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Abstract

The memory model of a shared-memory multiprocessor is a contract between
the designer and programmer of the multiprocessor. The sequential consistency
memory model specifies a total order among the memory (read and write) events
performed at each processor. A trace of a memory system satisfies sequential
consistency if there exists a total order of all memory events in the trace that
is both consistent with the total order at each processor and has the property
that every read event to a location returns the value of the last write to that
location.

Descriptions of shared-memory systems are typically parameterized by the
number of processors, the number of memory locations, and the number of data
values. It has been shown that even for finite parameter values, verifying sequen-
tial consistency on general shared-memory systems is undecidable. We observe
that, in practice, shared-memory systems satisfy the properties of causality and
data independence. Causality is the property that values of read events flow
from values of write events. Data independence is the property that all traces
can be generated by renaming data values from traces where the written values
are distinct from each other. If a causal and data independent system also has
the property that the logical order of write events to each location is identical to
their temporal order, then sequential consistency can be verified algorithmically.
Specifically, we present a model checking algorithm to verify sequential consis-
tency on such systems for a finite number of processors and memory locations
and an arbitrary number of data values.



1 Introduction

Shared-memory multiprocessors are very complex computer systems. Multi-
threaded programs running on shared-memory multiprocessors use an abstract
view of the shared memory that is specified by a memory model. Examples
of memory models for multiprocessors include sequential consistency [Lam79],
partial store ordering [WG99], and the Alpha memory model [Com98]. The
implementation of the memory model, achieved by a protocol running either
in hardware or software, is one of the most complex aspects of multiprocessor
design. These protocols are commonly referred to as cache-coherence protocols.
Since parallel programs running on such systems rely on the memory model for
their correctness, it is important to implement the protocols correctly. However,
since efficiency is important for the commercial viability of these systems, the
protocols are heavily optimized, making them prone to design errors. Formal
verification of cache-coherence protocols can detect these errors effectively.

Descriptions of cache-coherence protocols are typically parameterized by the
number of processors, the number of memory locations, and the number of data
values. Verifying parameterized systems for arbitrary values of these parame-
ters is undecidable for nontrivial systems. Interactive theorem proving is one
approach to parameterized verification. This approach is not automated and is
typically expensive in terms of the required human effort. Another approach is
to model check a parameterized system for small values of the parameters. This
is a good debugging technique that can find a number of errors prior to the more
time-consuming effort of verification for arbitrary parameter values. In this pa-
per, we present an automatic method based on model checking to verify that a
cache-coherence protocol with fixed parameter values is correct with respect to
the sequential consistency memory model.

The sequential consistency memory model [Lam79] specifies a total order
among the memory events (reads and writes) performed locally at each proces-
sor. This total order at a processor is the order in which memory events occur
at that processor. A trace of a memory system satisfies sequential consistency
if there exists a total order of all memory events that is both consistent with
the local total order at each processor, and has the property that every read to
a location returns the latest (according to the total order) value written to that
location. Surprisingly, verifying sequential consistency, even for fixed parame-
ter values, is undecidable [AMP96]. Intuitively, this is because the witness total
order could be quite different from the global temporal order of events for some
systems. An event might need to be logically ordered after an event that occurs
much later in a run. Hence any algorithm needs to keep track of a potentially
unbounded history of a run.

In this paper, we consider the problem of verifying that a shared-memory
system S(n,m, v) with n processors, m locations and v data values is sequen-
tially consistent. We present a method that can check sequential consistency for
any fixed n and m and for arbitrary v. The correctness of our method depends
on two assumptions —causality and data independence. The property of causal-
ity arises from the observation that protocols do not conjure up data values;
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data is injected into the system by the initial values stored in the memory and
by the writes performed by the processors. Therefore every read operation r to
location l is associated with either the initial value of l or some write operation
w to l that wrote the value read by r. The property of data independence arises
from the observation that protocols do not examine data values; they just for-
ward the data from one component of the system (cache or memory) to another.
Since protocol behavior is not affected by the data values, we can restrict our
attention, without loss of generality, to unambiguous runs in which the writ-
ten data values to a location are distinct from each other and from the initial
value. We have observed that these two assumptions are true of shared-memory
systems that occur in practice [LLG+90, KOH+94, BDH+99, BGM+00].

For a causal and unambiguous run, we can deduce the association between
a read and the associated write just by looking at their data values. This leads
to a vast simplification in the task of specifying the witness total order for
sequential consistency. It suffices to specify for each location, a total order on
the writes to that location. By virtue of the association of write events and
read events, the total order on the write events can be extended to a partial
order on all memory events (both reads and writes) to that location. If a
read event r reads the value written by the write event w, the partial order
puts r after w and all write events preceding w, and before all write events
succeeding w. As described before, sequential consistency specifies a total order
on the memory events for each processor. Thus, there are n total orders, one
for each processor, and m partial orders, one for each location, imposed on the
graph of memory events of a run. A necessary and sufficient condition for the
run to be sequentially consistent is that this graph is acyclic. We further show
that existence of a cycle in this graph implies the existence of a nice cycle in
which no two processor edges (imposed by the memory model) are for the same
processor and no two location edges (imposed by the write order) are for the
same location. This implies that a nice cycle can have at most 2×min({n,m})
edges; we call a nice cycle with 2×k edges a k-nice cycle. Further if the memory
system is symmetric with respect to processor and location ids, then processor
and location edges occur in a certain canonical order in the nice cycle. These
two observations drastically reduce the number of cycles for any search.

We finally argue that a number of causal and data independent shared-
memory systems occurring in practice also have the property that the witness
write order at each location is simply the temporal order of the write events. In
other words, a write event w is ordered before w′ if w occurs before w′. We call
this a simple write order, and it is in fact the correct witness for a number of
shared-memory systems. For cache-based shared-memory systems, the intuitive
explanation is that at any time there is at most one cache with write privilege
to a location. The write privilege moves from one cache to another with time.
Hence, the logical timestamps [Lam78] of the writes to a location order them
exactly according to their global temporal order. We show that the proof that
a simple write order is a correct witness for a memory system can be performed
by model checking [CE81, QS81]. Specifically, the proof for the memory system
S(n,m, v) for fixed n and m and arbitrary v is broken into min({n,m}) model
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checking lemmas, where the k-th lemma checks for the existence of canonical
k-nice cycles.

The rest of the paper is organized as follows. Sections 2 and 3 formalize
shared-memory systems and our assumptions of causality and data indepen-
dence about them. Section 4 defines the sequential consistency memory model.
Section 5 defines the notions of a witness and a constraint graph for an unam-
biguous and causal run. Section 6 and 7 show that it is sufficient to search for
canonical nice cycles in the constraint graph. Section 8 shows how to use model
checking to detect canonical nice cycles in the constraint graphs of the runs of
a memory system. Finally, we discuss related work in Section 9 and conclude
in Section 10.

2 Shared-memory systems

Let N denote the set of positive integers. For any n ≥ 1, let Nn denote the set
of positive integers up to n.

A memory system is parameterized by the number of processors, the number
of memory locations, and the number of data values. In a memory system with
n processors, m memory locations, and v data values, read and write events
denoted by R and W can occur at any processor in Nn, to any location in Nm,
and have any data value in Nv. Formally, we define the following sets of events
parameterized by the number of processors n, the number of locations m, and
the number of data values v, where n,m, v ≥ 1.

1. E r(n,m, v) = {R} × Nn × Nm × Nv is the set of read events .

2. Ew(n,m, v) = {W } × Nn × Nm × Nv is the set of write events .

3. E (n,m, v) = E r(n,m, v) ∪ Ew(n,m, v) is the set of memory events .

4. Ea(n,m, v) ⊇ E (n,m, v) is the set of all events .

5. Ea(n,m, v) \ E (n,m, v) is the set of internal events .

For every memory event e = 〈a, b, c, d〉 ∈ E (n,m, v), we define op(e) = a,
proc(e) = b, loc(e) = c, and data(e) = d. The set of all finite sequences of
events in Ea(n,m, v) is denoted by Ea(n,m, v)∗. A memory system S(n,m, v)
is a regular subset of Ea(n,m, v)∗. A sequence σ ∈ S(n,m, v) is a run.

Consider any σ ∈ Ea(n,m, v)∗. We denote the length of σ by |σ| and the i-th
element of σ by σ(i). The set of indices of the memory events in σ is denoted
by dom(σ) = {1 ≤ k ≤ |σ| | σ(k) ∈ E (n,m, v)}. The subsequence obtained by
projecting σ onto dom(σ) is denoted by σ. If σ ∈ S(n,m, v), the sequence σ is
a trace of S(n,m, v). A trace of S(n,m, v) for any n,m, v ≥ 1 is a trace of S.
We define the following useful subsets of dom(σ).

1. For all 1 ≤ i ≤ n, the set of memory events by processor i denoted by
P (σ, i) = {k ∈ dom(σ) | proc(σ(k)) = i}.
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typedef Msg {m : {ACKS ,ACKX }, a : Nm, d : Nv} ∪ {m : {INVAL}, a : Nm};
typedef CacheEntry {d : Nv, s : {INV ,SHD ,EXC}};
cache : array Nn of array Nm of CacheEntry ;
inQ : array Nn of Queue(Msg);
owner : array Nm of Nn ∪ {0};

Initial predicate
∀i ∈ Nn, j ∈ Nm : (cache[i][j].s = SHD ∧ inQ [i].isEmpty ∧ owner[j] �= 0)
Events
〈R, i, j, k〉 cache [i][j].s �= INV ∧ cache[i][j].d = k →

“no op”
〈W , i, j, k〉 cache [i][j].s = EXC →

cache [i][j].d := k
〈ACKX , i, j〉 cache [i][j].s �= EXC ∧ owner [j] �= 0 →

if owner[j] �= i then cache[owner [j]][j].s := INV ;
owner [j] := 0;
for each (p ∈ Nn)
if (p = i) then
inQ [p] := append(inQ [p], 〈ACKX , j, cache[owner [j]][j].d〉)

else if (p �= owner [j] ∧ cache[p][j].s �= INV ) then
inQ [p] := append(inQ [p], 〈INVAL, j〉)

〈ACKS , i, j〉 cache [i][j].s = INV ∧ owner [j] �= 0 →
cache [owner [j]][j].s := SHD ;
owner[j] := 0;
inQ [i] := append(inQ[i], 〈ACKS , j, cache [owner [j]][j].d〉);

〈UPD , i〉 ¬isEmpty(inQ [i]) →
let msg = head(inQ [i]) in
if (msg .m = INVAL) then
cache[i][msg .a].s := INV

else if (msg .m = ACKS) then {
cache[i][msg .a] := 〈SHD ,msg.d〉;
owner [msg .a] := i

} else {
cache[i][msg .a] := 〈EXC ,msg.d〉;
owner [msg .a] := i

}
inQ [i] := tail(inQ[i])

Figure 1: Example of memory system
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2. For all 1 ≤ i ≤ m, the set of memory events to location i denoted by
L(σ, i) = {k ∈ dom(σ) | loc(σ(k)) = i}.

3. For all 1 ≤ i ≤ m, the set of write events to location i denoted by
Lw(σ, i) = {k ∈ L(σ, i) | op(σ(k)) =W }.

4. For all 1 ≤ i ≤ m, the set of read events to location i denoted by Lr(σ, i) =
{k ∈ L(σ, i) | op(σ(k)) = R}.

Example. Consider the memory system in Figure 1. It is a highly sim-
plified model of the protocol used to maintain cache coherence within a single
node in the Piranha chip multiprocessor system [BGM+00]. The system has
three variables —cache , inQ and owner— and five events —the memory events
{R,W } and the internal events {ACKX ,ACKS ,UPD}. The variables inQ and
owner need some explanation. For each processor i, there is an input queue
inQ [i] where incoming messages are put. The type of inQ [i] is Queue. The
operations isEmpty , head and tail are defined on Queue, and the operation
append is defined on Queue ×Msg . They have the obvious meanings and their
definitions have been omitted in the figure. For each memory location j, either
owner [j] = 0 or owner [j] contains the index of a processor. Each event is associ-
ated with a guarded command. The memory events R andW are parameterized
by three parameters —processor i, location j and data value k. The internal
events ACKX and ACKS are parameterized by two parameters —processor i
and location j. The internal event UPD is parameterized by processor i. A
state is a valuation to the variables. An initial state is a state that satisfies
the initial predicate. An event is enabled in a state if the guard of its guarded
command is true in the state. The variables are initialized to an initial state
and updated by nondeterministically choosing an enabled event and executing
the guarded command corresponding to it. A run of the system is any finite
sequence of events that can be executed starting from some initial state.

A processor i can perform a read to location j if cache [i][j].s ∈ {SHD,EXC},
otherwise it requests owner [j] for shared access to location j. The processor
owner [j] is the last one to have received shared or exclusive access to location
j. The request by i has been abstracted away but the response of owner [j] is
modeled by the action ACKS [i][j], which sends a ACKS message containing the
data in location j to i and temporarily sets owner [j] to 0. Similarly, processor
i can perform a write to location j if cache[i][j].s = EXC , otherwise it requests
owner [j] for exclusive access to location j. The processor owner [j] responds
by sending a ACKX message to i and INVAL messages to all other processors
that have a valid copy of location j. owner[j] is set to i when processor i reads
the ACKS or ACKX message from inQ [i] in the event UPD [i]. Note that new
requests for j are blocked while owner [j] = 0. A processor i that receives an
INVAL message for location j sets cache [i][j].s to INV .
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3 Causality and data independence

In this section, we formalize our assumptions on memory systems. Each as-
sumption is motivated by an observation about memory systems occurring in
practice.

Memory systems do not conjure up data values; they move around data
values that were introduced by initial values or write events. For example, in
the memory system in Figure 1, only the write eventW introduces a fresh data
value in the system by updating the cache; the internal events ACKS , ACKX
and UPD move data around and the read event R reads the data present in the
cache. Therefore, the data value of a read operation must either be the initial
value or the value introduced by a write event. We can now formally state our
first assumption.

Assumption 1 (Causality) There is a function init mapping each trace of S
to a function in N → N such that for all n,m, v ≥ 1, traces τ of S(n,m, v), and
locations 1 ≤ i ≤ m, if x ∈ Lr(τ, i), then either data(τ(x)) = init(τ)(i) or there
is y ∈ Lw(τ, i) such that data(τ(x)) = data(τ(y)).

A function τ satisfying Assumption 1 is called an initial function of the pa-
rameterized memory system S. The initial function is used to model the initial
values of the locations in the memory system. In the remainder of this paper,
we fix a particular initial function init for S.

Memory systems also have the property that control decisions are oblivious
to the data values. A cache line carries along with the actual program data a
few state bits for recording whether it is in shared, exclusive or invalid mode.
Typically, actions do not depend on the value of the data in the cache line.
For example, in the memory system shown in Figure 1, there are no predicates
involving the data fields of the cache lines and the messages in any of the internal
events of the system. In such systems, renaming the data values of a run results
in yet another run of the system. Moreover, every run can be obtained by data
value renaming from a run in which the initial value and values of write events
to any location i are all distinct from each other.

An unambiguous trace is one in which every write event to a location i
has a value distinct from the initial value of i and the value of every other
write to i. Thus, a read event can be paired with its source write event just by
comparing data values. Formally, a trace τ of S(n,m, v) is unambiguous if for all
x ∈ Lw(τ, i), we have data(τ(x)) �= init(τ)(i) and data(τ(x)) �= data(τ(y)) for
all y ∈ Lw(τ, i) \ {x}. The run σ is unambiguous if the trace σ is unambiguous.

For all m, v, v′ ≥ 1, a function λ : Nm × Nv′ → Nv is called a renaming
function. Intuitively, the function λ provides for each memory location c and
data value d the renamed data value λ(c, d). Let λd be a function on E (n,m, v)
such that for all e = 〈a, b, c, d〉 ∈ E (n,m), we have λd(e) = 〈a, b, c, λ(c, d)〉. The
function λd is extended to sequences in E (n,m, v)∗ in the natural way. We can
now state formally state our second assumption.
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Assumption 2 (Data independence) For all n,m, v ≥ 1, we have that τ is
a trace of S(n,m, v) iff there is v′ ≥ 1, an unambiguous trace τ ′ of S(n,m, v′)
and a renaming function λ : Nm × Nv′ → Nv such that τ = λd(τ ′) and
init(τ)(j) = λ(j, init(τ ′)(j)) for all 1 ≤ j ≤ m.

Assumption 2 is motivated by the handling of data in typical cache-coherence
protocols. This assumption can be syntactically enforced on protocol descrip-
tions by imposing restrictions on the operations allowed on variables that contain
data values [Nal99]. For example, one restriction can be that no data variable
appears in the guard expression of an internal event or in the control expression
of a conditional.

4 Sequential consistency

Suppose S(n,m, v) is a memory system for some n,m, v ≥ 1. The sequential
consistency memory model [Lam79] is a correctness requirement on the traces
of S(n,m, v). In this section, we define sequential consistency formally.

We first define the simpler notion of a trace τ of S(n,m, v) being serial.
For all 1 ≤ u ≤ |τ |, let lw(τ, u) be the maximum element of the set {1 ≤
k ≤ u | op(τ(k)) = W ∧ loc(τ(k)) = loc(τ(u))} if the set is nonempty and 0
otherwise. In other words, the value of lw (τ, u) is the latest write event in τ to
location loc(τ(u)) occurring no later than u. If no such write event exists, then
lw(τ, u) is 0. In particular, if u is a write event then lw (τ, u) = u. The trace τ
is serial if for all locations 1 ≤ i ≤ m and u ∈ L(τ, i),

data(τ(u)) = init(τ)(i), if lw(τ, u) = 0
data(τ(u)) = data(τ(lw (τ, u))), if lw(τ, u) �= 0.

Thus, a sequence is serial if every read to a location i returns the value of
the latest write to i if one exists. Moreover, all reads to location i without a
preceding write to i must return the initial value of i.

The sequential consistency memory model M is a function that maps every
sequence of memory events τ ∈ E (n,m, v)∗ and processor 1 ≤ i ≤ n to a
total order M(τ, i) on P (τ, i) defined as follows: for all u, v ∈ P (τ, i), we have
〈u, v〉 ∈ M(τ, i) iff u < v. A sequence τ is sequentially consistent if there is a
permutation f on N|τ | such that the following conditions are satisfied.

C1 For all 1 ≤ u, v ≤ |τ | and 1 ≤ i ≤ n, if 〈u, v〉 ∈ M(τ, i) then f(u) < f(v).

C2 The sequence τ ′ = τf−1(1)τf−1(2) . . . τf−1(|τ |) is serial.

Intuitively, the sequence τ ′ is a permutation of the sequence τ such that the
event at index u in τ is moved to index f(u) in τ ′. According to C1, this per-
mutation must respect the total order M(τ, i) for all 1 ≤ i ≤ n. According
to C2, the permuted sequence must be serial. A run σ ∈ S(n,m, v) is sequen-
tially consistent if σ satisfies M . The memory system S(n,m, v) is sequentially
consistent iff every run of S(n,m, v) is sequentially consistent.
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The memory system in Figure 1 is sequentially consistent. Here is an example
of a sequentially consistent run σ of that memory system, the corresponding
trace τ of σ, and the sequence τ ′ obtained by permuting τ .

σ =

〈ACKX , 1, 1〉
〈UPD , 1〉
〈W , 1, 1, 1〉
〈R, 2, 1, 0〉
〈UPD , 2〉
〈ACKS , 2, 1〉
〈UPD , 2〉
〈R, 2, 1, 1〉

τ = σ =
〈W , 1, 1, 1〉
〈R, 2, 1, 0〉
〈R, 2, 1, 1〉

τ ′ =
〈R, 2, 1, 0〉
〈W , 1, 1, 1〉
〈R, 2, 1, 1〉

Sequential consistency orders the event τ(2) before the event τ(3) at processor
2. Let f be the permutation on N3 defined by f(1) = 2, f(2) = 1, and f(3) = 3.
The sequence τ ′ is the permutation of τ under f . It is easy to check that both
conditions C1 and C2 mentioned above are satisfied.

In order to prove that a run of a memory system is sequentially consistent,
one needs to provide a reordering of the memory events of the run. This reorder-
ing should be serial and should respect the total orders imposed by sequential
consistency at each processor. Since the memory systems we consider in this
paper are data independent, we only need to show sequential consistency for
the unambiguous runs of the memory system. This reduction is stated formally
in the following theorem.

Theorem 4.1 For all n,m ≥ 1, the following statements are equivalent.

1. For all v ≥ 1, every trace of S(n,m, v) is sequentially consistent.

2. For all v ≥ 1, every unambiguous trace of S(n,m, v) is sequentially con-
sistent.

Proof: The (1) ⇒ (2) case is trivial.
((2)⇐ (1)) Let τ be a trace of S(n,m, v) for some v ≥ 1. From Assumption 2

there is v′ ≥ 1, an unambiguous trace τ ′ of S(n,m, v′) and a renaming function
λ : Nm × Nv′ → Nv such that τ = λd(τ ′) and init(τ)(j) = λ(j, init(τ ′)(j)) for
all 1 ≤ j ≤ m. Since τ ′ is sequentially consistent, we know that conditions C1
and C2 are satisfied by τ ′. It is not difficult to see that both conditions C1 and
C2 are satisfied by λd(τ ′) as well. Therefore τ is sequentially consistent.

5 Witness

Theorem 4.1 states that in order to prove sequential consistency for all runs in
a memory system with n processors and m locations (and any number of data
values), it suffices to prove sequential consistency for all unambiguous runs in the
system. In this section, we further reduce the problem of checking sequential
consistency on an unambiguous run to the problem of detecting a cycle in a
constraint graph.

8



Consider a memory system S(n,m, v) for some fixed n,m, v ≥ 1. A witness
Ω for S(n,m, v) maps every trace τ of S(n,m, v) and location 1 ≤ i ≤ m to
a total order Ω(τ, i) on the set of writes Lw(τ, i) to location i. Then the total
order Ω(τ, i) on the write events to location i can be extended to a partial
order Ωe(τ, i) on all memory events (including read events) to location i. If a
read event r reads the value written by the write event w, the partial order
puts r after w and all write events preceding w, and before all write events
succeeding w. Formally, for every location 1 ≤ i ≤ m, and x, y ∈ L(τ, i), we
have that 〈x, y〉 ∈ Ωe(τ, i) iff one of the following conditions holds.

1. data(τ(x)) = data(τ(y)), op(τ(x)) =W , and op(τ(y)) = R.

2. data(τ(x)) = init(τ)(i) and data(τ(y)) �= init(τ)(i).
3. ∃a, b ∈ Lw(τ, i) such that 〈a, b〉 ∈ Ω(τ, i), data(τ(a)) = data(τ(x)), and
data(τ(b)) = data(τ(y)).

We now show that the relation Ωe(τ, i) is a partial order. First, we need the
following lemma about Ωe(τ, i).

Lemma 5.1 For all unambiguous traces τ of S(n,m, v), locations 1 ≤ i ≤ m
and r, s, t ∈ L(τ, i), if 〈r, s〉 ∈ Ωe(τ, i), then either 〈r, t〉 ∈ Ωe(τ, i) or 〈t, s〉 ∈
Ωe(τ, i).

Proof: Since 〈r, s〉 ∈ Ωe(τ, i), either data(τ(s)) �= init(τ)(i) or there is a x ∈
Lw(τ, i) such that data(τ(s)) = data(τ(x)). Since τ is an unambiguous trace,
we have that data(τ(x)) �= init(τ)(i). Therefore, we get that data(τ(s)) �=
init(τ)(i) in both cases. If data(τ(t)) = init(τ)(i) we immediately get that
〈t, s〉 ∈ Ωe(τ, i). So suppose data(τ(t)) �= init(τ)(i). Since τ is unambiguous,
there is y ∈ Lw(τ, i) such that data(τ(t)) = data(τ(y)). We have three cases
from the definition of 〈r, s〉 ∈ Ωe(τ, i).

1. data(τ(r)) = data(τ(s)), op(τ(r)) = W , and and op(τ(s)) = R. Since
Ω is a total order on Lw(τ, i), either 〈r, y〉 ∈ Ω(τ, i) or 〈y, r〉 ∈ Ω(τ, i).
In the first case, we have 〈r, t〉 ∈ Ωe(τ, i). In the second case, we have
〈t, s〉 ∈ Ωe(τ, i).

2. data(τ(r)) = init(τ)(i) and data(τ(s)) �= init(τ)(i). We get that 〈r, t〉 ∈
Ωe(τ, i).

3. ∃a, b ∈ Lw(τ, i) such that 〈a, b〉 ∈ Ω(τ, i), data(τ(a)) = data(τ(r)), and
data(τ(b)) = data(τ(s)). Since Ω is a total order on Lw(τ, i), either 〈a, y〉 ∈
Ω(τ, i) or 〈y, a〉 ∈ Ω(τ, i). In the first case, we have 〈r, t〉 ∈ Ωe(τ, i). In
the second case, we have by transitivity 〈y, b〉 ∈ Ω(τ, i) and therefore
〈t, s〉 ∈ Ωe(τ, i).

Lemma 5.2 For all unambiguous traces τ of S(n,m, v) and locations 1 ≤ i ≤
m, we have that Ωe(τ, i) is a partial order.
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Proof: We show that Ωe(τ, i) is irreflexive. In other words, for all 1 ≤ x ≤
|τ |, we have that 〈x, x〉 �∈ Ωe(τ, i). This is an easy proof by contradiction by
assuming 〈x, x〉 ∈ Ωe(τ, i) and performing a case analysis over the three resulting
conditions.

We show that Ωe(τ, i) is anti-symmetric. In other words, for all 1 ≤ x < y ≤
|τ |, if 〈x, y〉 ∈ Ωe(τ, i) then 〈y, x〉 �∈ Ωe(τ, i). We do a proof by contradiction.
Suppose both 〈x, y〉 ∈ Ωe(τ, i) and 〈y, x〉 ∈ Ωe(τ, i). We reason as in the proof
of Lemma 5.1 to obtain data(τ(x)) �= init(τ)(i) and data(τ(y)) �= init(τ)(i).
Therefore there are a, b ∈ Lw(τ, i) such that data(τ(a)) = data(τ(x)) and
data(τ(b)) = data(τ(y)). We perform the following case analysis.

1. a = b. Either op(x) = R and op(y) = R, or op(x) = W and op(y) = R,
or op(x) = R and op(y) = W . In the first case 〈x, y〉 �∈ Ωe(τ, i) and
〈y, x〉 �∈ Ωe(τ, i). In the second case 〈y, x〉 �∈ Ωe(τ, i). In the third case
〈x, y〉 �∈ Ωe(τ, i).

2. 〈a, b〉 ∈ Ω(τ, i). We have data(τ(x)) �= data(τ(y)) since τ is unambiguous.
Since Ω(τ, i) is a total order, we have 〈b, a〉 �∈ Ω(τ, i). Therefore 〈y, x〉 �∈
Ωe(τ, i).

3. 〈b, a〉 ∈ Ω(τ, i). This case is symmetric to Case 2.

Finally, we show that Ωe(τ, i) is transitive. Suppose 〈x, y〉 ∈ Ωe(τ, i) and
〈y, z〉 ∈ Ωe(τ, i). From Lemma 5.1, either 〈x, z〉 ∈ Ωe(τ, i) or 〈z, y〉 ∈ Ωe(τ, i).
We have shown Ωe(τ, i) to be anti-symmetric. Therefore 〈x, z〉 ∈ Ωe(τ, i).

5.1 Constraint graph

Suppose τ is an unambiguous trace of S(n,m, v). We have thatM(τ, i) is a total
order on P (τ, i) for all 1 ≤ i ≤ n from the definition of sequential consistency.
For any witness Ω, we also have that Ωe(τ, j) is a partial order on L(τ, j) for
all 1 ≤ j ≤ m from Lemma 5.2. The union of the n total orders M(τ, i) and
m partial orders Ωe(τ, j) imposes a graph on dom(τ). The acyclicity of this
graph, for some witness Ω, is a necessary and sufficient condition for the trace τ
to satisfy sequential consistency. We define a function G that for every witness
Ω returns a function G(Ω). The function G(Ω) maps every unambiguous trace
τ of S(n,m, v) to the graph 〈dom(τ),

⋃
1≤i≤n M(τ, i) ∪ ⋃

1≤j≤m Ωe(τ, j)〉. The
work of Gibbons and Korach [GK97] defines a constraint graph on the memory
events of a run that is similar to G(Ω)(τ).

Theorem 5.3 For all n,m, v ≥ 1, every unambiguous trace of S(n,m, v) is
sequentially consistent iff there is a witness Ω such that the graph G(Ω)(τ) is
acyclic for every unambiguous trace τ of S(n,m, v).

Proof: (⇒) Suppose τ is an unambiguous trace of S(n,m, v). Then τ satisfies
sequential consistency. There is a permutation f on N|τ | such that conditions
C1 and C2 are satisfied. For all 1 ≤ i ≤ m, define Ω(τ, i) to be the total
order on Lw(τ, i) such that for all x, y ∈ Lw(τ, i), we have 〈x, y〉 ∈ Ω(τ, i) iff
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f(x) < f(y). We show that the permutation f is a linearization of the vertices
in G(Ω)(τ) that preserves all the edges. In other words, if 〈x, y〉 ∈ M(τ, i) for
some 1 ≤ i ≤ n or 〈x, y〉 ∈ Ωe(τ, j) for some 1 ≤ j ≤ m, then f(x) < f(y). If
〈x, y〉 ∈ M(τ, i) then we have from C1 that f(x) < f(y). We show below that
if 〈x, y〉 ∈ Ωe(τ, j) then f(x) < f(y).

Let τ ′ = τf−1(1)τf−1(2) . . . τf−1(|τ |). For all 1 ≤ u ≤ |τ | we have that τ(u) =
τ ′(f(u)). Since τ is unambiguous τ ′ is also unambiguous. Suppose a ∈ Lw(τ, j)
and x ∈ L(τ, j). We show that if data(τ(a)) = data(τ(x)) then f(a) ≤ f(x).
We have that f(a) ∈ Lw(τ ′, j), f(x) ∈ L(τ ′, j), data(τ(a)) = data(τ ′(f(a))),
and data(τ(x)) = data(τ ′(f(x))). Since τ ′ is unambiguous, either x = a or
op(τ ′(f(x))) = R. In the first case f(a) = f(x), and in the second case f(a) =
lw(τ ′, f(x)) which implies that f(a) < f(x). Therefore f(a) ≤ f(x).

If 〈x, y〉 ∈ Ωe(τ, j) then we have three cases. In each case, we show that
f(x) < f(y).

1. data(τ(x)) = data(τ(y)), op(τ(x)) = W , and op(τ(y)) = R. We have
data(τ ′(f(x))) = data(τ ′(f(y))), op(τ ′(f(x))) = W , and op(τ ′(f(y))) =
R. Since τ ′ is unambiguous, we get that data(τ ′(f(y))) �= init(τ ′)(j).
Therefore f(x) = lw(τ ′, f(y)) which implies that f(x) < f(y).

2. data(τ(x)) = init(τ)(j) and data(τ(y)) �= init(τ)(j). Since x �= y we
have f(x) �= f(y). We show f(x) < f(y) by contradiction. Suppose
f(y) < f(x). Since data(τ(y)) �= init(τ)(j) there is b ∈ Lw(τ, j) such that
data(τ(b)) = data(τ(y)). Therefore we have that f(b) ≤ f(y) < f(x).
Therefore f(b) ≤ lw(τ ′, f(x)). Since the trace τ ′ is unambiguous and
data(τ ′(f(x))) = init(τ)(j) we have a contradiction.

3. ∃a, b ∈ Lw(τ, j) such that 〈a, b〉 ∈ Ω(τ, j), data(τ(a)) = data(τ(x)), and
data(τ(b)) = data(τ(y)). We show f(x) < f(y) by contradiction. Sup-
pose f(y) < f(x). We have that f(a) ≤ f(x) and f(b) ≤ f(y). Since
〈a, b〉 ∈ Ω(τ, j), we have f(a) < f(b) from the definition of Ω. Thus we
have f(a) < f(b) ≤ f(y) < f(x) Therefore f(a) �= lw(τ ′, f(x)). Since τ ′

is unambiguous and data(τ ′(f(a))) = data(τ ′(f(x))) we have a contradic-
tion.

(⇐) Suppose there is a witness Ω such that G(Ω)(τ) is acyclic for all unam-
biguous traces τ of S(n,m, v). Let f be a linearization of the vertices in G(Ω)(τ)
that respects all edges. In other words, if 〈x, y〉 ∈ M(τ, i) for some 1 ≤ i ≤ n or
〈x, y〉 ∈ Ωe(τ, j) for some 1 ≤ j ≤ m, then f(x) < f(y). Then C1 is satisfied.
Let τ ′ denote τf−1(1)τf−1(2) . . . τf−1(|τ |). We now show that τ ′ is serial.

We have that τ ′(x) = τ(f−1(x)) for all 1 ≤ x ≤ |τ ′|. Let loc(τ ′(x)) = j for
some 1 ≤ x ≤ |τ ′|. We show that if lw(τ ′, x) = 0 then data(τ ′(x)) = init(τ)(j),
and if lw(τ ′, x) �= 0 then data(τ ′(x)) = data(τ ′(lw(τ ′, x))). Thus, whenever
lw(τ ′, x) = lw(τ ′, y) we have data(τ ′(x) = data(τ ′(y)). Here are the two cases.

1. lw (τ ′, x) = 0. We have that op(τ ′(x)) = R, otherwise lw(τ ′, x) = x �= 0
which is a contradiction. We prove by contradiction that data(τ ′(x)) =
init(τ)(j). Suppose data(τ ′(x)) �= init(τ)(j). Then there is a ∈ Lw(τ, j)
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such that data(τ ′(x)) = data(τ(f−1(x))) = data(τ(a)). Therefore we get
that 〈a, f−1(x)〉 ∈ Ωe(τ, j) which means that f(a) < x. This implies that
f(a) ≤ lw(τ ′, x) which is a contradiction.

2. lw (τ ′, x) �= 0. We show data(τ ′(x)) = data(τ ′(lw(τ ′, x))). If op(τ ′(x)) =
W , then lw (τ ′, x) = x and data(τ ′(x)) = data(τ ′(lw (τ ′, x))). Suppose
op(τ ′(x)) = R. Then there is a ∈ Lw(τ, j) such that data(τ ′(x)) =
data(τ(f−1(x))) = data(τ(a)). Therefore 〈a, f−1(x)〉 ∈ Ωe(τ, j) which
means that f(a) < x. Therefore f(a) ≤ lw(τ ′, x). Suppose f(a) <
lw (τ ′, x). Then there is b ∈ Lw(τ, j) such that f(a) < f(b) ≤ x. Since
f(a) < f(b), we have 〈a, b〉 ∈ Ωe(τ, j). Therefore 〈f−1(x), b〉 ∈ Ωe(τ, j).
This means that x < f(b) which is a contradiction. Therefore f(a) =
lw (τ ′, x).

5.2 Simple witness

Theorems 4.1 and 5.3 suggest that the memory system S(n,m, v) can be proved
sequentially consistent as follows. We produce for each v′ ≥ 1 a witness Ω for
S(n,m, v′) and show for every unambiguous trace τ of S(n,m, v′) that the graph
G(Ω)(τ ′) is acyclic. But the construction of the witness is still left to the user.
In this section, we argue that a simple witness, which orders the write events
to a location exactly in the order in which they occur, suffices for a number of
memory systems occurring in practice. Formally, a witness Ω is simple if for all
traces τ of S(n,m, v) and locations 1 ≤ i ≤ m, we have 〈x, y〉 ∈ Ω(τ, i) iff x < y
for all x, y ∈ Lw(τ, i).

Consider the memory system of Figure 1. We argue informally that the
simple witness is a good witness for this memory system. Permission to perform
writes flows from one cache to another by means of the ACKX message. Note
that for each location j, the variable owner [j] is set to 0 (which is not the id
of any processor) when an ACKX message is generated. When the ACKX
message is received at the destination (by the UPD event), the destination
moves to EXC state and sets owner [j] to the destination id. A new ACKX
message is generated only when owner [j] �= 0. Thus, the memory system has
the property that each memory location can be held in EXC state by at most
one cache. Moreover, writes to the location j can happen only when the cache
has the location in EXC state. Therefore, at most one cache can be performing
writes to a memory location. This indicates that the logical order of the write
events is the same as their temporal order. In other words, the simple witness
is the correct witness for demonstrating that a run is sequentially consistent.

In general, for any memory system in which at any time at most one proces-
sor can perform write events to a location, the simple witness is very likely to
be the correct witness. Most memory systems occurring in practice [LLG+90,
KOH+94, BDH+99, BGM+00] have this property. In Section 8, we describe
a model checking algorithm to verify the correctness of a memory system with
respect to the simple witness. If the simple witness is indeed the desired witness

12



and the memory system is designed correctly, then our algorithm will be able to
verify its correctness. Otherwise, it will produce an error trace suggesting to the
user that either there is an error in the memory system or the simple witness is
not a correct witness. Thus our method for checking sequential consistency is
clearly sound. We have argued that it is also complete on most shared-memory
systems that occur in practice.

6 Nice cycle reduction

For some n,m, v ≥ 1, let S(n,m, v) be a memory system and Ω a witness for
it. Let τ be an unambiguous trace of S(n,m, v). In this section, we begin
our quest for a method to detect cycles in G(Ω)(τ). We show that it suffices
to detect a special class of cycles called nice cycles. In Section 7, we further
reduce our search for cycles to the class of canonical nice cycles. In Section 8,
we will show that detection of canonical nice cycles can be performed by model
checking.

We fix some k ≥ 1 and use the symbol ⊕ to denote addition over the additive
group with elements Nk and identity element k. A k-nice cycle in G(Ω)(τ) is
a sequence u1, v1, . . . , uk, vk of distinct vertices in N|τ | such that the following
conditions are true.

1. For all 1 ≤ x ≤ k, we have 〈ux, vx〉 ∈ M(τ, i) for some 1 ≤ i ≤ n and
〈vx, ux⊕1〉 ∈ Ωe(τ, j) for some 1 ≤ j ≤ m.

2. For all 1 ≤ x < y ≤ k and for all 1 ≤ i, j ≤ n, if 〈ux, vx〉 ∈ M(τ, i) and
〈uy, vy〉 ∈ M(τ, j) then i �= j.

3. For all 1 ≤ x < y ≤ k and for all 1 ≤ i, j ≤ m, if 〈vx, ux⊕1〉 ∈ Ωe(τ, i) and
〈vy , uy⊕1〉 ∈ Ωe(τ, j) then i �= j.

In a k-nice cycle, no two edges belong to the relation M(τ, i) for any processor
i. Similarly, no two edges belong to the relation Ωe(τ, j) for any location j. The
above definition also implies that if a cycle is k-nice then k ≤ min({n,m}).

Theorem 6.1 If the graph G(Ω)(τ) has a cycle, then it has a k-nice cycle for
some k such that 1 ≤ k ≤ min({n,m}).

Proof: Suppose G(Ω)(τ) has no k-nice cycles but does have a cycle. Consider
the shortest such cycle u1, . . . , ul where l ≥ 1. For this proof, we denote by
⊕ addition over the additive group with elements Nl and identity element l.
Then for all 1 ≤ x ≤ l either 〈ux, ux⊕1〉 ∈ M(τ, i) for some 1 ≤ i ≤ n or
〈ux, ux⊕1〉 ∈ Ωe(τ, i) for some 1 ≤ i ≤ m.

Since the cycle u1, . . . , ul is not k-nice for any k, there are 1 ≤ a < b ≤ l such
that either (1) 〈ua, ua⊕1〉 ∈ M(τ, i) and 〈ub, ub⊕1〉 ∈ M(τ, i) for some 1 ≤ i ≤ n,
or (2) 〈ua, ua⊕1〉 ∈ Ωe(τ, i) and 〈ub, ub⊕1〉 ∈ Ωe(τ, i) for some 1 ≤ i ≤ m.

Case (1). We have from the definition of M that ua < ua⊕1 and ub < ub⊕1.
Either ua < ub or ub < ua. If ua < ub then ua < ub⊕1 or 〈ua, ub⊕1〉 ∈ M(τ, i).
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If ub < ua then ub < ua⊕1 or 〈ub, ua⊕1〉 ∈ M(τ, i). In both cases, we have a
contradiction since the cycle can be made shorter.

Case (2). From Lemma 5.1, either 〈ua, ub〉 ∈ Ωe(τ, i) or 〈ub, ua⊕1〉 ∈ Ωe(τ, i).
In both cases, we have a contradiction since the cycle can be made shorter.

7 Symmetry reduction

Suppose S(n,m, v) is a memory system for some n,m, v ≥ 1. In this section,
we use symmetry arguments to further reduce the class of cycles that need
to be detected in constraint graphs. Each k-nice cycle has 2 × k edges with
one edge each for k different processors and k different locations. These edges
can potentially occur in any order yielding a set of isomorphic cycles. But
if the memory system S(n,m, v) is symmetric with respect to processor and
memory location ids, presence of any one of the isomorphic nice cycles implies
the existence of a nice cycle in which the edges are arranged in a canonical order.
Thus, it suffices to search for a cycle with edges in a canonical order.

We discuss processor symmetry in Section 7.1 and location symmetry in
Section 7.2. We combine processor and location symmetry to demonstrate the
reduction from nice cycles to canonical nice cycles in Section 7.3.

7.1 Processor symmetry

For any permutation λ on Nn, the function λp on E (n,m, v) permutes the pro-
cessor ids of events according to λ. Formally, for all e = 〈a, b, c, d〉 ∈ E (n,m, v),
we define λp(e) = 〈a, λ(b), c, d〉. The function λp is extended to sequences in
E (n,m, v)∗ in the natural way.

Assumption 3 (Processor symmetry) For every permutation λ on Nn and
for all traces τ of the memory system S(n,m, v), we have that λp(τ) is a trace
of S(n,m, v) and init(λp(τ)) = init(τ).

We argue informally that the memory system in Figure 1 satisfies Assump-
tion 3. The operations performed by the various parameterized actions on the
state variables that store processor ids are symmetric. Suppose s is a state of
the system. We denote by λp(s) the state obtained by permuting the values
of variables that store processors ids according to λ. Then, for example, if the
action UPD(i) in some state s yields state t, then the action UPD(λ(i)) in state
λp(s) yields the state λp(t). Thus, from any run σ we can construct another run
λp(σ). If a shared-memory system is described with symmetric types, such as
scalarsets [ID96], used to model variables containing processor ids, then it has
the property of processor symmetry by construction.

The following lemma states that the sequential consistency memory model
is symmetric with respect to processor ids. It states that two events in a trace
τ ordered by sequential consistency remain ordered under any permutation of
processor ids.

14



Lemma 7.1 Suppose λ is a permutation on Nn. Suppose τ and τ ′ are traces
of S(n,m, v) such that τ ′ = λp(τ). Then for all 1 ≤ x, y ≤ |τ |, and for all
1 ≤ i ≤ n, we have that 〈x, y〉 ∈ M(τ, i) iff 〈x, y〉 ∈ M(τ ′, λ(i)).

Proof: For all 1 ≤ x, y ≤ |τ | and for all 1 ≤ i ≤ n, we have that

〈x, y〉 ∈ M(τ, i)
⇔ proc(τ(x)) = proc(τ(y)) = i and x < y
⇔ proc(τ ′(x)) = proc(τ ′(y)) = λ(i) and x < y
⇔ 〈x, y〉 ∈ M(τ ′, λ(i)).

The following lemma states that the partial order Ωe obtained from a simple
witness Ω is symmetric with respect to processor ids. It states that two events to
location i ordered by Ωe(τ, i) in a trace τ remain ordered under any permutation
of processor ids.

Lemma 7.2 Suppose Ω is a simple witness for the memory system S(n,m, v)
and λ is a permutation on Nn. Suppose τ and τ ′ are unambiguous traces of
S(n,m, v) such that τ ′ = λp(τ). Then for all 1 ≤ x, y ≤ |τ | and for all 1 ≤ i ≤
m, we have that 〈x, y〉 ∈ Ωe(τ, i) iff 〈x, y〉 ∈ Ωe(τ ′, i).

Proof: We have 〈x, y〉 ∈ Ω(τ, i) iff x < y iff 〈x, y〉 ∈ Ω(τ ′, i). From the definition
of Ωe(τ, i) we have the following three cases.

1. data(τ(x)) = data(τ(y)), op(τ(x)) = W , op(τ(y)) = R iff data(τ ′(x)) =
data(τ ′(y)), op(τ ′(x)) =W , op(τ ′(y)) = R.

2. data(τ(x)) = init(τ)(i) and data(τ(y)) �= init(τ)(i) iff data(τ ′(x)) =
init(τ ′)(i) and data(τ ′(y)) �= init(τ ′)(i).

3. ∃a, b ∈ Lw(τ, i) such that a < b, data(τ(a)) = data(τ(x)), data(τ(b)) =
data(τ(y)) iff ∃a, b ∈ Lw(τ ′, i) such that a < b, data(τ ′(a)) = data(τ ′(x)),
data(τ ′(b)) = data(τ ′(y)).

7.2 Location symmetry

For any permutation λ on Nm, the function λl on E (n,m, v) permutes the loca-
tion ids of events according to λ. Formally, for all e = 〈a, b, c, d〉 ∈ E (n,m, v),
we define λl(e) = 〈a, b, λ(c), d〉. The function λl is extended to sequences in
E (n,m, v)∗ in the natural way.

Assumption 4 (Location symmetry) For every permutation λ on Nm and
for all traces τ of the memory system S(n,m, v), we have that λl(τ) is a trace
of S(n,m, v) and init(λl(τ)) ◦ λ = init(τ).
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We can argue informally that the memory system in Figure 1 satisfies As-
sumption 4 also. The operations performed by the various parameterized actions
on the state variables that store location ids are symmetric. Suppose s is a state
of the system. We denote by λl(s) the state obtained by permuting the values
of variables that store location ids according to λ. Then, for example, if the
action UPD(i) in some state s yields state t, then the action UPD(λ(i)) in state
λl(s) yields the state λl(t). If scalarsets are used for modeling variables contain-
ing location ids, the shared-memory system will have the property of location
symmetry by construction.

The following lemma states that the sequential consistency memory model
is symmetric with respect to location ids. It states that two events in a trace
τ ordered by sequential consistency remain ordered under any permutation of
location ids.

Lemma 7.3 Suppose λ is a permutation on Nm. Suppose τ and τ ′ are traces
of S(n,m, v) such that τ ′ = λl(τ). Then for all 1 ≤ x, y ≤ |τ |, and for all
1 ≤ i ≤ n, we have that 〈x, y〉 ∈ M(τ, i) iff 〈x, y〉 ∈ M(τ ′, i).

Proof: For all 1 ≤ x, y ≤ |τ | and for all 1 ≤ i ≤ m, we have that

〈x, y〉 ∈ M(τ, i)
⇔ proc(τ(x)) = proc(τ(y)) = i and x < y
⇔ proc(τ ′(x)) = proc(τ ′(y)) = i and x < y
⇔ 〈x, y〉 ∈ M(τ ′, i).

The following lemma states that the partial order Ωe obtained from a simple
witness Ω is symmetric with respect to location ids. It states that two events to
location i ordered by Ωe(τ, i) in a trace τ remain ordered under any permutation
of location ids.

Lemma 7.4 Suppose Ω is a simple witness for the memory system S(n,m, v)
and λ is a permutation on Nm. Suppose τ and τ ′ are unambiguous traces of
S(n,m, v) such that τ ′ = λl(τ). Then for all 1 ≤ x, y ≤ |τ | and for all 1 ≤ i ≤
m, we have that 〈x, y〉 ∈ Ωe(τ, i) iff 〈x, y〉 ∈ Ωe(τ ′, λ(i)).

Proof: We have 〈x, y〉 ∈ Ω(τ, i) iff x < y iff 〈x, y〉 ∈ Ω(τ ′, λ(i)). From the
definition of Ωe(τ, i) we have the following three cases.

1. data(τ(x)) = data(τ(y)), op(τ(x)) = W , op(τ(y)) = R iff data(τ ′(x)) =
data(τ ′(y)), op(τ ′(x)) =W , op(τ ′(y)) = R.

2. data(τ(x)) = init(τ)(i) and data(τ(y)) �= init(τ)(i) iff data(τ ′(x)) =
init(τ ′)(λ(i)) and data(τ ′(y)) �= init(τ ′)(λ(i)).

3. ∃a, b ∈ Lw(τ, i) where a < b, data(τ(a)) = data(τ(x)), and data(τ(b)) =
data(τ(y)) iff ∃a, b ∈ Lw(τ ′, λ(i)) where a < b, data(τ ′(a)) = data(τ ′(x)),
and data(τ ′(b)) = data(τ ′(y)).
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7.3 Combining processor and location symmetry

We fix some k ≥ 1 and use the symbol ⊕ to denote addition over the additive
group with elements Nk and identity element k. A k-nice cycle u1, v1, . . . , uk, vk

is canonical if 〈ux, vx〉 ∈ M(τ, x) and 〈vx, ux⊕1〉 ∈ Ωe(τ, x⊕ 1) for all 1 ≤ x ≤
k. In other words, the processor edges in a canonical nice cycle are arranged
in increasing order of processor ids. Similarly, the location edges are arranged
in increasing order of location ids. The following theorem claims that if the
constraint graph of a run has a nice cycle then there is some run with a canonical
nice cycle as well.

Theorem 7.5 Suppose Ω is a simple witness for the memory system S(n,m, v).
Let τ be an unambiguous trace of S(n,m, v). If the graph G(Ω)(τ) has a k-nice
cycle, then there is an unambiguous trace τ ′′ of S(n,m, v) such that G(Ω)(τ ′′)
has a canonical k-nice cycle.

Proof: Let u1, v1, . . . , uk, vk be a k-nice cycle in G(Ω)(τ). Let 1 ≤ i1, . . . , ik ≤ n
and 1 ≤ j1, . . . , jk ≤ m be such that 〈ux, vx〉 ∈ M(τ, ix) and 〈vx, ux⊕1〉 ∈
Ωe(τ, jx⊕1) for all 1 ≤ x ≤ k. Let α be a permutation on Nn that maps ix to
x for all 1 ≤ x ≤ k. Then from Assumption 3 there is a trace τ ′ of S(n,m, v)
such that τ ′ = αp(τ). Let β be a permutation on Nm that maps jx to x for all
1 ≤ x ≤ k. Then from Assumption 4 there is a trace τ ′′ of S(n,m, v) such that
τ ′′ = βl(τ ′). For all 1 ≤ x ≤ k, we have that

〈ux, vx〉 ∈ M(τ, ix)
⇔ 〈ux, vx〉 ∈ M(τ ′, α(ix)) =M(τ ′, x) from Lemma 7.1
⇔ 〈ux, vx〉 ∈ M(τ ′′, x) from Lemma 7.3.

For all 1 ≤ x ≤ k, we also have that

〈vx, ux⊕1〉 ∈ Ωe(τ, jx⊕1)
⇔ 〈vx, ux⊕1〉 ∈ Ωe(τ ′, jx⊕1) from Lemma 7.2
⇔ 〈vx, ux⊕1〉 ∈ Ωe(τ ′′, β(jx⊕1)) = Ωe(τ ′′, x⊕ 1) from Lemma 7.4.

Therefore u1, v1, . . . , uk, vk is a canonical k-nice cycle in G(Ω)(τ ′′).
Finally, Theorems 4.1, 5.3, 6.1 and 7.5 can be easily combined to yield the

following theorem.

Corollary 7.6 Let n,m ≥ 1. Suppose for all v ≥ 1, for all unambiguous traces
τ of S(n,m, v), and for all 1 ≤ k ≤ min({n,m}), the graph G(Ω)(τ) for the
simple witness Ω does not have a canonical k-nice cycle. Then for all v ≥ 1,
every trace of S(n,m, v) is sequentially consistent.

8 Model checking memory systems

In this section, we present a model checking algorithm that, given a k such
that 1 ≤ k ≤ min({n,m}), determines whether there is v ≥ 1 and a trace τ in
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Automaton Constraink(j) for 1 ≤ j ≤ k
States {a, b}
Initial state a
Accepting states {b}
Alphabet E (n,m, 3)
Transitions
[] ¬(op(e) =W ∧ loc(e) = j)

→ s′ = s
[] s = a ∧ op(e) =W ∧ loc(e) = j ∧ data(e) = 1

→ s′ = a
[] s = a ∧ op(e) =W ∧ loc(e) = j ∧ data(e) = 2

→ s′ = b
[] s = b ∧ op(e) =W ∧ loc(e) = j ∧ data(e) = 3

→ s′ = b

Automaton Constraink(j) for k < j ≤ m
States {a}
Initial state a
Accepting states {a}
Alphabet E (n,m, 3)
Transitions
[] ¬(op(e) =W ∧ loc(e) = j) ∨ data(e) = 1

→ s′ = s

Automaton Checkk(i) for 1 ≤ i ≤ k
States {a, b, err}
Initial state a
Accepting states {err}
Alphabet E (n,m, 3)
Transitions
[] s = a ∧ proc(e) = i ∧ loc(e) = i ∧ data(e) ∈ {2, 3}

→ s′ = b
[] s = b ∧ proc(e) = i ∧ loc(e) = i⊕ 1 ∧ (data(e) = 1 ∨ (op(e) =W ∧ data(e) = 2))

→ s′ = err
[] otherwise

→ s′ = s

Figure 2: Automata for detecting canonical k-nice cycle
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S(n,m, v) such that the graph G(Ω)(τ) for the simple witness Ω has a canonical
k-nice cycle. Corollary 7.6 then allows us to verify sequential consistency on the
memory system S(n,m, v) for all v ≥ 1 by min({n,m}) such model checking
lemmas.

We fix some k such that 1 ≤ k ≤ min({n,m}). We use the symbol ⊕ to
denote addition over the additive group with elements Nk and identity element k.
The model checking algorithm makes use of m automata named Constraink(j)
for 1 ≤ j ≤ m, and k automata named Checkk(i) for 1 ≤ i ≤ k. The automata
are shown in Figure 2. Each automaton refers to a variable s that represents the
state of the automaton. Model checking is performed on the system obtained
by composing these automata with the memory system S(n,m, 3).

We now define the regular languages accepted by these automata formally.
In order to be concise, we use tuples of sets to denote the set obtained by
taking the cross-product of the component sets. For example, the 4-tuple
〈{R,W }, {1}, {1}, {2, 3}〉 denotes the set {R,W }× {1}× {1}× {2, 3}. This set
denotes a read event or a write event by processor 1 to location 1 with data value
2 or 3. We further simplify notation and denote this set by 〈{R,W }, 1, 1, {2, 3}〉.

For all memory locations 1 ≤ j ≤ m, the automaton Constraink(j) con-
strains the write events to location j. If 1 ≤ j ≤ k, then Constraink(j) accepts
sequences with a zero or more write events to location j with data value 1 fol-
lowed by exactly one write event to location j with data value 2 followed by zero
or more write events to location j with data value 3. Formally, the automaton
Constraink(j) accepts a sequence τ in E (n,m, 3)∗ iff the projection of τ to the
alphabet 〈W ,Nn, j,N3〉 satisfies the regular expression

〈W ,Nn, j, 1〉∗ · 〈W ,Nn, j, 2〉 · 〈W ,Nn, j, 3〉∗.
If k < j ≤ m, then Constraink(j) accepts sequences where all writes to location
j have data value 1. Formally, the automaton Constraink(j) accepts a sequence
τ in E (n,m, 3)∗ iff the projection of τ to the alphabet 〈W ,Nn, j,N3〉 satisfies
the regular expression

〈W ,Nn, j, 1〉∗.
For all 1 ≤ i ≤ k, there is an automaton Checkk(i). The automaton

Checkk(i) accepts a trace τ if there are events x and y at processor i, with
x occurring before y, such that x is an event to location i with data value 2
or 3 and y is an event to location i ⊕ 1 with data value 1 or 2. Moreover,
the event y is required to be a write event if its data value is 2. Formally,

Checkk(i) =

(E (n,m, 3) \ 〈{R,W }, i, i, {2, 3}〉)∗ ·
〈{R,W }, i, i, {2, 3}〉 ·
(E (n,m, 3) \ (〈{R,W }, i, i⊕ 1, 1〉 ∪ 〈W , i, i⊕ 1, 2〉))∗ ·
(〈{R,W }, i, i⊕ 1, 1〉 ∪ 〈W , i, i⊕ 1, 2〉) ·
E (n,m, 3)∗

In order to check for canonical k-nice cycles, we compose the memory system
S(n,m, 3) with Constraink(j) for all 1 ≤ j ≤ m and with Checkk(i) for all
1 ≤ i ≤ k. We use a model checker to determine if the resulting system has a
trace in which the initial value of each memory location is 1.
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〈{R, W }, 1, 1, {2, 3}〉

〈{R, W }, 1, 2, 1〉

〈W , 1, 2, 2〉
or

〈{R, W }, 2, 2, {2, 3}〉

〈{R, W }, 2, 3, 1〉

〈W , 2, 3, 2〉
or

· · ·

〈{R, W }, k, k, {2, 3}〉

〈{R, W }, k, 1, 1〉

〈W , k, 1, 2〉
or

M(τ, k)M(τ, 1) M(τ, 2)

Ωe(τ, 2) Ωe(τ, 3)

Ωe(τ, k)

Ωe(τ, 1)

Figure 3: Canonical k-nice cycle

Any accepting run of the composed system has 2 × k events which can
be arranged as shown in Figure 3 to yield a canonical k-nice cycle. Each
processor i for 1 ≤ i ≤ k and each location j for 1 ≤ j ≤ k supplies 2
events. Each event is marked by a 4-tuple denoting the possible values for
that event. The edge labeled by M(τ, i) is due to the total order imposed
by sequential consistency on the events at processor i. The edge labeled by
Ωe(τ, j) is due to the partial order imposed by the simple witness on the events
to location j. For example, consider the edge labeled Ωe(τ, 2) with the source
event labeled by 〈{R,W }, 1, 2, 1〉 or 〈W , 1, 2, 2〉 and the sink event labeled by
〈{R,W }, 2, 2, {2, 3}〉. In any run of the composed system, the write events to
location 2 with value 1 occur before the write event with value 2 which occurs
before the write events with value 3. Since Ω is a simple witness, the partial
order Ωe(τ, 2) orders all events labeled with 1 before all events labeled with 2
or 3. Hence any event denoted by 〈{R,W }, 1, 2, 1〉 is ordered before any event
denoted by 〈{R,W }, 2, 2, {2, 3}〉. Moreover, the unique write event to location 2
with data value 2 is ordered before any other events with value 2 or 3. Hence the
event 〈W , 1, 2, 2〉 is ordered before any event denoted by 〈{R,W }, 2, 2, {2, 3}〉.

We have given an intuitive argument above that a canonical k-nice cycle can
be constructed from any run in the composed system. The following theorem
proves that it is necessary and sufficient to check that the composed system has
a run.

Theorem 8.1 For all n,m ≥ 1, there is v ≥ 1 and a canonical k-nice cycle in
G(Ω)(τ) for the simple witness Ω and an unambiguous trace τ of S(n,m, v) iff
there is a trace τ ′ of S(n,m, 3) such that init(τ ′)(j) = 1 for all 1 ≤ j ≤ m and
τ ′ ∈ Constraink(j) for all 1 ≤ j ≤ m and τ ′ ∈ Checkk(i) for all 1 ≤ i ≤ k.
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Proof: (⇒) Suppose there is a canonical k-nice cycle u1, v1, . . . , uk, vk in the
graph G(Ω)(τ). Then 〈ux, vx〉 ∈ M(τ, x) and 〈vx, ux⊕1〉 ∈ Ωe(τ, x⊕ 1) for
all 1 ≤ x ≤ k. From the definition of Ωe(τ, x), we have that data(τ(ux)) �=
init(τ)(x) for all 1 ≤ x ≤ k. Therefore, for all 1 ≤ x ≤ k, there is a unique write
event wx such that data(τ(wx)) = data(τ(ux)).

For all 1 ≤ j ≤ m, let Vj be the set of data values written by the write events
to location j in τ , and let fj : Vj → N|τ | be the function such that fj(v) is the
index of the unique write event to location j with data value v. We define a
renaming function λ : Nm ×Nv → N3 as follows. For all k < j ≤ m and x ∈ Nv,
we have λ(j, x) = 1. For all 1 ≤ j ≤ k and x ∈ Nv, we split the definition into
two cases. For x ∈ Vj , we have

λ(j, x) = 1, if fj(x) < wj

2, if fj(x) = wj

3, if fj(x) > wj .

For x �∈ Vj , we have

λ(j, x) = 1, if x = init(τ)(j)
3, if x �= init(τ)(j).

From Assumption 2, there is a trace τ ′ of S(n,m, 3) such that τ ′ = λd(τ) and
init(τ ′)(j) = λ(j, init(τ)(j)) = 1 for all 1 ≤ j ≤ m. In τ ′, for every location j
such that 1 ≤ j ≤ k every write event before wj (including the initial value of j)
has the data value 1, the write event at wj has the data value 2, and the write
events after wj have the data value 3. Moreover, for every location j such that
k < j ≤ m every write event has the data value 1. Therefore τ ′ ∈ Constraink(i)
for all 1 ≤ i ≤ k.

We show that τ ′ ∈ Checkk(i) for all 1 ≤ i ≤ k. Since 〈ui, vi〉 ∈ M(τ, i),
we have that ui < vi for all 1 ≤ i ≤ k. We already have that data(τ ′(ui)) =
data(τ ′(wi)) = 2 for all 1 ≤ i ≤ k. Therefore all we need to show is that for all
1 ≤ i ≤ k we have data(τ ′(vi)) = 1 or op(τ ′(vi)) = W and data(τ ′(vi)) = 2.
Since 〈vi, ui⊕1〉 ∈ Ωe(τ, i⊕ 1), one of the following conditions hold.

1. data(τ(vi)) = data(τ(ui⊕1)), op(τ(vi)) = W , and op(τ(ui⊕1)) = R. We
have that op(τ ′(vi)) = op(τ(vi)) =W . Since data(τ(vi)) = data(τ(ui⊕1))
we have data(τ ′(vi)) = data(τ ′(ui⊕1)) = 2. Thus, we get op(τ ′(vi)) =W
and data(τ ′(vi)) = 2.

2. data(τ(vi)) = init(τ)(i⊕ 1) and data(τ(ui⊕1)) �= init(τ)(i⊕ 1). From the
definition of λ, we get that data(τ ′(vi)) = 1.

3. ∃a ∈ Lw(τ, i ⊕ 1) such that 〈a,wi⊕1〉 ∈ Ω(τ, i⊕ 1) and data(τ(a)) =
data(τ(vi)). Since 〈a, b〉 ∈ Ω(τ, i⊕ 1) and Ω is a simple witness we get
a < b. Therefore λ(i ⊕ 1, data(τ(a))) = 1. Thus λ(i ⊕ 1, data(τ(vi))) = 1
and data(τ ′(vi)) = 1.

Thus, in all cases we have that either data(τ ′(vi)) = 1 or op(τ ′(vi)) = W and
data(τ ′(vi)) = 2. Therefore τ ′ ∈ Checkk(i).
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(⇐) Suppose there is a trace τ ′ of S(n,m, 3) such that init(τ ′)(j) = 1 for
all 1 ≤ j ≤ m and τ ′ ∈ Constraink(j) for all 1 ≤ j ≤ m and τ ′ ∈ Checkk(i)
for all 1 ≤ i ≤ k. For all 1 ≤ i ≤ k, let 1 ≤ ui < vi ≤ |τ ′| be such that
the automaton Checkk(i) enters state b for the first time on observing τ ′(ui)
and enters state err for the first time on observing τ ′(vi). Therefore we have
proc(τ ′(ui)) = i, loc(τ ′(ui)) = i, and data(τ ′(ui)) ∈ {2, 3}. We also have
proc(τ ′(vi)) = i, loc(τ ′(vi)) = i⊕ 1, and either data(τ ′(vi)) = 1 or op(τ ′(vi)) =
W and data(τ ′(vi)) = 2. From Assumption 2, there is a v ≥ 1, an unambiguous
trace τ of S(n,m, v), and a renaming function λ : Nm × Nv → N3 such that
τ ′ = λd(τ) and λ(i, init(τ)(i)) = init(τ ′)(i) = 1 for all 1 ≤ i ≤ m. Therefore,
we get that data(τ(ui)) �= init(τ)(i) for all 1 ≤ i ≤ k. We will show that
u1, v1, . . . , uk, vk is a canonical k-nice cycle in G(Ω)(τ). Since proc(τ(ui)) =
proc(τ(vi)) = i and ui < vi, we have 〈ui, vi〉 ∈ M(τ, i) for all 1 ≤ i ≤ k.
We show that 〈vi, ui⊕1〉 ∈ Ωe(τ, i⊕ 1) for all 1 ≤ i ≤ k. First loc(τ(vi)) =
loc(τ(ui⊕1)) = i⊕ 1. For all x, y ∈ Lw(τ, i), if λ(i, data(τ(x)) < λ(i, data(τ(y))
then x < y from the property of Constraink(i). There are two cases on τ ′(vi).

1. data(τ ′(vi)) = 1. We have that λ(i ⊕ 1, data(τ(vi))) = 1. There are
a, b ∈ Lw(τ, i ⊕ 1) such that data(τ(a)) = data(τ(vi)) and data(τ(b)) =
data(τ(ui⊕1)). Since data(τ ′(a)) = 1 and data(τ ′(b)) ∈ {2, 3}, we get
from the definition of Constraink(i⊕ 1) that a < b or 〈a, b〉 ∈ Ω(τ, i⊕ 1).
Therefore 〈vi, ui⊕1〉 ∈ Ωe(τ, i⊕ 1).

2. op(τ ′(vi)) = W and data(τ ′(vi)) = 2. We have that op(τ(vi)) = W .
There is an event b ∈ Lw(τ, i ⊕ 1) such that data(τ(b)) = data(τ(ui⊕1)).
There are two subcases: data(τ ′(ui⊕1)) = 2 or data(τ ′(ui⊕1)) = 3. In the
first subcase, we have vi = b since Constraink(i⊕ 1) accepts traces with a
single write event labeled with 2. Therefore data(τ(vi)) = data(τ(ui⊕1)),
op(τ(vi)) =W and op(τ(ui⊕1)) = R, and we get 〈vi, ui⊕1〉 ∈ Ωe(τ, i⊕ 1).
In the second subcase, since data(τ ′(a)) = 2 and data(τ ′(b)) = 3, we get
from the definition of Constraink(i⊕ 1) that a < b or 〈a, b〉 ∈ Ω(τ, i⊕ 1).
Therefore 〈vi, ui⊕1〉 ∈ Ωe(τ, i⊕ 1).

Therefore u1, v1, . . . , uk, vk is a canonical k-nice cycle in G(Ω)(τ).
Example. We now give an example to illustrate the method described in

this section. Although the memory system in Figure 1 is sequentially consistent,
an earlier version had an error. The assignment owner [j] := 0 was missing in
the guarded command of the action 〈ACKS , i, j〉. We modeled the system in
TLA+ [Lam94] and model checked the system configuration with two processors
and two locations using the model checker TLC [YML99]. The error manifests
itself while checking for the existence of a canonical 2-nice cycle. First, the
initial predicate of S(2, 2, 3) is strengthened by conjoining it with the following
predicate:

∀i ∈ Nn, j ∈ Nm : (cache[i][j].d = 1).

This strengthening ensures that only those traces are examined where the initial
value of every location is 1. Second, automata Constrain2(1), Constrain2(2),
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Check2(1) and Check2(2) (from Figure 2) are composed with S(2, 2, 3). Finally,
the composed system is analyzed by the model checker TLC. The erroneous be-
havior is when the system starts in the initial state with all cache lines in SHD
state and owner [1] = owner [2] = 1, and then executes the following sequence
of 12 events:
1. 〈ACKX , 2, 2〉
2. 〈UPD , 2〉
3. 〈ACKS , 1, 2〉
4. 〈ACKX , 2, 2〉
5. 〈ACKX , 1, 1〉
6. 〈UPD , 1〉
7. 〈UPD , 1〉
8. 〈W , 1, 1, 2〉
9. 〈R, 1, 2, 1〉
10. 〈UPD , 2〉
11. 〈W , 2, 2, 2〉
12. 〈R, 2, 1, 1〉
After event 2, owner [2] = 2, cache [1][2].s = INV , and cache[2][2].s = EXC .
Now processor 1 gets a shared ack message 〈ACKS , 1, 2〉 for location 2. Note
that in the erroneous previous version of the example, this event does not set
owner [2] to 0. Consequently owner [2] = 2 and cache [2][2].s = SHD after
event 3. An exclusive ack to processor 2 for location 2 is therefore allowed
to happen at event 4. Since the shared ack message to processor 1 in event 3 is
still sitting in inQ [1], cache[1][2].s is still INV . Therefore event 4 does not gen-
erate an INVAL message to processor 1 for location 2. At event 5, processor 1
gets an exclusive ack message for location 1. This event also inserts an INVAL
message on location 1 in inQ [2] behind the ACKX message on location 2. After
the UPD events to processor 1 in events 6 and 7, we have cache [1][1].s = EXC
and cache [1][2].s = SHD . Processor 1 writes 2 to location 1 and reads 1 from
location 2 in the next two events, thereby sending automaton Check 2(1) to the
state err . Processor 2 now processes the ACKX message to location 2 in the
UPD event 10. Note that processor 2 does not process the INVAL message to
location 1 sitting in inQ [2]. At this point, we have cache [2][1].s = SHD and
cache[2][2].s = EXC . Processor 2 writes 2 to location 2 and reads 1 from lo-
cation 1 in the next two events, thereby sending automaton Check2(2) to the
state err . Since there has been only one write event of data value 2 to each
location, the run is accepted by Constrain2(1) and Constrain2(2) also.

Note that while checking for canonical k-nice cycles Constraink(j) has 2
states for all 1 ≤ j ≤ k and 1 state for k < j ≤ m. Also Checkk(i) has 3 states
for all 1 ≤ i ≤ k. Therefore, by composing Constraink(j) and Checkk(i) with
the memory system S(n,m, 2) we increase the state of the system by a factor of
at most 2k × 3k. Actually, for all locations k < j ≤ m we are restricting write
events to have only the data value 1. Therefore, in practice we might reduce
the set of reachable states.
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9 Related work

Descriptions of shared-memory systems are parameterized by the number of
processors, the number of memory locations, and the number of data values.
The specification for such a system can be either an invariant or a shared-
memory model. These specifications can be verified for some fixed values of the
parameters or for arbitrary values of the parameters. The contribution of this
paper is to provide a completely automatic method based on model checking to
verify the sequential consistency memory model for fixed parameter values. We
now describe the related work on verification of shared-memory systems along
the two axes mentioned above.

A number of papers have looked at invariant verification. Model checking
has been used for fixed parameter values [MS91, CGH+93, EM95, ID96], while
mechanical theorem proving [LD92, PD96] has been used for arbitrary param-
eter values. Methods combining automatic abstraction with model checking
[PD95, Del00] have been used to verify snoopy cache-coherence protocols for
arbitrary parameter values. McMillan [McM01] has used a combination of the-
orem proving and model checking to verify the directory-based FLASH cache-
coherence protocol [KOH+94] for arbitrary parameter values. A limitation of
all these approaches is that they do not explicate the formal connection between
the verified invariants and shared-memory model for the protocol.

There are some papers that have looked at verification of shared-memory
models. Systematic manual proof methods [LLOR99, PSCH98] and theorem
proving [Aro01] have been used to verify sequential consistency for arbitrary
parameter values. These approaches require a significant amount of effort on the
part of the user. Our method is completely automatic and is a good debugging
technique which can be applied before using these methods. The approach of
Henzinger et al. [HQR99] and Condon and Hu [CH01] requires a manually
constructed finite state machine called the serializer. The serializer generates
the witness total order for each run of the protocol. By model checking the
system composed of the protocol and the serializer, it can be easily checked that
the witness total order for every run is a trace of serial memory. This idea is a
particular instance of the more general “convenient computations” approach of
Katz and Peled [KP92]. In general, the manual construction of the serializer can
be tedious and infeasible in the case when unbounded storage is required. Our
work is an improvement since the witness total order is deduced automatically
from the simple write order. Moreover, the amount of state we add to the cache-
coherence protocol in order to perform the model checking is significantly less
than that added by the serializer approach. The “test model checking” approach
of Nalumasu et al. [NGMG98] can check a variety of memory models and is
automatic. Their tests are sound but incomplete for sequential consistency. On
the other hand, our method offers sound and complete verification for a large
class of cache-coherence protocols.

Recently Glusman and Katz [GK01] have shown that, in general, interpret-
ing sequential consistency over finite traces is not equivalent to interpreting it
over infinite traces. They have proposed conditions on shared-memory systems
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under which the two are equivalent. Their work is orthogonal to ours and a com-
bination of the two will allow verification of sequential consistency over infinite
traces for finite parameter values.

10 Conclusions

We now put the results of this paper in perspective. Assumption 1 about causal-
ity and Assumption 2 about data independence are critical to our result that
reduces the problem of verifying sequential consistency to model checking. As-
sumption 3 about processor symmetry and Assumption 4 about location sym-
metry are used to reduce the number of model checking lemmas to min({n,m})
rather than exponential in n and m.

In this paper, the read and write events have been modeled as atomic events.
In most real machines, each read or write event is broken into two separate events
—a request from the processor to the cache, and a response from the cache to
the processor. Any memory model including sequential consistency naturally
specifies a partial order on the requests. If the memory system services processor
requests in order then the order of requests is the same as the order of responses.
In this case, the method described in this paper can be used by identifying the
atomic read and write events with the responses. The case when the memory
system services requests out of order is not handled by this paper.

The model checking algorithm described in the paper is sound and complete
with respect to a simple witness for the memory system. In some protocols, for
example the lazy caching protocol [ABM93], the correct witness is not simple.
But the basic method described in the paper where data values of writes are
constrained by automata can still be used if ordering decisions about writes can
be made before the written values are read. The lazy caching protocol has this
property and extending the methods described in the paper to handle it is part
of our future work. We would also like to extend our work to handle other
memory models.
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