,

successor, and predecessor.

The axiom \Tab generated by new, add", if added to Table, could be used to prove

theorems by induction over new and add, such as

8 t: Tab

�
isEmpty(t) _ 9 i: Ind

�
i 2 t

��

A partitioned by clause asserts that all distinct values of a sort can be distinguished by

a given list of operators. Terms that are not distinguishable using any of the partitioning

operators of their sort are equal. For example, sets are partitioned by 2, because sets that

contain the same elements are equal.

The axiom \Tab partitioned by 2, lookup", if added to Table, could be used to derive

theorems that do not follow from the equations alone, such as

8 t: Tab, i, i': Ind, v: Val
�
add(add(t , i , v), i' , v) = add(add(t , i' , v), i , v)

�

1.4. Combining Traits

Table contains a number of totally unconstrained operators (e.g., +). Such traits are not

very useful. Additional assertions dealing with these operators could be added to Table.

However, for modularity, it is often better to include a separate trait by reference. This

makes it easier to reuse pieces of other speci�cations and handbooks. We might add to

trait Table:

includes Cardinal

4

The theory associated with the including trait is the theory associated with the union of

all of the introduces and asserts clauses of the trait body and the included traits.

It is often convenient to combine several traits dealing with di�erent aspects of the same

operator. This is common when specifying something that is not easily thought of as an

abstract data type. Consider, for example, the following speci�cations of properties of

relations:

Reflexive: trait

introduces � : T, T ! Bool

asserts 8 t: T

t � t

Symmetric: trait

introduces � : T, T ! Bool

asserts 8 t, t': T

t � t' == t' � t

Transitive: trait

introduces � : T, T ! Bool

asserts 8 t, t', t": T

(t � t' ^ t' � t")) t � t"

Equivalence1: trait

includes Reflexive, Symmetric, Transitive

The trait Equivalence1 has the same associated theory as the following less structured

trait:

Equivalence2: trait

introduces � : T, T ! Bool

asserts 8 t, t', t": T

t � t

t � t' == t' � t

(t � t' ^ t' � t")) t � t"

1.5. Renaming

Equivalence1 relies heavily on the use of the same operator symbol, �, and the same sort

identi�er, T, in three included traits. In the absence of such happy coincidences, renaming

can be used to make names coincide, to keep them from coinciding, or simply to replace

them with more suitable names, for example,

5

Equivalence: trait

includes (Reflexive, Symmetric, Transitive) (� for �)

The phrase Tr(name1 for name2) stands for the trait Tr with every occurrence of name2

(which must be either a sort or operator name) replaced by name1. If name2 is a sort

identi�er, this renaming may change the signatures associated with some of the operators

in Tr.

If Table were augmented by the generated by, partitioned by, and includes clauses

of the two previous sections, the speci�cation

SparseArray: trait

includes Integer,

Table(Arr for Tab, defined for 2, assign for add, [] for lookup, Int for Ind)

would be equivalent to

SparseArray: trait

includes Integer, Cardinal

introduces

new: ! Arr

assign: Arr, Int, Val ! Arr

defined: Int, Arr ! Bool

[]: Arr, Int ! Val

isEmpty: Arr ! Bool

size: Arr ! Card

asserts

Arr generated by new, assign

Arr partitioned by defined, []

8 i , i': Int, val: Val, t: Arr

assign(t , i , val)[i'] == if i = i' then val else t [i']

:defined(i, new)

defined(i, assign(t , i' , val)) == i = i' _ defined(i , t)

size(new) == 0

size(assign(t , i , val)) == if defined(i , t) then size(t) else size(t) + 1

isEmpty(t) == size(t) = 0

Note that the in�x operator symbol 2 was replaced by the operator defined, and

that the operator lookup was replaced by the mix�x operator symbol []. Renamings

preserve the order of operands.

Any sort or operator in a trait can be renamed when that trait is referenced in another

trait. Some, however, are more likely to be renamed than others. It is often convenient

6

to single these out so that they can be renamed positionally. For example, if the header

for the SparseArray trait had been \SparseArray(Val): trait", the phrases \includes

SparseArray(Int)" and \includes SparseArray(Int for Val)" would be equivalent.

1.6. Stating Intended Consequences

It is not possible to prove the \correctness" of a speci�cation, because there is no absolute

standard against which to judge correctness. But speci�cations can contain errors, and

speci�ers need help in locating them. Since LSL speci�cations cannot generally be

executed, they cannot be tested in the way that programs are commonly tested. LSL

sacri�ces executability in favor of brevity, clarity, and exibility, and provides other ways

to check speci�cations.

This section briey describes ways in which speci�cations can be augmented with

redundant information to be checked during validation. Chapter 3 de�nes the checks

rigorously. A separate paper discusses the use of LP, the Larch Prover [Garland, Guttag,

and Horning 1990] to assist in speci�cation debugging.

Checkable properties of LSL speci�cations fall into three categories: consistency, theory

containment, and completeness. As discussed in Section 1.2, the requirement of consistency

makes any trait whose theory contains true == false illegal.

Claims about theory containment are made using implies. Consider the claim that

SparseArray guarantees that an array with a de�ned element isn't empty. To indicate

that this claim should be checked, we could add to SparseArray

implies 8 a: Arr, i: Int

defined(i , a)) :isEmpty(a)

The theory claimed to be implied can be speci�ed using the full power of the language,

including equations, generated by and partitioned by clauses, and references to other

traits. In addition to assisting in error detection, implications help readers con�rm their

understanding, and can simplify reasoning about higher-level traits.

The initial design of LSL incorporated a built-in requirement of completeness. However,

we quickly concluded that this was better left to the speci�er's discretion. It is useful

to check certain aspects of completeness long before a speci�cation is �nished, yet most

�nished speci�cations (intentionally) don't fully de�ne all their operators. Claims about

how complete a speci�cation is are made using converts. Adding the claim \implies

converts isEmpty" to Table says that the trait's axioms fully de�ne isEmpty. This

means that, if the interpretations of all the other operators are �xed, there is a unique

interpretation of isEmpty satisfying the axioms.

7

Now consider adding the stronger claim \implies converts isEmpty, lookup" to Table.

The meaning of terms of the form lookup(new, i) is not de�ned by the trait, so it isn't

possible to verify this claim. The incompleteness could be resolved by adding another

axiom to the trait, for example, \lookup(new, i) == errorVal". However, the speci�er of

Table should not be concerned with whether Val has an errorVal operator, and should not

be required to introduce irrelevant constraints on lookup. Extra axioms give readers more

details to assimilate. They may preclude useful specializations of a general speci�cation.

And sometimes there is no reasonable axiom that would make an operator convertible

(consider division by 0).

LSL provides an exempting clause that lists terms that need not be de�ned. The claim

\implies converts isEmpty, lookup exempting 8 i: Ind lookup(new, i)" means that, if

interpretations of the other operators and of all terms matching lookup(new, i) are �xed,

there are unique interpretations of isEmpty and lookup that satisfy the trait's axioms.

This is provable from the speci�cation.

1.7. Recording Assumptions

It is useful to construct general speci�cations that can be specialized in a variety of ways.

Consider, for example,

Bag(E): trait

introduces

f g: ! B

insert, delete: E, B ! B

2 : E, B ! Bool

asserts

B generated by f g, insert

B partitioned by delete, 2

8 b: B, e, e': E

:(e 2 f g)

e 2 insert(e' , b) == e = e' _ e 2 b

delete(e, f g) == f g

delete(e' , insert(e, b)) == if e = e' then b else insert(e, delete(e' , b))

We might specialize this to IntegerBag by renaming E to Int and including it in a trait

in which operators dealing with Int are speci�ed, for example,

8

IntegerBag: trait

includes Integer, Bag(Int)

The interactions between Integer and Bag are very limited. Nothing in Bag makes any

assumptions about the meaning of the operators, such as 0, +, and <, that are de�ned in

Integer. Consider, however, extending Bag to Bag1 by adding an operator rangeCount,

Bag1(E): trait

includes Bag, Cardinal

introduces

rangeCount: E, E, B ! Card

< : E, E ! Bool

asserts 8 e, e' , e": E, b: B

rangeCount(e, e' , f g) == 0

rangeCount(e, e' , insert(e", b)) ==

rangeCount(e, e' , b) + (if e < e" ^ e" < e' then 1 else 0)

As written, Bag1 makes no assumptions about the properties of the < operator. Suppose,

however, that we wish to require that, in any specialization of this trait, < provides an

ordering on the values of sort E. We can add such a requirement with an assumption:

Bag2(E): trait

assumes TotalOrder(E)

includes Bag, Cardinal

introduces rangeCount: E, E, B ! Card

asserts 8 e, e' , e": E, b: B

rangeCount(e, e' , f g) == 0

rangeCount(e, e' , insert(e", b)) ==

rangeCount(e, e' , b) + (if e < e" ^ e" < e' then 1 else 0)

implies 8 e, e' , e": E, b: B

e' � e") rangeCount(e, e' , b) � rangeCount(e, e", b)

The theory associated with Bag2 is the same as if TotalOrder(E) had been included rather

than assumed; Bag2 inherits all the declarations and axioms of TotalOrder. Therefore,

the assumption can be used to derive various properties of Bag2, including the implication

that rangeCount is monotonic in its second argument.

The di�erence between assumes and includes appears when Bag2 is used in another

trait. Whenever a trait with assumptions is included or assumed, its assumptions must be

discharged. For example, in

9

IntegerBag2: trait

includes Integer, Bag2(Int)

the assumption to be discharged is that the (renamed) theory associated with TotalOrder

is a subset of the theory associated with Integer. When a trait includes a trait with

assumptions, it is often possible to determine that these assumptions are discharged by

noticing that the same traits are assumed or included in the including trait. For example,

Integer itself might directly include TotalOrder.

1.8. Built-In Operators and Operator Overloading

In our examples, we have freely used various Boolean operators, plus some heavily

overloaded and apparently unconstrained operators: if then else , =, and 6=. Although

these operators are de�nable within LSL, they are built into the language. This allows

them to have appropriate syntactic precedence. More importantly, it guarantees that they

have consistent meanings in all LSL speci�cations, so readers can rely on their intuitions

about them. For example, the built-in de�nition of = guarantees that for any terms t1

and t2, t1 = t2 == true if and only if t1 == t2.

In addition to the built-in overloaded operators, LSL provides for user-de�ned overloadings.

Each operator must be declared in an introduces clause and consists of an identi�er

(e.g., empty) or operator symbol (e.g., <) and a signature. The signatures of most

occurrences of overloaded operators are deducible from context. Consider, for example,

OrderedString(E, Str): trait

assumes TotalOrder(E)

introduces

empty: ! Str

insert: E, Str ! Str

< : Str, Str ! Bool

asserts

Str generated by empty, insert

8 e, e': E, s, s': Str

empty < insert(e, s)

:(s < empty)

insert(e, s) < insert(e' , s') == e < e' _ (e = e' ^ s < s')

implies TotalOrder(Str)

The operator symbol < is used in the last equation to denote two di�erent operators, one

relating terms of sort Str and the other, terms of sort E, but their contexts determine

unambiguously which is which. LSL provides notations for disambiguating an overloaded

10

operator if context does not su�ce. Any subterm of a term can be quali�ed by its sort.

For example, \a:S = b" explicitly indicates that a is of sort S. Since the two operands of =

must have the same sort, this quali�cation also implicitly de�nes the signatures of = and

b. Outside of terms, overloaded operators can be disambiguated by directly a�xing their

signatures.

1.9. Enumerations, Tuples, and Unions

Enumerations, tuples, and unions provide compact, readable representations for common

kinds of theories. They are just syntactic shorthands for things that could be written in

LSL without them.

The enumeration shorthand de�nes a �nite set of distinct constants and an operator that

enumerates them. For example,

Temp enumeration of cold, warm, hot

is equivalent to including a trait whose body is:

introduces

cold, warm, hot: ! Temp

succ: Temp ! Temp

asserts

Temp generated by cold, warm, hot

equations

cold 6= warm

cold 6= hot

warm 6= hot

succ(cold) == warm

succ(warm) == hot

The tuple shorthand is used to introduce �xed-length tuples. For example,

C tuple of hd: E, tl: S

is equivalent to including a trait whose body is:

11

introduces

[,]: E, S ! C

.hd: C ! E

.tl: C ! S

set hd: C, E ! C

set tl: C, S ! C

asserts

C generated by [,]

C partitioned by .hd, .tl

8 e, e': E, s, s': S

[e, s].hd == e

[e, s].tl == s

set hd([e, s], e') == [e' , s]

set tl([e, s], s') == [e, s']

Each �eld name (e.g., hd) is incorporated in two distinct operators (e.g., .hd:C!E and

set hd:C,E!C).

The union shorthand corresponds to the tagged unions found in many programming

languages. For example,

S union of atom: A, cell: C

is equivalent to including a trait whose body is:

S tag enumeration of atom, cell

introduces

atom: A ! S

cell: C ! S

.atom: S ! A

.cell: S ! C

tag: S ! S tag

asserts

S generated by atom, cell

S partitioned by .atom, .cell, tag

8 a: A, c: C

atom(a).atom == a

cell(c).cell == c

tag(atom(a)) == atom

tag(cell(c)) == cell

Each �eld name (e.g., atom) is incorporated in three distinct operators (e.g., atom:!S tag,

atom:A!S, and .atom:S!A).

12

1.10. Characters and symbols

LSL was designed for use with an open-ended collection of programming languages, support

tools, and input/output facilities, each of which may have its own lexical conventions and

capabilities. To avoid conicts, LSL assigns �xed meanings to only a small number of

characters. To conform to local conventions and to exploit locally available capabilities,

LSL's character and token classes are open-ended, and can be tailored for particular uses

by initialization �les, as discussed in Appendix II.

Contiguous sequences of identi�er characters (alphanumerics and underscore) and con-

tiguous sequences of operator characters (asterisk, plus, minus, period, slash, less-than,

equal, greater-than) form single tokens. Whitespace characters are insigni�cant except for

separating tokens. Each of the remaining characters constitutes a separate token.

There are several semantically equivalent forms of LSL. Any of these forms can be

mechanically translated into any other without losing information.

� Presentation forms are used in environments with rich sets of characters (e.g.,

8;^;_;2), including this report.

� Interchange form is an encoding of LSL using a subset of the ASCII character set.

Characters outside this subset are represented by extended characters|sequences of

characters from the subset, set o� by a backslash (or another designated character).

Interchange form is the \lowest common denominator" for LSL. Each Larch tool must

be able to parse it, and to generate it on demand.

� Interactive forms are used by Larch editors, browsers, checkers, etc., for input and

output. Many will not be limited to character strings for input and output, and

some may impose additional constraints and equivalences (e.g., case folding, operator

precedence).

1.11. Further Examples

We have now covered all the facilities of the Larch Shared Language. The next series of

examples illustrates their coordinated use.

The trait Container abstracts the common properties of data structures that contain

elements, such as sets, bags, queues, stacks, and strings. Container is useful both as a

starting point for speci�cations of many di�erent data structures and as an assumption

when de�ning generic operators over such data structures.

The generated by clause in Container asserts that each value of sort C can be constructed

from new by repeated applications of insert. This assertion is carried along when

Container is included in or assumed by other traits, even if they introduce additional

operators with range C. Theorems proved by induction over new and insert will be valid

in the theories associated with all such traits.

13

Container(E, C): trait

introduces

new: ! C

insert: E, C ! C

asserts C generated by new, insert

The trait LinearContainer includes Container. It constrains new and insert, inherited

from Container, as well as the additional operators it introduces. The partitioned

by clause indicates that next, rest, and isEmpty form a complete set of observers

for sort C: for any terms t1 and t2 of sort C, if the equalities next(t1) == next(t2),

rest(t1) == rest(t2), and isEmpty(t1) == isEmpty(t2) all hold, then t1 == t2. The

axioms for next and rest are intentionally very weak (de�ning their meaning only for

single-element containers) so that LinearContainer can be specialized to de�ne stacks,

queues, priority queues, and strings. The converts clause adds checkable redundancy to

the speci�cation by claiming that this trait fully de�nes isEmpty.

LinearContainer(E, C): trait

includes Container

introduces

isEmpty: C ! Bool

next: C ! E

rest: C ! C

asserts

C partitioned by next, rest, isEmpty

8 c: C, e: E

isEmpty(new)

:isEmpty(insert(e, c))

next(insert(e, new)) == e

rest(insert(e, new)) == new

implies converts isEmpty

PriorityQueue specializes LinearContainer by adding another operator, 2, and by

further constraining next, rest, and insert. The �rst implication states a fact that

can be proved using the induction rule inherited from Container. It may be helpful in

reasoning about PriorityQueue and may help readers solidify their understanding of the

trait. The second implication states that the trait de�nes next and rest (except when

applied to new), isEmpty, and 2. The axioms that convert isEmpty are inherited from

LinearContainer.

14

PriorityQueue(E, Q): trait

assumes TotalOrder(E)

includes LinearContainer(Q for C)

introduces 2 : E, Q: ! Bool

asserts 8 e, e': E, q: Q

next(insert(e, q)) ==

if q = new then e else if next(q) < e then next(q) else e

rest(insert(e, q)) ==

if q = new then new else if next(q) < e then insert(e, rest(q)) else q

:(e 2 new)

e 2 insert(e' , q) == e = e' _ e 2 q

implies

8 q: Q, e: E

e 2 q) :(e < next(q))

converts next, rest, isEmpty, 2 exempting next(new), rest(new)

Unlike the preceding traits in this section, PriorityQueue speci�es an abstract data type

constructor. In such a trait there is a distinguished sort, sometimes called the \type of

interest" [Guttag 1975] or \data sort" [Burstall and Goguen 1980]. An abstract data

type's operators can be categorized as generators, observers, and extensions (sometimes

in more than one way). A set of generators produces all the values of the distinguished

sort. The extensions are the remaining operators whose range is the distinguished sort.

The observers are the operators whose domain includes the distinguished sort and whose

range is some other sort. An abstract data type speci�cation usually converts the observers

and extensions. The distinguished sort is usually partitioned by at least one subset of the

observers and extensions. For example, in PriorityQueue, Q is the distinguished sort,

new and insert form a generator set, rest is an extension, next, isEmpty, and 2 are the

observers, and next, rest, and isEmpty form a partitioning set.

A good heuristic for generating enough equations to adequately de�ne an abstract data

type is to write an equation de�ning the result of applying each observer or extension to

each generator [Guttag 1975]. For PriorityQueue, this rule suggests writing equations for

rest(new), next(new), isEmpty(new), e 2 new, rest(insert(e, q)), next(insert(e, q)),

isEmpty(insert(e, q)), and e 2 insert(e' , q). PriorityQueue contains explicit equations

for four of the eight, and inherits equations for two more from LinearContainer. The

remaining two terms, next(new) and rest(new), are explicitly exempted.

The next two traits, PairwiseExtension and PairwiseSum, specify generic operators that

can be used with various kinds of ordered containers.

Given a binary operator on elements, �, PairwiseExtension de�nes a new binary operator on

containers,�. The result of applying� to a pair of containers is a container whose elements

15

are the results of applying � to corresponding pairs of their elements. The assumption

of LinearContainer ensures that the notion of \corresponding pair" is well-de�ned; to

understand why Container would not su�ce, imagine de�ning � consistently for a Bag.

The exempting clause indicates that, although the result of applying � to containers of

unequal size is not speci�ed, this is not an oversight. Since � is totally unconstrained in

this trait, there aren't yet many interesting implications to state.

PairwiseExtension(E, C): trait

assumes LinearContainer

introduces

� : E, E ! E

� : C, C ! C

asserts 8 e, e': E, c, c': C

new � new == new

insert(e, c) � insert(e' , c') == insert(e � e' , c � c')

implies converts �

exempting 8 e: E, c: C

new � insert(e, c),

insert(e, c) � new

Now we specialize PairwiseExtension by binding � to an operator, +, whose de�nition

is to be taken from the trait Cardinal.

PairwiseSum(C): trait

assumes LinearContainer(Card for E)

includes Cardinal,

PairwiseExtension(Card for E, + for �, � for �)

implies (Associative, Commutative) (� for �, C for T)

The validity of the implication that � is associative and commutative stems from the

replacement of � by +, whose axioms in a suitable trait Cardinal would imply its

associativity and commutativity. The implication could then be proved by induction over

new and insert.

1.12. Signi�cant Decisions in the Design of LSL

Our basic assumption was that speci�cations will be constructed and checked incremen-

tally. This led us to a design that ensures that adding axioms to a trait never invalidates

theorems. The need to maintain this monotonicity property led us to construe the equa-

tions of a trait as denoting a �rst-order theory. Neither the initial algebra nor the �nal

algebra interpretation of a set of equations has this property.

16

Many traits correspond to complete abstract data types, but many others do not. So

we included independent constructs to identify complete sets of constructors (generated

by) and complete partitioning sets (partitioned by). Separating them provides useful

exibility.

The freedom to rename any of a trait's operators or sorts is also useful. In e�ect, all names

appearing in a trait are formal parameters. An early version of LSL had only explicit

lambda abstraction. We soon discovered that it was hard to get a trait's formal parameter

list \right." If we kept it short, we often wished to substitute for a name that hadn't

been included. If we used a longer list, we frequently didn't need to rename most of the

potential parameters, and supplied the same names for the actuals as the formals. This

experience led us to abolish explicit parameter lists in LSL 1.1 [Guttag and Horning 1986];

all renaming was of the form \id1 for id2." But the restriction to explicit renaming also

proved cumbersome. In the current design, the speci�er can choose to rename either

positionally or explicitly.

Speci�ers shouldn't start from scratch each time; LSL speci�cations are reusable.

Handbooks of LSL speci�cations|some specialized for particular application domains|

play an important role in speci�cation development. (The examples used in this report

are, for expository purposes, atypically complete.) We chose not to build into LSL many

constructs that can easily be supplied by handbook traits.

Reading speci�cations is an important activity. People read syntactic objects (traits),

rather than semantic objects (theories). So we chose to de�ne the mechanisms for

combining LSL speci�cations syntactically. However, for each of our combining operations

on traits, there is a corresponding operation on theories such that the theory associated

with any combination of traits is the same as the combination of their associated theories.

There is a tension in the design of the syntax for terms. On one hand, we want to allow

speci�ers as much notational exibility as we can. On the other, it is important that

both people and tools be able to parse terms in interface language speci�cations without

reference to operator declarations (which are o� in LSL traits). Our grammar for terms

is fairly exible, but|because there is no way to specify the precedence of user-de�ned

operators|requires more parentheses than we would like.

Operator names in LSL include full signatures, unlike many programming languages, where

overloaded operators are quali�ed by a single type or by a module name. This decision

resulted from our desire to make heavy use of overloading in interface speci�cations.

Contextual disambiguation means that it is not usually necessary to clutter up terms

with explicit sorts.

We made a conscious attempt to reduce the number of characters reserved by LSL, to

avoid conicts with programming language usages (which will be reected in interface

17

languages), to avoid conicts with notations from mathematics and application domains

(which will be reected in handbooks), and to avoid problems with di�erent character

sets in di�erent environments. There isn't any real choice about commas, colons, and

parentheses; fortunately, their uses in mathematics and most programming languages

are compatible. We reserved these four characters and then used them throughout, in

preference to other characters, such as semicolons and brackets. We took almost exactly the

opposite approach for keywords, which appear in traits, but not in interface speci�cations.

We deliberately chose distinctive keywords and reserved them.

LSL's constructs for introducing checkable redundancy into speci�cations were chosen to

expose classes of errors that we expect to be common. These facilities help speci�ers

increase the chance that a speci�cation with an unintended meaning will be detectably

illegal, in much the same way that type systems increase the chance that an erroneous

program will be detectably illegal. In contrast to our emphasis on syntactic mechanisms

for combining traits, we included a number of semantic constraints on their legality.

This means that a theorem prover is needed to fully check traits [Garland, Guttag, and

Horning 1990]. The constructs for checking have other costs: LSL would be considerably

smaller without them, and it takes about as long to learn the part of the language involved

with checking as it does to learn the part required to generate theories.

The Larch approach frequently leads to traits in which many things are left unconstrained,

so traits are not required to completely de�ne all operators. Instead, converts clauses

allow the speci�er to include checkable claims about completeness, which can reect the

trait's intended uses in interface speci�cations. Exactly what it means to completely

de�ne an operator was a delicate design issue for LSL. The meaning of a converts clause

is that, given any �xed interpretations for the other operators and the exempted terms,

the interpretations of the converted operators that satisfy the trait's axioms are unique.

LSL 1.1 contained two additional constructs, imports and constrains, that were used

to claim that one theory was a conservative extension of another. We found that these

constructs were di�cult to explain, to use e�ectively, and to check, so we have dropped

them from the language.

In many respects, LSL is distinguished from other speci�cation languages as much by what

it doesn't include as by what it does.

LSL provides no construct for hiding operators. The hiding constructs of other speci�cation

languages [e.g., Burstall and Goguen 1980] allow the introduction of auxiliary operators

that don't have to be implemented. These operators are not completely hidden, since they

must be read to understand the speci�cation, and they are likely to appear in reasoning

based on the speci�cation. The two-tiered structure of Larch speci�cations means that

none of the operators appearing in an LSL trait have to be implemented; they are all

18

auxiliary functions to be used in writing interface speci�cations. We could say that the

entire LSL tier is \hidden."

LSL does not provide constructs for specifying partial functions or error algebras. There is

no mechanism other than sort checking for restricting the domain of operators. Terms such

as lookup(new, i) are allowed, and no special error elements are built into the language to

represent the values of such terms. As discussed in [Guttag, Horning, and Wing 1985a],

preconditions and errors are handled in Larch interface languages.

Similarly, nondeterminism is left to the interface languages. It is frequently useful to

write incomplete speci�cations that allow di�erent interpretations of equality (and have

non-isomorphic models). Thus, for many traits there are terms that are neither provably

equal nor provably unequal. However, it is always the case in LSL that for every term

t, t == t. The mathematical basis of algebra, and of LSL, depends on the validity of

freely substituting equals for equals. This would be destroyed by the introduction of

\nondeterministic functions."

We chose not to include higher-order entities in LSL. Traits are simple textual objects.

Their associated theories are �rst-order theories. We sidestepped the subtle semantic

problems associated with parameterized theories, theory parameters, and the like [Ehrig

and Mahr 1985]. Includes and assumes clauses, together with renamings, make possible

much of the reuse for which higher-order theories are advocated.

19

1.13. Grammar

trait ::= simpleId db (f name db : signature ec g+,) ec : trait

f shorthand j external g* opPart* propPart* db consequences ec

name ::= simpleId j opForm

opForm ::= if then else

j db ec f simpleOp j logicalOp j eqOp gdb ec

j db ec openSym db placeList ec closeSym db ec

j db ec . simpleId

placeList ::= f f sepSym j , g g*

signature ::= sort*, ! sort

sort ::= simpleId

shorthand ::= enumeration j tuple j union

enumeration ::= sort enumeration of simpleId
+,

tuple ::= sort tuple of �elds+,

union ::= sort union of �elds+,

�elds ::= simpleId
+, : sort

external ::= f includes j assumes g traitRef +,

traitRef ::= f simpleId j (simpleId
+,) g db (renaming) ec

renaming ::= replace
+, j name

+, f , replace g*

replace ::= name for name db : signature ec

opPart ::= introduces opDcl+

opDcl ::= name
+, : signature

propPart ::= asserts genPartition* eqPart

genPartition ::= sort f generated j partitioned g by operator
+,

operator ::= name db : signature ec

eqPart ::= db equations eqSeq ec f 8 varDcl+, eqSeq g*

varDcl ::= simpleId
+, : sort

eqSeq ::= equation f eqSepSym equation g*

equation ::= term db == term ec

term ::= logicalTerm j if term then term else term

logicalTerm ::= equalityTerm f logicalOp equalityTerm g*

equalityTerm ::= simpleOpTerm db eqOp simpleOpTerm ec

simpleOpTerm ::= simpleOp
+
secondary

j secondary simpleOp
+

j secondary f simpleOp secondary g*

secondary ::= primary j db primary ec bracketed db : sort ec db primary ec

bracketed ::= openSym db term f f sepSym j , g term g* ec closeSym

primary ::= f (term) j simpleId db (term+,) ec g f . simpleId j : sort g*

consequences ::= implies f traitRef *, genPartition* eqPart

j db traitRef+, genPartition+ ec eqSeq g conversion*

conversion ::= converts operator+, db exempting db 8 varDcl+, ec term+, ec

20

Chapter 2

Language De�nition

This chapter is a self-contained de�nition of the Larch Shared Language, Version 2.3. It

de�nes the syntax and static semantics of LSL and the theory associated with each LSL

speci�cation.

� Section 1 de�nes the semantic core language (SCL), a small language (similar to

a subset of LSL) that is su�cient to express any theory expressible in LSL. The

semantics of LSL is de�ned by giving its translation into SCL.

� Section 2 de�nes a simple, unstructured subset of LSL and its translation into SCL.

� Sections 3{12 de�ne successive language extensions. They extend the grammar,

describe additional checking, and provide a normalization of each extension into

the previously de�ned subset. Normalized speci�cations are further subject to the

checking de�ned for the target subset. The theory associated with a speci�cation is

the theory associated with the translation into SCL of its normalization.

� Section 3 introduces structural facilities for combining speci�cations.

� Sections 4{5 introduce facilities for adding redundancy to a speci�cation by

stating intended consequences.

� Sections 6{12 introduce syntactic amenities.

� The Appendices discuss details of the logic used for LSL theories, the lexical structure

of the language, and the grammatical notation used in this report.

2.1. SCL: The Semantic Core Language

Grammar

presentation ::= f generators j partitions j equation g*

generators ::= sort generated by operator
+,

partitions ::= sort partitioned by operator
+,

operator ::= name : signature

signature ::= domain ! range

domain ::= sort*,

range ::= sort

sort ::= simpleId

equation ::= expression == expression

expression ::= operator db (expression+,) ec j variable

variable ::= simpleId :: sort

21

De�nitions

� A presentation is syntactically legal if it satis�es the context-free grammar and the

context-sensitive checks.

� The sort of an expression of the form operator db (expression+,) ec is operator's range,

and the sort of an expression of the form simpleId::sort is sort.

� A constant is an operator with an empty domain.

Context-sensitive checking

� The range of each operator in a generators must be the sort of the generators.

� At least one operator in a generators must have a domain in which the sort of the

generators does not occur.

� The domain of each operator in a partitions must include the sort of the partitions.

� The range of at least one operator in a partitions must be di�erent from the sort of

the partitions.

� In each equation, the sorts of the two expressions must be the same.

� In each expression of the form operator db (expression*,) ec , the operator's domainmust

be the sequence of the sorts of the expressions.

Associated Theory

With each presentation, we associate a theory in typed �rst-order logic with equality.2

Theories are constructed using the alphabet of SCL symbols for sorts, variables, and

operators. We identify the SCL symbols ==, true:!Bool, and false:!Bool with the

logical symbols =, true, and false, respectively.

The theory associated with a presentation is the smallest theory containing the set of

formulas constructed as follows:

� The theory contains the universal closure of each equation.

� For each generators, S generated by op1; : : : ; op
n
, and for each formula P and each

variable y of sort S, the theory contains the universal closure of the induction formula

(8yP) �
^

1�i�n

8xi;1 : : : 8xi;ki

0
@
2
4 ^
j:sort(xi;j)=S

P [y xi;j]

3
5) P [y ti]

1
A

2 Appendix I contains some relevant de�nitions and examples.

22

where ti is the expression op
i
(xi;1; : : : ; xi;ki) and the xi;j are distinct variables of the

appropriate sorts that do not appear in P .

� For each partitions, S partitioned by op1; : : : ; op
n
, and for each pair of variables y

and z of sort S, the theory contains the universal closure of the formula

(y = z) �
^

1�i�n

8xi;1 : : : 8xi;ki

0
@ ^

j:sort(xi;j)=S

ti[xi;j y] = ti[xi;j z]

1
A

where ti is the expression op
i
(xi;1; : : : ; xi;ki) and the xi;j are distinct variables of the

appropriate sorts that are distinct from y and z.

2.2. Simple Traits

Grammar

trait ::= simpleId : trait traitBody

traitBody ::= simpleTrait

simpleTrait ::= opPart* propPart*

opPart ::= introduces opDcl+

opDcl ::= name
+, : signature

name ::= simpleId j opForm

opForm ::= if then else

j db ec f simpleOp j logicalOp j eqOp gdb ec

j db ec openSym db placeList ec closeSym db ec

j db ec . simpleId

placeList ::= f f sepSym j , g g*

signature ::= domain ! range

domain ::= sort*,

range ::= sort

sort ::= simpleId

propPart ::= asserts props

props ::= f generators j partitions g* eqPart

generators ::= sort generated by operator
+,

partitions ::= sort partitioned by operator
+,

operator ::= name : signature

eqPart ::= db equations eqSeq ec f quanti�er eqSeq g*

quanti�er ::= 8 varDcl+,

varDcl ::= simpleId
+, : sort

eqSeq ::= equation f eqSepSym equation g*

equation ::= term == term

term ::= name db (term+,) ec : sort

23

The de�nition of term is replaced, not extended, in Section 2.8. The \subsets" of Sections

2.2{7 allow non-LSL terms that are useful in the translation of full to SCL.

De�nitions

� A trait's theory is the theory associated with its translation into SCL.

� A trait or traitBody is syntactically legal if it satis�es the context-free grammar and

the context-sensitive checks and its translation into SCL is syntactically legal.

� A trait or traitBody is semantically legal if it is syntactically legal and satis�es the

semantic checks.

� The operator list of an opDcl op1, : : :, opn: sig is op1: sig : : : opn: sig .

� The operator list of a simpleTrait is introduces followed by the union of the operator

lists of its opDcls.3

� The variable list of a varDcl v1, : : :, vn: S is v1: S, : : :, vn: S .

� The variable list of an eqPart is 8 followed by the union of the variable lists of its

varDcls.

� op:S and op:!S are occurrences of the constant operator op:!S .

� op(t1:S1,: : :,tn:Sn):S and op:S1,: : :,Sn!S are occurrences of the operator

op:S1,: : :,Sn!S .

Context-sensitive checking

� No simpleId may occur more than once in any quanti�er.

� If id:!S is in the operator list of a simpleTrait, then id:S may not be in the variable

list of any of its eqParts.

� Each operator in the translation of a simpleTrait must be in its operator list.

� Each variable appearing in the translation of an eqPart must be in its variable list.

Translation

A trait is translated to a presentation in SCL by retaining its generators and partitions,

deleting its opParts, and translating each propPart by deleting its quanti�er and translating

each term to an expression by replacing

� Each term of the form id:S by the constant operator id:!S if id:S is in the

operator list of the containing eqPart, and by the variable id::S otherwise.

� Each term of the form op(t1:S1, : : :, tn:Sn):S by the expression

op:S1; : : :,Sn!S(e1, : : :, en), where e1, : : :, en are the translations of t1:S1, : : :, tn:Sn,

respectively.

3 For convenience, we will speak of the concatenation of lists as their \union."

24

Semantic checking

� Each trait must be consistent: the theory associated with its translation must not

contain the formula \true = false".

2.3. Externals

Add to the grammar the productions:

traitBody ::= traitContext
+
simpleTrait

traitContext ::= external

external ::= includes j assumes

includes ::= includes traitRef+,

assumes ::= assumes traitRef +,

traitRef ::= f simpleId j (simpleId
+,) g db (renaming) ec

renaming ::= f sortReplace j opReplace g*,

sortReplace ::= newSort for oldSort

newSort ::= sort

oldSort ::= sort

opReplace ::= newOp for oldOp

newOp ::= name

oldOp ::= operator

De�nitions

� The name mapping associated with a renaming is de�ned as follows:

� Simultaneously, for each opReplace, replace the name part of each occurrence of

its oldOp by its newOp.

� Then, simultaneously, for each sortReplace, replace each occurrence of its oldSort

by its newSort.

� The normalization of a traitRef is the image, under its name mapping, of the union

of the normalizations of the referenced traits.

� The operator list of a trait is the union of the operator list of its simpleTrait and the

operator lists of the traitRefs in its externals.

� The operator list of a traitRef is the image, under its name mapping, of the union of

the operator lists of the normalizations of the referenced traits.

� The sort set of a trait, or a traitRef, is the set of sorts appearing in its operator list.

25

� The assertion list of a trait is the union of its propPart* and the images of the assertion

lists of the traits referenced in its includes under their name mappings.

� The local assumption list of a trait is the union of the images, under their name

mappings, of the local assumption and assertion lists of the traits referenced in its

assumes.

� The inherited assumption list of a trait is the union of the images, under their name

mappings, of the local assumption lists of the traits referenced in its includes.

Context-sensitive checking

� No external may be recursive.

� No sort may occur as an oldSort more than once in a renaming.

� Each oldSort must be in the sort set of a trait referenced by the enclosing traitRef.

� No operator may occur as an oldOp more than once in a renaming.

� Each oldOpmust be in the operator list of a trait referenced by the enclosing traitRef.

Semantic checking

� The theory of each trait must contain the theory of the traitBody consisting of the

union of its operator list and its inherited assumption list.

Normalization

� Replace the traitBody of each trait by the union of its operator list, its assertion list,

and its local assumption list.

2.4. Consequences

Add to the grammar the productions:

traitBody ::= traitContext* simpleTrait consequences

consequences ::= implies conseqProps

conseqProps ::= traitRef *, genPartition* eqPart

j db traitRef+, genPartition+ ec eqSeq

De�nition

� The traitBody associated with a consequences implies Refs Props is

includes Refs opList asserts Props

where opList is the operator list of the enclosing traitBody.

26

Context-sensitive checking

� The traitBody associated with the consequences must be syntactically legal.

Semantic checking

� The theory of the enclosing trait must contain the theory of the traitBody associated

with the consequences.

Normalization

� Remove the consequences.

2.5. Converts

Add to the grammar the productions:

consequences ::= implies conseqProps conversion+

conversion ::= converts operator+, db exemption ec

exemption ::= exempting db quanti�er ec term+,

De�nition

� The traitBody associated with a conversion

converts op1; : : : ; op
n
exempting 8 Vars t1; : : : ; tm

in trait T is

includes T(op01 for op1; : : : ; op
0
n
for op

n
), T

asserts 8 Vars

t01 == t1
...

t0
m
== tm

implies

8 x1: S1;1; : : : ; xk1 : S1;k1
op01(x1: S1;1; : : : ; xk1 : S1;k1):S1 == op1(x1: S1;1; : : : ; xk1 : S1;k1):S1

...

8 xn: Sn;1; : : : ; xkn : Sn;kn
op0

n
(x1: Sn;1; : : : ; xkn : Sn;kn):Sn == opn(x1: Sn;1; : : : ; xkn : Sn;kn):Sn

where

� op01; : : : ; op0
n
are distinct fresh names,

� t01; : : : ; t0
m

are the terms obtained from t1; : : : ; tm by replacing the names in

occurrences of each opi by op0
i
, and

� Si;1; : : : ; Si;ki ! Si is the signature of opi.

27

Context-sensitive checking

� The traitBody associated with each conversion must be syntactically legal.

� Each term in an exemption must contain an occurrence of an operator in the enclosing

conversion.

Semantic checking

� The traitBody associated with each conversion must be semantically legal.

Normalization

� Remove each conversion.

2.6. Positional Renaming

Add to the grammar the productions:

trait ::= simpleId (formalList) : trait traitBody

formalList ::= formal
+,

formal ::= sort j operator

renaming ::= actual
+, f , f sortReplace j opReplace g g*

actual ::= newSort j newOp

Context-sensitive checking

� Each sort in a formalList must be in the sort set of the enclosing trait.

� Each operator in a formalList must be in the operator list of the enclosing trait.

� In a renaming with actuals, the number of actuals must equal the number of formals

in the formalList of each referenced trait.

Normalization

� Replace each actual in a renaming by actual for formal , where formal is in the

corresponding position in the formalList of the referenced trait.

� Remove each formalList.

28

2.7. Implicit Signatures and Sorts

Add to the grammar the productions:

operator ::= name

term ::= name db (term+,) ec

De�nitions

� Any operator of the form opName:sig is a completion of the abbreviated operator

opName, unless opName is also in the sort set of the enclosing trait.

� Any term of the form t:S is a completion of the abbreviated term t.

Context-sensitive checking

� For each abbreviated operator in a traitRef there must be a unique completion in the

referenced traits' operator lists.

� For each abbreviated operator in a formalList or conversion there must be a unique

completion in the enclosing trait's operator list.

� For each abbreviated operator in a generators or partitions there must be a unique

completion that makes it syntactically legal.

� There must be a unique set of completions for the abbreviated terms in a trait such

that the resulting trait is syntactically legal.

Normalization

� Replace each abbreviated operator and term by its unique legal completion.

2.8. Mix�x Operators and Bracketing

Replace the production for term by:

term ::= logicalTerm j if term then term else term

logicalTerm ::= equalityTerm f logicalOp equalityTerm g*

equalityTerm ::= simpleOpTerm db eqOp simpleOpTerm ec

simpleOpTerm ::= simpleOp
+
secondary j secondary simpleOp

+

j secondary f simpleOp secondary g*

secondary ::= primary j db primary ec bracketed db : sort ec db primary ec

bracketed ::= openSym db term f f sepSym j , g term g* ec closeSym

primary ::= f (term) j simpleId db (term+,) ec g f . simpleId j : sort g*

29

Context-sensitive checking

� In any logicalTerm or simpleOpTerm of the form t0 op1 : : : opn tn , the opi must all

be the same logicalOp or simpleOp.

Normalization

Mix�x terms are translated by creating a function application for each mix�x operator

occurrence. The translated name of the operator is an opForm derived by replacing each

subterm by \ ". Unless the operator is a constant, this is followed by a parenthesized list

of translated subterms. Grouping parentheses|those in a primary of the form (term)|are

discarded. For example, the mix�x term

((if p ^ q ^ r then s [feg else S [i]) \ T)

is translated to the functional term

\ (if then else (^ (^ (p, q), r), [(s, f g(e)), [](S , i)), T)

2.9. Implicit Markers

De�nition

� A name is markable if it is a simpleOp or . simpleId and it appears

� in an operator, or

� as a newOp that renames an operator whose name contains a single simpleOp or

. simpleId .

Context-sensitive checking

� There must be a unique marking of each markable name by adding one or two \ "s,

such that the resulting trait is syntactically legal, and

� if the name appears in a renaming in a traitRef, the normalization of the resulting

traitRef is syntactically legal.

� if the name appears as a newOp in a renaming, the newOp's and oldOp's markings

have \ "s in the same positions.

Normalization

� Replace each markable name by its unique legal marking.

30

2.10. Built-in Operators

� Each explicit trait implicitly includes a trait with the traitBody

introduces

true: ! Bool

false: ! Bool

: : Bool ! Bool

^ : Bool, Bool ! Bool

_ : Bool, Bool ! Bool

) : Bool, Bool ! Bool

asserts

Bool generated by true, false

8 b: Bool

:true == false

:false == true

true ^ b == b

false ^ b == false

true _ b == true

false _ b == b

true) b == b

false) b == true

� For each sort S in an explicit trait's sort set, it implicitly includes a trait with the

traitBody

introduces

= : S, S! Bool

6= : S, S! Bool

if then else : Bool, S, S ! S

asserts

S partitioned by =

8 x, y, z: S

x = x == true

x = y == y = x

(x = y ^ y = z)) x = z == true

x 6= y == :(x = y)

if true then x else y == x

if false then x else y == y

31

2.11. Boolean Terms as Equations

Add to the grammar the production:

equation ::= term

Normalization

� Replace each equation of the form term by term == true .

2.12. Shorthands

Add to the grammar the productions:

traitContext ::= shorthand

shorthand ::= enumeration j tuple j union

enumeration ::= sort enumeration of elementId
+,

elementId ::= simpleId

tuple ::= sort tuple of �elds+,

union ::= sort union of �elds+,

�elds ::= �eldId
+, : sort

�eldId ::= simpleId

Context-sensitive checking

� No elementId may occur more than once in an enumeration.

� No �eldId may occur more than once in a tuple or union.

� No sort in a �elds may be the sort of the enclosing tuple or union.

Normalization

� Replace each �elds of the form f1; : : : ; fn: S by f1: S, : : : ; fn: S .

� For each enumeration of the form S enumeration of c1; : : : ; cn

Include in the enclosing trait a trait with the traitBody

introduces

c1; : : : ; cn: ! S

succ: S ! S asserts

S generated by c1; : : : ; cn

equations

ci 6= cj

succ(ci) == ci+1

for 1 � i < j � n

32

� For each tuple of the form S tuple of f1: S1; : : : ; fn: Sn
Include in the enclosing trait a trait with the traitBody

introduces

[, : : :,]: S1; : : : ; Sn ! S

.fi: S ! Si

set fi: S, Si ! S

asserts

S generated by [, : : :,]

S partitioned by .f1; : : : ; .fn

8 s : S, x1, y1: S1; : : : ; xn, yn: Sn

[x1; : : : ; xi; : : : ; xn].fi == xi

set fi([x1; : : : ; xi; : : : ; xn], yi) == [x1; : : : ; yi; : : : ; xn]

for 1 � i � n .

� For each union of the form S union of f1: S1; : : : ; fn: Sn

Include in the enclosing trait a trait with the traitBody

S tag enumeration of f1, : : : ; fn
introduces

fi: Si ! S

.fi: S ! Si

tag: S ! S tag

asserts

S generated by f1; : : : ; fn

S partitioned by .f1; : : :, .fn, tag

8 x1: S1; : : : ; xn: Sn

fi(xi).fi == xi

tag(fi(xi)) == fi

for 1 � i � n.

� Finally, remove each shorthand.

33

Appendix I: Logical Details

A theory is a set of closed formulas (formulas without free variables) in typed �rst-order

logic with equality. Each theory contains the conventional axioms of typed �rst-order logic

with equality, and is closed under derivability with the conventional �rst-order rules of

inference, and thus is closed under the usual notion of semantic consequence.

Theories are formulated using a universal alphabet, rather than the smaller alphabets

occurring in individual traits, so that the schema associated with a generators does not

depend on the enclosing trait.

The universal closure of a formula P is 8x1; : : : ;8xnP , where x1; : : : ; xn are all the free

variables in P .

The substitution of a formula e for a variable x in a formula P , denoted by P [x e] , is

the result of simultaneously replacing every free occurrence of x in P by e, after renaming

the bound variables as needed to avoid the capture of free variables in e.

An example of the induction schema for \Set generatedby f g, insert" for a binary

predicate P , whose �rst argument is of sort Set, is the formula

8y
�
(8xP (x; y)) �

�
P (fg; y) ^ 8z8i(P (z; y)) P (insert(i; z); y))

��

The formula for \Setpartitioned by2" is

8x8y
�
x = y � 8i(i 2 x = i 2 y)

�

34

Appendix II: Lexical Structure

LSL was designed for use with an open-ended collection of programming languages, support

tools, and input/output facilities, each of which may have its own lexical conventions and

capabilities. To avoid conicts, LSL assigns �xed meanings to only a small number of

characters. To conform to local conventions and to exploit locally available capabilities,

LSL's character and token classes are open-ended, and can be tailored by initialization

�les.

There are several semantically equivalent forms of LSL. Any of these forms can be

mechanically translated into any other without losing information. Interchange form is

an encoding of LSL using a subset of the ASCII character set. Characters outside this

subset are represented by extended characters. Interchange form is the \lowest common

denominator" for LSL. Presentation forms are used in environments with rich sets of

characters, including this report. Interactive forms are used by Larch editors, browsers,

checkers, etc., for input and output.

Contiguous sequences of identi�er characters and contiguous sequences of operator

characters form single tokens. Whitespace characters are insigni�cant except for separating

tokens. Each of the remaining characters constitutes a separate token.

Character classi�cation: Each character (or extended character) is classi�ed as one of

idChar, opChar, whiteChar, extensionChar, or singleChar. whiteChar contains blank,

tab, and end-of-line. The required members of the other character classes are

idChar ABCDEFGHIJKLMNOPQRSTUVWXYZ

idChar abcdefghijklmnopqrstuvwxyz

idChar 0123456789

idChar

opChar � + � . = < = >

extensionChar n

singleChar , : ()

Unassigned characters can be assigned to any character class by a line in the initialization

�le like those above: the name of a class followed by characters to be assigned to it (possibly

separated by whiteChars). Assigned characters cannot be reassigned. Characters that have

not been explicitly assigned are classi�ed as singleChars.

Extended characters start with an extensionChar. If the character following the

extensionChar is an idChar, a comma, a colon, or a parenthesis, the extended character

includes all following contiguous idChars; otherwise it extends only through the next

character (which must be a visible character). The entire extended character is classi�ed

as though it were a character; if it has not been assigned, it is classi�ed as a singleChar.

35

Unlike other character classes, assignment of a new extensionChar returns the previous

extensionChar to unassigned status. Extended characters|even those classi�ed as

idChars|are not included in other extended characters.

The special class endCommentChar initially contains end-of-line. Any real character may

be assigned to this class, but extended characters cannot. It is the only character class

that is not disjoint from each of the others.

Token formation: Contiguous sequences of idChars and contiguous sequences of opChars

form single tokens. whiteChars are insigni�cant except for separating tokens. Each

singleChar constitutes a separate token.

Token translation: A token may be de�ned as a synonym for another token by including

a line in the initialization �le of the form

synonym oldToken newToken

All occurrences of newToken are translated to oldToken.

Token classi�cation: The initial members of the token classes are

quanti�erSym nforall

logicalOp nand nor nimplies

eqOp neq nneq

equationSym nequals

eqSepSym neqsep

selectSym nselect

openSym n(

sepSym n,

closeSym n)

simpleId n:

mapSym narrow

markerSym nmarker

commentSym ncomment

Unassigned tokens can be assigned to any token class by a line in the initialization �le

like those above: the name of a class followed by tokens to be assigned to it. Assigned

tokens cannot be reassigned. Any tokens in a trait that have not been explicitly assigned

are classi�ed according to the following rules:

� If the token is a sequence of idChars that occurs as a terminal symbol of the grammar

(a keyword), then that symbol.

� If the token is any other sequence of idChars, then simpleId.

36

� If the token is a singleChar that occurs as a terminal symbol of the grammar (comma,

colon, or parenthesis), then that symbol.

� If the token is a sequence of opChars, then simpleOp.

� If the token is an extended character starting with an opening parenthesis, such as

\n(large" , then openSym.

� If the token is an extended character starting with a comma, then sepSym.

� If the token is an extended character starting with a closing parenthesis, then

closeSym.

� If the token is an extended character starting with a colon, then simpleId.

� Otherwise, simpleOp.

If the token is classi�ed as a commentSym, then it and all following characters up through

the �rst occurrence of an endCommentChar are discarded, like whiteChars.

Initialization: The initialization �le is processed before any traits. The extensions on each

line are e�ective on all subsequent lines.

37

Sample initialization �les: The following initialization �le would be suitable for the

presentation form used this report.

idChar '

opChar : ! # $ & ? @ j 2

openSym [f h

sepSym ;

closeSym] g i

selectSym .

synonym nand ^

synonym nor _

synonym nimplies)

synonym nnot :

synonym neq =

synonym nneq 6=

synonym narrow !

synonym nmarker

synonym nequals ==

synonym ncomment %

38

The following initialization �le would be suitable for a form limited to the ASCII character

set, allowing upper-case reserved words.

idChar '

opChar � ! # $ & ? @ j

openSym [f n<

sepSym ;

closeSym] g n>

selectSym .

synonym nand &

synonym nor j

synonym nimplies =>

synonym nnot �

synonym neq =

synonym nneq �=

synonym narrow �>

synonym nmarker

synonym nequals ==

synonym ncomment %

synonym asserts ASSERTS

synonym assumes ASSUMES

synonym by BY

synonym converts CONVERTS

synonym else ELSE

synonym enumeration ENUMERATION

synonym equations EQUATIONS

synonym exempting EXEMPTING

synonym for FOR

synonym generated GENERATED

synonym if IF

synonym includes INCLUDES

synonym introduces INTRODUCES

synonym implies IMPLIES

synonym of OF

synonym partitioned PARTITIONED

synonym then THEN

synonym trait TRAIT

synonym tuple TUPLE

synonym union UNION

39

Appendix III: Grammatical Notation

j alternative separator

f e g e as a syntactic unit

db e ec optional e

e* zero or more e's

e*, zero or more e's, separated by commas

e+ one or more e's

e+, one or more e's, separated by commas

alpha the nonterminal symbol alpha

alpha the reserved word alpha

, : () the reserved comma, colon, and parenthesis characters

For readability of grammars throughout this report, certain tokens are used to denote

symbol classes|although these particular tokens are not reserved, and could be assigned

di�erently by an initialization �le. The correspondence is as follows:

. selectSym

! mapSym

markerSym

== equationSym

8 quanti�erSym

Acknowledgments

The Larch Shared Language has evolved over many years. We have freely borrowed the

best ideas we could �nd in other speci�cation languages, and have received helpful criticism

and suggestions from too many people to enumerate here. We are especially grateful for

long-term encouragement and advice from our colleagues at MIT and DEC/SRC and

from members of IFIP Working Group 2.3 (Programming Methodology). Martin Abadi,

Steve Garland, Bill McKeeman, Jim Saxe, and Jeannette Wing have made important

contributions to the recent evolution of the language.

Part of this work was supported at MIT by the Advanced Research Projects Agency of

the Department of Defense, monitored by the O�ce of Naval Research under contract

N00014-89-J-1988, and by the National Science Foundation under grant CCR-8910848.

40

References

[Bidoit 1988] M. Bidoit, The strati�ed loose approach: A generalization of initial and loose

semantics, Rapport de Recherche no. 402, Orsay, France, 1988.

[Burstall and Goguen 1980] R.M. Burstall and J.A. Goguen, \Semantics of CLEAR, a

Speci�cation Language," Proc. Advanced Course on Abstract Software Speci�cations, D.

Bjorner (ed.), Springer-Verlag Lecture Notes in Computer Science 86, pp. 292{332, 1980.

[Dahl, Langmyhr, and Owe 1986] O.-J. Dahl, D.F. Langmyhr, and O. Owe, Preliminary

Report on the Speci�cation and Programming Language ABEL, Research Report 106,

Institute of Informatics, University of Oslo, Norway, 1986.

[Ehrig and Mahr, 1985] H. Ehrig and B. Mahr, Fundamentals of Algebraic Speci�cation 1:

Equations and Initial Semantics, EATCS Monographs on Theoretical Computer Science,

vol. 6, Springer-Verlag, 1985.

[Garland, Guttag, and Horning 1990] S.J. Garland, J.V. Guttag, and J.J. Horning,

\Debugging Larch Shared Language Speci�cations," IEEE Trans. Software Engineering,

to appear; also available as Digital Equipment Corporation Systems Research Center

Report 60, 1990.

[Gaudel 1985] M.-C. Gaudel, \Towards Structured Algebraic Speci�cations," Esprit

Technical Week, Brussels, Esprit 85 Status Report, pp. 493{510, North-Holland, 1985.

[Goguen, Thatcher, andWagner 1978] J.A. Goguen, J.W. Thatcher, and E.G. Wagner, \An

Initial Algebra Approach to the Speci�cation, Correctness and Implementation of Abstract

Data Types," Current Trends in Programming Methodology IV: Data Structuring, R. Yeh

(ed.), pp. 80{144, Prentice-Hall, 1978.

[Guttag 1975] J.V. Guttag, The Speci�cation and Application to Programming of Abstract

Data Types, Ph.D. dissertation, Computer Science Department, University of Toronto,

Canada, 1975.

[Guttag and Horning 1978] J.V. Guttag and J.J. Horning, \The Algebraic Speci�cation of

Abstract Data Types," Acta Informatica, vol. 10, pp. 27{52, 1978.

[Guttag and Horning 1986] J.V. Guttag and J.J. Horning, \Report on the Larch Shared

Language," Science of Computer Programming, vol. 6, pp. 103{134, 1986.

[Guttag, Horning, and Wing 1985a] J.V. Guttag, J.J. Horning, and J.M. Wing, \The Larch

Family of Speci�cation Languages," IEEE Software, vol. 2, no. 5, pp. 24{36, 1985.

41

[Guttag, Horning, and Wing 1985b] J.V. Guttag, J.J. Horning, and J.M. Wing, Larch

in Five Easy Pieces, Digital Equipment Corporation Systems Research Center Report 5,

1985.

[Liskov and Guttag 1986] B. Liskov and J. Guttag, Abstraction and Speci�cation in

Program Development, MIT Press and McGraw-Hill Book Company, 1986.

[Sanella and Tarlecki 1987] D.T. Sanella and A. Tarlecki, \On Observational Equivalence

and Algebraic Speci�cations," J. Computer and System Sciences, vol. 34, pp. 150{178,

1987.

[Wand 1979] M. Wand, \Final Algebra Semantics and Data Type Extensions," Journal of

Computer and System Sciences, vol. 19, no. 1, pp. 27{44, 1979.

[Wirsing 1989] M. Wirsing, Algebraic Speci�cation, Technical Report MIP - 8914,

University of Passau, Germany, 1989.

42

LSL 2.3 Reference Grammar

trait ::= simpleId db (f name db : signature ec g+,) ec : trait
f shorthand j external g* opPart* propPart* db consequences ec

name ::= simpleId j opForm
opForm ::= if then else

j db ec f simpleOp j logicalOp j eqOp gdb ec
j db ec openSym db placeList ec closeSym db ec
j db ec . simpleId

placeList ::= f f sepSym j , g g*
signature ::= sort*, ! sort

sort ::= simpleId

shorthand ::= enumeration j tuple j union
enumeration ::= sort enumeration of simpleId

+,

tuple ::= sort tuple of �elds+,

union ::= sort union of �elds+,

�elds ::= simpleId
+, : sort

external ::= f includes j assumes g traitRef +,
traitRef ::= f simpleId j (simpleId

+,) g db (renaming) ec
renaming ::= replace

+, j name
+, f , replace g*

replace ::= name for name db : signature ec
opPart ::= introduces opDcl+

opDcl ::= name
+, : signature

propPart ::= asserts genPartition* eqPart
genPartition ::= sort f generated j partitioned g by operator

+,

operator ::= name db : signature ec
eqPart ::= db equations eqSeq ec f 8 varDcl+, eqSeq g*
varDcl ::= simpleId

+, : sort

eqSeq ::= equation f eqSepSym equation g*
equation ::= term db == term ec
term ::= logicalTerm j if term then term else term

logicalTerm ::= equalityTerm f logicalOp equalityTerm g*
equalityTerm ::= simpleOpTerm db eqOp simpleOpTerm ec
simpleOpTerm ::= simpleOp

+
secondary

j secondary simpleOp
+

j secondary f simpleOp secondary g*
secondary ::= primary j db primary ec bracketed db : sort ec db primary ec
bracketed ::= openSym db term f f sepSym j , g term g* ec closeSym
primary ::= f (term) j simpleId db (term+,) ec g f . simpleId j : sort g*
consequences ::= implies f traitRef *, genPartition* eqPart

j db traitRef+, genPartition+ ec eqSeq g conversion*
conversion ::= converts operator+, db exempting db 8 varDcl+, ec term+, ec

43

