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Abstract

Replication is an important technique for increasing computer system avail-

ability. In this paper, we present an algorithm for replicating stored data

on multiple server machines. The algorithm organizes the replicated servers

in a master/slaves scheme, with one master election being performed at the

beginning of each service period. The status of each replica is summarized

by a set of monotonically increasing epoch variables. Examining the epoch

variables of a majority of the replicas reveals which replicas have up-to-date

data. The set of replicas can be changed dynamically. Replicas that have

been o�-line can be brought up to date in background, and witness replicas,

which store the epoch variables but not the data, can participate in the

majority voting. The algorithm does not require distributed atomic trans-

actions. The algorithm also permits client machines to cache copies of data,

with strict cache consistency being ensured by having the replicated servers

keep track of which clients have cached what data. The work reported in

this paper is part of an ongoing project to build a new replicated distributed

�le system with client caching, called Echo.
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1 Introduction

As a distributed system grows, it tends to become less and less consistently

available, because more and more di�erent services running on di�erent

machines become vital to its function. At SRC, for example, the bootstrap

service, the time service, the name service, and one or more �le servers are

all needed in the course of a typical user's working day, and the failure of

any one of them can interrupt his progress. Nettled by this sort of problem,

Leslie Lamport once de�ned a distributed system as a system in which the

failure of a computer one has never heard of can make it impossible to get

work done.

One way to combat this problem is to replicate the system's vital

services|to construct each service from multiple interchangeable replicas,

so that the service as a whole continues functioning even when some of the

replicas are down. Today, SRC's bootstrap service, time service, and name

service [3, 20] are replicated, and a small portion of the shared �le system

is also replicated in an ad hoc manner. The main di�culty in building such

replicated services is keeping the replicas mutually consistent in spite of

crashes, network partitions, malicious or bug-ridden clients, and the like.

The di�culty increases with the amount of replicated state and the strict-

ness of the consistency requirements; the examples above are listed in order

of increasing di�culty. We have recently begun to work on a yet more di�-

cult case of replication, a new �le system (called Echo) in which all �les are

replicated, with guaranteed consistency even during updates.

This paper reports an early result of our work on Echo|the basic repli-

cation and caching algorithms. In our early design work, we wanted to

abstract away the well-known problems that are common to all �le systems,

focusing instead on the problems of replication and caching. Therefore, we

began by designing and implementing not a replicated, cached �le system,

but a replicated, cached array of integers. This e�ort has resulted in repli-

cation and caching algorithms that we have been able to extend and apply

to the full �le system.

In the remainder of this section we de�ne the array interface, describe

our system structure, and present an overview of the replication algorithm.

Safety and progress conditions are given, and related work is surveyed.

Section 2 develops the replication algorithm in detail, and Section 3 adds

caching by client machines. Some extensions to the basic algorithms are

presented in Section 4. Section 5 gives a summary and current status.
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1.1 The Ar interface

Figure 1 gives the client interface to our replicated array of integers in

Modula-2+ syntax [25]. We call the interface Ar|short for Array.

SAFE DEFINITION MODULE Ar;

TYPE

Index = [1..100];

EXCEPTION

ServiceUnavailable, LostUpdates;

PROCEDURE Get(i: Index): INTEGER

RAISES {ServiceUnavailable};

PROCEDURE Set(i: Index; value: INTEGER)

RAISES {ServiceUnavailable};

PROCEDURE Sync()

RAISES {ServiceUnavailable, LostUpdates};

END Ar.

Figure 1: The Ar interface.

Informally, the semantics of this interface are as follows. The Ar service

implements an array of integer variables with index ranging from 1 to 100.

The call Ar.Get(i) returns the current value of the array element i, while

the call Ar.Set(i, value) sets the value of element i to value. To the

clients, there appears to be a single copy of the array, even though its im-

plementation is replicated and the clients themselves run on many di�erent

machines. In other words, we obey one-copy serializability , meaning that

the e�ect of a set of updates and queries on the replicated data is the same

as the e�ect of applying the same set of updates and queries to a single copy

of the data in some total order consistent with the partial orders seen by

the clients [1, pp. 265{266].

The Ar.Sync procedure is present in this interface because we wanted
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to study the implementation and semantics of write-behind in our work on

Ar. If write-behind is allowed, a call to Ar.Set(i, value) enqueues a new

value to be written to the ith array element and immediately arranges that

subsequent calls to Ar.Get(i) will return the new value, but it does not

guarantee that the new value is stable. An inopportune crash may cause

the new value to be forgotten, in which case the modi�ed element reverts

to its previous value. Whenever a client's call to Ar.Sync returns without

raising an exception, Ar guarantees that the values written in all the client's

calls to Ar.Set since the last previous Ar.Sync are stable, but if Ar.Sync

raises the exception LostUpdates, one or more of the values written may

have been lost. For the remainder of this section and in our discussion of

replication (Section 2), we ignore the Ar.Sync procedure and assume that

Ar.Set writes new values stably. We discuss write-behind together with

caching, in Section 3.

Any of the routines in Ar can raise the exception ServiceUnavailable,

which means that, despite its replication, the Ar service is at present un-

available to the caller.

Besides Ar, the service also exports an interface called ArConfig, which

contains routines for recon�guring the Ar implementation by adding or delet-

ing replicas. These routines are discussed in Section 2.5.

1.2 System structure

Figure 2 shows the general structure of our replicated Ar implementation

and gives the names of the components.

Shown at the bottom of the �gure are several server machines. Each

server machine has some private stable storage, writable storage that is

highly likely to retain its contents across server crashes and restarts|a disk,

for instance. The server can alter any set of bytes in stable storage in a sin-

gle atomic operation|either all or none of the write is completed, even if

the server crashes while the write is in progress. We assume that it is im-

possible for an unauthorized machine to impersonate a server.1 Each server

machine runs a software module called a replica, which manages a copy of

the replicated array on the stable storage device.

Shown at the top of the �gure are several client machines. Each can

run client programs that use the Ar service. All the client programs on a

machine call a clerk module on that machine that handles the details of

1The authentication mechanism needed to accomplish this is beyond the scope of this

paper.
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communicating with the replicas. The clerk is also responsible for managing

the client machine's cache.

The client and server machines are fully interconnected by a network.

Both client and server machines have clocks that can be used to measure

time intervals or trigger events.

1.3 Algorithm overview

Our replication algorithm is based on master election. At any moment,

the system either has exactly one master replica, or is trying to elect one.

To be elected, a potential master must persuade a majority of the replicas

(counting itself) to be its slaves. Normally, the slaves are exactly those

replicas that are up and in communication with the master; whenever a

replica crashes or an unenslaved replica comes up, a new election is held

to reestablish this condition. Each election is followed by a recovery phase,

in which the master ensures that its slaves agree with it on the current

value of the replicated data. Once recovery is complete, the system resumes

providing service to its clients, until the next election is triggered.

The master coordinates all operations. Each Ar.Set request passes from

the calling client, through its clerk, to the master, and from there to all

slaves. Each Ar.Get request passes from the client and clerk to the mas-

ter, which satis�es it directly. (The caching and write-behind mechanism

described in Section 3 allows most of a client's requests to be satis�ed di-

rectly by its clerk, but cache misses and write-backs still follow this protocol.

Section 4.1 extends the protocol to allow clerks to read from slaves.)

1.4 Safety and progress conditions

In this section we specify the fault tolerance of our algorithm by giving a set

of conditions that the system components are required to meet; all \faults"

that do not violate these conditions are tolerated. The conditions fall into

two groups: those required in order for our implementation to behave cor-

rectly, called safety conditions, and those required for it to accomplish useful

work, called progress conditions. If the safety conditions are violated, the

implementation is free to do anything. Whenever the progress conditions

are violated, the implementation is free to provide no service, but is not free

to give wrong answers.

More precisely, we think of a fault-tolerant algorithm as a black box

whose inputs are client requests and hardware component status (up, down,
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or faulty), and whose outputs are responses to client requests. The algorithm

has a speci�cation that determines which possible responses are correct; for

Ar, we have given the speci�cation informally in Section 1.1 above. The

safety conditions de�ne a predicate S on the system's hardware status (con-

sidered as a function of time), with the property that if S is true, client

requests can never return incorrect responses; they either return correct re-

sponses or block forever. The algorithm's speci�cation also identi�es some

correct responses as normal and some as exceptional (i.e., undesirable); for

Ar, responding without raising an exception is normal, while responding

with an exception is exceptional. The progress conditions de�ne a time-

dependent predicate P on the system's hardware status, with the property

that for any client request r submitted from client machine m at time t,

there exists a time t0 such that if P is true throughout the time interval

[t; t0], then the system gives a normal response to the request at t0. There

need be no way to determine t0 in advance; this de�nition merely says that

the request will complete normally in �nite time if the progress predicate

remains true continuously until the request completes.

Safety conditions. The safety predicate S for our Ar algorithm is the

conjunction of the following conditions S1{S4, which must hold on every

client and server machine at all times.

S1. The machines are fail-stop. That is, at any moment, each ma-

chine is either up or down. While a machine is up, it executes the correct

algorithm|it does not exhibit Byzantine faults.2 (However, we do not as-

sume anything about the speed at which a machine executes its algorithm;

in fact, if the algorithm is multithreaded, we allow each thread to be exe-

cuted at arbitrary speed.) When a machine goes down (crashes), it ceases to

update its stable storage or send messages to the network. When a machine

comes up (restarts), it sets its volatile state to some predetermined, �xed

value and resumes executing its algorithm.

S2. While a machine is up, its clock runs at approximately the rate of

real time. That is, there is a constant �� 1, such that if Cp(t0) and Cp(t1)

are the readings of machine p's clock at times t0 and t1 respectively, and p

is up for the entire interval [t0; t1], then

1� � <
Cp(t1)� Cp(t0)

t1 � t0
< 1 + �

2A Byzantine fault is an arbitrary, perhaps even malicious failure of a system compo-

nent; the term was coined by Lamport [18].
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.

S3. A stable storage read either returns the results of the most recent

write to the same stable storage cell, or raises an exception. A stable storage

write either succeeds or raises an exception.3

S4. The network may duplicate, arbitrarily delay, or fail to deliver any

message, but it does not alter or spontaneously generate messages.

Progress conditions. The progress predicate P for our Ar algorithm is

the conjunction of the following conditions P1{P8, together with the safety

predicate S. Recall that P is time-dependent|the systemmakes progress on

an operation r submitted by machine m at time t when all these conditions

are true, but may fail to make progress when any are false. We have cut a

corner here by mentioning the system's internal state in P4; in principle we

should replace this condition with one that mentions only previous hardware

states and implies P4, but doing so would be cumbersome.

P1. Network connectivity is static and transitive. To de�ne these terms,

we �rst say that machines p and q are connected if all messages sent by p

to q or by q to p are delivered within tnet seconds. Machines p and q are

disconnected if no messages sent by p to q or by q to p are ever delivered.

Network connectivity is then static if for all pairs of machines (p; q), either

p and q are connected or they are disconnected. Connectivity is transitive

if whenever p and q are connected, and q and r are connected, then p and r

are also connected.

There is a set U of client and server machines such that:

P2. U contains a majority of the server machines.

P3. Stable storage operations on the server machines in U raise no

exceptions.

P4. U contains at least one server with an up-to-date version of the

array in its stable storage.

P5. The client machine m is in U .

P6. All members of U can complete any computation needed for the Ar

algorithm within some �xed time tproc.

P7. All pairs of machines in U are connected (as de�ned in P1).

P8. No message from a machine not in U arrives at a server machine in

U .

3In our replication algorithm, if a read or write to a replica's stable storage raises an

exception, the replica halts and never restarts.
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In an actual installation, the number of server and client machines, the

speed of the machines, and the speed of the network determine the values of

tnet and tproc. The reader should think of these values as being on the order

of a second. Also, at most on the order of ten seconds of progress should be

required to complete any operation requested.

These conditions are of course stricter than necessary. In P8, for exam-

ple, we need only require that members of U receive no \confusing" mes-

sages, such as a message from a server not in U that triggers an election.

But this condition is more di�cult to formalize than the one given.

Byzantine client machines. Besides the form of safety we have just

de�ned, our algorithm has another important safety-related property. Al-

though condition S1 requires that all machines in the system be fail-stop at

all times for the system to be safe at any time, our algorithm can in fact

recover from transient Byzantine faults on client machines. The structure of

the Ar algorithm makes it possible to model a Byzantine client machine as a

non-faulty machine running a pseudo-client program that injects arbitrarily

chosen Ar.Set requests into the system. Such pseudo-clients cause the real

clients to see results that do not match the speci�cation|but if the pseudo-

clients are counted in with the real clients, the system's behavior is once

again consistent with the speci�cation. This property is useful because, at

any future time when there are no client machines experiencing Byzantine

faults, there are no pseudo-clients, and the real clients again see behavior

that is consistent with the speci�cation (though the values stored in the Ar

array can have been changed arbitrarily during the faulty period).

The Echo �le system has a similar but stronger property. Again, if a

client machine is Byzantine, the only damage it can do to the system is

to e�ectively inject requests from pseudo-client programs. But Echo makes

use of an authentication service to guarantee that the servers will reject any

such request unless it is made on behalf of a user who has actually logged

into the Byzantine machine, and unless it requests an action that that user

is authorized to perform.

Comparison with Byzantine fault model. Let us compare our fault

model with the model used in the Byzantine agreement problem [9, 18].

Our fault model treats problems with the network explicitly, and our

algorithm is safe provided that the network does not alter or spontaneously

generate messages (condition S4). In the Byzantine approach, on the other

8



hand, the network is modeled as being fault-free. Thus, when a Byzantine

algorithm is implemented on a physical network that is subject to faults, a

network fault must be modeled as a (Byzantine) fault in the machine that

sent (or was to receive) the a�ected message. But because a Byzantine

machine is free to do anything, Byzantine algorithms give no guarantees

about the results that faulty machines achieve.

Our fault model is more restrictive than the Byzantine model|we permit

only fail-stop crashes and timing faults.4 We gain a great deal by making

this restriction. Our algorithm guarantees safety in spite of any number of

network or server faults including partition, yet it requires only one round

of messages per Ar.Set during normal operation. A server that comes up

again after a crash can be assumed not to have corrupted its stable storage

(as it could have, had its fault been Byzantine), so it can quickly catch up

to the current state rather than having to start from scratch.

Moreover, although Byzantine faults do happen occasionally in real sys-

tems, we believe there is little to be gained from attempting to tolerate those

that do occur, at least in the replicated servers of a system like ours. We ex-

pect our servers to be physically secure, to run on reasonably well debugged

hardware, and to run identical software on each replica. Physical security

makes malicious server faults unlikely. With hardware that has advanced

beyond the experimental stage, Byzantine hardware faults are also unlikely.

(In our experience, most hardware bugs manifest themselves as crashes in

any case.) This leaves software bugs as the most likely cause of Byzantine

faults. But seeing that all the servers are running the same software, any

bug present in one is present in all, so there is little hope of tolerating it

through replication.

We have, however, made the e�ort to tolerate Byzantine faults in client

machines (in the weak sense described above), because our assumptions

about client machines are di�erent from our assumptions about servers. We

do not expect client machines to be physically secure or under centralized

control; their users are free to run modi�ed, perhaps even malicious versions

of the clerk software. This assumption has put some constraints on our

design|for example, it dictated the data ow on Ar.Set operations. We

could not let the clerk broadcast operations directly to all replicas, because

a Byzantine clerk might send di�erent messages to di�erent replicas, causing

4A timing fault is a failure to perform an action within the time that it was supposed to

be performed, for example, taking longer than tnet seconds to deliver a message (progress

condition P1 above).
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their copies of the data to diverge. This problem could be avoided by using

a Byzantine broadcast protocol, but we chose instead to save on messages

by making use of our assumption that servers do not incur Byzantine faults.

1.5 Related work

We begin by reviewing three alternative approaches to implementing repli-

cation: multi-site atomic transactions, reliable atomic broadcast, and Lam-

port's state-machine approach. We then examine the tradeo� between con-

sistency among replicas and availability. We close by discussing related work

in election and caching.

Much of the existing work on replication employs multi-site atomic trans-

actions as a building block: the existence of a multi-site atomic transaction

facility is assumed, and replication is then built on top of it. This work

includes that of Gi�ord [10] and most of the work surveyed in Chapter 8

of Bernstein et al. [1]. Our algorithm does not use multi-site transactions,

because we were unwilling to pay the cost of running a multi-site atomic com-

mit protocol for each replicated update. The most popular such protocol,

two-phase commit, requires two rounds of messages per commit and blocks

if the coordinator crashes or becomes unavailable at the wrong moment [1,

pp. 226{236]. Another well-known protocol, a version of three-phase com-

mit [1, pp. 256{259], is similar to our algorithm in its fault tolerance and

blocking properties|roughly speaking, it is nonblocking as long as a ma-

jority of sites are up and communicating|but it requires three rounds of

messages per commit, even in the absence of faults. In contrast, our al-

gorithm requires only one round of messages per commit in the absence of

faults. This is possible because our algorithm solves an easier problem: in

our application, a replica never chooses to vote \no" on a proposed update,

so aborts are caused only by faults.

Some replication work has taken the approach of building reliable atomic

broadcast mechanisms and then layering replication on top of them [2, 5, 6,

21]. We are not attracted by this approach, because the broadcast mecha-

nisms require several rounds of messages and/or a time delay before comple-

tion, and because this approach pushes the membership problem (reaching

agreement on the set of sites that are up and should receive broadcasts) down

into a lower layer, where its solution requires another elaborate mechanism.

Lamport [15] has proposed a general state-machine approach to replicat-

ing state in a distributed system. Each participating process runs its own

copy of an application-speci�c state machine, while a general distributed al-
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gorithm provides the same sequence of events to each process so that consis-

tent state transitions are triggered on each. Lamport has described two dif-

ferent fault-tolerant algorithms for communicating events in this approach|

one based on a solution to the Byzantine generals problem [16], the second

related to three-phase commit [17] and inspired in part by the Ar problem.

The former algorithm is closely related to the atomic broadcast methods just

discussed and similar comments apply. The latter algorithm, in its basic ver-

sion, does not meet our requirements for Ar|both reads and writes require

communicating with all replicas|but Lamport's paper describes some elab-

orations to the algorithm that seem to make it usable as an alternative to

ours.

Our replication semantics are strict, in that we obey one-copy serializ-

ability. When replicas may be partitioned by communication faults, adher-

ing to one-copy serializability e�ectively forbids providing service in more

than one partition; otherwise, inconsistent updates could be performed in

the di�erent partitions. Like Thomas [26], we enforce this prohibition by

requiring that a majority of replicas be up and in communication in order

to provide service. Gi�ord generalized this majority consensus technique

to quorum consensus, which permits trading o� the number of replicas re-

quired for di�erent operations; however, some operations still require more

than one replica, so full service cannot always be provided [10]. It seems

feasible to generalize our algorithm to use quorums as well, but we have not

felt the need to do so.

Some work on replication has deliberately chosen looser replication se-

mantics, accepting forms of consistency between replicas that are weaker

than one-copy serializability, in order to achieve higher availability [7, 20,

24, 27]. Service may be provided with only one replica, and conicting up-

dates in di�erent partitions are possible. Whether this tradeo� between

data consistency and availability is acceptable is application-dependent. We

prefer our stronger consistency semantics for a �le system, because we see no

way to resolve conicting updates after partitions are reconnected without

massive human or application assistance. For a name service [20], on the

other hand, we believe that looser consistency semantics are acceptable|

because the update rate is relatively low, most updates are made by system

administrators, and much of the information may be structured as hints [19],

which are explicitly permitted to be wrong. A survey of approaches to the

problem of providing service while partitioned and coping with inconsisten-

cies may be found in Davidson et al. [7].

Our algorithm uses an election to choose a master replica that has control
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of a majority. Elections have been widely studied [8]. Our election algorithm

permits replicas to be added to or removed from the replica set; these oper-

ations are integrated with the election algorithm because they a�ect what

it means to have a majority. (In most other work, changes to the replica

set are made using multi-site atomic transactions.) Some researchers have

explored a technique called dynamic voting, in which replicas that are down

or not in communication with the majority are automatically removed from

the replica set and can be automatically reinserted once they resume com-

munication [13]. We have not adopted dynamic voting because the bene�ts

it gives in return for its extra complexity are not compelling.

Our work incorporates a distributed caching algorithm, in which servers

keep track of which client machines have cached what data and call them

back when their caches must be invalidated. The algorithm is similar in

many respects to those of the Andrew [12, 14] and Sprite [22] systems, and

to one advanced by Burrows [4].

2 Replication Algorithm

We describe the replication algorithm in detail in this section. We begin by

outlining the phases that the algorithm goes through in its operation and the

states that each replica can be in, then go on to discuss each phase in turn.

Initially, we give a simpli�ed version of the algorithm that assumes the set of

replicas is static and known to all replicas and clerks, but in Section 2.5, we

explain how the full algorithm permits the set to be safely changed during

operation. In Section 2.6 we describe how clerks �nd the current master and

what they do when masterhood changes.

2.1 Phases and states

At any moment, a system running the Ar replication algorithm is in one of

three global phases|Service, Election, or Recovery|as shown in Fig-

ure 3.

The system is normally in the Service phase, accepting and processing

requests from clients.

The system moves to the Election phase whenever service is interrupted

by the failure or recovery of a replica or the network. During this phase,

the replicas hold an election to assemble a majority and choose one of their

number as master.
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RecoveryElection

Figure 3: Phases in the replication algorithm

When an election succeeds, the replicas that participated in it are called

active replicas, and the algorithm moves on to the Recovery phase. During

recovery, the master directs the system in two interwoven tasks. First, the

active replicas reconcile any di�erences among their copies of the data. Sec-

ond, each active replica advances a set of epoch variables it holds in stable

storage, so that inactive replicas can be identi�ed as out-of-date during the

next election. When these tasks have succeeded, the system reenters the

Service phase.

Because the Ar replication algorithm is distributed and fault-tolerant,

there is no single place where one can look to determine what phase it is in

at any given moment. Rather, the phase at any given moment is a function

of the states of all the replicas. There are �ve states a replica can be in,

illustrated in Figure 4 and listed below.

� Free. A replica in the Free state is not a slave to any replica. A free

replica continuously runs the Ar election algorithm, and moves into

the PotentialMaster state if the algorithm computes that it is the

best candidate for master. While running the election algorithm, a
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free replica moves into the Slave state if it receives an IAmMaster call

from another replica.

� Slave. A replica in this state has agreed to be a slave to another

replica. When a replica agrees to be a slave, its agreement lasts for

MasterTimeout seconds as measured on its own interval timer, where

MasterTimeout is a value known to both the slave and its master. If

the agreement expires without having been renewed by the master, the

replica reenters the Free state. A slave must be sure not to violate its

agreement even if it crashes.5

� PotentialMaster. A replica in this state is busy collecting slaves,

trying to become master. It enters the RecoveringMaster state if it

succeeds, the Free state if it fails.

� RecoveringMaster. A replica in this state has convinced a majority

of the replicas to be its slaves. It is now the one and only master.

While in this state, the master directs the recovery phase of the Ar

algorithm. It moves to the ServingMaster state if recovery succeeds,

the Free state if it fails.

� ServingMaster. A master replica in this state is ready to provide

service. It returns to the Free state if it detects a failure.

The overall system is thus in the Service phase if there is any replica

in the ServingMaster state, in the Recovery phase if there is a replica in

the RecoveringMaster state, and otherwise in the Election phase.

2.2 Service

During normal service, the clerks pass on to the master all read and write

requests that they cannot handle using their local caches. The master han-

dles read requests simply by reading its own stably-stored copy of the array

and returning the value to the requesting clerk. When the master receives

a write request, it assigns the request a sequence number, then passes the

request on to all the active replicas in parallel (including itself). The repli-

cas respond to the master only after they have recorded the write on stable

storage, and the master responds to the clerk only after all replicas have

responded.

5Therefore, when a crashed replica comes back up, it remains dormant for Master-

Timeout seconds before beginning to run the Ar algorithm.
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The master and slaves use multiple threads of control to accept read and

write requests, so at any moment several may be in progress concurrently.

We require the results of concurrent Ar.Get and Ar.Set operations to be

the same as if the operations were serialized in some total order consistent

with the partial orders seen by each client.6 Operations that overlap in time

can be serialized in any order; in other words, when a call to Ar returns, the

caller knows only that the results reect the state of the array at some time

during the interval between the call and the return.

To improve performance during the Service phase, the master does not

use an atomic commit protocol to forward writes to its slaves; it simply

makes a remote procedure call to each one and waits for them to respond.

We say a write is committed when it is stably recorded by the current master

and all its slaves. A committed write is never undone. Clearly, if a crash

occurs while writes are in progress, some replicas may have one or more un-

committed writes recorded on their stable storage when the system enters

the Election phase. Uncommitted writes are reconciled|either committed

or backed out on all replicas|during the Recovery phase. (The choice to

commit or back out is made nondeterministically.) To support reconcilia-

tion, each replica must know which of the writes it has carried out may be

uncommitted, and must have logged enough information to back them out

locally or push them forward on other replicas that have not seen them.

To limit the space taken up by logs, we limit the number of concurrent

writes that the master may have in progress during the Service phase to

an agreed-on value called NInProgress . The master blocks requests with

sequence number s or greater until all requests numbered s � NInProgress

or earlier have completed.

Before a master can safely handle a read request, it must make sure that

it is still the master|that it is in fact recognized as master by a majority

of the replicas. To permit this without requiring the master to contact

its slaves on every read request, we use slavery agreements that are valid

for a known length of time. When a replica becomes a slave, it agrees to

remain enslaved to the same replica for at least MasterTimeout seconds,

a time known to both the master and slave. Periodically throughout the

Recovery and Service phases, the master calls each slave to renew its

agreement. Just before the master responds to a read request, it reads its

local clock and veri�es that its slavery agreements are all still valid as of

6In fact, Ar.Set operations that reach the master and become committed are serialized

in the order of their sequence numbers.
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that time.7 Thus, the result it returns is correct as of that time.

The system leaves the Service phase and enters the Election phase

whenever there is a change to the set of replicas that the master is able to

exchange messages with. How are such changes detected? As just described,

the master periodically calls its slaves to renew their agreements, and of

course it also calls them frequently to propagate writes. If any of these

calls fail, the master stops providing service, enters the Free state, and

begins running the election algorithm. In addition, the master periodically

attempts to call each of the replicas that is not currently its slave. If any of

these calls succeed, again the master enters the Free state and begins a new

election. Finally, whenever a replica's slavery agreement times out without

having been renewed, that slave enters the Free state and begins running

the election algorithm.

The length of time for which slavery agreements are renewed by each call

(MasterTimeout) must be chosen carefully. Increasing the timeout causes

the master to poll less often, reducing the load on the servers and the net-

work, but it increases the time needed for the slaves to detect that the master

has failed and elect a new one. We believe a timeout of about one second

will be appropriate for our �le system.

Pseudo-code for the Service phase. The following pseudo-code sum-

marizes the master's operation during the Service phase. All the variables

mentioned in the code are local to the master. The set of active replicas (the

master and its slaves) is called Active, while Replicas is the set of all repli-

cas, active or not. Two other sets are also used in the PreserveAgreements

code: Con and Slaves . Con is the set of replicas that this replica succeeded

in contacting on its last try, while Slaves is the set of replicas that are its

slaves (including itself). In the Service phase both these sets are equal to

Active, but the PreserveAgreements process also runs during other phases

of the algorithm.

As stated in Section 1.4 (safety condition S2), we assume the di�erence

in running rate between any replica's clock and real time is bounded by a

small constant �. Violation of this bound can result in incorrect operation:

replica p may believe that replica q is its slave, while at the same time replica

q, believing its agreement with p has expired, takes on a di�erent master.

The code also uses  as a bound on the time for the master to make a remote

7Note that the master must allow for the possibility that the slaves' clocks have been

running slightly faster than its own, within the bound � de�ned in Section 1.4.
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procedure call on a slave, but this bound is not necessary for correctness; if

it is violated, at worst an unnecessary election is triggered.

procedure Read(i)

(* Called remotely by clerks *)

if not StillMaster() then

RestartElection();

raise exception NotMaster;

end if;

return Ar[i];

end Read;

procedure Write(i; val)

(* Called remotely by clerks *)

if not StillMaster() then

RestartElection();

raise exception NotMaster;

end if;

parfor s 2 Active do

try

SlaveWrite(s; i; val);

on exception

RestartElection();

raise exception Failed;

end try;

end parfor;

end Write;

procedure StillMaster

t := current time on local clock;

for s 2 Slaves do

if slaveryEnds[s] < t then return false;

end for;

return true;

end StillMaster;

procedure RestartElection

myState := Free;
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stop process PreserveAgreements;

stop process Recovery;

start process Election;

end RestartElection;

process PreserveAgreements

loop

t := current time on local clock;

c := t+ (MasterTimeout � (1� 2�));

parfor s 2 Slaves do

try

RenewAgreement(s;MasterTimeout);

on exception

RestartElection();

exit process;

end try;

slaveryEnds[s] := c;

end parfor;

parfor s 2 (Replicas � Con) do

if AreYouThere(s) then

RestartElection();

exit process;

end if;

end parfor;

pause until time c� ;

end loop;

end PreserveAgreements;

2.3 Election

In the Election phase, the replication algorithm's goal is to choose a master

that is up, up-to-date, and able to gather at least a majority of all the

replicas (counting itself) as slaves. A replica is up-to-date if it has applied

every committed write operation to its stably-stored copy of the array. (As

was explained in Section 2.2, a write operation becomes committed if either

(1) it completes successfully during a Service phase, or (2) it is started but

not completed during a Service phase, and a subsequent Recovery phase
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decides to commit it as part of reconciliation.)

There are three reasons why we require the elected master to be up-

to-date. First, since the master must be up-to-date to do its job in the

Service phase, the system can go into service more quickly if it elects a

master that is already up-to-date than if it must take the time to bring the

master up-to-date. Further, if the master is known to be up-to-date while it

is directing reconciliation, the other replicas can simply update themselves

from it. Finally, when we extend the algorithm to allow changing the replica

set (Section 2.5), it will be convenient to require that the master's view of

the replica set be up-to-date. Doing so permits us to reconcile the sets seen

by the various replicas by imposing the master's view on all of them, and

also makes it easy to ensure that a replica that has been deleted from the

set is not elected master.

Epochs. Our algorithm determines which replicas are up-to-date using a

set of four epoch variables kept in stable storage on each replica.8 The epochs

are examined during Election to �nd an up-to-date master, then advanced

during Recovery to show which replicas are up-to-date as of the new epoch.

Before going into the other details of the Election and Recovery phases,

we give a general explanation of how epochs work in the next few paragraphs.

The most basic of the four epochs is the service epoch. During recovery,

after the active replicas have reconciled their copies of the array so they are

all up-to-date, they advance their service epochs to a new, common value,

larger than any that has ever been used before. Meanwhile the service

epochs of the inactive replicas remain as they were, so the active replicas

are now marked as having more recent data. The set Active is required to be

a majority, and entry to the Service phase fails (triggering a new election)

if any member of Active is unable to advance its epoch.

Now, consider the following proposition P :

Let M be any set containing a majority of the replicas, and let

maxService(M) be the largest service epoch of any replica in

M . Then every replica r with service(r) � maxService(M) is

up-to-date.

It is easy to see that this proposition is true immediately after a transition

to the Service phase with Active = A: First, the sets M and A must

8The epoch variables themselves are not in any sense \replicated"; each replica has its

own epochs, applying only to itself.
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overlap, because both are majorities; further, each member of A is up-to-

date; and �nally the members of A have larger service epoch numbers than

any other replica. So any replica with service(r) � maxService(M) must be

a member of A, and hence up-to-date.

Moreover, P remains true throughout the Service phase and the fol-

lowing Election phase, because the variables it talks about|service epochs

and which replicas are up-to-date|do not change during these phases.

In fact, P remains true at all times, even when a Recovery phase

changes some replicas' service epochs but fails to bring the system into

the Service phase. Suppose that in some election, P is true and is used

to choose an up-to-date replica r. Before the Recovery phase alters any

replica s's service epoch, it �rst brings s up-to-date (by reconciling it with

r); it then increases s's service epoch to the new value selected for this re-

covery. This action obviously cannot make any replica other than s appear

up-to-date according to P (since it cannot reduce maxService(M) for any

M), and it is correct for it to make s itself appear up-to-date. So once P has

become true, it remains true every step of the way, regardless of whether

recovery succeeds or fails. (P is true when a new system is �rst turned on

because at that time all replicas are up-to-date.) Therefore the Election

phase can always use P to choose an up-to-date master.

We have glossed over one point, however|how do the replicas choose

a new epoch value larger than any that has ever been used before? It is

not su�cient for the new value to be larger than what was used for the

last successful recovery. Like data writes, new epoch values are passed from

master to slaves non-atomically, so a failure during recovery can leave a

minority of replicas with the new service epoch|call it e. A later election

could then gather a majority that does not include any of those replicas.

Yet a new epoch larger than e must be chosen for the subsequent recovery,

or the failed replicas will falsely appear up-to-date if they are up during the

next election.

To solve this problem, we introduce a second epoch variable on each

replica, called the big epoch. Choosing a new epoch then becomes a two-

phase process. First, the master computes newEpoch = maxfbig(r) : r 2

Activeg + 1. Then, for each replica r in Active, the master sets big(r) to

newEpoch. Only after this succeeds on all replicas in Active does the master

begin advancing the service epochs, using newEpoch as the new value. Thus

the new value, though it may be less than big(s) for some replica s not in

Active, is larger than service(s) for any replica s.

Our epoch algorithm is now correct, but recovery is too slow. With the
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algorithm as described so far, a slave's data must be fully reconciled with

the master's before the slave's epoch can be updated, and all slaves must be

updated before the system can go into service. We would prefer an algorithm

that brings the system into service more quickly, reconciling slaves that are

far behind the master in the background, while service is being provided.

This is not important for an array of 100 integers, of course, but we are

looking ahead to the needs of a real �le system with gigabytes of on-line

data, where reconciling a replica that is far behind the master could take

many minutes.

We can make this improvement by introducing a third epoch variable, the

data epoch. A replica r's data epoch holds the epoch value of the most recent

Service period in which r was up-to-date, while r's service epoch holds that

of the most recent Service period in which r was active. During recovery,

if a slave is found to be far out-of-date, its reconciliation is handled by a

separate process that is forked from the main thread of recovery. The slave's

service epoch is set to newEpoch when the master takes the system into the

Service phase, but its data epoch is advanced only after its reconciliation

is complete.

With this change to the epoch scheme, the eligibility test for masterhood

becomes more complicated. In place of just picking the largest service epoch

of a majority, we must require that the master r have data(r) = service(r) as

well, so that replicas that crashed while being reconciled are excluded. Note

that, although there is always at least one up-to-date replica in the system

(the last replica to have been master, for instance), it is now possible for a

majority of the replicas to be up and connected, but for none of them to be

up-to-date. In this case, no master can be elected until an up-to-date replica

joins the connected majority. Thus, adding the data epoch has reduced the

algorithm's fault tolerance in return for faster recovery.

The data epoch has one additional bene�t; it allows us to introduce

witnesses into the replica set [23]. A witness is a replica that does not keep

a copy of the array, but participates in the election algorithm to break ties.

Such replicas have a data epoch of zero at all times, and writes are not

sent to them. A system con�guration containing only two replicas becomes

feasible with the addition of a witness.9

One problem remains with the algorithm as described so far|faults dur-

ing recovery can reduce the set of replicas that appear up-to-date and are

9A witness replica does not require a dedicated host machine; it can be run on a host

that is also a platform for other services.
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eligible to be master. Suppose there is a crash while the service epochs

are being advanced to a new value e, so that the epochs of some repli-

cas are advanced while others are not. If the participants in the next

election include any replicas whose epochs were advanced to e, only those

replicas can be eligible for masterhood|the others will appear out-of-date,

even though no writes were actually performed during epoch e. Now, if

all the replicas with service epoch e are witnesses (or out-of-date replicas

with data(r) < service(r)), no master can be elected until a replica r with

data(r) = service(r) = e becomes connected to the majority. To avoid per-

manent blockage, we must ensure that such a replica always exists. One way

to do so is to insist that a master running recovery advance the service and

data epochs of the up-to-date replicas before it advances the service epoch of

the out-of-date replicas and witnesses. This algorithm still has a drawback,

however|in the next recovery, replicas that appear out-of-date but are in

fact up-to-date must undergo a slow background reconciliation rather than

the relatively fast reconciliation available to up-to-date replicas.

An alternative approach to the problem of faults during recovery involves

introducing a fourth epoch variable, the prospective epoch. The idea is that

the master advances each active replica's prospective epoch to newEpoch

early in recovery, immediately after choosing newEpoch. Then any replica r

with prospective(r) = e must have been active during recovery number e, so

if service(r) < e, recovery e must have failed, and the existence of another

replica s with service(s) = e does not prevent r from becoming master.

With one more re�nement, this idea yields a correct algorithm. While the

replicas are advancing the prospective epochs, if any replica r previously had

prospective(r) < maxService, it marks itself as being out-of-date by setting

service(r) to equal maxService (to make service(r) > data(r)) before setting

prospective(r) to newEpoch. In this �nal version of the algorithm, a replica r

is up-to-date (and hence eligible for masterhood) if (1) data(r) = service(r),

and (2) prospective(r) � maxfservice(s) : s 2 Mg, where M contains a

majority of all the replicas.

The election algorithm. Whenever a replica r enters the Free state, it

begins running the election algorithm, which goes as follows.

First, r tries to contact every replica in the replica set. Each replica

that r can contact returns a snapshot of its epochs, plus its state and (if

it is a slave) the name of its master. As long as r remains in the Free

state, it periodically calls every replica to update this snapshot. Let Con(r)
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be the set of replicas that responded the last time r called them (initially

empty). For a short time after r �rst enters the Free state, Con(r) will

be changing rapidly, as r contacts each replica for the �rst time. But if r

waits long enough and if no changes in network or replica up/down status

occur, Con(r) will stabilize. So, as a heuristic to avoid doing extra work, r

waits until Con(r) has remained unchanged for a while before going on to

the next step.10

Next, afterCon(r) appears to have stabilized, r decides whether it should

nominate itself as master. It does so if:

1. Con(r) contains a majority of the replicas,

2. No member of Con(r) is a slave to any replica other than r,

3. According to the epochs r has gathered, r appears to be up-to-date,

and

4. Of the replicas that appear to r as up-to-date, r itself is the \best"|

that is, the value goodness(r) is larger than goodness(s) for any other

apparently up-to-date replica s.

Items 3 and 4 require some additional explanation. To determine whether

a replica s is \apparently up-to-date," r uses the state snapshots it has

gathered for the replicas in Con(r) to evaluate the up-to-date predicate

discussed above, with M = Con(r). That is, s appears up-to-date to r if

(1) Con(r) contains a majority of the replicas, (2) data(s) = service(s),

and (3) prospective(s) � maxfservice(t) : t 2 Con(r)g, where all the epoch

values mentioned are the values in r's snapshot, not the actual values on the

replicas s and t. To determine which master candidate is best, the replicas

use an arbitrary, prearranged function. For example, if each replica has a

unique numeric identi�er, goodness(r) can simply be r's identi�er. Thus,

ordinarily, if a majority of replicas are up and at least one is up-to-date,

exactly one replica will determine that it should nominate itself as master.11

A replica that does not decide to nominate itself as master remains in the

Free state and goes back to gathering snapshots, until it either receives new

10The exact time to wait is arbitrary; it should be a bit more than the maximum time

usually needed to contact a replica that is up and has a working network connection to r.
11Some combinations of faults can cause more or fewer replicas to nominate themselves,

but the algorithm remains safe if this occurs, and it does not occur if the progress condi-

tions are met throughout the election.
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information that allows it to nominate itself, or receives an IAmMaster call

making it a slave to another replica.

When a replica r does decide to nominate itself as master, it enters the

PotentialMaster state. On entry to this state, r picks a master incarna-

tion number (unique and increasing with time across all transitions to the

PotentialMaster state by r).12 Next, r makes an IAmMaster call on each

of the replicas in Con(r) in parallel, asking them to be its slaves, and pro-

viding its incarnation number and its prospective epoch. In a background

task, r periodically renews the agreements with the slaves it has success-

fully gathered, and periodically attempts to contact the replicas that are

not in Con, just as it would in the Service state. If any replica refuses an

IAmMaster call, any slave does not respond to a renewal call, or any replica

not in Con is contacted, r reenters the Free state and restarts the election

algorithm.

How does a replica s decide whether to accept an IAmMaster call from

r? First, s must either be in the Free state, or be a slave to r already

(with an incarnation number less than or equal to the one given in the call).

Second, prospective(r) as given in the call must be greater than or equal

to service(s). If both these tests succeed, s accepts the call|it remembers

the caller's identity and incarnation number, changes its state to Slave and

responds a�rmatively. If either test fails, s refuses the call|it leaves its state

unchanged and responds negatively. The �rst test ensures that slaves do not

violate their agreements, and that a potential master or established master

cannot be enslaved until it determines for itself that it has failed to become

(or remain) master. The second test compares r's prospective epoch against

the actual service epoch of s, rather than just against r's snapshot. This

test is necessary because service(s) could have changed since r's snapshot

was taken|but once s agrees to be r's slave, it will no longer change its

epochs except at r's request.

If all the members of Con(r) respond a�rmatively, r examines its local

clock and data structures to be sure its slaves' agreements are all still valid

(they might not be if r has been running very slowly), then enters the

RecoveringMaster state if they are. Since all members of Con(r) have

responded a�rmatively and have become r's slaves, r is now certain that

12This incarnation number (together with r's identity) is used by r's slaves to detect

and reject delayed messages from previous masters, including previous incarnations of r.
If r ever receives such a rejection, it returns to the Free state and restarts the election

algorithm. The generation and checking of incarnation numbers is not shown in the

pseudo-code, but should be understood as present.
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prospective(r) � service(s) for all s in Con(r), so r is de�nitely up-to-date

(not just apparently up-to-date). However, if any of the agreements are no

longer valid, r returns to the Free state and restarts the election algorithm

from the beginning.

Pseudo-code for the Election phase. The following pseudo-code sum-

marizes the Election phase of the Ar replication algorithm. All the vari-

ables mentioned in the code are local to the replica running it, which we

assume is named r. That replica's own, locally-stored epochs are denoted

data(r); service(r), etc., while its snapshot values of another replica's epochs

(say, s's) are denoted data(s); service(s), etc.

process Election

(* Gather snapshots *)

Con := ;;

repeat

oldCon := Con;

pause for time ConStableT ime;

parfor s 2 Replicas do

try

GetSnapshot(s);

Con := Con [ fsg;

on exception

Con := Con � fsg;

end try;

end parfor;

until Con = oldCon and jConj > jReplicasj=2;

(* Check if best candidate for master *)

maxService := maxfservice(s) : s 2 Cong;

if

No s 2 Con is enslaved to a replica other than r and

data(r) = service(r) and

prospective(r) � maxService and

There is no s 2 Con such that

data(s) = service(s) and

prospective(s) � maxService and

goodness(s) > goodness(r)

then
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myState := PotentialMaster;

else

RestartElection();

exit process;

end if;

(* Try to become master *);

Slaves := ;;

start process PreserveAgreements;

parfor s 2 Con do

try

t := current time on local clock;

c := t + (MasterTimeout � (1� 2�));

IAmMaster(s);

slaveryEnds[s] := c;

Slaves := Slaves [ fsg;

on exception

RestartElection();

exit process;

end try;

end parfor;

if StillMaster() then

Active := Slaves;

myState := RecoveringMaster;

start process Recovery;

else

RestartElection();

end if;

end Election;

2.4 Recovery

In the Recovery phase of the Ar algorithm, the master directs the replicas

in two intertwined tasks. The �rst task is to update the epoch variables so

that all replicas that might be out-of-date, including those that are down,

can determine that they are out-of-date in the next election. The second task

is to eliminate (or reconcile) any di�erences between the arrays stored by

up-to-date replicas. Figure 5 illustrates how these tasks are intertwined: in-
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Figure 5: The Tasks in Recovery

progress reconciliation occurs between prospective and service epoch update,

while catchup reconciliation begins concurrently with service epoch update

and can continue beyond it into the Service phase.

Throughout the recovery phase, the recovery fails if the master cannot

contact any slave it is trying to call, if any slave's agreement expires, or if

the master succeeds in contacting a replica that is not its slave. The master

stops running the recovery algorithm immediately, reenters the Free state,

and restarts the election algorithm.

The �rst step in recovery marks each active replica that may be out-

of-date, so that later steps cannot make it falsely appear up-to-date. The

master r computes the value maxService = maxfservice(s) : s 2 Activeg,

then calls each slave s for which prospective(s) < maxService, instruct-

ing it to atomically advance its prospective and service epochs to equal

maxService, but to leave its data epoch unchanged (and thus less than

maxService). Now s can tell it is out-of-date without looking at the epochs

of other replicas.

Second, the master chooses a new epoch value to use for the next Ser-

vice phase. As described above in our discussion of epochs, r computes

newEpoch = maxfbig(s) : s 2 Activeg + 1, and then asks each active

replica (including itself) to set its big epoch to newEpoch. If this succeeds,

newEpoch is an epoch value that has never been used before (and will never

be used again) for the next recovery step.
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In the third step of recovery, the master asks each active replica to set

its prospective epoch to newEpoch. These replicas are now all marked as

having participated in this recovery.

Next, the master begins the reconciliation process. We describe only

what reconciliation does at this point, deferring discussion of how it is done

to the end of this section.

As the fourth step of recovery, the master performs in-progress reconcil-

iation|it reconciles the copies of the replicated data held by it and by all

the other up-to-date replicas (replicas s for which data(s) = service(s) and

prospective(s) � maxService). This process is called in-progress reconcilia-

tion because the up-to-date replicas cannot disagree on anything but those

operations that were still in progress when the last service period ended;

they are otherwise identical. After in-progress reconciliation, the up-to-date

copies are completely identical.

As the �fth recovery step, the master starts a background process to

reconcile each out-of-date replica, modifying its data copy to match the

master's copy. We call this process catchup reconciliation, because the out-

of-date replica is catching up on operations that were done during service

periods when it was inactive.13

The sixth and �nal recovery step advances the active replicas' service

epochs. The master asks each up-to-date replica to (atomically) advance its

data and service epochs to newEpoch, while asking each replica that is still

doing catchup reconciliation to advance only its service epoch, leaving its

data epoch unchanged. Such a replica advances its data epoch when it has

completed catchup reconciliation (having thus been brought up-to-date).

If all these steps succeed, the master enters the ServingMaster state,

and a new Service phase begins.

In-progress reconciliation. Looking ahead to the real �le system im-

plementation, we have decided to do in-progress reconciliation using logs.

Each replica keeps on its log a stable record of all the write operations it

has performed that might still be in progress. For each operation, enough

information is logged so that the replica can choose between undoing the

operation or passing it to the other replicas to be done. The master numbers

the write operations as it receives them, and these numbers are also logged.

13The algorithm allows catchup reconciliation to be done in the background because it

is likely to take a long time on a real �le system; on the Ar prototype, of course, it is

practically instantaneous.
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To perform in-progress reconciliation, the newly elected master gives

each slave a list of the operations in the master's log for the last service

phase, identi�ed by number. Slaves that have done operations not on the

list undo them in reverse order. Slaves that have missed operations on the

list request their operands from the master and do them.

To keep the logs from growing too large, we place a limit on the number

of operations that can be in progress concurrently, called NInProgress. The

master is not permitted to issue operation k until the operations numbered

k�NInProgress and earlier have completed on all replicas. Thus, at most the

last NInProgress operations need be kept in each replica's log. NInProgress

should be chosen large enough that the master may issue enough concurrent

writes to the replicas to keep them busy, but not so large that the replicas

run out of log space.

We believe that a log-based approach like this one is highly appropriate

for implementing a �le system, independent of its usefulness for reconciling

replicated data. It is widely recognized that disks have far higher perfor-

mance when used as sequential-access logging devices than when used as

random-access devices [11]; or for still better performance, battery-backed

semiconductor memory can be used as a logging device. The �le system can

thus make writes stable with low latency, though its throughput is still lim-

ited by the speed with which data can be written to its permanent location.

Many variations are possible in the details of this reconciliation scheme.

For example, we could avoid the need for undo by rolling both the master

and the slaves forward, so that any operation that was seen by any replica

in the last service period is now done by all. The exact scheme to be used

in Echo remains to be decided at this writing.

Catchup reconciliation. We are aware of three possible methods for

doing catchup reconciliation: full-copy, compare-and-copy, and log-based.

We merely sketch the methods here, because Ar does not provide a good

framework for describing them; they all make much more sense in the context

of a real �le system.

In the full-copy method of catchup reconciliation, the data held by the

out-of-date replica is thrown away and replaced by a copy of the master's

data. This can of course be done quickly in the Ar prototype, but in a

real �le system the large volume of data would make this approach slow.

Nonetheless, we plan to use it to update replicas that are extremely far out

of date, or that must start from scratch because of a disk head crash or the
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like. It is somewhat tricky to do a full-copy in background while the master

is providing service and modifying its copy of the data. The slave must

receive the updates that are being done during the service period and save

them, so that it can apply them to its copy after it has �nished making it.

Moreover, the slave must perform the copying process in a way that leaves

it with a well-formed data structure to which those updates can be applied

to yield the correct result, even though the original is changing during the

process.

In the compare-and-copy method of catchup reconciliation, the out-of-

date replica compares its data with that held by the master, and copies

over those parts that di�er. When the replicated data is a tree of �les and

directories, the comparison can be done quickly by walking the tree and

comparing time stamps (or version stamps) on corresponding �les. This

technique is faster than full-copy if the comparison process is fast and the

amount of data that needs to be copied is not too large. As with full-copy,

if a slave is to do a compare-and-copy in the background while the master is

providing service, it must save the updates the master performs during the

process and apply them to its copy before going into service.

The log-based method of catchup reconciliation is similar to in-progress

reconciliation. Each replica keeps write operation logs going as far back as

possible, considering the amount of storage available. When an out-of-date

slave is to be reconciled, it examines its own log and the log of its master

to determine what operations it must undo from the last service period in

which it was active, and what operations the master has done since. It

then performs the necessary undo and redo operations.14 If the slave has

been inactive for too long, the master's log may not go back far enough for

log-based reconciliation to work; in that case the system falls back on full-

copy or compare-and-copy. We are uncertain whether this method o�ers a

worthwhile performance improvement over compare-and-copy. At present

we are hoping it will not be necessary to implement it.

Note that if a new election is triggered while a replica is engaged in

catchup reconciliation, the catching-up replica will play a role in the election

14Alternatively, the slave could examine the logs and note which portions of the repli-
cated data were touched by these operations and copy them over, as in the compare-and-

copy method. This technique does not get any data values from the logs, only the names

of the portions that were a�ected by the operations, so one can compress old logs that are
being kept only to support catchup reconciliation, removing the data values to save space.

This technique also has the advantage that undo is not required, which is signi�cant in

the �le system case as old values of �les (which can be large) need not be logged.
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that resembles that of a witness replica. It is not eligible to become master

(its service epoch is greater than its data epoch) but it can serve as a vote

in forming a majority.

Pseudo-code for the Recovery phase. The following pseudo-code sum-

marizes the recovery algorithm as run by a master replica r. For brevity,

the details of calling slaves over the network and handling failures are omit-

ted. Whenever the pseudo-code shows an assignment to one of a slave's

epoch variables, or a write operation being done or undone on a slave, the

master must actually call the slave, asking it to make the change.15 If any

such call fails, the master immediately calls RestartElection, stopping the

Recovery process. The PreserveAgreements process continues to run in the

background during recovery.

process Recovery

maxService := maxfservice(s) : s 2 Activeg;

(* Mark out-of-date replicas *)

parfor s 2 Active do

if prospective(s) < maxService then

atomic

prospective(s) := service(s) := maxService;

end atomic;

end if;

end parfor;

(* Choose a new epoch value *)

newEpoch := maxfbig(s) : s 2 Activeg+ 1;

parfor s 2 Active do

big(s) := newEpoch;

end parfor;

(* Advance prospective epoch *)

parfor s 2 Active do

prospective(s) := newEpoch;

end parfor;

15The master need not call its slaves to read their epoch variables, because the snapshots

it has left over from the Election phase remain accurate as long as the slaves' agreements

remain valid.
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(* Perform in-progress reconciliation *)

masterOps := sequence of last NInProgress operations

done by the master;

parfor s 2 Active do

if data(s) = service(s) then

slaveOps := sequence of last NInProgress operations

done by s in the last Service phase;

for op := LAST(slaveOps) downto FIRST(slaveOps) do

if op 62 masterOps then undo op on s; end if;

end for;

for op := FIRST(masterOps) to LAST(masterOps) do

if op 62 slaveOps then do op on s; end if;

end for;

end if;

end parfor;

(* Start catchup reconciliation *)

parfor s 2 Active do

if data(s) 6= service(s) then

Start catchup reconciliation on s;

end if;

end parfor;

(* Advance service epoch *)

parfor s 2 Active do

if data(s) = service(s) then

atomic

service(s) := data(s) := newEpoch;

end atomic;

else

service(s) := newEpoch;

end if;

end parfor;

myState := ServingMaster;

end Recovery;
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2.5 Changing the replica set

In this section, we describe an extension to the Ar algorithm that permits

a system administrator to safely change the Ar replica set whenever the

system is in the Service phase. This facility is useful for con�guring out

replicas that have been destroyed permanently or are no longer needed, to

con�gure in additional replicas for improved availability, or to move replicas

from one place to another.

The extended algorithm has the same safety and progress conditions as

the original one. In particular, as long as the safety conditions are met, the

system cannot �ssion into two independent sets of replicas both providing

service, even if faults occur during execution of a replica set change. Also,

the system cannot get into a state where it is permanently unable to provide

service: even if there are faults during a replica set change, the system will

provide service again once the progress conditions are again met. As with

write operations, if faults occur during a replica set change, the next recovery

restores consistency: either the attempted change is carried through on all

active replicas and becomes stable, or it is backed out and has no e�ect.

Inactive replicas are brought into agreement with the majority view during

the next recovery in which they become active.

The operations we allow on the replica set are additions and deletions

of one replica at a time. (This restriction is important for the correctness

of our algorithm, because it ensures that any majority formed before the

change must intersect with any majority formed after the change.) The

interface used for manipulating the replica set is given in Figure 6. Note

that the replicas are named by text strings; we assume there is an underlying

name service that provides a way of mapping between these text strings and

network addresses.

For convenience, this interface is exported to clients by the Ar clerks. A

clerk receiving one of these requests simply passes it on to the master, with

no local processing. With this arrangement, all communication between

clients and the Ar service is through the clerks, so clients are insulated from

the details of locating the current master (discussed in the next section).

How is this extension to the Ar algorithm implemented? Besides the

addition of the DeleteReplica, AddReplica, and GetReplicaSet procedures

themselves, three changes are needed to the algorithm as given so far.

First, throughout the extended algorithm, each replica r keeps its own

notion of the set of replicas on stable storage; we denote this set as

Replicas(r). Wherever the basic algorithm uses the set Replicas, the ex-
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SAFE DEFINITION MODULE ArConfig;

FROM Ar IMPORT ServiceUnavailable;

IMPORT Text;

TYPE

SetOfReplicas = REF ARRAY OF Text.T;

PROCEDURE DeleteReplica(victim: Text.T)

RAISES {ServiceUnavailable};

PROCEDURE AddReplica(newcomer: Text.T)

RAISES {ServiceUnavailable};

PROCEDURE GetReplicaSet(): SetOfReplicas

RAISES {ServiceUnavailable};

END ArConfig.

Figure 6: The ArConfig interface.

tended algorithm uses Replicas(r), where r is the replica running the code

in question.

Second, in the Recovery phase of the extended algorithm, as part of

reconciliation, the master r calls each slave s, asking it to set Replicas(s)

equal to Replicas(r). As usual, if this step fails, r immediately reenters the

Free state and restarts the Election phase.

Third, in the Election phase, the criteria that a replica r uses to decide

whether it should nominate itself as master are augmented. The �rst four

criteria are as before|Con(r) must be a majority, Con(r) must not contain

any members that are slaves to a replica other than r itself, r must appear

up-to-date, and r must have the highest goodness value of all replicas in

Con(r) that appear up-to-date. But in addition, if more than one replica

appears up-to-date, r must be a member of Replicas(s), where s is the

up-to-date replica with the second-highest goodness value. (The value of

Replicas(s) is obtained from r's snapshot of s's state.) This added criterion

35



is needed to ensure progress in the situation where there is a crash during

the deletion of the replica r with the highest goodness value, after the replica

s with the second highest value has heard about the deletion, but before r

itself has heard about it. In this situation, without the added criterion, both

r and s would try to become master, and it is quite possible that neither

would ever succeed, even in the absence of further faults.16 It is su�cient

for r to check only the second-best alternative candidate because deletions

are done one at a time.

GetReplicaSet is trivial to implement; the master r simply returns its

set Replicas(r).

DeleteReplica and AddReplica are implemented as follows. For both,

the master r �rst stops accepting new Write requests and waits until all

in-progress Write operations are complete. Next, r calls every replica in

Active (plus the replica being added, if this is AddReplica), giving each the

new value of the replica set. If the operation is DeleteReplica(t), r does

not call t until all the other calls have returned; otherwise r can make the

calls in parallel. Finally, the master r enters the Free state and begins

running the election algorithm (unless it has just deleted itself). As usual,

if any of the remote calls in this procedure fail, or if the master succeeds

in contacting an inactive replica while the procedure is running, the master

immediately stops running it, enters the Free state, and begins running the

election algorithm.

A new replica r that has not yet been added to the replica set is ini-

tialized with big(r) = prospective(r) = service(r) = 0, data(r) = �1, and

Replicas(r) = ;, making it ineligible to become master. Its replica set and

epochs are advanced to the current values when the master executes the

AddReplica procedure and the subsequent Recovery process.

A replica r that has been deleted from its own set Replicas(r) can turn

itself o�; its deletion will never be backed out by recovery, because every

active replica has heard about it. It is harmless for such a replica to keep

running until it is turned o� by hand, however; it cannot become master

because, not being in Replicas(r), it will never enter Con(r) and thus cannot

become the best candidate in Con(r).

Note also that a replica r that is deleted while it is inaccessible to the

master is never told about the deletion. A system administrator would

ordinarily turn r o� by hand after deleting it, but again, it is harmless

if r keeps running|r is out-of-date and can never become master itself

16Of course, they could not both succeed, so the criterion is not needed for safety.
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(though it might expend e�ort gathering the set Con(r)), and every up-to-

date replica s will ignore r when trying to gather its own Con(s).

The following pseudo-code summarizes the extensions just described.

We assume the replica running this code is named r. When the pseudo-code

shows an assignment to another replica s's local state, this means that r

calls s, requesting it to make the change.

procedure GetReplicaSet

(* Called remotely by clerks *)

if not StillMaster() then

RestartElection();

raise exception NotMaster;

end if;

return Replicas(r);

end GetReplicaSet;

procedure AddReplica(x)

(* Called remotely by clerks *)

if not StillMaster() then

RestartElection();

raise exception NotMaster;

end if;

Stop accepting Write requests;

Wait for in-progress Writes to complete;

parfor s 2 (Active [ fxg) do

try

Replicas(s) := Replicas(r)[ fxg;

on exception

RestartElection();

raise exception Failed;

end try;

end parfor;

RestartElection();

end AddReplica;

procedure DeleteReplica(x)

(* Called remotely by clerks *)

if not StillMaster() then

RestartElection();
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raise exception NotMaster;

end if;

Stop accepting Write requests;

Wait for in-progress Writes to complete;

parfor s 2 (Active � fxg) do

try

Replicas(s) := Replicas(r)� fxg;

on exception

RestartElection();

raise exception Failed;

end try;

end parfor;

if x 2 Active then

try

Replicas(x) := Replicas(r)� fxg;

on exception

RestartElection();

raise exception Failed;

end try;

end if;

RestartElection();

end DeleteReplica;

process Election

� � �

(* Check if best candidate for master *)

maxService := maxfservice(s) : s 2 Cong;

P := fs 2 Con : data(s) = service(s) and

prospective(s) � maxServiceg,

sorted in descending order of goodness;

if

No s 2 Con is enslaved to a replica other than r and

r = P [1] and

( jP j = 1 or r 2 Replicas(P [2]) )

then

myState := PotentialMaster;

else
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RestartElection();

exit process;

end if;

� � �

end Election;

process Recovery

� � �

(* Advance prospective epoch *)

� � �

(* Reconcile replica sets *)

parfor s 2 Active do

Replicas(s) := Replicas(r);

end parfor;

(* Perform in-progress reconciliation *)

� � �

end Recovery;

2.6 Clerk failover

In this section, we explain how the Ar clerk keeps track of which replica

is master, and how it fails over from an old master to a new one. This

algorithm is essentially independent of the replication algorithm run by the

servers, and is much simpler.

To keep track of the master, the clerk runs a background process that

takes it through three states: Searching, InTouch, and OutOfTouch.

Initially, the clerk is in the Searching state. Upon entering this state, the

clerk gets a list of replicas that might be master (from the name service, in

our implementation), and calls each candidate in turn. If the candidate is

master, the clerk enters the InTouch state. If the candidate is not master or

the clerk cannot contact it, the search goes on to the next candidate on the

clerk's list. If the list is exhausted, the clerk pauses for a while to moderate

the load on the network and servers, then starts over with a fresh copy of

the list (in case the list has changed). If this search goes on for too long,

the clerk moves to the OutOfTouch state, but it continues looking for the
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master in the same way.

The clerk's handling of client requests depends on which state it is in.

While in the InTouch state, the clerk forwards client requests to the master.

If a call to the master fails|either the clerk can no longer communicate with

the master, or the called replica reports it is no longer master|the clerk

moves to the Searching state. If this state transition occurs while a call to

the master is still in progress, the clerk remembers the incomplete call so it

can be retried later. While the clerk is in the Searching state, it accepts

new requests from clients but causes them to block, hoping it will know

the master soon. If the clerk reaches the OutOfTouch state, it concludes

there is serious trouble, and responds to all client requests by raising the

ServiceUnavailable exception (including those requests that are blocked or

remembered as well as new ones). If instead the clerk reaches the InTouch

state again while some requests are still blocked or remembered, it forwards

those requests to the new master.

Forwarding saved requests to the new master after a failover raises a

problem. The clerk does not know whether a write request that was still in

progress when it left the InTouch state was committed or not. It is possible

that the request never reached the old master or was backed out in the last

Recovery phase, but it is also possible that the request was completed by

the old master or was committed during the last recovery. So when client

a requests an operation, a's clerk might forward the operation twice, and if

the master blindly performs it twice, the semantics of Ar could be violated:

There is no guarantee that a client b of some other clerk has not read the

result of the operation and overwritten it with a new value between the two

forwardings. If b then reads the result again, what it sees is not equivalent

to any serialization of the requests a and b submitted to their clerks.

The solution to this problem used in our Ar implementation is a byprod-

uct of the caching mechanism described in Section 3 below. In our caching

mechanism, cache consistency is guaranteed by requiring a clerk to hold a

write token whenever it has data in its cache that has been modi�ed but not

yet written back to its master. Clerks also hold write tokens while they are

waiting for writes to complete, thereby preventing other clerks from writ-

ing while a local write is pending. Thus, we prevent the scenario outlined

above: while a is uncertain about whether its write has completed, it retains

its write token, so b cannot perform a write in the interim. So at worst, a

may request the same write twice in succession, with no other writes inter-

vening; this is no problem because writes are idempotent in Ar. We expect

to use the same technique in our �le system implementation.
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Other solutions, independent of the caching mechanism, are also possible.

For instance, suppose each clerk were to generate a unique identi�er for

each of its write requests, and these identi�ers were stably recorded by the

replicas along with the modi�ed data. Then, if a clerk were to submit the

same operation twice, the new master would recognize the duplication and

report success to the clerk without redoing the operation.

These solutions both depend on the correctness of the clerks, but not

in a way that violates our safety conditions for the algorithm. By running

these algorithms incorrectly, a Byzantine clerk can at worst make it appear

that one of its own clients has requested the same operation twice. But in

general, we do not claim to (and cannot) prevent a Byzantine clerk from

attempting arbitrary actions on behalf of clients that use it; we can only

prevent the clerk from succeeding in doing things that its clients are not

authorized to do.

3 Caching Algorithm

Besides replication, the Ar implementation models one other important fea-

ture of our proposed �le system, namely caching. To speed its response to

client requests, the clerk on each Ar client machine keeps a cache of val-

ues that were recently read or written by client programs running on the

machine.

The clerk manages its cache using a delayed write-back policy. That is, a

value modi�ed by an Ar.Set operation is not immediately written through

the cache to the master; instead, it is �rst written into the cache (making

the cache entry dirty|di�erent from the master's value), then given to the

master later (cleansing the cache entry). Any of several events may trigger

cache cleansing. The cache may be �lling up with dirty entries, some of

which need to be cleansed and displaced to make room for more recently

used values. A client may have issued an Ar.Sync request that requires the

clerk to write one or more dirty values back to the service's stable storage.

The clerk may have a policy that an entry must be cleansed within (say)

�ve minutes of being dirtied, to minimize the amount of work that a client

may lose when its machine crashes.17 Or the clerk may be asked to cleanse

an entry by the cache consistency protocol. We discuss this protocol next.

17In a �le system, such long write-back delays help to reduce the load on the servers,
because �les are often overwritten or deleted within the delay period. The current Ar

implementation actually does not include a timer to cause dirty entries to be written back

eventually, nor does it ever displace a cache entry due to lack of room, but these features
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3.1 Cache consistency

Our Ar implementation uses tokens to preserve cache consistency. A token

for an element of Ar is a permit to hold a cached copy of that element. A read

token gives permission to hold a clean copy; a write token gives permission

to hold a dirty copy. Because every client operation goes through its clerk's

cache, tokens are quite important to the operation of Ar. Every Ar.Set

requires either obtaining or already having a write token, and every Ar.Get

requires either obtaining or already having a read (or write) token.

Tokens are issued to clerks by the master, and the master preserves cache

consistency by maintaining the invariant that for each Ar element, either no

clerks hold tokens, one clerk holds a write token, or one or more clerks hold

read tokens. Read and write tokens are never held simultaneously. Under

this invariant, there is precisely one current version of an element's value at

each moment|if a write token for element i is outstanding, the version in

the token holder's cache is current; otherwise the master's version is current.

An Ar.Get(i) operation always returns the current value of element i.

The clerk's interface to the master contains three operations that deal in

tokens: ArMaster.Get gets a value and a read token for it from the master,

ArMaster.Set gets a write token and sets a value, and ArMaster.Cleanse

sets a value for which the clerk already has a write token, without ceding

the token.

When a clerk requests a token that would conict with one or more

outstanding tokens, the master calls back to their holders, ordering them

to cede the conicting tokens. A clerk that is told to cede a token does

so immediately (after cleansing the cache entry it covered, if it was dirty),

without waiting to acquire any other tokens. There are no operations that

require more than one token. Thus the token protocol is not subject to

deadlock.18

Although this protocol is basically simple, it becomes a bit more complex

when one considers unusual situations that can arise due to reordering of

messages on the network. In particular, while a clerk has a token request

pending, the master may call the clerk back and ask it to cede a token on the

same object. It is di�cult for the clerk to determine whether the master has

could easily be added.
18It appears that Echo will have operations that require more than one token|for

example, moving a directory to be under a di�erent parent|so the deadlock problem will

not be so simple there. We currently plan to avoid deadlocks in Echo by requiring clerks

doing multi-token operations to acquire the tokens in a �xed order.
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already granted the token and is asking for it back, or is asking for a token

that the clerk already (perhaps unknowingly) held. We spent quite a bit of

e�ort trying to develop a neat, e�cient solution to this problem|without

success|and at last fell back on the simple technique used in CMU's Andrew

system [14]. When a request and a callback cross as just described, the

clerk responds positively to the callback and internally marks the request as

aborted. When the aborted request returns, the clerk retries it. Such retries

occur rarely, so we consider this solution adequate.

3.2 Token recovery

The token mechanism adds one step to the recovery phase of our election

algorithm. Just before going into service, a newly elected master must per-

form token recovery. Token recovery consists of contacting every clerk to

�nd out what tokens it holds. This step is necessary because in our caching

implementation, a token is a record kept only in the volatile memory of the

master and of the clerk that holds it. Therefore when a master crashes, the

only remaining record of what tokens are outstanding is contained in the

memory of the clerks, and the next master to be elected must contact them

to reconstruct the lost state.

A newly elected master running token recovery knows which clerks to

contact by looking at its clerk list. A clerk list is an up-to-date record listing

all clerks that hold one or more tokens. The clerk lists are kept only in the

primary memory of the replicas, and not on their stable storage. During

normal operation of the service, the master informs its slaves whenever a

new clerk requests a token and whenever an old clerk gives up all its tokens;

the slaves are informed before the call returns to the clerk. When the master

crashes, the former slave that is next elected master asks each clerk on its

clerk list what tokens it holds, and aggregates this information to construct

a new list of outstanding tokens. We modify the goodness function of the

replication algorithm so that replicas with non-empty clerk lists are preferred

in the election|a replica with a non-empty clerk list always has a higher

goodness value than one with an empty list. Replicas with non-empty clerk

lists must be preferred because the clerk lists are not recorded on stable

storage: two replicas can have equally recent epochs with only one of them

having a clerk list because the other replica crashed and restarted, losing its

primary memory. Note that because the addition of a new clerk changes the

clerk list on the master and all its slaves before returning to the clerk, all

non-empty clerk lists on replicas with current epochs are equally good|any
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di�erences are only over clerks that hold no tokens.

Because clerks are not trusted, the new master must be prepared for the

information it gets back from the clerks to be incorrect. Therefore, whenever

a clerk claims to hold a token, the master must check that this token does

not conict with tokens that are already on its list of outstanding tokens; if

the token does conict, it is not granted. Moreover, in the real �le system,

the master will need to check that the clerk has the right to hold the to-

kens it claims|that is, it will have to do the same user authentication and

permission checking it does when tokens are requested during normal oper-

ation. Even with these checks in place, it is possible for a Byzantine clerk

to acquire tokens during recovery that it did not originally have, perhaps

even taking them away from correct clerks that held them legitimately. But

this can happen only if the Byzantine clerk is able to authenticate itself as

a user who is authorized to have those tokens, so security is not violated.

Finally, since the clerk lists themselves are not kept on stable storage,

token state is lost entirely if all replicas crash at once (or very closely to-

gether). We consider this behavior acceptable in such a rare event. (Prac-

tically speaking, the only thing likely to make all the replicas crash at once

is a massive power failure, which is likely to take out the client machines as

well.)

We have chosen this design because it optimizes the common case, token

acquisition during normal operation, at the expense of the uncommon case

of crash recovery. The master can give out tokens quickly because it does

not have to write them to stable storage or tell its slaves about them; it has

to tell the slaves only when a new clerk begins using the service or an old one

stops, which are much less frequent events. It is an open question whether

the cost of token recovery is too high. If token recovery in Echo causes too

long a delay in resuming service after a master crash, we may be forced to use

token replication instead|that is, the entire token list would be replicated

in each replica's volatile memory, just as the clerk list is replicated in the

scheme we have just described.

3.3 Clerk failover

Section 2.6 above describes how clerks fail over from an old master to a new

one.

A clerk does not discard its cache upon failover unless its new master

tells it that the cache is no longer valid|otherwise it always proceeds with

the hope that the new master will recover the token database and preserve
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the cache's validity. Even when a clerk has been unable to contact its master

for so long that it has entered the OutOfTouch state and has begun raising

ServiceUnavailable to all client requests, it still holds on to its cache until

it gets back in touch.

3.4 Token timeouts

Clerk failures cause a problem for the caching system because a failed clerk

may have been holding some tokens that are later needed by other clerks.

It is not safe for the master simply to cancel a clerk's token and give out a

conicting one if the clerk does not respond to a callback, because the clerk

may not actually be down|it may only be partitioned from the master by a

network failure. If the master gives out a conicting token, cache coherence

is violated, and this violation will become apparent as soon as the partition

is repaired.19

Ar uses a strict form of token timeout to allow tokens to be recovered

from failed clerks with no danger of cache incoherence. When the master

issues a token to a clerk, the token is good only for a limited time, called

its timeout. Until the timeout expires, the master promises not to issue any

conicting tokens without �rst calling the clerk back and getting it to cede

the token. If the master is unable to call the clerk back, it must wait for the

timeout to expire before it can cancel the token. Thus the clerk knows that

its token has not been taken away if it has not yet timed out.20

At any time, a clerk can ask the master to refresh a token. If the master

agrees, it restarts the timeout period. A clerk can ask the master to refresh

a token that has already timed out, but the master will not do so if it has

already canceled the token and issued a conicting one.

This token timeout scheme imposes three kinds of costs on the system:

� C1. Each clerk must occasionally call the master to refresh its tokens.

� C2. If clerk p needs a token that conicts with one held by clerk q,

and clerk q has recently gone down (or become partitioned away from

the master), clerk p must wait, in the worst case for the full timeout

period.

19Some distributed �le systems do not attempt to prevent coherence violations of this

sort. For example, CMU's Andrew system [14] permits them to arise, but limits their

duration to ten minutes.
20Note that we are using the assumption that the master and clerk have clocks that run

at approximately the same rate (within a known factor � that can be taken into account

in the timeout test).
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� C3. When a newly elected master is performing token recovery, it

may �nd itself unable to contact some of the clerks on its clerk list.

To guarantee cache coherence, the new master must be conservative

and assume the worst about what tokens the unreachable clerks hold,

until it is sure they have all timed out. In the interim, some or all

requests from other clerks have to wait, in the worst case for the full

token timeout period.

One can trade o� costs C2 and C3 against cost C1, because a longer

token timeout lowers C1 while raising C2 and C3, while a shorter one does

the opposite. There are also many techniques and policy decisions about

when to refresh that can improve things. Our current belief is that the

following techniques will work well in Echo.

First, to keep the cost of refresh messages (C1) manageable, all tokens for

a given service held by a given clerk are associated with a session between

the clerk and service, and the session is what times out and needs to be

refreshed, not the individual tokens. Thus a service receives at most one

refresh request per clerk per timeout period.21

We then reduce C1 a bit more by declaring that all successful calls from

a clerk to the master also refresh the calling clerk's session, a technique

we call implicit refresh. Thus a session that is actively in use (satisfying

cache misses and write-back requests) is kept refreshed with no additional

messages.

Finally, we reduce C1 still more using lazy refresh. Under this approach,

clerks do not try to keep their sessions fresh at all times; instead, they refresh

them only as needed. Whenever a clerk needs to use a cached object, it

checks whether the session is expired, about to expire, or not due to expire

soon. If the session is expired, the clerk attempts to refresh it before using

the cached object; if the refresh succeeds, all is well; if not, the clerk creates

a new session and discards the cache contents from the old one. (We assume

the clerk's write-back timeout is shorter than the session timeout, so the

clerk will never let a session expire without �rst trying to write back all its

dirty data.) If the session is about to expire, the clerk refreshes it to stave o�

expiration, in parallel with using the cached object. If the session is not due

to expire soon, the clerk does nothing about refresh. The master cooperates

with this approach by not revoking a timed-out session immediately when

21To be precise, slightly more than one, because sessions are refreshed somewhat before

they time out to avoid problems with network delays and clock skew.
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some other clerk needs one of its tokens; instead, it tries to call back the

session owner and revokes the session only if there is no response.

Under this approach, a clerk never does extra calls to the master to

refresh its session unless it is running purely out of its cache for a long time,

with no misses and no write-backs. If the clerk has data sitting in its cache,

but clients are no longer using it, the clerk does not refresh it. (We call such

a session quiescent.) If a clerk crashes while its session is quiescent, the cost

of reclaiming its tokens in cases C2 and C3 is only one remote procedure

call timeout, not a whole token timeout.

There are a few drawbacks to the lazy refresh approach as well. The

�rst token to be reclaimed from a failed clerk always costs an RPC timeout,

even if the clerk has been down for a long time. Also, clients have to wait

for a session refresh on their �rst operation when they stop being quiescent,

even if the operation hits in the cache. Managing the slave clerk lists costs a

bit more, too. Slaves should have quiescent clerks on their lists, and should

know that they are quiescent. If the slaves did not list quiescent clerks

at all, then a change of mastership would cause those clerks to lose their

tokens. And if the slaves did not know which listed clerks were quiescent,

then whenever a quiescent clerk was down during a mastership change (C3),

the full token timeout would be incurred to get back its tokens, not just

an RPC timeout. Therefore, the master must send its slaves a message

whenever a clerk's session timeout expires, then another when the expired

session is either refreshed or revoked.

We plan to study and re�ne these mechanisms further before Echo is

complete.

3.5 Unstable updates

Because our caches use a write-back policy, even after a client's call to

Ar.Set returns successfully, the client cannot be sure the update will not be

lost, unless it is willing to pay the cost of an Ar.Sync. Obviously, updates

can be lost if the client machine fails before its clerk has �nished writing them

to the service. But updates can also be lost if a client machine is partitioned

from the master for so long that it appears to have crashed|so long, that

is, that the master cannot contact it when it needs to do a callback. In

that case, as we described in the last section, the master revokes the clerk's

session, and the clerk must discard its cache when it reconnects with the

master and discovers the problem. We call data unstable when it has been

updated by a call to Ar.Set, but the update is still susceptible to being lost;
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that is, when it is not yet recorded in the stable storage of the master and

all slaves.

In Ar, the token mechanism guarantees that unstable data can be read

only by clients on the same machine as the client that wrote the data. This

is true because ArMaster.Set and ArMaster.Cleanse are synchronous to

stable storage, and the clerk refuses to give up its write token until they

return. We believe this is a useful and sensible guarantee because machines

are units of failure|when a machine crashes, all the programs running on

it fail, but those on other machines keep going. The adverse impact of lost

updates on the system as a whole is lessened if the machines that remain up

are known not to have seen any updates that were lost in the crash.

One cost of this guarantee is that if two programs on separate machines

are communicating through the service, they cannot exchange data any

faster than the service can write it to stable storage. For this reason, we

have contemplated removing the guarantee in Echo, but doing so without

weakening other safety guarantees is rather tricky, and beyond the scope of

this paper.

4 Extensions

In this section, we describe two useful extensions to the basic replication

scheme we have discussed so far.

4.1 Reading from slaves

In our Ar implementation, all update requests and all read requests are

directed to the master replica. It is easy to extend the algorithm so that

slaves are also able to satisfy read requests.

The token mechanism is used to ensure consistency. When reading a �le

(or directory), the clerk �rst acquires a read token from the master, then

sends its read requests to any replica, either the master or a slave. Because

the clerk has a read token, there cannot be an update in progress on this

�le, so each slave's copy is identical to the master's, and the clerk gets the

same result no matter which it reads.

Although the master is still responsible for granting read tokens, this

scheme allows slaves to handle the load of providing �le data|the bulk

of the read load for most �les longer than a few network packets. The

scheme can thus be used for load balancing between master and slaves|

even though the master does somewhat more work than the slaves when
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managing tokens and handling write requests, the slaves can be given a

larger share of the read load to compensate. It seems attractive for clerks to

statically determine which active replica to use for reading a �le by hashing

the �le's identi�er (which is the same for all clerks). Thus each replica

handles reads for a di�erent, disjoint set of �les, improving the locality of

reference in the replicas' caches. A bias towards reading from slaves rather

than the master can be built into the hash function.

In this scheme, nothing prevents a Byzantine clerk from reading a �le

without having the read token, and if it does so, it may be given incorrect

answers by the server. However, correct clerks ensure themselves of getting

correct answers by acquiring read tokens as they are supposed to. Further,

the master ensures that a Byzantine clerk cannot give up its write token

while it still has a write in progress (which would cause problems for correct

clerks), by being careful not to ask a clerk to give up its write token until any

writes that the master is currently performing for the clerk have completed.

4.2 Ensuring that all data is replicated

Our replication algorithm is willing to provide service even when only one

replica is up-to-date and writing new updates to stable storage. The re-

maining replicas making up the majority can be witness replicas or can be

non-witness replicas that are engaged in catchup reconciliation. This makes

our algorithm vulnerable to the following problem: If the single up-to-date

replica crashes, the system must wait for it to come up again before provid-

ing service. If it never comes up, the system can never again provide service

(without manual intervention). Because the crashed replica is the only one

that has all the updates, no other replica is eligible to become master.

For example, consider a con�guration with two non-witness replicas r

and s, and one witness replica t. Suppose that initially all three are up and

communicating, and that both r and s have data epoch equal to service

epoch. Then r crashes. An election is held, and s is elected master. The

system enters service and client programs perform additional updates; then

s crashes. Now replica r comes up; however, since r is missing some updates

that s has, r is not eligible to be master. (The epochs held by the witness

replica t enable the election algorithm to detect that r is not eligible.)

For con�gurations with only two non-witness replicas, the problem is

unavoidable. We must either be willing to provide service when one of the

non-witness replicas is down, or accept availability that is less than that of

a non-replicated system.

49



With more than two non-witness replicas, we can do better. We can

modify the algorithm to insist that before entering service, at least k replicas

must be up-to-date, where k is a parameter that can be set by the system

administrator. We change the recovery algorithm so that it blocks after

beginning catchup reconciliation and before advancing the service epochs,

until enough replicas have caught up to make a total of k up-to-date.

The choice of k involves a tradeo�. Setting k > 1 increases recovery time,

but guarantees that all updates are replicated. The system is unavailable

during this increased recovery time, but the replication improves its avail-

ability once it does go into service (because more replicas have up-to-date

data and are therefore eligible to be master) and also makes the data more

likely to survive disk crashes. As an additional (minor) bene�t, catchup

reconciliation is likely to be completed faster if it is performed before the

system goes into service, rather than in background while the system is in

service, because in the latter case it has to compete for processing time

against the requests generated by clients. On the other hand, if the system

can nearly always complete catchup reconciliation in background before the

newly elected master crashes, it makes sense to set k = 1 to get better

availability through faster recovery.

Note that not all possible combinations of choices for k and the number of

witnesses w in a system con�guration make sense. Of course, it is necessary

that 0 < k � jReplicasj and 0 � w < jReplicasj. Also, there is little point in

choosing more than d(jReplicasj+1)=2e�k witnesses. Having more witnesses

only permits the system to form majorities that include fewer than k non-

witnesses and thus cannot go into service.22 For instance, if there are four

non-witnesses and k = 1, then there should be at most three witnesses, while

if there are four non-witnesses and k = 2, then there should be at most one

witness. Also, if k is chosen larger than d(jReplicasj+ 1)=2e, the number of

replicas that must be up for the system to go into service becomes more than

a majority, but such a choice may still be sensible for some applications.

Parenthetically, it may seem that a system con�gured with k > 1 could

safely operate in a read-only mode whenever a majority of replicas are up

and connected but only some number of them k0 < k are up-to-date; how-

ever, this idea does not work. When the system last crashed, some update

operations were in progress, and in the new read-only service period, clients

must be able to read the values that these operations were attempting to

22However, such a majority can elect a master and perform catchup reconciliation on

those non-witnesses that are up.

50



update. Therefore, before the system can go into service, it must decide

which of these updates will be carried out and which ignored. Only the

replicas that are active in the current read-only service period know the

outcome of these decisions. Any inactive replica that was up-to-date at the

time of the last crash must now be considered to be out-of-date, because

it does not know the outcome of the decisions: if an inactive replica were

later allowed to become master without being reconciled with the presently

active replicas, it could make di�erent decisions, causing the system to give

inconsistent semantics to its clients. Thus, even to enter read-only service,

the system must mark inactive replicas as out-of-date (say, by advancing

the service epoch on the active replicas, as in our recovery algorithm). Since

only the active replicas are up-to-date, we have only k0 up-to-date replicas,

which violates our original requirement of always having k > k0 up-to-date

replicas.

5 Summary and Status

We have presented an algorithm for data replication. The algorithm permits

the set of replicas to change dynamically, allows the use of witness replicas,

and supports consistent caching of data by client machines. During normal

service, an update requires only a single remote procedure call from a client

to the master, plus a remote procedure call from the master to each slave.

After a crash, the outcome of each update that was in progress is decided by

a recovery phase that executes before the next service period. The algorithm

does not depend on distributed atomic transactions.

Currently, we are exploiting the techniques described in this paper in

designing and implementing the Echo �le system. In our work on Ar, we

assumed that a server CPU and a disk came bundled together in a single

unit, called a replica. In Echo, our system structure is more general and more

exible. We support the use of multi-ported disks, that is, disks that are

directly accessible to several CPUs, each of which might fail independently.

Server CPUs and disks can be replicated (or not) independently of each

other. The Ar problem of �nding up-to-date replicas reappears in Echo

as the problem of �nding up-to-date disks. As in our work on Ar, we are

employing monotonically increasing epoch variables and majority election

to solve this problem. We will report more fully on Echo in future papers.
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