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Sym2(Â) Sym2(Â∗)
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8.1.2 Bernstein-basis forms and Bézier-basis sites . . . . . . 104

8.2 The de Casteljau Algorithm . . . . . . . . . . . . . . . . . . . 105
8.3 Degree raising . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 The geometry of point evaluations . . . . . . . . . . . . . . . . 107

8.4.1 Evenly n-divided d-simplices . . . . . . . . . . . . . . . 108
8.4.2 The Differencing Algorithm . . . . . . . . . . . . . . . 111

8.5 Integrating over a simplex . . . . . . . . . . . . . . . . . . . . 114

9 Universal Mapping Conditions 119
9.1 Linearization via a universal condition . . . . . . . . . . . . . 119
9.2 Algebrization via a universal condition . . . . . . . . . . . . . 122
9.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3.1 The tensor algebra . . . . . . . . . . . . . . . . . . . . 125
9.3.2 The alternating algebra . . . . . . . . . . . . . . . . . . 126
9.3.3 The Clifford algebra . . . . . . . . . . . . . . . . . . . 129

A Some Category Theory 131
A.1 Fixing some type errors . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Linearization as a functor . . . . . . . . . . . . . . . . . . . . 133
A.3 Left adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 Behaving naturally . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5 A ladder of adjunctions . . . . . . . . . . . . . . . . . . . . . . 135



vi CONTENTS

A.6 Injective units . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.7 Right adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.8 Tensor-product surfaces revisited . . . . . . . . . . . . . . . . 139

B To Sum or to Average? 141
B.1 Searching for pretty formulas . . . . . . . . . . . . . . . . . . 141
B.2 Other options for avoiding annoyance . . . . . . . . . . . . . . 145

C More Math Remarks 147
C.1 Thoughts about functional notations . . . . . . . . . . . . . . 147
C.2 Paired algebras in wilder contexts . . . . . . . . . . . . . . . . 148

C.2.1 Fields of characteristic zero . . . . . . . . . . . . . . . 148
C.2.2 Fields of prime characteristic . . . . . . . . . . . . . . 149
C.2.3 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . 150
C.2.4 Linear spaces of infinite dimension . . . . . . . . . . . 151
C.2.5 Modules over commutative rings . . . . . . . . . . . . . 151
C.2.6 The division ring of quaternions . . . . . . . . . . . . . 151

Bibliography 153

Index 157



List of Figures
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Teaser

There is a multiplication operation on points that your teachers failed to
tell you about, either because they didn’t know about it or because they
judged it to be unimportant. But that multiplication turns out to have
important applications in computer-aided geometric design (CAGD). Among
other things, it provides the best labels for Bézier control points — better
even than the labels provided by polar forms (a.k.a. blossoms).

Let V be a finite-dimensional vector space. Everyone understands that
it makes sense to multiply covectors, the elements of the dual space V ∗ =
Lin(V,R). For example, if x, y, and z are covectors, then the expression
x2 − 5yz denotes a quadratic form on the space V . Forms have lots of
applications; for example, to put a Euclidean metric on V , we would choose
a positive definite quadratic form as our measure of squared length.

But most people don’t yet realize that it also makes sense to multiply
vectors, the elements of V itself. If ρ, σ, and τ are vectors, then the expression
ρ2−5στ denotes an object that is the dual analog of a quadratic form. Let’s
call such an object a quadratic site over V . The sites over V of all degrees
form an algebra, dual to the well-known algebra of forms on V .

What are sites good for? Consider, say, a cubic Bézier curve segment. It
is the image, under a cubic function, of a closed interval on the parameter
line, say the interval [R . . S]. The best labels for the Bézier points of that
cubic segment are the cubic sites R3, R2S, RS2, and S3.

ix





Preface

In computer-aided geometric design (CAGD), a beautiful technology has
emerged for manipulating algebraic curves and surfaces, associated with the
names Bernstein, Bézier, de Casteljau, and de Boor. I have spent an embar-
rassing fraction of the last fifteen years exploring the roots of that technology,
trying to clarify the mathematics at its core.

I made some progress in the late 1980s by exploiting functions that I
christened blossoms. I later learned that those functions already had a name:
polar forms. I also learned that, in much of my work with polar forms,
I had been following in de Casteljau’s footsteps. But putting aside issues
of terminology and priority, the key point is that polar forms make things
clearer. They give us a labeling scheme for Bézier control points in which
the labels perspicuously encode the geometry. This sparked new discoveries:
Dahmen, Micchelli, and Seidel used polar forms to construct elegant bases
for multivariate spline spaces over arbitrary triangulations [11].

But I suspected early on that polar forms were not the whole truth in
this area. To evaluate the polar form of an n-ic, we take n input points and
combine them, with concatenation, into a sequence of length n. Surely it
would be better to combine those n points with some flavor of multiplication,
rather than concatenation; but what flavor? That is, how should we multiply
two points in this context? For some years, I mistakenly believed that tensors
would be essential in constructing the proper flavor of multiplication. I wasn’t
far wrong; one way to think of the proper multiplication is as a symmetrized
variant of the tensor product. But there is a better way to think of it.

Over the last few years, I finally realized that duality is the key to the
proper multiplication on points — the duality of finite-dimensional linear
spaces, where every linear space has an associated dual space and where the
relationship between primal and dual is a symmetric one. How is duality
relevant? Well, the dual of a point is a linear form; and we all know how
to multiply two linear forms, producing a quadratic form. Suppose that we
multiply two points using that same technique, but on the other side of the
duality. We produce a quadratic object that is the dual analog of a quadratic
form. Aha! That is the proper way to multiply two points in this context.

xi



xii PREFACE

Site is the name that I propose for the dual analog of a form. So a point
is a linear site. The product of two linear sites is a quadratic site, just as
the product of two linear forms is a quadratic form. Indeed, we have two
whole algebras, each the dual of the other; the algebra of forms is familiar,
but the algebra of sites has been heretofore unfairly ignored. By recognizing
and exploiting both algebras, we repair the flawed symmetry between primal
and dual in CAGD and we finally arrive at an explanation of the Bézier
technology that feels, to me, like a whole truth.

Lyle Ramshaw
lyle.ramshaw@compaq.com

May 1, 2001



Chapter 1

Introduction

This monograph repairs a flaw, quite low in the conventional mathematical
underpinnings of CAGD. Such flaws show up only rarely; so I want to begin
by pointing out the flaw, using as little machinery as possible.

1.1 Multiplying points

Let A be a finite-dimensional affine space, equipped with a Cartesian coordi-
nate system. For concreteness, let’s focus on the case in which A is an affine
plane and let’s refer to the two axes in the Cartesian coordinate system for
A as x and y. So there is a one-to-one correspondence between points in the
plane A and pairs of real numbers. If we think of x and y as functions from
the plane A to the reals, the coordinates of any point P in A are the real
numbers x(P ) = xP and y(P ) = yP .

1.1.1 Question 1

Does it make sense to multiply x and y? People typically answer yes. Given
the real-valued functions x : A → R and y : A → R, we can multiply them
pointwise to get the function xy : A→ R defined by xy(P ) := x(P )y(P ).

Indeed, objects like the product xy are familiar enough to have acquired
their own name; they are quadratic forms on the plane A. Each quadratic
form on A can be written ax2 + bxy + cy2 + dx + ey + f , for some six real
coefficients a through f .† Recall that a conic section in the plane A is the
zero-set of a quadratic form on A. Even simpler, a line in A is the zero-set
of a linear form on A, which can be written ax + by + c.‡ Just as we can

†Please pardon my temporary sloppiness. More precisely, an n-form is a polynomial
that is homogeneous of degree n, so the true quadratic form here is the homogenized
polynomial ax2 + bxy + cy2 + dxw + eyw + fw2. See Section 1.4 and Chapter 4.

‡I am being analogously sloppy; the true linear form here is ax+ by + cw.

1



2 CHAPTER 1. INTRODUCTION

multiply the two coordinate functionals x and y, we can multiply any two
linear forms:

(
ax + by

+ c

)(
dx + ey

+ f

)
=


adx2 + (ae + bd)xy + bey2

+ (af + cd)x + (bf + ce)y
+ cf




(1.1-1)

A quadratic form that is produced by multiplication in this way is rather
special, of course; its zero-set is a reducible conic, the union of two lines.

1.1.2 Question 2

Given two points P and Q in A, does it make sense to multiply P and Q?
People typically answer no. Of course, there are various special flavors of
multiplication that arise in special contexts.

• If P and Q were actually the complex numbers P = xP + iyP and
Q = xQ + iyQ, their complex product would be the complex number
PQ = (xP xQ − yP yQ) + i(xP yQ + yP xQ ).

• If P = (xP , yP ) and Q = (xQ , yQ) were vectors in a 2-dimensional
inner-product space, then their dot product would be the real number
P ·Q = xP xQ + yP yQ.

• If P = (xP , yP , zP ) and Q = (xQ , yQ, zQ) were vectors in a 3-dimensional
Euclidean space, then their cross product would be the vector P ×Q =
(yP zQ − zPyQ, zPxQ − xP zQ, xP yQ − yP xQ ).

Outside of such special situations, however, people typically don’t assign any
meaning to the product PQ of two points.

1.1.3 The Flaw

If you answered yes to Question 1 and no to Question 2, then the duality
of linear algebra is broken for you. The points P and Q are elements of a
certain linear space Â that we discuss in Section 1.4, while the linear forms
ax + by + c and dx + ey + f are elements of the dual space Â∗. If it makes
sense to multiply two linear forms — and it manifestly does — then, by the
symmetry of duality, it must make equal sense to multiply two points.

1.1.4 The Repair

It does indeed make perfect sense to multiply points. It was a regrettable
oversight that your teacher failed to explain this to you. Fortunately, we can
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correct that oversight without inventing any new mathematical techniques.
The proper technique to use for multiplying the points P and Q is the same
technique that we are already familiar with for multiplying linear forms:

(
xP yP

1

)(
xQ yQ

1

)
=


xP xQ (xP yQ + yP xQ ) yP yQ

(xP + xQ ) (yP + yQ)
1


 .

(1.1-2)

This rule for points is dual to the rule for linear forms in Equation 1.1-1. The
plus signs that are missing from this rule are explained in Section 1.4, as are
the extra 1’s that appear on the left-hand side, acting like third coordinates
for the points P and Q.

While we don’t need a new mathematical technique to multiply points,
we do need a new name; let’s refer to the dual analog of a form as a site. So
the object denoted by Equation 1.1-2, the product PQ of the two points P
and Q, is a quadratic site over the plane A. Points in the plane A are linear
sites over A. There are constant sites, linear sites, quadratic sites, cubic sites,
and so forth: a whole algebra of sites over A, dual to the well-known algebra
of forms on A.

Note that a quadratic site over the plane A has six coordinates, just as
a quadratic form on the plane A has six coefficients. Thus, the product of
two points is not itself a point, nor is it a scalar, nor a vector; rather, it is
an object of a new type. “Quadratic site” is a name for that new type.

1.2 Labeling Bézier control points

By constructing the algebra of sites in parallel with the algebra of forms, we
restore symmetry to duality, repairing the flaw pointed out in Section 1.1.3.
But sites have another important benefit for us in CAGD: They are the key
to the clearest labeling scheme that I know of for Bézier control points. Since
we have been talking about multiplying two points in a plane A, let’s first
consider a quadratic Bézier triangle F (�QRS), as shown in Figure 1.1.

Our modeled objects will sit in some affine space; let’s refer to that space
as our object space and denote it O. Suppose that the function F : A → O
maps the parameter plane A to some surface in O, with each coordinate of
the varying point F (P ) being given by a polynomial in the coordinates x(P )
and y(P ) of total degree at most 2 — that is, being given by a quadratic form
on the plane A. The image F (A) is then a parametric surface in the object
space O, out of which we are cutting a triangular surface patch F (�QRS).
Such a surface patch is called a quadratic Bézier triangle.

The Bézier triangle F (�QRS) has six control points, which are most
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A F
Q

R

S

f(Q2)

f(QR)

f(QS)

f(R2)

f(RS)

f(S2)

Figure 1.1: A quadratic Bézier triangle

clearly labeled

f(Q2)

f(QR) f(QS)

f(R2) f(RS) f(S2).

In these labels, the arguments to the function f are quadratic sites over the
plane A; for example, Q2 is the square of the point Q. Let σ2 denote the
squaring map on A, the map that takes each point P in the plane A to its
square: σ2(P ) := P 2. (The projective completion of this map σ2 is called the
Veronese surface in algebraic geometry.) Any quadratic polynomial surface
can be written in a unique way as an affine transform of the prototypical
surface σ2, and the affine map f in our labels is the instancing transformation
involved when we so write the particular surface F . We thus have F (P ) =
f(σ2(P )) = f(P 2), for all points P in A.

These labels encode the geometric relationships among the Bézier points
in a way that makes the de Casteljau Algorithm almost obvious. For the
example point T := Q/6 + R/3 + S/2 in the triangle �QRS, Figure 1.2
shows how the de Casteljau Algorithm computes the point F (T ) = f(T 2)
from the six Bézier points of the patch F (�QRS) by doing four 2-dimensional
affine interpolations. Consider the quadratic sites Q2, QR, QS, and QT .
You may not be too sure, as yet, what sites really are. But surely it must
follow from T = Q/6 + R/3 + S/2 that QT = Q(Q/6 + R/3 + S/2) =
Q2/6 + QR/3 + QS/2. Since the map f is affine, we then have f(QT ) =
f(Q2)/6 + f(QR)/3 + f(QS)/2, which justifies the uppermost interpolation.
The other interpolations are justified similarly, multiplying the equation T =
Q/6 + R/3 + S/2 by R, by S, and, for the final interpolation, by T .
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A F
Q

R

ST

f(Q2)

f(QR)

f(QS)

f(R2)

f(RS)

f(S2)

f(QT )

f(RT )

f(ST )f(T 2)

Figure 1.2: Computing a point on a quadratic Bézier triangle

L

G

R ST

g(R3)

g(R2T )

g(R2S)

g(S3)

g(RTS)
g(RS2)

g(TS2)

g(RT 2)

g(T 2S)g(T 3)

Figure 1.3: Computing a point on a cubic Bézier segment

For a Bézier curve, the parameter plane A is replaced by a parameter
line L, and we get analogous labels by multiplying the points on L. Let the
function G : L → O have the property that each coordinate of the varying
point G(P ) is given by, say, a cubic form on L. The image G(L) is then a
cubic curve in the object space O, typically twisted. From that curve, we cut
out the Bézier cubic segment G([R . . S]). Letting T be the example point
T := 2

5
R + 3

5
S on the parameter line L, Figure 1.3 shows the de Casteljau

Algorithm computing the point G(T ) = g(T 3) from the four Bézier points
G(R) = g(R3), g(R2S), g(RS2), and G(S) = g(S3) of the cubic segment
G([R . . S]). The arguments to the map g are cubic sites over the line L,
while the affine map g itself is the instancing transformation that realizes
the particular curve G as an affine image of the prototypical cubic curve, the
curve κ3 given by κ3(P ) := P 3 for all points P on L.
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A

x

y

C

P

xP

yP

ξ
η

Figure 1.4: A point P in the affine plane A

1.3 Adding points

Let’s return to the plane A of Section 1.1, with its Cartesian coordinate
system (x, y) and its points P and Q. In Equation 1.1-2, we proposed a
rule for multiplying P and Q, a rule in which each of the points P and Q is
given three coordinates, rather than two; the point P , for example, has the
coordinates (xP , yP , 1). To explain where that third coordinate of 1 comes
from, let’s put aside the question of how to multiply points for a moment
and take up the more elementary question of how to add them. Given two
points P and Q, does their sum P + Q make sense? The answer is tied up
with the distinction between linear spaces and affine spaces.

If the plane A were a linear space (a.k.a. a vector space), with the point
(0, 0) as its origin, then we could add two vectors in A simply by adding their
x and y coordinates separately; we would have P +Q = (xP , yP )+(xQ , yQ) =
(xP + xQ , yP + yQ). More precisely, letting ξ := (1, 0) and η := (0, 1) denote
the unit vectors in the x and y directions, we would have P = xP ξ+yP η and
Q = xQξ + yQη, and hence P + Q = (xP + xQ )ξ + (yP + yQ)η.

But we introduced the plane A as an affine space, and we referred to its
elements P and Q as points, rather than vectors. Recall that an affine space
is like a linear space, but without an origin. In an affine space, the midpoint
P/2 + Q/2 of a line segment PQ is a well-defined point, as is, for any t, the
point (1− t)P + tQ that lies t of the way from P to Q. But the sum P + Q
of two points is not well-defined.

To see why not, let C := (0, 0) be the point at the center of our Cartesian
coordinate system for the plane A, as shown in Figure 1.4. Since the plane
A is affine, the center point C is a point like any other; it has no special role.
In particular, we do not have C = 0. For any point P in A, however, we do
have the equation P − C = xP ξ + yP η; that is, the point P differs from the
center point C by the vector P − C, and the coordinates xP and yP of P
are the coefficients that express that vector P − C as a linear combination
of the unit vectors ξ and η. So any point P in A can be expressed in the
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A

x

y
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0

C

P

ξ
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points: w = 1

vectors: w = 0




weighted points

Figure 1.5: The linearization Â of the affine plane A

form P = xP ξ + yP η + C, as a linear combination of ξ, η, and C in which
the coefficient of C is 1. That restriction on the coefficient of C explains the
difficulty that arises when we add two points in an affine space. In the affine
plane A, for example, we have P = xP ξ + yP η + C and Q = xQξ + yQη +C,
and hence P + Q = (xP + xQ )ξ + (yP + yQ)η + 2C. The sum P + Q is not a
point in A because the coefficient of C is not 1.

1.4 Linearization

The spaces that arise in CAGD are often affine. For example, the parameter
space of a polynomial Bézier curve or surface is affine. Note that, when we
used our plane A as the parameter plane of a quadratic Bézier surface in
Section 1.2, the center point C = (0, 0) played no special role.

But linear spaces have simpler algebraic properties. They are closed under
addition and scalar multiplication as separate operations. Also, it is linear
spaces that have associated dual spaces. So it is worth considering whether
we can somehow convert an affine space into a linear space.

Fortunately, there is a well-known conversion method, called linearization
(a.k.a. homogenization). My teachers told me about it, and I hope that your
teachers told you as well. When we linearize an affine space, we embed it
as an affine hyperplane in a linear space of the next larger dimension. For
example, we linearize the affine plane A = {xξ + yη + C | x, y ∈ R} by
extending it into the linear 3-space Â = {xξ + yη + wC | x, y, w ∈ R}, as
shown in Figure 1.5, thereby removing the restriction that the coefficient
of C be 1. An element p of the linearized space Â has three coordinates
p = (xp, yp, wp) = xpξ + ypη + wpC. Such an element p is typically called a
weighted point, where wp is the weight. (I prefer the term anchor ; but let’s
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save that discussion for later.) A point, such as P , is a weighted point of
weight 1; a vector, such as ξ or P − C, is a weighted point of weight 0; and
a sum of two points, such as P + Q, is a weighted point of weight 2.

Linearization enlarges an affine space A of points into a linear space Â
of weighted points, thereby making it legal to add two points and legal to
multiply a point by a scalar. But linearization, by itself, does not make it
legal to multiply two points. To do that, we must enlarge the space A even
further: into the algebra Sym(Â), as we discuss in Section 1.6.

While linearization doesn’t take us all the way to the algebra Sym(Â), it
does clear up some issues that we left dangling in Section 1.1; in particular,
it supplies the linear space to which we apply duality. Recall that we were
discussing how to multiply two points P and Q in the affine plane A. Let Â be
the linearization of the plane A, which is the linear 3-space of weighted points
shown in Figure 1.5. The dual of Â is the space Â∗ = Lin(Â,R) = Aff(A,R)
of linear forms on A. This dual space Â∗ is also 3-dimensional, a typical
element of it being written either as ax + by + c, when viewed as belonging
to Aff(A,R), or as ax + by + cw, when viewed as belonging to Lin(Â,R).
Whichever way the forms in Â∗ are written, everyone agrees that it makes
sense to multiply them as polynomials, using the obvious rule

(
ax + by

+ cw

)(
dx + ey

+ fw

)
=


adx2 + (ae + bd)xy + bey2

+ (af + cd)xw + (bf + ec)yw
+ cfw2


 .

By duality, it makes equal sense to multiply two weighted points p and q in
Â as polynomials, using the analogous rule(

xp ξ + yp η

+ wpC

)(
xq ξ + yq η

+ wq C

)

=


xpxq ξ

2 + (xpyq + ypxq)ξη + ypyq η
2

+ (xpwq + wpxq)ξC + (ypwq + wpyq)ηC

+ wpwq C
2


 .

In particular, for two points P and Q in A, with weights wP = wQ = 1, we
compute the quadratic site PQ that is their product via the rule(

xP ξ + yP η

+ C

)(
xQξ + yQη

+ C

)

=


xP xQξ

2 + (xP yQ + yP xQ )ξη + yP yQη
2

+ (xP + xQ )ξC + (yP + yQ)ηC

+ C2


 .
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This is precisely the rule for the product of the two points P and Q that we
first saw in Equation 1.1-2; but the missing plus signs have now been filled in,
revealing polynomials in ξ, η, and C, while the extra 1’s have been revealed
to be weight coordinates.

1.5 Multiplying vectors

Linearization solves the problems of addition and scalar multiplication, but
not the problem of multiplication. To make sure that we understand the
multiplication problem on its own, free from any extraneous issues associated
with linearization, let’s go through Section 1.1 again, but considering linear
spaces from the outset. That is, instead of multiplying the points in an affine
space, let’s consider multiplying the vectors in a linear space.

Let X be a finite-dimensional real linear space, say of dimension k and
with basis (ξ1, . . . , ξk). So every vector ζ in X is a linear combination ζ =
x1ξ1 + · · · + xkξk of the basis vectors ξ1 through ξk. Furthermore, the real
coefficients x1 through xk in that linear combination are uniquely determined
by ζ . Writing them as functions of ζ , we have

ζ = x1(ζ)ξ1 + · · ·+ xk(ζ)ξk.(1.5-1)

For each i in [1 . . k], the function xi : X → R is linear; hence, xi is a
covector, an element of the dual space X∗ = Lin(X,R). Indeed, the covectors
(x1, . . . , xk) form the basis for X∗ that is dual to the basis (ξ1, . . . , ξk) for X;
that is, we have the duality constraints

xi(ξj) =

{
1 if i = j

0 otherwise.

It follows that any covector z in X∗ can be written uniquely as a linear
combination of the basis covectors x1 through xk as follows:

z = z(ξ1)x1 + · · ·+ z(ξk)xk.(1.5-2)

Equation 1.5-2 is dual to Equation 1.5-1. The two would look more
alike if we had written Equation 1.5-2 as z = ξ1(z)x1 + · · · + ξk(z)xk. We
chose to write the ith coefficient as z(ξi), rather than as ξi(z), because people
typically prefer to think of covectors as functions that take vectors as their
arguments, rather than vice versa. In fact, those two points of view are
equally valid. To avoid choosing between them, we can view both the vector
and the covector, more symmetrically, as arguments to a pairing map, the
bilinear map 〈 , 〉 : X∗ × X → R that takes a covector z and a vector ζ to
the real number 〈z, ζ〉 = z(ζ) = ζ(z); we discuss this more symmetric point
of view in Section 2.3.

Just as in Section 1.1, we are now faced with two questions:
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Question 1: Does it make sense to multiply two covectors, say x1 and x2?
Sure. The product x1x2 is a quadratic form on the vector space X.
We can think of forms on X either syntactically or semantically. Syn-
tactically, a form is simply a polynomial in the variables x1 through
xk. Semantically, it is the real-valued function on X that results when
the multiplications in such a polynomial are interpreted as pointwise
multiplication of functions. For example, the quadratic form x1x2 on
X is interpreted semantically as the function x1x2 : X → R given, for
all ζ in X, by x1x2(ζ) := x1(ζ)x2(ζ).

Question 2: Does it make sense to multiply two vectors, say ξ1 and ξ2? By
duality, the answer must be yes. The product ξ1ξ2 is a quadratic site
over X. We can think of sites over X either syntactically or seman-
tically. Syntactically, a site is simply a polynomial in the variables ξ1

through ξk. Semantically, it is the real-valued function on X∗ that re-
sults when the multiplications in such a polynomial are interpreted as
pointwise multiplication of functions. For example, the quadratic site
ξ1ξ2 is interpreted semantically as the function ξ1ξ2 : X∗ → R whose
value, at any covector z in X∗, is given by ξ1ξ2(z) := ξ1(z)ξ2(z) =
z(ξ1)z(ξ2).

When these theories get applied to practical situations, people tend to be
more interested in real-valued functions on X than they are in real-valued
functions on X∗, that is, more interested in forms than in sites. Indeed, forms
are used extensively in many fields; in CAGD, for example, each coordinate
of a parametric curve or surface is a form on the parameter space. Sites, on
the other hand, have been used so little that they do not yet have a standard
name. This monograph argues that sites are important in CAGD because
they give us the best labels for Bézier points.

1.6 The paired algebras

We are going to repair the flaw in the underpinnings of CAGD pointed out in
Section 1.1.3 as follows: Given any affine space A, we are going to supplement
the well-known algebra of forms on A with the algebra of sites over A, thus
producing a dual pair of algebras. Doing this takes three steps.

1.6.1 Linearization

The first step is the familiar process of linearization, as we discussed in
Section 1.4. Linearizing the affine space A extends it into a linear space Â
of the next larger dimension. Once we have produced the linear space Â, we
get its dual space Â∗ automatically, since every linear space has a dual.
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1.6.2 Algebrization

The second step is similar in structure; let’s call it algebrization.§ Just as
linearization extends an affine space A into a naturally associated linear
space Â, so algebrization extends a linear space X into a naturally associated
commutative algebra. Viewed abstractly, this algebra is called the symmetric
algebra of X and is denoted Sym(X).

Actually, multilinear algebra provides at least four ways to algebrize a
linear space X, that is, to extend X into a naturally associated algebra of
some flavor [25, 36]:

• the tensor algebra T (X) =
⊗

X,

• the symmetric algebra Sym(X) = S(X),

• the alternating (a.k.a. skew-symmetric, exterior, or Grassmann)
algebra Alt(X) =

∧
X,

• and, if a quadratic form on X has been chosen, thereby giving X a
metric structure, the Clifford algebra Clif(X).

This monograph uses the symmetric algebra. Luckily, that one is the simplest
of the four: the only one whose multiplication commutes and the only one
that can be constructed using just polynomials, with no need for tensors.

By the way, many of these algebras have important applications in CAGD.
Starting at the bottom, Clifford algebras have proven helpful in analyzing
Pythagorean-hodograph (PH) curves — a problem in which the Euclidean
metric plays a central role [10]. Alternating algebras have long been widely
used; they give a good naming scheme for the subspaces of a linear space,
and they underlie calculus on manifolds. Symmetric algebras have an even
longer history, though they are seldom referred to by name; for example, the
algebra of all forms on an affine space A is the symmetric algebra Sym(Â∗).
This monograph argues that we in CAGD should supplement that famous
algebra with its dual, the symmetric algebra Sym(Â) of sites over A. As for
the tensor algebra, I can’t think of any application of the full tensor algebra
in CAGD; but the multiplication in the tensor algebra is the asymmetric
tensor product, which is what the phrase “tensor-product surface” refers to.

The symmetric algebra Sym(X) can be constructed in various ways, as
we discuss in Chapter 5. One simple way uses polynomials: We choose
a basis for the linear space X, say (ξ1, . . . , ξk), and we then construct the
symmetric algebra Sym(X) as the algebra R[ξ1, . . . , ξk] of all polynomials

§The verb should mean “to convert something into an algebra”, rather than “to make
something more algebraic”; this argues in favor of “algebrize” or “algebratize”, rather than
“algebraicize” or “algebraify”. I am not fond of “algebrize”; but I like “algebrization”,
and I can’t justify forming “algebratize” in the absence of the adjective “algebratic”.
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in the symbols ξ1 through ξk, treated as variables. But choosing a basis as
part of the construction, in this way, raises the fear that different choices
might lead to algebras that differed in some important way. A more abstract
and basis-independent way to construct the symmetric algebra Sym(X) is as
the algebra Poly(X∗,R) of all real-valued, polynomial functions on the dual
space X∗. A vector in X can be thought of as a linear functional on X∗,
so a polynomial whose variables are vectors in X gives rise to a real-valued,
polynomial function on X∗.

As our second step in building the paired algebras, we apply this process
of algebrization, independently, to the linear spaces Â and Â∗. We get two
algebras with the same structure, one of which is an old friend:

Sym(Â) = Poly(Â∗,R),
the algebra of sites over A

and
Sym(Â∗) = Poly(Â,R),
the algebra of forms on A.

1.6.3 Choosing the pairing maps

Only one step remains, in building the paired algebras; but first, we need to
discuss homogeneity. Given any vector space X, an element of the symmetric
algebra Sym(X) is called homogeneous of degree n when the corresponding
polynomial in R[ξ1, . . . , ξk] has every term of total degree precisely n or,
equivalently, when the corresponding real-valued function f : X∗ → R satis-
fies f(tz) = tnf(z), for all covectors z in X∗ and all real numbers t. In the
symmetric algebra Sym(X), the elements that are homogeneous of degree
n form a linear subspace, which we denote Symn(X). (Some authors use a
superscript: Symn(X).) In our situation, those forms on A that are homo-
geneous of degree n constitute the linear space Symn(Â

∗), while those sites
over A that are homogeneous of degree n constitute Symn(Â). We refer to
the elements of these spaces as n-forms on A and n-sites over A.

So far, we have constructed the algebra of forms Sym(Â∗) and the algebra
of sites Sym(Â) as separate algebras, built from the dual linear spaces Â∗

and Â. Our third step makes those two algebras themselves into a dual pair
by choosing, for each n, a pairing

〈 , 〉 : Symn(Â
∗)× Symn(Â) → R

between n-forms and n-sites. Fixing such a pairing lets us represent a linear
functional on n-forms as an n-site, and vice versa. For example, consider
the evaluate-an-n-form-at-P functional, the dual functional εP in Symn(Â

∗)∗

that takes an n-form f in Symn(Â
∗) as its argument and returns the real

number εP (f) := f(P ). With the pairing maps that I recommend, that linear
functional is represented by the n-site εP = P n/n! . Warning: Some authors
scale their pairing maps differently, so as to eliminate that denominator of
n! . By doing so, they simplify their formulas for evaluation, but complicate
their formulas for differentiation — as we discuss at length in Appendix B.



1.7. PIECEWISE MODELS WITH SMOOTH JOINTS 13

1.7 Piecewise models with smooth joints

Once we have built the paired algebras of forms and sites, what good are
they? In a nutshell, they provide a tool for analyzing functions defined
by polynomials. This tool is particularly effective at constraining two such
functions so that they agree to a certain order somewhere. And that, in turn,
is a key problem in spline theory, as we here review.

Computer-aided geometric design (CAGD) is a field of applied mathe-
matics that studies ways to model and manipulate smooth, synthetic shapes.
The standard techniques in CAGD involve breaking a shape up into pieces
and modeling each piece algebraically. The word spline originally meant a
flexible strip of wood; but it now refers to a great variety of clever ways to
arrange that the joints between the pieces end up sufficiently smooth.

Suppose that O is our object space, the space in which we want our mod-
eled shapes to sit. In CAGD, we typically model shapes in O either para-
metrically or implicitly. To model a shape S in O parametrically, we invent
for ourselves an auxiliary space A, called the parameter space; we choose a
function F : A → O, typically piecewise rational; and we then model S as
the image S := F(A). To model a shape S in O implicitly, we invent an aux-
iliary space B, which might be called the gauge space; we choose a function
G : O → B, typically piecewise polynomial; and we model S as the inverse
image S := G−1(0) of the origin in B. The ideas in this monograph are appli-
cable to both parametric and implicit modeling. But parametric models of
shapes are more common in CAGD today, so we shall use parametric models
as our examples. When the parameter space A is 1-dimensional, the result-
ing shape F(A) is a parametric curve; when dim(A) = 2, it is a parametric
surface; when dim(A) = d, it is a parametric d-fold.

The parametric d-folds used in CAGD are typically either piecewise-
rational or piecewise-polynomial, the latter being a special case of the former.
If F : A→ O is a piecewise-polynomial parametric d-fold, then the spaces A
and O are taken to be affine. For a polynomial piece F of F , say of degree
n, each coordinate of the output point F (P ) in O is given by an n-form on
A. The piecewise-rational case is similar, except that we add one additional
n-form, serving as a common denominator. More precisely, the spaces A
and O are taken to be projective and each homogeneous coordinate of the
output point F (P ) is given by an n-form on A. In Section 4.6, we mention
how one completes an affine space A into its projective closure by ignoring
scalar multiples in the linearized space Â. For the bulk of this monograph,
however, we restrict ourselves to the polynomial case.

Let F : A→ O be a piecewise-polynomial parametric d-fold and let F be
one of its pieces. Since F is given by polynomials, it extends to a polynomial
function F : A→ O, defined on all of A. For example, Figure 1.6 shows the
graph of a function from R to R that is built up from four pieces, each a
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Figure 1.6: A cubic spline curve with four segments

segment of a cubic polynomial. It also shows what happens when the first
two of those segments are extended beyond their endpoints. (The other two
are symmetric.) In this example, each adjacent pair of polynomials agrees to
second order at the joint between them, leading to an overall curve that is
twice continuously differentiable.

One of the key problems in spline theory is achieving smooth joints. The
paired algebras assist in that quest through the following result, which we
discuss in Sections 6.7 and 7.11:

For any k in [0. .n], two n-forms f and g on an affine space A agree
to kth order at a point P in A just when we have 〈f, s〉 = 〈g, s〉
for all n-sites s over A that are multiples of P n−k. (The angle
brackets here denote the pairing between n-forms and n-sites.)

The full implications of this result are subtle, but we can easily check out the
extreme cases. Letting k := n, the two n-forms f and g agree to nth order
at P just when 〈f, s〉 = 〈g, s〉 for all n-sites s over A that are multiples of
P 0 = 1, that is, for all n-sites s over A. Thus, f and g agree to nth order at
P just when they coincide. Letting k := 0, the forms f and g agree to 0th

order at P just when 〈f, s〉 = 〈g, s〉 for all n-sites s that are multiples of P n,
that is, when 〈f, P n〉 = 〈g, P n〉. This also makes sense, since we have seen
that 〈f, P n〉/n! = 〈f, P n/n! 〉 = εP (f) = f(P ), and similarly for g.

1.8 Cubic Bézier triangles

It turns out that polynomial parametric surfaces in 3-space of total degree at
most 3 are general enough to motivate much of what we do. In what follows,
we shall often use that class of surfaces, called cubic Bézier triangles, as a
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convenient example. Indeed, we have already used quadratic Bézier triangles
as an example several times, including the one shown in Figure 1.1. But
quadratics are a bit too special; cubics are more generic.

Let the object space O be affine 3-space, say with (x, y, z) as a Cartesian
coordinate system, and suppose that we want to design a cubic polynomial
parametric surface in O. We invent for ourselves an affine parameter plane A.
Since we just agreed to use x, y, and z as the coordinates in the object space
O, let’s use u and v from now on as the names of the Cartesian coordinates
in the parameter plane A. We define the x, y, and z coordinates of the
varying point F (u, v) = (Fx(u, v), Fy(u, v), Fz(u, v)) as polynomials Fx, Fy,
and Fz of total degree at most 3 in the variables u and v. The resulting
function F : A → O is called a cubic polynomial parametric surface. The
piece typically cut out of such a surface is a cubic Bézier triangle, the image
F (�QRS) of a triangle �QRS in the plane A. The analog, for arbitrary
degree n and parametric dimension d, is an n-ic polynomial parametric d-fold,
out of which we cut an n-ic Bézier d-simplex.

1.9 Related work

We now discuss how the paired algebras relate to other work in CAGD, using
a cubic Bézier triangle F (�QRS) as our example.

1.9.1 Bernstein bases and Bézier points

Bernstein bases and Bézier control points provide the common foundation
for much of CAGD. Any point P in the parameter plane A can be written
uniquely as a barycentric combination of the three points Q, R, and S; that
is, we have P = q(P )Q + r(P )R + s(P )S, where q, r, and s are affine, real-
valued functions on A and where q(P ) + r(P ) + s(P ) = 1, for all points
P in A. It then transpires that every cubic polynomial parametric surface
F : A→ O can be written uniquely in the form

F (P ) =
∑

i+j+k=3

(
3

i j k

)
q(P )ir(P )js(P )k Fi,j,k,(1.9-1)

for some ten control points

F3,0,0

F2,1,0 F2,0,1

F1,2,0 F1,1,1 F1,0,2

F0,3,0 F0,2,1 F0,1,2 F0,0,3

in O. The factor of
(

3
i j k

)
in the summand is the trinomial coefficient given,

for i+j+k = n, by
(
n
i j k

)
= n!/(i! j! k!). The ten control points (Fi,j,k) are the
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Bézier points of the Bézier triangle F (�QRS), while the ten corresponding
coefficient functions Bi,j,k : A→ R given by

Bi,j,k(P ) :=

(
3

i j k

)
q(P )ir(P )js(P )k

constitute the Bernstein basis for the cubic polynomial functions on the plane
A with the reference triangle �QRS.

Things are much the same for any degree n and parametric dimension d.
Given a reference d-simplex for a d-dimensional parameter space A, we get a
Bernstein basis for the n-ic polynomial functions on A, and the coefficients of
the functionals in that Bernstein basis are the Bézier points of the resulting
n-ic Bézier d-simplex.

Assembling a spline d-fold out of pieces cut from polynomial d-folds is
quite a subtle problem, once d exceeds 1. In the case of d = 1, however,
de Casteljau, de Boor, and others built B-splines, a thoroughly satisfactory
theory of spline parametric curves. Indeed, this theory of spline curves is
so attractive that it is tempting to construct spline surfaces as curves of
curves. The resulting surfaces are built from functions F : A → O whose
defining polynomials obey separate degree bounds in u and in v; we discuss
these tensor-product surfaces in Section 6.8. Because B-splines are such an
effective way of dealing with spline curves, tensor-product spline surfaces
have become the most popular surfaces in CAGD.

1.9.2 Bézier points as polar values

In de Casteljau’s development of the theory of B-splines [14], he made good
use of the classical notion of polar forms, referring to his B-spline control
points as poles. I popularized his ideas under the name blossoming [42, 43].
The polar form, a.k.a. blossom, of a cubic Bézier triangle F : A → O is the
unique symmetric, triaffine function F̃ : A3 → O that agrees with F on the
diagonal, that is, that satisfies F̃ (P, P, P ) = F (P ), for all points P in A.

Polar forms are valuable in this context because they give us perspicuous
names for many of the points that are associated with the surface F , but that
don’t lie on that surface itself. In particular, the ten Bézier control points
(Fi,j,k)i+j+k=3 of the triangular patch F (�QRS) are the following values of
its polar form F̃ :

F̃ (Q,Q,Q)

F̃ (Q,Q,R) F̃ (Q,Q, S)

F̃ (Q,R,R) F̃ (Q,R, S) F̃ (Q, S, S)

F̃ (R,R,R) F̃ (R,R, S) F̃ (R, S, S) F̃ (S, S, S)
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Furthermore, the symmetric, multiaffine nature of the polar form F̃ neatly
encodes the geometry that underlies the essential algorithms, such as the
de Casteljau Algorithm for subdivision.

Polar forms have proven useful to researchers in spline theory, as well as
to teachers of it. By using polar forms, Dahmen, Micchelli, and Seidel [11]
constructed elegant bases for multivariate spline spaces over arbitrary trian-
gulations, thereby taking an important step toward generalizing the theory
of B-splines from curves to surfaces.

By the way, the name “polar form” is good, because it points out the
connection with the other places in mathematics where the technique of
polarization is exploited. But the word “form” is used quite heavily already
in this area of mathematics, most notably for the objects — quadratic forms,
cubic forms, and the like — that make up the algebra of forms. In this
monograph, simply to reduce our overloading of the word “form”, let’s refer
to F̃ as the blossom of F .

1.9.3 From polarization to the paired algebras

Even in my early work on blossoming, I suspected that the n arguments to
the blossom should be combined using some flavor of multiplication, rather
than simply being concatenated into a sequence. But I wrongly believed
that the symmetrized variant of the tensor-product construction would be
an essential tool in defining the proper way to multiply points.

Ron Goldman’s pioneering work on dual bases [23, 38] pushed me to
think harder about duality, since I found it disturbing when he referred to
two different bases for the same linear space as dual. I then realized that I
had been mistaken: You don’t need tensors to multiply points. Points are
dual to linear forms, and you certainly don’t need tensors to multiply forms.
Rather, forms are essentially polynomials, and you multiply them as you
would polynomials. This monograph argues that points are also essentially
polynomials — to wit, linear sites. And the proper way to multiply sites is
as you would multiply polynomials.

The ability to multiply points together to form sites provides a frame-
work for the Bernstein/Bézier theory that is clearer and more convenient
than blossoming. For example, the function that maps each point P in the
plane A to the cubic site P 3 over A becomes a prototype for all possible
cubic parametric surfaces. In algebraic geometry, that prototype is called
the Veronese surface of parametric degree 3 [29]. That Veronese surface sits
in a space of fairly high dimension — in fact, in a 9-space. But every cubic
surface F : A→ O in the 3-space O is simply an affine transform of that pro-
totype; that is, we have F (P ) = f(P 3), for all points P in A, where f is an
affine transformation from the 9-dimensional space Sym3(Â)↓ of unit-weight
3-sites over A to the 3-space O.
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Exploiting sites and the affine transformation f , we get the following
simple formulas for the ten Bézier points of the cubic patch F (�QRS):

f(Q3)

f(Q2R) f(Q2S)

f(QR2) f(QRS) f(QS2)

f(R3) f(R2S) f(RS2) f(S3)

Comparing this notation for the Bézier points to our previous two notations,
we have

Fi,j,k = F̃ (Q, . . . , Q︸ ︷︷ ︸
i

, R, . . . , R︸ ︷︷ ︸
j

, S, . . . , S︸ ︷︷ ︸
k

) = f(QiRjSk)

whenever i + j + k = 3. The right-hand, site-based notation preserves all of
the symmetric, multiaffine strengths of the middle, blossom-based notation,
while restoring the brevity of the left-hand notation, in which the Bézier
points are simply numbered.

The notation and concepts of the paired algebras are more powerful than
their predecessors, as well as more concise. As an example of this power,
consider Equation 1.9-1, the basic formula that expresses a point F (P ) on a
cubic Bézier triangle as an affine combination of the ten Bézier points. Using
sites, we can prove that formula with elementary algebra:

F (P ) = f(P 3) = f
(
(q(P )Q + r(P )R + s(P )S)3

)
= f

( ∑
i+j+k=3

(
3

i j k

)
q(P )ir(P )js(P )kQiRjSk

)

=
∑

i+j+k=3

(
3

i j k

)
q(P )ir(P )js(P )k f(QiRjSk).

1.9.4 Vegter exploits the contraction operators

The basic operators that interconnect the algebra of forms with the algebra
of sites are the pairing maps; for each n, we can pair an n-form with an n-site
to produce a real number. But there is also a richer family of interconnecting
operators that can be defined from the pairing maps: the contraction oper-
ators [22, 25], which we discuss in Section 7.8. For any k in [0 . . n], we can
contract an n-form on a k-site to produce an (n − k)-form. Symmetrically,
we can contract an n-site on a k-form to produce an (n − k)-site. Pairing
is the special case k = n of either of these flavors of contraction, since both
0-forms and 0-sites are simply real numbers.

Recently, Gert Vegter has been applying these contraction operators to
problems in CAGD [47]; at least, that is how I would describe what he has



1.10. THE FOUR FRAMEWORKS 19

been doing. He describes his work as applying the apolar bilinear form, an
inner product on spaces of homogeneous multivariate polynomials that was
used in 19th-century invariant theory. I hope that Vegter will come to view
the paired algebras as providing a cleaner foundation and a simpler notation
for his fine work. Meanwhile, I view his work as encouraging evidence that
the paired algebras will be broadly useful in CAGD, above and beyond giving
us the clearest names for Bézier points.

Warning: I regret to report that Vegter uses the family of pairing maps
that I first used, as opposed to the family that I now recommend. In the
language of Appendix B, he uses the averaged pairing, while I currently
recommend the summed pairing. The field of CAGD will avoid a lot of
confusion if a clear winner emerges soon on this annoying question of where
to put the factor of n! .

1.10 The four frameworks

The bulk of this monograph analyzes four different frameworks that can be
used when studying problems in CAGD — for example, when devising new
spline methods. Each of those frameworks gives names to the relevant linear
spaces, stipulates various relationships between those spaces, and provides
certain operators that interconnect those spaces.

The nested-spaces framework: After some mathematical preliminar-
ies in Chapter 2, Chapter 3 discusses the nested-spaces framework, shown
schematically on page 29. This is the naive framework that people often
adopt when they first start working in CAGD. Such people typically view
a quadratic polynomial, say in the variables u and v, as being a degenerate
case of a cubic polynomial — degenerate in the sense that the coefficients of
the u3, u2v, uv2, and v3 terms all happen to be zero. Thus, in this frame-
work, the 6-dimensional linear space of all quadratic polynomials in u and v
is viewed as a subspace of the 10-dimensional linear space of all cubics in u
and v. That is the sense in which the spaces in this framework are nested.

The homogenized framework: Linearization leads to the homogenized
framework, discussed in Chapter 4 and shown on page 41. This is the frame-
work commonly used by researchers in CAGD today. They homogenize their
polynomials; for example, rather than dealing with u2 − 3uv + 7v either as
a quadratic polynomial in u and v or as a degenerate cubic in u and v, they
instead deal either with the quadratic form u2−3uv+ 7vw or with the cubic
form u2w− 3uvw + 7vw2, where the weight variable w lets them express the
point (u, v) in homogeneous coordinates as [u : v : w]. The resulting forms
make up an algebra, the symmetric algebra Sym(Â∗) of forms on A.
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The separate-algebras framework: In the separate-algebras framework,
discussed in Chapter 5 and shown on page 50, the algebra Sym(Â∗) of forms
on A is joined by its dual, the algebra Sym(Â) of sites over A. But these two
algebras remain separate, in the sense that we have not yet chosen a family
of pairing maps; so we can’t combine an n-form on A with an n-site over A to
produce a real number. Even without such pairing maps, a framework that
embraces the algebra of sites along with the algebra of forms has significant
advantages. Chapter 6 attacks various questions in CAGD by analyzing
the Veronese prototypes, the images of the perfect-power maps P �→ P n, as
geometric objects sitting inside the algebra of sites.

The paired-algebras framework: By choosing, for each n, a pairing
between n-forms and n-sites, we arrive at our final goal: the paired-algebras
framework, discussed in Chapter 7 and shown on page 82. The pairing maps
and the contraction maps defined from them give us simple formulas for
the evaluation and differentiation of n-forms. Chapter 8 reviews some basic
concepts of CAGD in the light of the paired algebras, showing, among other
things, that the dual of a Bernstein basis for the linear space Symn(Â

∗) of
n-forms is a Bézier basis for the linear space Symn(Â) of n-sites.

Unfortunately, a question of convention raises its ugly head in defining the
pairing maps: Do we divide by n! or not? Each choice makes some formulas
pretty, at the price of cluttering up others. I recommend not dividing by n! ,
which makes differentiation pretty at the price of cluttering up evaluation.
Appendix B discusses the tradeoffs at length.

Universal mapping conditions: By this point in your reading, I hope
to have convinced you that sites are important and useful in CAGD. But
you may still feel uneasy about what sites really are — that is, what it
really means to multiply points. One way to address that uneasiness is to
apply duality strictly: If you are happy thinking of forms on A as real-
valued functions on Â of a certain type, then you should also be happy
thinking of sites over A as real-valued functions on Â∗ of the analogous type.
But universal mapping conditions provide a truer and deeper answer to the
question of what sites really are. In Chapter 9, we discuss how to construct
symmetric algebras, as well as tensor algebras, alternating algebras, and
Clifford algebras, by means of universal mapping conditions.

If universal mapping conditions don’t scare you off by being too abstract
and formal, you might consider the next step toward formalized abstraction,
which is category theory. Viewed from the perspective of category theory,
both the linearization of affine spaces and the algebrization of linear spaces
are left adjoints of forgetful functors. Appendix A discusses the mathematics
that underlies this monograph from that still more abstract perspective.



Chapter 2

Mathematical Preliminaries

2.1 On the words “affine” and “linear”

The word “linear” is used inconsistently in mathematics: It sometimes im-
plies homogeneity and sometimes doesn’t. For example, the polynomial
f(x) := ax + b is called linear even when b is nonzero; but we must have
b = 0 in order for the function f : R → R defined by f(x) := ax + b to
qualify as a linear map. We here adopt the convention that linear always
implies homogeneous; when we mean “of degree 1, but not necessarily homo-
geneous”, we use the term affine. For example, we say affine interpolation,
where most people would say “linear interpolation”.

We use the term linear space for the mathematical structure that is often
called a vector space. While some linear spaces do indeed have vectors as
their elements, many linear spaces have elements of other types: covectors,
polynomials, or functions, for example.

An affine space is like a linear space, but without an origin. If P1 through
Pm are points in an affine space A, the linear combination t1P1 + · · ·+ tmPm
denotes a point in A only when t1 + · · · + tm = 1. Linear combinations
whose coefficients sum to 1 in this way are called affine combinations. If A
and B are affine spaces, a map f : A → B is affine when it preserves affine
combinations, that is, when t1 + · · ·+ tm = 1 implies f(t1P1 + · · ·+ tmPm) =
t1f(P1) + · · ·+ tmf(Pm).

2.2 Finite dimensionality

For simplicity in our mathematical constructions, we restrict ourselves to the
case of finite-dimensional spaces, either affine or linear, over the real numbers.
That is the case of primary interest in CAGD, and it is also the case in which
the theories of duality and of the symmetric algebra are at their simplest
and prettiest. Much of those theories carries over to more general contexts:

21
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linear spaces that are infinite-dimensional, linear spaces over fields of prime
characteristic, even modules over commutative rings. But various intriguing
subtleties arise in those wilder contexts, as we discuss in paragraphs labeled
“Math remark” and in Appendix C.

Actually, finite-dimensional linear spaces over the complex numbers are,
in some ways, even better behaved than those over the real numbers, partic-
ularly when factoring is involved. For example, before investigating whether
a form or a site factors over the real numbers, it is often helpful to consider
the easier question of whether it factors over the complex numbers.

2.3 Linear-space duality

Recall that the duality of linear algebra, in the finite-dimensional case, is
a symmetric relationship between pairs of spaces. Let X and Y be linear
spaces (a.k.a. vector spaces). The set of all linear maps f : X → Y is another
linear space, written Lin(X, Y ). In the particular case Y = R, linear maps
f : X → R are called linear functionals on X (a.k.a. dual functionals), and
the space Lin(X,R) of all such linear functionals is called the dual of X
and written X∗. Repeating that same construction, the linear space of all
second-order maps σ : X∗ → R is X∗∗ = Lin(Lin(X,R),R), the dual of the
dual of X. There is a natural map from X to X∗∗ that takes an element
x of X to the second-order functional εx defined by εx(f) := f(x), that is,
to the functional that evaluates its first-order argument f at the datum x.
This natural map is always injective. When dim(X) is finite, the equality
dim(X) = dim(X∗) = dim(X∗∗) implies that it must be surjective as well;
that is, every second-order functional σ is the evaluate-at-x functional σ = εx,
for a unique x in X. The spaces X and X∗∗ thus being isomorphic in a natural
way, it does no harm to identify them. So, in the finite-dimensional case,
duality is a symmetric relationship between pairs of spaces. For example,
if we represent the elements of X using column vectors, we then represent
the elements of X∗ using row vectors and the elements of X∗∗ using column
vectors once again.

That explanation of duality is standard in the textbooks; but it has the
drawback that it treats the spaces X and X∗ somewhat asymmetrically. We
viewed an element f of the dual space X∗ as a first-order functional, while
we viewed an element x = εx of the primal space X = X∗∗ sometimes as the
datum x and sometimes as the corresponding second-order functional εx.

The concept of a pairing map puts the primal and dual spaces on a more
equal footing. Suppose that X and Y are linear spaces of the same finite
dimension k; so, choosing bases, we can think of an element x in X as a
column vector of length k, and the same for an element y in Y . Any bilinear
map B : X × Y → R then has an associated k-by-k matrix M , under the
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convention that the scalar B(x, y) is the matrix product B(x, y) := xtMy.
The map B is called a pairing between X and Y when its associated matrix
M is invertible. Note that every linear functional on X has the form x �→ xtp,
for a unique column vector p of length k. If the matrix M is invertible, then
we have xtp = xtM(M−1p), so we can describe that functional equally well
as x �→ B(x, y) where y := M−1p. Thus, we can use the space Y to represent
the dual space X∗. Symmetrically, each linear functional on Y has the form
y �→ qty, for a unique column vector q. If M is invertible, we can describe that
functional equally well as y �→ B(x, y) where x := M−tq; so we can use the
space X to represent Y ∗. Thus, once we fix a pairing between two spaces, we
can treat each of them as the dual of the other, without committing ourselves
as to which of the two spaces is the primal and which is the dual.

On the other hand, making a temporary convention about that can be
pedagogically helpful. For example, suppose that we have fixed a pairing
B between two linear spaces X and Y . By the way, it is conventional to
denote pairings using angle brackets, so let’s switch from writing B(x, y) to
writing 〈x, y〉. We might call the elements of the space X vectors and think
of them as data, while we call the elements of Y covectors and think of them
as functions. The pairing map then produces the scalar 〈x, y〉 from the vector
x and the covector y by applying the function y to the datum x, so we have
〈x, y〉 = y(x). Having broken the symmetry in this direction, we would call
X the primal space and Y the dual space of the pair. But keep in mind that
we could equally well have broken the symmetry in the opposite direction,
treating x as the function and y as the input datum, with 〈x, y〉 = x(y). The
underlying reality is symmetric, with both x and y as input data; we break
that symmetry only because an asymmetric situation, with a datum on one
side and a function on the other, is often easier to talk about.

Warning: Different frameworks for CAGD make it pedagogically natural
to break the symmetry between primal and dual in different directions. A
linear space of n-forms, for example, is typically thought of as a primal space
in the homogenized framework. In the paired-algebras framework, on the
other hand, it is more natural to view the space of n-sites as primal, which
forces the space of n-forms to be dual. When the words “primal” and “dual”
are used as identifiers in this way, only the context can clarify which is which
— that is, can clarify the direction in which the symmetry is being broken.

2.4 Algebras

In this monograph, we are going to be extending affine spaces into linear
spaces and linear spaces into commutative algebras. We here review the
mathematical concept of an algebra. Feel free to skip this section on first
reading, referring back to it only as needed.
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Fix some field of scalars. In this monograph, that field will always be
the real numbers R, but any field would do. An algebra over that field is
a set G with three operations defined on it: addition, multiplication, and
scalar multiplication. The addition and the multiplication must make G
into a ring. (In keeping with modern practice, we require that any ring —
and hence any algebra — have a multiplicative identity.) The addition and
the scalar multiplication must make G into a linear space. And the two
multiplications must satisfy t(xy) = (tx)y = x(ty), for all scalars t and all
elements x and y of the algebra G. An algebra is commutative when its
multiplication is commutative, that is, when xy = yx.

For example, for any fixed n, the set of all n-by-n real matrices forms an
algebra. The dimension of this algebra, viewed as a linear space, is n2. Once
n exceeds 1, this algebra is noncommutative.

Exercise 2.4-1 Another way to think of an algebra is as a ring that includes
the field of scalars as a central subring. More precisely, show that the defi-
nition of an algebra given above is equivalent to the following: An algebra is
a ring G together with a ring homomorphism g : R → G with the property
that g(t)x = xg(t), for all x in G and t in R.

Hint: Given a ring G and a homomorphism g : R → G, we can define
a scalar multiplication in G by the rule tx := g(t)x. Conversely, given an
algebra as described above, we can define a ring homomorphism g : R → G
by setting g(t) := t1, where 1 denotes the multiplicative identity in G.

For our purposes, polynomial algebras are the most important examples.
If V is some set of symbols, then all polynomials with real coefficients and
with variables drawn from V form a commutative algebra, written R[V ].
The dimension of this algebra, as a linear space, is infinite whenever V is
nonempty, since we can form polynomials of arbitrarily high degree. In this
monograph, the set V will usually be finite; but the polynomial algebra R[V ]
makes sense even when V is infinite. Keep in mind, though, that any single
polynomial is a sum of finitely many terms, each of finite total degree, and
hence any single polynomial involves only finitely many variables.

An algebra is graded when it is expressed as a linear-space direct sum
G =

⊕
n≥0 Gn in such a way that the ring multiplication takes Gi ×Gj into

Gi+j, for all nonnegative i and j. The linear subspace Gn is called the nth

graded slice of the algebra G, and the elements of Gn are called homogeneous
of grade n or of degree n. Every element x of a graded algebra can be written
uniquely as a sum x =

∑
n≥0(x)n of its graded components, where the nth

graded component (x)n is homogeneous of grade n and where only finitely
many of the components are nonzero.

The key example of a graded algebra, for our purposes, is the polynomial
algebra R[V ], graded by total degree. Let’s denote by Rn[V ] the linear space
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of all polynomials that are homogeneous of total degree n in the variables
in V . That space is the nth graded slice of the polynomial algebra R[V ]
(and hence might also be denoted R[V ]n). Note that multiplication maps
Ri[V ]×Rj[V ] into Ri+j[V ]. We can group the terms of any polynomial f by
their total degree and hence decompose f uniquely as the sum f =

∑
n≥0(f)n

of its graded components. If the number of variables v := |V | is finite, then
each graded slice of the polynomial algebra R[V ] is finite-dimensional; in
fact, by the formula for choosing with repetition, we have

dim(Rn[V ]) =

(
n + v − 1

n

)
.

An algebra homomorphism is a linear map that is also a ring homomor-
phism. Thus, an algebra homomorphism f : G→ H must satisfy f(x+ y) =
f(x)+f(y), f(tx) = tf(x), f(xy) = f(x)f(y), and f(1) = 1, for all elements
x and y of G and all scalars t.

Exercise 2.4-2 If g : R → G and h : R → H are the ring homomorphisms
that describe two algebras G and H as in Exercise 2.4-1, show that an algebra
homomorphism f : G → H is the same thing as a ring homomorphism that
preserves scalars, in the sense that f ◦ g = h.
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Chapter 3

The Nested-Spaces Framework

The paired algebras are the cornerstones of a new framework for studying
polynomial functions in CAGD. Before we construct that new framework,
however, we should discuss the frameworks that are currently used for this
purpose — of which there are two. In the first of those existing frameworks,
the one that underlies the thinking of a high-school student, the real-valued,
polynomial functions of various degrees defined on a common affine domain
space form a nested family of linear spaces. In this chapter, we review that
framework, which we’ll call the nested-spaces framework.

As we consider various frameworks for CAGD, we shall use cubic Bézier
triangles as our motivating problem. So suppose that we want to design a
surface in a 3-dimensional object space O, with (x, y, z) coordinates. We
divide that surface into triangular patches, and we specify each such patch
parametrically as follows: We invent an affine parameter plane A, with (u, v)
coordinates, and we define the x, y, and z coordinates of the patch to be
real-valued, polynomial functions on A of total degree at most 3 in u and v.
Any framework for CAGD that we consider must provide the linear spaces
that are appropriate for studying a problem of that sort.

3.1 Choosing a Cartesian coordinate system

In the nested-spaces framework, we begin by setting up a Cartesian coordi-
nate system in the affine parameter plane A. That is, we choose some point
C in A to act as the center of our Cartesian coordinate grid, and we choose
two vectors ϕ and ψ over A to be the unit vectors in the u and v directions.
Each point P in A can then be uniquely expressed in the form

P = C + u(P )ϕ + v(P )ψ,(3.1-1)

for certain real numbers u(P ) and v(P ), called the Cartesian coordinates of
P . Note that u itself is an affine function u : A→ R, and the same for v.

27
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We intend to use, as the x, y, and z coordinates of our surface patch,
polynomial functions f : A→ R of total degree at most 3. The set of all such
cubic functions forms a linear space of dimension 10, and we often adopt, as
our basis for that linear space, the ten functions defined by the monomials
uivj , for i+ j ≤ 3. Any cubic function f : A→ R can be uniquely expressed
as a linear combination of the ten functions in that power basis:

f = f30u
3 +f21u

2v +f12uv
2 +f03v

3(3.1-2)

+f20u
2 +f11uv +f02v

2

+f10u +f01v

+f00.

In general, let’s denote by Poly≤n(A,R) the linear space of all functions
f : A → R that can be defined by polynomials of degree at most n in the
variables u and v. Note that, if we adopted some other Cartesian coordinate
system (u′, v′) for the plane A, based on an origin point C ′ and unit vectors
ϕ′ and ψ′, the two systems (u, v) and (u′, v′) would be affinely related, so we
would end up with the same space of functions Poly≤n(A,R).

3.2 Picturing the nested-spaces framework

Figure 3.1 depicts the nested-spaces framework graphically. On the left, we
have the affine parameter plane A, all by itself. Each of the other shapes
represents a linear space of interest in CAGD. In the infinite nest of trian-
gles, the nth triangle represents the linear space Poly≤n(A,R). The space
Poly≤0(A,R) of constant, real-valued functions on A has the constant func-
tion 1 as a basis. The space Poly≤1(A,R) of affine, real-valued functions on
A has the three functions u, v, and 1 as a basis. The space Poly≤2(A,R) has
the six functions u2, uv, v2, u, v, and 1 as a basis. And so forth; in general,
we have dim(Poly≤n(A,R)) =

(
n+2
n

)
=
(
n+2

2

)
.

The union
⋃
n≥0 Poly≤n(A,R) of the nested triangles is an algebra, which

we shall denote Poly(A,R): the algebra of all real-valued functions on A that
can be defined by polynomials in u and v of any degree. By mapping each
such function to its defining polynomial, we see that the algebra of functions
Poly(A,R) is isomorphic to the polynomial algebra R[u, v].

Warning: The polynomial algebra R[u, v] is graded by total degree; but
the algebra Poly(A,R) of polynomial functions has no natural grading. For
example, it makes sense to distinguish those polynomials in R[u, v] that are
homogeneous of total degree 3, that is, the linear combinations of u3, u2v,
uv2, and v3. Indeed, that 4-dimensional linear space of homogeneous cubics
is precisely R3[u, v], the third graded slice of the algebra R[u, v]. But it
wouldn’t make sense to distinguish the corresponding functions in the algebra
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Poly(A,R)

A

1

u, v

u2, uv, v2

u3, u2v, uv2, v3

Poly≤0(A,R)

Poly≤1(A,R)

Poly≤2(A,R)

Poly≤3(A,R)

Poly≤0(A,R)∗

Poly≤1(A,R)∗

Poly≤2(A,R)∗

Poly≤3(A,R)∗

Figure 3.1: The nested-spaces framework

Poly(A,R). The functions in Poly(A,R) whose defining polynomials lie in
R3[u, v] are the ones that vary as a cubic function of the distance from the
point C, that is, the functions f that satisfy f(C + t(P − C)) = t3f(P ), for
all points P and real numbers t. But the center point C of our coordinate
system for the affine plane A was an arbitrary choice — that’s part of what
it means for the plane A to be affine. Thus, requiring a function f : A→ R
to be a homogeneous cubic doesn’t make sense, since the affine plane A has
no preferred origin to be homogeneous around.

3.3 The dual spaces

In the nested-spaces framework, the linear spaces Poly≤n(A,R) are thought
of as primal; that is, the symmetry discussed in Section 2.3 is broken in the
direction that views a polynomial function on A to be a primal object. The
duals of those primal spaces are shown in Figure 3.1 as rounded rectangles,
each linked by a double-headed arrow to its primal partner.

Consider the space Poly≤3(A,R)∗, for example. An element σ of this
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space is a dual functional defined on cubic functions, that is, it is a linear
map σ : Poly≤3(A,R) → R. If we adopt the power basis (uivj)i+j≤3 for the
space Poly≤3(A,R) of cubic functions, it is natural to adopt the dual basis
for the space Poly≤3(A,R)∗. That dual basis consists of the ten functionals
(τij)i+j≤3 determined by the duality constraints

τij(u
kvl) =

{
1 if i = k and j = l

0 otherwise.

Given any cubic function f in Poly≤3(A,R), we can use the functionals in
this dual basis to compute the coefficients that are needed to expand f in
the power basis; that is, Equation 3.1-2 holds just when the ten coefficients
(fij)i+j≤3 are determined by the equations fij = τij(f).

Of course, since duality is symmetric, the same holds the other way
around. An arbitrary dual functional σ in the space Poly≤3(A,R)∗ can be
uniquely expressed as a linear combination of the elements of the dual basis,

σ = σ30τ30 +σ21τ21 +σ12τ12 +σ03τ03(3.3-1)

+σ20τ20 +σ11τ11 +σ02τ02

+σ10τ10 +σ01τ01

+σ00τ00,

and the ten coefficients (σij)i+j≤3 in this expansion are given by σij = σ(uivj).

3.4 Interpreting elements of the dual spaces

Of the ten dual functionals in our basis (τij)i+j≤3 for the space Poly≤3(A,R)∗,
one has a particularly simple interpretation. Evaluating Equation 3.1-2 at
the center point C, the point in the domain plane A with coordinates u(C) =
v(C) = 0, we see that f(C) = f00 = τ00(f). So the functional τ00 evaluates
its argument at the center point C.

Evaluation at any fixed point constitutes a dual functional. If we evaluate
Equation 3.1-2 at P = C + u(P )ϕ + v(P )ψ, we find that

f(P ) = f30 u(P )3 + f21 u(P )2v(P ) + f12 u(P )v(P )2 + f03 v(P )3

+ f20 u(P )2 + f11 u(P )v(P ) + f02 v(P )2

+ f10 u(P ) + f01 v(P )

+ f00.



3.5. ARE THE DUAL SPACES NESTED? 31

It follows that evaluation at the point P is the dual functional εP given by

εP = u(P )3 τ30 + u(P )2v(P ) τ21 + u(P )v(P )2 τ12 + v(P )3 τ03

+ u(P )2 τ20 + u(P )v(P ) τ11 + v(P )2 τ02

+ u(P ) τ10 + v(P ) τ01

+ τ00.

Typically, though, when we expand a dual functional in terms of our cho-
sen basis (τij)i+j≤3, the expansion won’t have that special form for any two
scalars u(P ) and v(P ). Thus, a typical dual functional does not correspond
to evaluation at any point. We can express any dual functional as a linear
combination of point evaluations (as follows from Lemma 7.2-2). Alterna-
tively, we can express any dual functional as a certain differential operator
(as discussed in Section 7.10). But let’s put those topics aside for now.

3.5 Are the dual spaces nested?

The primal spaces Poly≤n(A,R), the triangles in Figure 3.1, are nested. It
would be nice if the dual spaces Poly≤n(A,R)∗ were also nested; so it is
important to thoroughly understand that they are not. They would be if the
concept “subspace” in linear algebra were self-dual. But the concept that is
dual to “subspace” is “quotient space”: When X and Y are linear spaces,
X is a subspace of Y if and only if X∗ is a quotient space of Y ∗. This is
standard linear algebra, but we review it here for completeness.

Consider the space Poly≤2(A,R) of quadratic functions on A, sitting as
a subspace inside the space Poly≤3(A,R) of cubic functions on A. We have
dim(Poly≤2(A,R)) = 6, while dim(Poly≤3(A,R)) = 10. Suppose that we
expand a cubic function f in terms of the power basis (uivj)i+j≤3, as shown
in Equation 3.1-2. The function f will also be quadratic — that is, will lie in
the subspace Poly≤2(A,R) — just when the four cubic coefficients f30, f21,
f12, and f03 are all zero.

What happens in the dual spaces? Because we have singled out the
subspace Poly≤2(A,R) of the primal space Poly≤3(A,R), there is a certain
subset of the dual space Poly≤3(A,R)∗ that we can single out in a natu-
ral way: the annihilator of Poly≤2(A,R), written Ann(Poly≤2(A,R)). A
dual functional σ in Poly≤3(A,R)∗ belongs to Ann(Poly≤2(A,R)) just when
σ(f) = 0, for all f in Poly≤2(A,R). Unfortunately, there is no hope that this
annihilator subspace will coincide with or can even somehow represent the
smaller dual space Poly≤2(A,R)∗, since the dimensions are wrong. We have
dim(Poly≤2(A,R)∗) = 6; but a dual functional annihilates Poly≤2(A,R) just
when it can be written as a linear combination of the four functionals τ30,
τ21, τ12, and τ03, so dim(Ann(Poly≤2(A))) = 4. Here is what is true instead:
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The smaller dual space Poly≤2(A,R)∗ is isomorphic in a natural way to the
quotient space Poly≤3(A,R)∗/Ann(Poly≤2(A,R)). But there is no natural
way to single out one 6-dimensional subspace of Poly≤3(A,R)∗ to represent
Poly≤2(A,R)∗; that is, singling out one such subspace would involve making
an arbitrary choice.

As it happens, we have already made an adequate arbitrary choice: our
choice of the point C as the center of our Cartesian coordinate system in
the plane A. As we discussed at the end of Section 3.2, the choice of C
determines a 4-dimensional subspace of Poly≤3(A,R): the functions given
by polynomials that are homogeneous of degree 3 in u and v, that is, the
functions that are homogeneous cubics around C. Call that space HC . The
annihilator Ann(HC) is a 6-dimensional subspace of Poly≤3(A,R)∗ that we
could use to represent Poly≤2(A,R)∗. But we want the structures in our
frameworks to be independent of the coordinate system that we choose for
the affine space A, so this path to nested dual spaces is closed to us.



Chapter 4

The Homogenized Framework

In the nested-spaces framework, the primal spaces Poly≤n(A,R) are nested,
but the dual spaces Poly≤n(A,R)∗ are not. Since duality is a symmetric
relationship, that lack of symmetry constitutes a flaw. Furthermore, forcing
the dual spaces to be nested as well would involve making arbitrary choices,
as we discussed in Section 3.5; so we aren’t willing to repair the flaw that
way. The only other way to repair the flaw is to eliminate the nesting of the
primal spaces. Fortunately, we can eliminate the primal nesting by making
a simple change in our framework, to wit, by homogenizing. Indeed, if we
adopt Bernstein bases for our primal spaces, rather than power bases, this
homogenization happens automatically. The resulting homogenized frame-
work is the framework for studying polynomial functions that underlies most
current research in CAGD.

4.1 To n-forms via barycentric coordinates

As an easy introduction to the homogenized framework, let’s study cubic
Bézier triangles once again, but using a Bernstein basis, rather than a power
basis. Let �QRS be a reference triangle in the parameter plane A. Any
point P in A can be uniquely represented as an affine combination of the
three vertices Q, R, and S:

P = q(P )Q + r(P )R + s(P )S where q(P ) + r(P ) + s(P ) = 1.(4.1-1)

The numbers (q(P ), r(P ), s(P )) are called the barycentric coordinates of P ,
while the triple of affine functions (q, r, s) is called a barycentric coordinate
system for the plane A. Every cubic function f : A → R can be uniquely
expressed as a homogeneous cubic polynomial in the variables q, r, and s.
The Bernstein basis for the space of such functions consists of the ten cubic

33
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monomials in q, r and s, scaled by trinomial coefficients:((
3

i j k

)
qirjsk

)
i+j+k=3

.

Every cubic function f : A→ R can be expanded uniquely as a linear com-
bination of those basis functions,

f = f300 q
3

+f210 3q2r + f201 3q2s

+f120 3qr2 + f111 6qrs + f102 3qs2

+f030 r
3 + f021 3r2s + f012 3rs2 + f003 s

3,

(4.1-2)

and the coefficients (fijk)i+j+k=3 in this expansion are known as the Bézier
ordinates of the function f .

In general, let’s denote by Polyn(Â,R) the linear space of all functions
that can be defined by polynomials that are homogeneous of degree n in the
variables q, r, and s. Such a function is called an n-form on the plane A.
Note that an n-form has a well-defined value for any triple of scalars (q, r, s),
even when the sum q+r+s differs from 1. As we discuss shortly, it is for that
reason that we write Polyn(Â,R), with a hat accent over the A. (Indeed,
it wouldn’t make sense to write “Polyn(A,R)”, without the hat accent. As
we discussed in Section 3.2, the affine space A has no preferred center point
around which to require a polynomial function to be homogeneous.)

Have we pulled apart the nested spaces? The nesting arose because we
considered the constant function 1, for example, to be a function of degree
at most n, for every nonnegative n. But the single function 1 has now given
rise to an infinite sequence of distinct forms: the constant form 1, the linear
form q + r + s, the quadratic form (q + r + s)2, and so forth. In this way, we
have converted the nested spaces Poly≤0(A,R) ⊂ Poly≤1(A,R) ⊂ . . . into

disjoint spaces Poly0(Â,R), Poly1(Â,R), and so forth. (To be picky, those
latter spaces are only almost disjoint: They share a common origin, since the
zero function on A is an n-form for every n ≥ 0.)

4.2 To n-forms via a weight coordinate

While Bernstein bases lead naturally to the homogenized framework, we can
start with power bases and still end up homogenized as follows. Given the
center point C and the unit vectors ϕ and ψ in the plane A, we write each
point P in A in the form

P = w(P )C + u(P )ϕ + v(P )ψ where w(P ) = 1.(4.2-1)
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Figure 4.1: The linearization Â of the affine plane A

Like Equation 4.1-1, but unlike Equation 3.1-1, this equation gives each
point P three coordinates, subject to one affine constraint: the coordinates
(w(P ), u(P ), v(P )), subject to the constraint w(P ) = 1. Any polynomial
of total degree at most n in the variables u and v can be converted into
an equivalent polynomial that is homogeneous of degree n in the variables
w, u, and v simply by adding factors of w to each term as appropriate,
the term tuivj becoming twn−i−juivj . This process is called homogenization.
Homogenizing each function in the space Poly≤n(A,R) leads to the same

linear space Polyn(Â,R) of n-forms that we arrived at via the Bernstein
basis, since the coordinate systems (q, r, s) and (w, u, v) are linearly related.

4.3 The linearization of an affine space

But wait a minute: What space is it that has (q, r, s) and (w, u, v) as two
possible coordinate systems? Well, it is surely a 3-dimensional space, and
we want it be linear, rather than merely affine. It includes the plane A as
an affine hyperplane — to wit, the hyperplane q + r + s = 1 or, equivalently,
w = 1. Those properties are enough to determine it uniquely, up to a unique
isomorphism, as shown in Figure 4.1. It has various names and is written in
various ways; let’s call it the linearization of A and write it Â.

Here is another way to describe how homogenization works. We start
with polynomial functions of degree at most n, defined on an affine space A.
We could choose some point in A, such as C, to act something like an origin.
But different n-ic functions are homogeneous around different points in A,
and we don’t want to play favorites; worse yet, many n-ic functions aren’t
homogeneous around any point in A. Instead, we adjoin to A an origin that
lies outside of A, a common origin that all n-ics can be homogeneous around.
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The linear span of A with respect to this new, exterior origin is a linear space
Â, with dim(Â) = dim(A)+1. Any polynomial function f : A→ R of degree
at most n extends uniquely to a function f̂ : Â → R that is homogeneous
of degree n — that is, extends to an n-form. To effect that extension, let
w : Â→ R be the unique linear functional on Â that takes the constant value
1 on the hyperplane A, so A = w−1(1); a value of this functional w is often
called a weight. To compute f̂ , we take the polynomial that defines f and we
add factors of the weight functional w to each term, as needed, to bring that
term up to the proper total degree. Going back from f̂ to f is even easier:
We simply substitute w := 1. As a result, we can treat the function f and
the n-form f̂ as two aspects of the same underlying reality.

In the particular case n = 1, the affine function q on A extends uniquely
to a 1-form on A, that is, to a linear functional on Â. For simplicity, we shall
use the same symbol q to denote that linear functional, rather than writing
q̂. The same goes for the functionals r, s, w, u, and v; indeed, we wrote w
already in the last paragraph, rather than ŵ. In this way, each of the triples
(q, r, s) and (w, u, v) now constitutes a linear coordinate system on the linear
space Â, and those two systems are related by some invertible 3-by-3 matrix.

Marcel Berger [3] gives a thorough explanation of linearization. He (or
perhaps his translator, Silvio Levy) refers to the space Â as the universal
space of A, since Â satisfies a certain universal mapping condition, as we
discuss in Section 9.1. But lots of things satisfy universal mapping conditions;
it seems more specific to refer to Â as the linearization of A.

4.4 A new term: “anchor”

Linearization is a central technique in CAGD, but it is not understood as
clearly as it should be. One reason is people’s reluctance to add one more
dimension — especially to move from 3 dimensions, which they can visualize,
to 4 dimensions, which they cannot. But a simpler stumbling block is the lack
of good terminology. Given an affine space A sitting inside its linearization
Â, we want to reserve the term “point” for the elements of A, that is, the
elements P of Â that have weight 1, that satisfy w(P ) = 1. In the same
spirit, we want to reserve the term “vector” for the elements π of Â that
have weight 0. We then have the familiar equations “point−point = vector”
and “point±vector = point”. But what name should we use for an arbitrary
element p of Â? No good term has yet taken hold. Most authors use a phrase
like “weighted point”, “mass point”, or “punctual mass”. The justification
for such names is that any element p of Â whose weight is nonzero can be
written as a scalar multiple of a point: We have p = w(p)(p/w(p)), where
p/w(p) is a point because w(p/w(p)) = w(p)/w(p) = 1. But note that
nonzero vectors over A are elements of the linearization Â also, and they
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can’t be written as scalar multiples of points. On that basis, Fiorot and
Jeannin [21] proposed the term “massic vector”.

But none of those phrases is adequate. We should dignify the elements
of the linearization by giving them a single-word name. Here is my proposal:
Given any affine space A, let’s refer to an element of its linearization Â as
an anchor over A. So a point in A is an anchor over A of weight 1, while
a vector over A is an anchor over A of weight 0. Every anchor is either a
vector or a scalar multiple of a point.

(In defense of the word “anchor”, it connotes a fixed point and something
weighty, both of which are appropriate. Indeed, control points in computer
drawing systems are sometimes called “anchors”. Also, there is no estab-
lished mathematical meaning of “anchor” with which this new sense might
be confused. Finally, it is quite convenient that the noun “anchor” has two
syllables and ends in “-or”, like “vector” and “tensor”.)

Consider the domain plane A of a cubic Bézier triangle F : A → O, as
in our recurring example. Every anchor p over the plane A can be written
uniquely as a linear combination

p = w(p)C + u(p)ϕ + v(p)ψ,(4.4-1)

where we no longer place any constraint on the weight w(p). Equivalently,
every anchor p can be written uniquely as a linear combination

p = q(p)Q + r(p)R + s(p)S,(4.4-2)

with no constraint on the sum q(p) + r(p) + s(p).

4.5 Coanchors

Now that an element of the linearized space Â is an anchor over A, an element
of the dual space Â∗ — that is, a linear functional on anchors — is a coanchor
on A (nothing to do with a co-anchor of a television newscast). In particular,
the linear functionals q, r, s, w, u, and v are coanchors on A. The weight
coanchor is the coanchor w = q+r+s that satisfies A = w−1(1). A Cartesian
coordinate system for A, such as (w, u, v), is a basis of Â∗ that contains the
weight coanchor as one basis element. A barycentric coordinate system, such
as (q, r, s), is a basis of Â∗ whose coanchors sum to the weight.

Using Cartesian coordinates, every coanchor h on the plane A can be
written uniquely as a linear combination of the coanchors w, u, and v:

h = C(h)w + ϕ(h)u + ψ(h)v

= h(C)w + h(ϕ)u + h(ψ)v

= 〈h, C〉w + 〈h, ϕ〉u + 〈h, ψ〉v.
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We wrote the right-hand side of that equation three times because there is
an issue about how to write it. On the first line, we wrote the exact dual of
Equation 4.4-1. The coefficients on that first line look strange because we
aren’t used to treating an anchor as a function that gets applied to a coanchor
as its input datum. We typically prefer to break the symmetry in the opposite
direction, treating the coanchor as the function and the anchor as the datum,
as on the second line. Of course, the underlying reality is symmetric, as we
discussed in Section 2.3: We are really pairing the coanchor with the anchor,
however we choose to write it.

In barycentric coordinates, the story is much the same. We can write any
coanchor h on the plane A uniquely as a linear combination of the coanchors
q, r, and s:

h = 〈h,Q〉q + 〈h,R〉r + 〈h, S〉s.

The dual of a coordinate system is a reference frame. For example, the
reference frame for the plane A that is dual to the Cartesian coordinate
system (w, u, v) consists of the center point C and the unit vectors ϕ and ψ.
The three anchors (C, ϕ, ψ) form a basis for the linear space Â of anchors
over A, and we have the duality constraints

w
u
v


(C ϕ ψ

)
=


1 0 0

0 1 0
0 0 1


 .

In general, a Cartesian reference frame for an affine space is a basis for its
linearization that is all vectors, except for a single point.

The reference frame that is dual to the barycentric coordinate system
(q, r, s) consists of the three points Q, R, and S. Those three points also
form a basis for the linearization Â, and they satisfy the duality constraints

q
r
s


(Q R S

)
=


1 0 0

0 1 0
0 0 1


 .

In general, a barycentric reference frame for an affine space is a basis for its
linearization that consists entirely of points.

A comment about notation: We are denoting the fundamental pairing
between the linear space Â of anchors and the linear space Â∗ of coanchors
as a function 〈 , 〉 : Â∗ × Â → R. In particular, given an anchor p and a
coanchor h, we shall pair them by writing 〈h, p〉, with h on the left and p
on the right. We adopt that convention for two related reasons. First, when
breaking the symmetry, people more often think of the coanchor h as the
function and the anchor p as its input datum, and it is convenient to end up
with the function on the left. Second, people typically represent an anchor
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(or vector) in coordinates as a column of numbers, while they represent a
coanchor (or covector) as a row of numbers; it is convenient to end up with
the row to the left of the column, so that the dot product that effects the
pairing follows the standard rules for matrix multiplication. Hence, we prefer
to write our pairings with their arguments in the order 〈dual, primal〉.

4.6 The benefits of linearization

There are many reasons why linearization and homogenization are beneficial
in CAGD. While this monograph is not about linearization, let’s pause to
recall some of those benefits.

• Linearization simplifies the algebra that underlies geometric operations.
If P and Q are points in an affine space A, the points on the line
joining them have the form (1− t)P + tQ. Before we linearize, we must
treat that entire affine combination as a single algebraic operation,
since the individual summands (1− t)P and tQ are not points. After
linearizing, however, we recognize the summands as anchors. The linear
space Â of anchors is closed under addition and scalar multiplication as
independent operations. The overall affine combination (1− t)P + tQ
denotes a point because its weight is 1; we calculate

w
(
(1− t)P + tQ

)
= (1− t)w(P ) + tw(Q) = (1− t) + t = 1.

• Linearization converts the geometric notions of collinearity, coplanarity,
and the like into rank tests. Suppose that the affine space A is of
dimension d. Given points P0 through Pk in A, the coordinates of the
corresponding anchors form a (k + 1)-by-(d + 1) matrix. The points
(P0, . . . , Pk) are affinely independent, spanning a flat of the maximum
possible dimension k, just when that matrix has rank k + 1.

• Linearization lets us encode an affine transformation as a single matrix.
Before we linearize, we implement an affine transformation of an affine
d-space A as a linear transformation of A followed by a translation,
that is, as a d-by-d matrix together with a vector of length d. After
linearizing, we instead use a single matrix of size (d + 1)-by-(d + 1).
Assuming Cartesian coordinate systems, that larger matrix is produced
by pasting the vector onto the smaller matrix and then adding a new
first (or last) column (or row) that is all zeros, except for a single
one. Combining all of the data that describes an affine transformation
into a single matrix in this way is particularly helpful when we want
to compose affine transformations; after linearizing, we can compose
affine transformations simply by multiplying their matrices.
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• Linearization provides an elegant way to generalize from polynomial
curves and surfaces to rational ones. To specify a cubic polynomial
Bézier triangle in the affine object space O, we have been choosing
three cubic forms on the affine parameter plane A to determine the
x, y, and z coordinates of the surface. To allow that surface to be
rational, it suffices to choose one additional cubic form, playing the
role of a common denominator. An elegant way to achieve that effect
is to draw a polynomial surface in the linearized object space Ô, which
is a linear 4-space, say with coordinate system (wO, x, y, z). (We write
the weight coanchor on O as wO only to distinguish it from the weight
coanchor w = wA on A.) Projecting the resulting polynomial surface
down into O from the origin of Ô gives us a rational surface in O.
Thus, while a polynomial curve or surface has Bézier points, a rational
Bézier curve or surface has Bézier anchors. Typically, those anchors
are positive scalar multiples of points; but vectors and negative scalar
multiples of points also make sense as Bézier anchors.

• Linearization is the first step on the road to projective geometry. In
projective geometry, we identify any two anchors that differ by a scalar
multiple and we treat the resulting equivalence class, a line through
the origin of the linearized space Â, as a “point” in a new space: the
projective closure of A. The coordinates of any nonzero anchor on
such a line are homogeneous coordinates of the corresponding “point”
in the projective closure. Each point in A, together with all of its scalar
multiples, becomes a “finite point” in this projective closure. But the
projective closure also contains “points at infinity”, which are lines
through the origin of Â that consist entirely of vectors over A. We can
then represent a projective transformation of a d-dimensional space A
using a matrix of size (d+ 1)-by-(d+ 1): the same matrix that we used
above to encode an affine transformation, except with the constraint on
the first (or last) column (or row) removed and with the understanding
that matrices that differ by a scalar multiple are identified.

While linearization is quite valuable, our goal is to take the next step,
which is algebrization. Linearization embeds an affine space of points in a
linear space of anchors, thereby defining addition and scalar multiplication
as separate operations. Algebrization embeds that linear space, in turn, in
an algebra of sites, thereby defining a new operation of multiplication. Each
step along this road, from point to anchor to site, from affine space to linear
space to algebra, brings us new tools to exploit in CAGD.

It is not clear, by the way, that sites are the end of this road. Section 8.5
speculates about taking one more step, from sites to locations, so that division
by points will be legal, as well as multiplication. Thus, the road may go on:
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Poly2(Â,R)∗
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Figure 4.2: The homogenized framework

from point to anchor to site to location, and from affine space to linear space
to algebra to field.

4.7 The algebra of forms

Figure 4.2 depicts the homogenized framework in the same schematic style
in which Figure 3.1 depicted the nested-spaces framework. On the left, we
have the linear 3-space Â of anchors, with Cartesian basis (C, ϕ, ψ) and with
the domain space A sitting inside it as the affine plane w = 1. On the
right, for each nonnegative n, we have a rounded rectangle representing the
linear space Polyn(Â,R) of n-forms on A. Note that an n-form on A can be
evaluated at any anchor over A, whether or not that anchor is a point, and
hence n-forms on A have all of Â as their domain. The space Poly0(Â,R) of
constant forms is essentially the real numbers, with (1) as its obvious basis.
The space Poly1(Â,R) of linear forms has (w, u, v) as one possible basis —
so that space is the same as the space Â∗ of coanchors on A. Indeed, for any
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linear space X, we have Poly1(X,R) = Lin(X,R) = X∗, since 1-forms are
the same thing as linear functionals. Next come quadratic forms on A, cubic
forms, and so forth, where dim(Polyn(Â,R)) = dim(Poly≤n(A,R)) =

(
n+2

2

)
.

Homogenization has pulled apart the primal spaces, so that they are no
longer nested inside of one another; but they do fit together as the slices of a
graded algebra. In particular, if f is an n-form on A and g is an m-form, the
product fg is a form on A of degree n + m. The big triangle in Figure 4.2
represents this algebra of forms, which we denote Poly(Â,R). The algebra
Poly(Â,R) is essentially a polynomial algebra; using our Cartesian basis
(w, u, v) for the space of coanchors Â∗, we can think of it as the polynomial
algebra R[w, u, v]. It would be equally valid to use some other basis for the
space Â∗, such as the barycentric basis (q, r, s); but let’s stick with our chosen
Cartesian basis until Section 4.9.

Note that the big triangle in Figure 4.2 is bigger than the union of the
rectangles that it contains; the extra area represents inhomogeneous forms.
If we add an m-form to an n-form, the sum is again a form on A, but it
typically is not homogeneous. Such inhomogeneous forms don’t seem to be
good for anything, as far as CAGD is concerned; we shan’t use them in this
monograph. But they don’t do much harm either. We view them as valid
forms because we want the set of all forms on A to constitute an algebra —
in particular, to be closed under addition. This problem of ending up with
more primal objects than we really want did not arise in the nested-spaces
framework; in that sense, inhomogeneous forms are a cost of homogenization.
But the benefits of homogenization far outweigh its costs.

4.8 The dual spaces

For each nonnegative n, the linear space Polyn(Â,R) of n-forms on A has
a dual Polyn(Â,R)∗, also shown as a rounded rectangle in Figure 4.2. As
in the nested-spaces framework, the elements of the dual space Polyn(Â,R)∗

are typically called dual functionals. Evaluation at a point is one flavor of
dual functional, as is evaluation at a vector or evaluation at any anchor. But
there are also many dual functionals that don’t correspond to evaluation.

The case n = 1 is special, since every dual functional on 1-forms does cor-
respond to evaluation at a fixed anchor. Indeed, since the space Poly1(Â,R)
of 1-forms on A is the same as the space Â∗ of coanchors on A, it follows that
the dual space Poly1(Â,R)∗ is simply Â∗∗ = Â. This is reflected in Figure 4.2
by having the arrow leaving Poly1(Â,R) point back to the domain space Â.
We could make Figure 4.2 look more uniform if we moved the space Â over
to the right of the big triangle; but we leave Â on the left, since that it where
we are going to want it in later figures.

This confusion about left versus right arises because of a confusion in the
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homogenized framework about the direction in which to break the symmetry
between primal and dual. Once the degree n exceeds 1, people using this
framework typically think of an n-form in Polyn(Â,R) as a primal object,
suitable to be passed as an input datum to a dual functional in Polyn(Â,R)∗.
In the special case n = 1, however, we surely want to think of a 1-form —
that is, of a coanchor — as a dual object, since an anchor in Â, of which a
point in A is a special case, seems quintessentially primal.

4.9 Linearization revisited

The key to the homogenized framework is the process of linearization, which
takes an affine space A and constructs for us a naturally associated linear
space Â — in some sense, the free linear space generated by A. Let’s take
a moment to revisit how linearization works mathematically. There is an
analogous, but less familiar, process of algebrization, which takes a linear
space X and constructs for us a naturally associated commutative algebra
Sym(X) — in some sense, the free commutative algebra generated by X.
People in CAGD are already familiar with the algebra of forms, which is
produced by algebrizing the linear space Â∗ of coanchors. In this monograph,
we also algebrize the linear space Â of anchors, thereby producing the algebra
of sites. We can give ourselves a leg up on understanding algebrization if we
polish our understanding of linearization.

In particular, we shall consider four approaches to linearization: fixing a
frame, defining an equivalence relation, exploiting duality, and imposing a
universal mapping condition. Those four approaches give us four different
answers to the basic question, “What is an anchor?”

4.9.1 Fixing a frame

Let A be an affine space of dimension d that we want to linearize; that is,
we want to construct the naturally associated linear space Â. The simplest
approach involves choosing one particular reference frame for A and letting
our construction of the linear space Â depend upon that choice of frame.

For example, we might choose a Cartesian reference frame for A, say
consisting of the point C in A and the d vectors (ϕ1, . . . , ϕd) over A. Every
point P in A can be written uniquely as P = C + u1(P )ϕ1 + · · ·+ ud(P )ϕd,
where the coefficients (u1(P ), . . . , ud(P )) are the Cartesian coordinates of P .
Having fixed that reference frame, we can construct the linearization Â as the
unique linear space that has (C, ϕ1, . . . , ϕd) as a basis. An anchor over A is
then, by definition, a linear combination p = w(p)C+u1(p)ϕ1 + · · ·+ud(p)ϕd
of those d + 1 basis elements.

Of course, a barycentric reference frame would work just as well. Suppose
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that the points (R0, . . . , Rd) are the vertices of a nondegenerate d-simplex in
A, so that every point P in A can be written uniquely as an affine combination
of the (Ri). Having fixed that frame, we could define the linearization Â to
be the unique linear space that has (R0, . . . , Rd) as a basis. So an anchor,
under this definition, is any linear combination p = r0(p)R0 + · · ·+ rd(p)Rd
of those d + 1 points.

This process of fixing a frame is the simplest approach to linearization;
it is both easy to understand and easy to prove theorems about. But it is
unsettling to have the concept of an anchor over A appear to depend upon
which reference frame for A we happen to have chosen.

Vacant remark: An affine space of dimension 0 is a single point. We could
stop there, but let’s go one more step, calling the empty set the unique affine
space of dimension −1. There are a few anomalies in the case d = −1,
and we’ll comment about them in paragraphs, like this one, labeled “Vacant
remark”; feel free to skip them.

One anomaly in the case d = −1 is that the empty affine space doesn’t
have any Cartesian reference frames; such a frame would have to consist
of one point (of which there aren’t any) and minus one vectors. But the
empty affine space does have a barycentric reference frame, in fact, a unique
one: the sequence with 0 points. The linearization of the empty affine space
is the zero linear space, the space whose only element is 0. And the rule
dim(Â) = dim(A) + 1 holds also when A is empty.

4.9.2 Defining an equivalence relation

Mathematicians have a standard technique for avoiding choices such as the
choice of a reference frame: They make all choices simultaneously and then
use an equivalence relation to collapse out the superfluous structure that
results. Here’s how we would linearize using that technique.

Given the affine space A, we first construct the unique linear space L(A)
that has A itself as a basis. The space L(A) is huge — indeed, has uncount-
able dimension, one dimension for each point P in A. All of those extra
dimensions allow us to draw too many distinctions. For example, suppose
that M := (P +Q)/2 is the midpoint of the segment from P to Q in A. The
expression P/2 + Q/2 −M denotes a certain element of L(A): the unique
element with coordinate 1/2 on the P axis, 1/2 on the Q axis, −1 on the
M axis, and 0 on all other axes. We don’t want any such element in the
linearization Â; more precisely, we want the expression P/2 + Q/2 −M to
denote 0 in Â — that’s what it means to say that M = (P + Q)/2. More
generally, for every way of expressing a point Q in A as an affine combination
of other points, say Q = b1P1 + · · ·+ bmPm with b1 + · · ·+ bm = 1, we want to
have b1P1 + · · ·+ bmPm −Q = 0 in the linearization Â. To achieve that, let
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E(A) denote the smallest linear subspace of L(A) that contains all elements
of the form b1P1 + · · ·+ bmPm −Q, where Q = b1P1 + · · ·+ bmPm in A. We
then define the linearization Â to be the quotient space L(A)/E(A).

So, what is an anchor in this approach? An anchor over A is a huge
equivalence class of linear combinations of points in A, under a certain equiv-
alence relation. And how do we test whether two linear combinations, say
b1P1 + · · · + bnPn and c1Q1 + · · · + cmQm, are equivalent? We first choose
some reference frame for the affine space A. Having chosen such a frame,
we expand each point Pi and each point Qj as a linear combination of our
frame elements. The two linear combinations of points that we started with
are equivalent just when the two linear combinations of frame elements that
result from this rewriting are equal. Note that we have to choose a frame in
order to carry out this test, but the result of the test doesn’t depend upon
which frame we choose.

The advantage of this approach, over the fixed-frame approach, is that it
gives us a notion of “anchor” that is independent of reference frame. But we
pay a high price in mathematical complexity for that frame-independence:
taking a quotient of linear spaces of uncountable dimension.

4.9.3 Exploiting duality

Defining an equivalence relation, as above, is the standard way that a math-
ematician would achieve frame-independence; but there are other ways. A
more specialized trick that is available in this case exploits duality.

Given the affine space A, consider the space Aff(A,R) of all affine, real-
valued maps on A. Since the space of real numbers R is linear, as well as
affine, the space of maps Aff(A,R) is also linear, with addition and scalar
multiplication defined pointwise. Hence, it makes sense to talk about the
dual space Aff(A,R)∗. And that dual space turns out to be a perfectly
fine model for the linearization Â. Note that dim(Aff(A,R)) = d + 1, the
extra +1 coming, in Cartesian coordinates, from the constant term. So
dim(Aff(A,R)∗) = d+ 1 also, which is what we want for the linearization Â.
We also want the affine space A to sit, in its linearization Â, as a hyperplane
not containing the origin. If we make the definition Â := Aff(A,R)∗, then
A won’t actually be a subspace of its linearization Â. But there will be a
natural isomorphism from A to an affine hyperplane in Â: the map that
takes a point P in A to the evaluate-at-P functional εP , the second-order
functional defined, for all f in Aff(A,R), by εP (f) := f(P ).

The reason that this trick works is that there is a natural one-to-one
correspondence between Aff(A,R) and Lin(Â,R). In the forward direction,
that’s just a special case of homogenization. Recall from Section 4.3 that
a polynomial map f : A → R of degree at most n extends uniquely to an
n-form f̂ : Â → R. Letting n = 1, we deduce that any f in Aff(A,R)
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extends uniquely to a 1-form f̂ in Lin(Â,R). The reverse direction is even
easier: We produce f from f̂ by restricting the domain from Â to A. Since
Aff(A,R) ≈ Lin(Â,R) = Â∗, it then follows that Aff(A,R)∗ ≈ Â∗∗ = Â.

In this approach, an anchor over A is a linear functional on Aff(A,R),
which, given the one-to-one correspondence that we just discussed, is essen-
tially the same thing as a linear functional on Lin(Â,R) = Â∗. So an anchor
is essentially a linear functional on coanchors! That is pleasantly symmetric,
since a coanchor is, of course, precisely a linear functional on anchors. It
is the qualifier “essentially” that allows the resulting pair of definitions to
avoid circularity. Indeed, the real work of linearization is in showing that the
spaces Aff(A,R) and Lin(Â,R) are in natural one-to-one correspondence.

Math remark: Exploiting duality in this way requires that A be finite-
dimensional, since we need the isomorphism Â∗∗ ≈ Â. In contrast, the first
two approaches work fine to linearize affine spaces even of infinite dimension.

4.9.4 Imposing a universal mapping condition

We’ve now seen three concrete constructions of anchors, one dependent on
a choice of reference frame and the other two frame-independent. There
are further possibilities. For example, Berger [3] gives a frame-independent
construction with a geometric flavor, in which an anchor over A turns out to
be a vector field on A of a certain type.

Why don’t multiple concrete constructions lead to chaos? Because we
can characterize the linearization Â abstractly, using a universal mapping
condition. That condition does not determine the linearization uniquely, but
does determine it up to a unique isomorphism. So any concrete construction
must produce a result that is uniquely isomorphic to every other such result.
We need to verify that one of the concrete constructions succeeds, in order to
show that the universal mapping condition is satisfiable. But, once we have
done that, it doesn’t matter which concrete construction we employ, since
they all give essentially the same result.

We shall return to these issues in greater depth in Chapter 9. But here,
in brief, is how to characterize the linearization abstractly. A linearization of
an affine space A is a pair (X, i) consisting of a linear space X and an affine
map i : A→ X that satisfies the following universal mapping condition:

For every pair (Y, j) consisting of a linear space Y and an affine
map j : A→ Y , there exists a unique linear map f : X → Y with
j = f ◦ i.

As it turns out, this universal mapping condition can be satisfied. Choose,
for the space X, some linear space with dim(X) = dim(A)+1 and choose, for
the map i : A→ X, some affine injection whose image, which will be an affine
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hyperplane in X, does not include the origin. Given any pair (Y, j), the values
of f on the image of i are determined by the equation j = f ◦ i; and those
values extend uniquely to a linear map f : X → Y . Furthermore, we shall
see in Section 9.1 that, whenever some two pairs (X1, i1) and (X2, i2) both
satisfy the universal mapping condition, there is a unique linear isomorphism
between X1 and X2 that makes this diagram commute:

X1 X2

A
i2i1 ❆
❆❆

✁
✁✁☛

✲✛

Since any pair that satisfies the universal mapping condition is uniquely
isomorphic to any other, we are justified in choosing any satisfying pair (X, i)
that we like and referring to the space X in that pair as “the” linearization
of A, denoting it Â. The affine injection i : A → Â allows us to identify A
with the image of i, which is an affine hyperplane in Â not containing the
origin. Thus, it is also safe for us to pretend that the linearization Â of A
actually includes A as a subset: the set of unit-weight anchors.

4.9.5 So what is an anchor, really?

With this universal mapping condition in mind, we can now give the truest
and deepest answer to the question, “What is an anchor?” Answer: An
anchor over A is an element of some concrete linearization of A, but with the
understanding that, if two different linearizations of A ever get involved in
the same argument, we are required to use the unique isomorphism between
them to identify each element of one with the corresponding element of the
other. That is, we agree not to distinguish between different linearizations.
So all of our earlier answers were correct simultaneously. An anchor over
A is a linear combination of (C, ϕ1, . . . , ϕd). It’s also a linear combination
of (R0, . . . , Rd). It’s also a huge equivalence class of linear combinations of
points of A. And it’s a linear functional on coanchors, and it’s a vector field
of a certain type, and so on. Speaking loosely, an anchor over A is an element
of “the” linearization Â of A.

Keep in mind that these same issues are going to arise again in defining
sites. A site over A is, speaking loosely, an element of “the” algebrization
Sym(Â) of the linear space Â of anchors. Given any linear space X, there is
a universal mapping condition that determines when a commutative algebra
is an algebrization of X. Since it follows from this condition that any two
algebrizations of X are isomorphic in a unique way, we typically pretend that
the algebrization Sym(X) is uniquely determined.

In fact, the same issues arose already in defining forms, although we
didn’t comment about them at the time. The algebra of forms is, we claim,
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Sym(Â∗)

Sym0(Â∗)

A

Sym2(Â∗)

Sym3(Â∗)

C,
ϕ, ψ

Â

Sym0(Â∗)∗

Sym2(Â∗)∗

Sym3(Â∗)∗

1

w,
u, v

Sym1(Â∗) = Â∗

w2,
wu,wv,

u2, uv, v2

w3,

w2u,w2v,

wu2, wuv,wv2,

u3, u2v, uv2, v3

Figure 4.3: The homogenized framework with abstract labels

the algebrization Sym(Â∗) of the linear space Â∗ of coanchors. That claim
should be plausible, because a form is, roughly speaking, a polynomial whose
variables are coanchors. We introduced the algebra of forms in Section 4.7
as the algebra Poly(Â,R) of all polynomial, real-valued functions on Â. But
that is simply one concrete construction of the abstract algebra Sym(Â∗).
Indeed, for any linear space X, it turns out that we can exploit duality
to construct the algebrization Sym(X) concretely as Poly(X∗,R). So one
concrete model for the algebra of forms Sym(Â∗) is the algebra of functions
Poly(Â∗∗,R) = Poly(Â,R).

Figure 4.3 shows the homogenized framework again, just as in Figure 4.2,
except that the spaces are now labeled abstractly. For example, the space
of n-forms on A, which used to be labeled Polyn(Â,R), is now labeled
Symn(Â

∗). (Many authors write Symn(X) for the nth graded slice of the
algebra Sym(X), with the n as a superscript. We make the n a subscript
just for consistency with the notations Polyn(Â,R) and Rn[w, u, v].)



Chapter 5

The Separate-Algebras
Framework

The homogenized framework has brought us closer to symmetry, in the sense
that, in Figure 4.3, neither the primal spaces (Symn(Â

∗))n≥0 nor the dual

spaces (Symn(Â
∗)∗)n≥0 are nested. But we still haven’t achieved symmetry.

The primal spaces fit together to make up the algebra of forms, while each
dual space stands alone. Our eventual goal is the paired-algebras framework,
in which the dual spaces fit together, in similar way, to make up the algebra
of sites. But it is going to take us two steps to get there.

In the first of those two steps, we achieve symmetry in a brute-force
way by treating the linear space Â of anchors exactly as the homogenized
framework treats the space Â∗ of coanchors. The result is the separate-
algebras framework, shown in Figure 5.1. This framework has the serious
drawback that there are four linear spaces associated with each degree n, the
space of n-forms Symn(Â

∗) and its dual Symn(Â
∗)∗ being joined by the space

of n-sites Symn(Â) and its dual Symn(Â)∗.
In the second step, we shall choose a sequence of pairing maps, the nth of

which pairs the space of n-forms with the space of n-sites, thereby allowing us
to use each of those spaces to represent the dual of the other. This yields the
paired-algebras framework, with just two spaces on the nth level once again,
rather than four. The reason that we delay taking this second step until
Chapter 7 is that it entails a contentious choice about an annoying factor of
n! . There are two sequences of pairing maps, in which the nth maps differ by
a factor of n! . Consider an n-form and an n-site, both of which happen to be
perfect powers — say the n-form hn and the n-site pn, where h is a coanchor
and p is an anchor. With one pairing, we have 〈hn, pn〉 = 〈h, p〉n; with the
other, we have 〈hn, pn〉 = n! 〈h, p〉n. Sad to say, adopting either convention
leaves us with annoying factors in many of our formulas, as we discuss in
Appendix B. For now, let’s get as far as we can using the separate-algebras
framework, before tackling the annoying n! .

49
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Sym(Â) Sym(Â∗)

Sites Forms

Sym0(Â) Sym0(Â∗)

A

Sym2(Â) Sym2(Â∗)

Sym3(Â) Sym3(Â∗)

Sym0(Â)∗

Sym2(Â)∗

Sym3(Â)∗

Sym0(Â∗)∗

Sym2(Â∗)∗
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Â
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w,
u, v

Â∗

w2,
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u2, uv, v2

w3,

w2u,w2v,

wu2, wuv,wv2,

u3, u2v, uv2, v3

Figure 5.1: The separate-algebras framework
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5.1 The algebra of sites

The triangle on the right in Figure 5.1 is the algebra of forms Sym(Â∗) =
Poly(Â,R), just as in the homogenized framework. In a completely symmet-
ric way, the triangle on the left is the algebra Sym(Â) = Poly(Â∗,R), which
we christen the algebra of sites.

This may be as good a time as any to discuss why I chose the word
“site”. I wanted a noun that would accept a numeric prefix, so that I could
talk about n-sites as being dual to n-forms; that strongly suggested a one-
syllable noun. I also wanted a noun that means something like “point”. The
nouns “place” and “site” met those criteria. Unfortunately, both of those
words have preexisting meanings in algebraic geometry. A place on a curve
is an equivalence class of irreducible parameterizations — roughly speaking,
a point on a branch of the curve [1, 48]. From the Encyclopedic Dictionary
of Mathematics [35], I learned that a site is a category in which each object
comes equipped with a covering family of morphisms that fit together to
form a Grothendieck topology. I hope that Grothendieck topologies are high-
powered enough that no confusion will arise between that meaning of “site”
and sites as the duals of forms.

The equality Sym(Â) = Poly(Â∗,R) suggests that a site is a real-valued,
polynomial function on coanchors; and indeed, that is one of various equiva-
lent ways to define a site. But viewing sites from that perspective is not the
best way to get to know them. Keep in mind that, roughly speaking, sites
are polynomials whose variables are anchors, just as forms are polynomials
whose variables are coanchors. Let’s refer to such polynomials as anchor
polynomials and coanchor polynomials.

For definiteness, let’s assume once again that A is an affine plane, of
dimension d = 2. What is a site over A, more precisely? For that matter,
what is a form on A? Both questions have an abstract answer, given on the
first line of Table 5.1, and a variety of concrete answers, three of which are
given on the following lines. Table 5.2 shows the four different ways in which
we shall denote the linear space of all n-sites over A and the linear space of
all n-forms on A, corresponding to the four lines in Table 5.1. So each of the
bottom three lines names a concrete construction for the linear space that
the top line names abstractly.

5.1.1 Imposing a universal mapping condition

The linearization Â of an affine space A is a linear space that satisfies a certain
universal mapping condition. In a similar way, the algebrization Sym(X) of
a linear space X is a commutative algebra that satisfies a universal mapping
condition. We shall discuss that condition and related issues in Chapter 9.
Until then, just keep in mind that there is an abstract characterization of
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site form

an element of the algebrization
Sym(Â) of the linear space Â

an element of the algebrization
Sym(Â∗) of the linear space Â∗

a polynomial in the anchor vari-
ables (C, ϕ, ψ)

a polynomial in the coanchor vari-
ables (w, u, v)

an equivalence class of anchor poly-
nomials whose variables are arbi-
trary anchors

an equivalence class of coanchor
polynomials whose variables are ar-
bitrary coanchors

a real-valued function on coanchors
that can be defined by some anchor
polynomial — in fact, by an equiv-
alence class of anchor polynomials

a real-valued function on anchors
that can be defined by some coanchor
polynomial — in fact, by an equiva-
lence class of coanchor polynomials

Table 5.1: What are sites and forms?

the algebra of sites that determines it up to a unique isomorphism. So which
concrete construction we adopt for that algebra doesn’t matter.

5.1.2 Fixing a basis

Given a linear space X of dimension k, the simplest way to construct the
symmetric algebra Sym(X) is to fix a basis (ξ1, . . . , ξk) for X and then to
construct Sym(X) as the algebra R[ξ1, . . . , ξk] of all polynomials in those k
basis elements, treated as variables. Using this approach, we can construct
the algebra of forms Sym(Â∗) as R[w, u, v], and we can construct the algebra
of sites Sym(Â) as R[C, ϕ, ψ]. While this approach is delightfully simple, it
might seem to unfairly favor the fixed basis.

5.1.3 Defining an equivalence relation

We would prefer to use different bases at different times and, even better, to
use multiple bases simultaneously. For example, we would like any coanchor
polynomial to denote a form, even if its variables don’t all come from any
single basis for the space Â∗ of coanchors. Once we allow coanchors that
are linearly dependent, however, distinct polynomials may denote the same
form. For example, the linear dependence q + r+ s = w tells us that the two
polynomials q + r + s and w denote the same 1-form — to wit, the weight
coanchor. It follows that the quadratic polynomials qu+ru+su = (q+r+s)u
and wu must denote the same 2-form. Thus, we can think of a form as an
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space of n-sites space of n-forms

Symn(Â) Symn(Â
∗)

Rn[C, ϕ, ψ] Rn[w, u, v]

Rn[Â]/ ≈Â Rn[Â
∗]/ ≈Â∗

Polyn(Â
∗,R) Polyn(Â,R)

Table 5.2: Formulas for the spaces of n-sites and n-forms

equivalence class of coanchor polynomials.
Given two coanchor polynomials, elements of the huge algebra R[Â∗],

how do we test whether they are equivalent? Answer: We rewrite all of the
coanchors in both of them as linear combinations of w, u, and v and check
whether the rewritten polynomials coincide. Of course, there is nothing
special about the basis (w, u, v); we can adopt any basis for Â∗ in performing
this equivalence test without affecting the result.

The same goes for sites. We would like any anchor polynomial in R[Â] to
denote a site, even if its anchors don’t all come from any single basis for Â.
But once we allow anchors that are linearly dependent, distinct polynomials
may denote the same site. For example, let E := (Q + R + S)/3 be the
centroid of the reference triangle �QRS. The linear polynomials 3E and
Q + R + S denote the same 1-site — an anchor of weight 3. It follows that
the quadratic polynomials 3Eψ and Qψ + Rψ + Sψ = (Q +R + S)ψ denote
the same 2-site. We can think of a site as an equivalence class of anchor
polynomials, where two such polynomials are equivalent when rewriting all
of the anchors in both of them as linear combinations of the anchors in a
common basis for Â would make them coincide; and which common basis we
adopt in this test of equivalence doesn’t matter.

5.1.4 Exploiting duality

One thing that you can do with a coanchor polynomial is to define a real-
valued function on anchors; for example, the coanchor polynomial wu de-
fines the function that takes an anchor p to the real number w(p)u(p) =
〈w, p〉〈u, p〉. As it happens, we are quite interested in real-valued functions
on anchors, since we intend to use three of them to define the x, y, and z coor-
dinates of our Bézier triangle. Note that the coanchor polynomial qu+ru+su
defines the same real-valued function as does wu; so each real-valued function
actually arises from some equivalence class of coanchor polynomials. In fact,
these equivalence classes are the same ones that we introduced in the third
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row of Table 5.1. Thus, we can think of a form either as an equivalence class
of coanchor polynomials or as the common real-valued function on anchors
that any one of those equivalent polynomials defines.

The same goes for sites, except that CAGD doesn’t give us any particu-
lar reason to be interested in the resulting real-valued functions. An anchor
polynomial defines a real-valued function on coanchors; for example, the an-
chor polynomial 3Eψ defines the function that takes a coanchor h to the real
number 3E(h)ψ(h) = 3h(E)h(ψ) = 3〈h,E〉〈h, ψ〉. Two anchor polynomials
define the same real-valued function just when they are equivalent, in the
sense of the third row of Table 5.1. For example, the equivalent polynomials
3Eψ and Qψ +Rψ +Sψ define the same real-valued function. Thus, we can
think of a site either as an equivalence class of anchor polynomials or as the
common real-valued function on coanchors that any one of those equivalent
polynomials defines.

Mathematically, forms and sites are completely symmetric; but their ap-
plications to CAGD are not. Since CAGD gives us good uses for real-valued
functions on anchors, the definition of forms in the fourth row seems more
attractive than the one in the third row. Indeed, when we first defined forms
in Chapter 4, we talked only about real-valued functions on anchors, leaving
implicit the equivalence relation on coanchor polynomials. But CAGD does
not give us similarly good uses for real-valued functions on coanchors. Hence,
in defining sites, the third row seems more attractive than the fourth.

Math remark: Why does it work to algebrize by exploiting duality, that is, to
construct Sym(X) as Poly(X∗,R)? It works because, over the real numbers,
the coefficients of a polynomial are uniquely determined by that polynomial’s
values. The same works over any infinite field, even infinite fields of prime
characteristic. But not over finite fields. Let p be a prime. Over the Galois
field of order pk, the two polynomials ξp

k
and ξ have all of the same values;

thus, two distinct elements of Sym(X) would be indistinguishable as elements
of Poly(X∗,R). For more on this, see Section C.2.3.

5.2 The weight of a site

While we are not typically interested in sites as real-valued functions on
coanchors — they are going to be useful to us for other reasons — there
is one coanchor at which we do want to evaluate our sites: w, the weight
coanchor. If s is any site over A, we define the real number s(w) to be the
weight of s. If s is a 1-site over A, that is, if s = p is an anchor, we have
s(w) = p(w) = w(p) = 〈w, p〉, so this definition agrees with our former notion
for the weight of an anchor. More generally, suppose that we are given an
n-site s explicitly, in terms of our Cartesian basis, as a linear combination of
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the n-sites (Cn−i−jϕiψj)i+j≤n. Since C is a point, of weight 1, while ϕ and
ψ are vectors, of weight 0, the weight of s is simply the coefficient of Cn in
this expansion.

Exercise 5.2-1 If we think of a real number t as a 0-site over A, what is its
weight t(w)? (Answer: Working from the fourth row of Table 5.1, a 0-site
is a real-valued function on coanchors that is homogeneous of degree 0, that
is, a constant function. So t(h) = t for all coanchors h, including t(w) = t.
Working from the second row gives the same result: The coefficient of C0 in
the expansion t = tC0 is t.)

Now that we have defined a notion of weight for n-sites, let’s introduce
the notation Symn(Â)↓ for the affine space of all n-sites over A that are of
unit weight. Thus, if we construct our sites by fixing the Cartesian reference
frame (C, ϕ, ψ), then the affine subspace Symn(Â)↓ = Rn[C, ϕ, ψ]↓ consists of
all polynomials that are homogeneous of degree n in C, ϕ, and ψ and in which
the coefficient of the term Cn is 1. The intuition behind the downward arrow
is that restricting to unit weight is like undoing linearization. If linearization
lifts us from the affine space A to the linear space Â = A↑, with its associated
weight functional, then restricting to unit weight takes us back again: Â↓ =
A↑↓ = A. Note that it makes sense to restrict to unit weight only when the
context makes clear which weight functional is intended; it wouldn’t make
sense to write Symn(Â

∗)↓, for example, since we haven’t defined a notion of
weight for n-forms.

5.3 The dual spaces

Each graded slice of the algebra of forms is a linear space, which has a dual,
and the same is true for the algebra of sites. Thus, Figure 5.1 has four linear
spaces on the nth level, for n �= 1. But the case n = 1 is special. The linear
space Sym1(Â) = Poly1(Â

∗,R) of 1-sites is simply the space Â = Â∗∗ of
anchors, just as the linear space Sym1(Â

∗) = Poly1(Â,R) of 1-forms is the
space Â∗ of coanchors. The two spaces Â and Â∗ formed a dual pair already
in the homogenized framework, and we have no reason to break up that
pairing now. Thus, there are only two spaces on the first level in Figure 5.1,
and the double-headed arrow on that level simply links those spaces to each
other. When we are ready to tackle the annoying n! in Chapter 7, we’ll be
able to cut back to only two spaces on every level.

While the separate-algebras framework of Figure 5.1 has twice as many
spaces as it should, at least it comes close to achieving perfect symmetry be-
tween forms and sites. Indeed, had we started with an arbitrary dual pair of
linear spaces (X, Y ) in building the algebras of forms and sites, Sym(X) and
Sym(Y ), the symmetry would have been perfect. But the spaces in the pair



56 CHAPTER 5. THE SEPARATE-ALGEBRAS FRAMEWORK

(Â∗, Â) are not arbitrary. In the space Â of anchors, we have distinguished
the hyperplane A of points as being of special interest. There is no analogous
hyperplane in the space Â∗ of coanchors; instead, it is a particular coanchor,
the weight coanchor w, that is distinguished by the equation A = w−1(1).
Those two distinguished structures, each of which determines the other, are
the sole source of mathematical asymmetry in the separate-algebras frame-
work. But keep in mind that there is also some motivational asymmetry; for
example, we have practical applications in mind for real-valued functions on
anchors, but none for real-valued functions on coanchors.

5.4 Flavors of evaluation

Before we leave Figure 5.1, let’s review the three flavors of evaluation that
we have defined. Consider a site-like object S and a form-like object F . In
what situations can we evaluate one of them at the other?

S F
anchor coanchor
anchor form

site coanchor

All three of our evaluations have, at their core, the pairing between the
fundamental spaces Â and Â∗, between anchors and coanchors. Given any
anchor p over A and coanchor h on A, we can view pairing the two of them as
evaluating either of them at the other, depending upon how we are breaking
the symmetry at the moment: p(h) = h(p) = 〈h, p〉.

Let p and q be anchors, while g and h are coanchors. In building the
algebra of forms, we learned how to evaluate a form at an anchor. For
example, we have (g3 + 5gh)(p) = g(p)3 + 5g(p)h(p). In building the algebra
of sites, we learned how to evaluate a site at a coanchor in a completely
analogous way, modulo a little notational confusion. For example, we have
(p3 + 5pq)(h) = p(h)3 + 5p(h)q(h) — though we might prefer to write that
value as h(p)3 + 5h(p)h(q).

Later on, we shall study various other ways in which to combine forms
and sites: pairing an n-form with an n-site to produce a scalar, contracting
an n-form on a k-site to produce an (n − k)-form, and so on. But we shall
reserve the term “evaluation” for these three flavors of combination.



Chapter 6

The Veronese Prototypes

Let A be an affine parameter space of dimension d. We have constructed
the algebra Sym(Â) of sites over A, in parallel with the well-known algebra
Sym(Â∗) of forms on A. In Chapter 7, we are going to pair up, for each
n, the linear spaces Symn(Â) and Symn(Â

∗) of n-sites and n-forms, so that
each of them can represent the dual of the other. But the algebra of sites
has important applications in CAGD, even without those pairing maps.

The key to those applications is the set of n-sites that are perfect nth

powers. The linear space Symn(Â) of n-sites over A has dimension
(
n+d
n

)
.

Inside that big space, we focus on those n-sites s that have the special form
s = P n, for some point P in A. Those n-sites make up a certain d-fold — a
curve when d = 1, a surface when d = 2. This d-fold is important to CAGD
because it can serve as a prototype for all polynomial, parametric d-folds
of degree at most n. For example, when d = 1, the geometric structure of
an n-ic Bézier curve is best understood by viewing that curve as an affine
transform of the moment curve of degree n, the curve κn that maps a point
P on its parameter line to the n-site κn(P ) := P n. In a similar way, when
d = 2, an n-ic Bézier triangular surface is best understood by viewing it as an
affine transform of the Veronese surface of parametric degree n, the surface
σn that maps a point P on its parameter plane to the n-site σn(P ) := P n.

6.1 Quadratic sites over the line

We begin with the case n = 2 and d = 1, looking for those quadratic sites
over the line that are perfect squares.

As a convenient line to work with, let’s take the u axis of the plane
A = {C + uϕ + vψ | u, v ∈ R} shown in Figure 4.1; that is, let’s take the
affine line L given by L := {C + uϕ | u ∈ R}. When our parameter space
is a single line, it is convenient to adopt some scheme that names a point on
that line using a single real number. So, for any real number t, let t̄ denote

57
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0̄2 0̄1̄ 0̄2̄

1̄2

perfect squares

x

y

Figure 6.1: The plane of unit-weight 2-sites over the line L.

the point on the line L whose u-coordinate is t; that is, we set t̄ := C + tϕ.
We want to study the linear space Sym2(L̂) of quadratic sites over the

line L. We know of three different concrete constructions for that space,
corresponding to the last three lines in Table 5.1: Sym2(L̂) = R2[C, ϕ] =
(R2[L̂]/ ≈L̂) = Poly2(L̂

∗,R). In this section, we’ll stick to the first of those
three and study the space R2[C, ϕ], a linear 3-space of quadratic polynomials:

Sym2(L̂) = R2[C, ϕ] = {r C2 + xCϕ + y ϕ2 | r, x, y ∈ R}

We can save one dimension by restricting our attention to those quadratic
sites over L that have unit weight, that is, to the case r = 1; such sites form
the affine plane

Sym2(L̂)↓ = R2[C, ϕ]↓ = {C2 + xCϕ + y ϕ2 | x, y ∈ R}.

That plane is pictured, using x and y as coordinates, in Figure 6.1.
By elementary algebra, we can plot various unit-weight 2-sites over L as

points in Figure 6.1. For example, we have 1̄2 = (C +ϕ)2 = C2 + 2Cϕ+ϕ2,
so we plot the 2-site 1̄2 at the spot x = 2 and y = 1. More generally, for any
real number t, we have t̄ 2 = (C + tϕ)2 = C2 + 2t Cϕ+ t2 ϕ2, with x = 2t and
y = t2. Thus, the squares of the points on L form a parabola in the plane
of Figure 6.1: the parabola with equation x2 − 4y = 0. Note that x2 − 4y is
the discriminant of the quadratic polynomial C2 + xCϕ + y ϕ2; this makes
sense, since the algebra of sites is essentially a polynomial algebra.

Let’s also plot the sites of the form 0̄t̄. We calculate 0̄t̄ = C(C + tϕ) =
C2 + t Cϕ. Thus, those sites constitute the x-axis in Figure 6.1, which is the
tangent line to the parabola of squares at the 2-site 0̄2.

The point 0̄ on the parameter line L is no different from any other point
on L; so we suspect that, for any real number a, the tangent line to the
parabola of squares at the 2-site ā2 should comprise those 2-sites of the form
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āb̄, for varying b. The latter sites clearly form some line, and that line clearly
passes through the site ā2 when b := a. All that remains to verify is the

tangency. So consider how the 2-site a + h
2

behaves, as the real number h
tends to zero; we have

a + h
2

= (ā + hϕ)2 = ā2 + 2h āϕ + h2 ϕ2

= ā (ā + 2hϕ) + h2 ϕ2 = ā a + 2h + h2 ϕ2.

Since h2 goes to zero faster than h, the tangent line to the parabola at ā2

is indeed the line whose 2-sites have the form āb̄. (Note that we carried out
that analysis using (ā, ϕ) as our basis for the linear space L̂ of anchors over
L, rather than the standard basis (C, ϕ) = (0̄, ϕ). There are many such
situations where it is convenient to use some non-standard basis.)

Let s = C2+xCϕ+y ϕ2 be any 2-site in the plane Sym2(L̂)↓ of Figure 6.1.
The site s lies outside the parabola just when its discriminant x2 − 4y is
positive. In that case, we can see geometrically that s is the intersection of
the tangent lines to the parabola at ā2 and b̄2, for some two distinct real
numbers a and b. So the 2-site s must have both ā and b̄ as factors, which
means that s = āb̄ must be the product of the points ā and b̄ on L. If we
like, we can use the Quadratic Formula to compute a and b; we have

C2 + xCϕ + y ϕ2 =

(
C +

x +
√

x2 − 4y

2
ϕ

)(
C +

x−
√

x2 − 4y

2
ϕ

)
,

and hence

s =

(
x +

√
x2 − 4y

2

) (
x−

√
x2 − 4y

2

)
.

Those 2-sites s = C2+xCϕ+y ϕ2 that lie inside the parabola, with x2−4y
negative, don’t factor as the product of two points over the real numbers.
They would factor over the complex numbers; but the real numbers are the
scalars of primary interest in CAGD.

Warning: While the product of any n anchors is an n-site, it is by no
means the case that every n-site splits as the product of n anchors. Here
already, in studying Figure 6.1, we have examples of 2-sites that don’t split:
the ones inside the parabola of squares. Once the parametric dimension d
exceeds 1, the sites that do split, even over the complex numbers, become a
tiny minority of all sites; see Exercise 6.7-1.

For any affine space A and for any nonnegative n, we shall say that an
n-form on A is real-lineal when it splits — that is, factors completely —
over the reals as the product of n coanchors on A. When the n factors are
allowed to be complex, we’ll use the term complex-lineal. Similarly, an n-site
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is real-lineal or complex-lineal when it factors, over the reals or complexes,
as the product of n anchors. The 2-sites in Figure 6.1 that are real-lineal are
those that lie either on the parabola of perfect squares or outside it. All of
the 2-sites in Figure 6.1 — indeed, all n-sites over the line L for every n —
are complex-lineal.

More generally, given any graded algebra (not necessarily commutative),
a homogeneous element of grade n in that algebra is called lineal when it can
be expressed as the product of n linear elements, that is, of n elements that
are homogeneous of grade 1. Some synonyms for this sense of “lineal” are
“simple”, “totally decomposable”, and “completely reducible”. (A fine point:
Under this definition, the multiplicative identity 1 is the only homogeneous
element of grade 0 that is lineal, since 1 is the value of the unique empty
product. So, for example, 1 is the only 0-form that is lineal and also the only
0-site that is lineal. Some authors are more generous, calling an n-ic thing
lineal whenever it can be written as a scalar multiple of a product of n linear
things; under that definition, all scalars are lineal.)

Note that the same geometric and algebraic properties that hold of sites
hold also of forms, the only exceptions being those that involve the weight
coanchor. For example, consider a quadratic form on the line L, an element
f := aw2 + bwu+ c u2 of the linear 3-space Sym2(L̂

∗) = R2[w, u]. The forms
f with b2 − 4ac = 0 are plus or minus the square of a coanchor; they form
a quadratic cone in the space Sym2(L̂

∗). The forms f that lie on or outside
that cone have b2−4ac ≥ 0, and they factor as the product of two coanchors.
Returning to the algebra of sites, we have precisely similar structures. A
quadratic site s := r C2 +xCϕ+ y ϕ2 of weight r is plus or minus the square
of an anchor just when x2 − 4ry = 0, and the sites s that lie on or outside
that cone, with x2 − 4ry ≥ 0, are the ones that factor as the product of two
anchors. In our analysis above, we restricted ourselves to the plane r = 1 of
unit-weight sites, where that plane cuts the cone of squares in the parabola
of Figure 6.1. The analogous restriction for quadratic forms would require
the coefficient a of w2 to be 1, that is, would restrict our attention to forms
whose value at the point C happens to be 1. But such a restriction would
be unnatural, since we made an arbitrary choice when we selected C as the
center point of our coordinate system for the line L.

6.2 The prototypical parabola

The parabola in Figure 6.1 is the image of the affine line L under the squaring
map, the map κ2 : L→ Sym2(L̂)↓ that takes a point P on L as its argument
and squares it: κ2(P ) := P 2. Expressing P in terms of our standard basis
P = ū = C + u(P )ϕ, we have κ2(ū) = C2 + 2uCϕ + u2 ϕ2, as above.

Now, suppose that we want to use an arc of a parabola as part of a
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spline curve that we are designing. Let F : L→ O be that parabola, sitting
in some plane in our object space O, and suppose we want to use the arc
F ([ā . . b̄]). No matter what design methodology we employ, the parabola F
will be an affine transform of the particular parabola κ2. That is, there will
exist an instancing transformation, an affine map f : Sym2(L̂)↓ → O with
F (P ) = f(κ2(P )) = f(P 2), for all points P on L. In this way, the particular
parabola κ2 can serve as a prototype for all parabolas.

To add the parabolic arc F ([ā . . b̄]) to our design, it suffices to specify
the instancing transformation f . And one simple way to specify the map f
is to specify the images under f of the three sites ā2, āb̄, and b̄2; note that,
whenever the real numbers a and b are distinct, those three sites constitute
an affine frame for the plane Sym2(L̂)↓ of Figure 6.1. The images of those
three sites under f are, of course, the three Bézier points of the parabolic
segment F ([ā . . b̄]). To see this algebraically, suppose that the point P on L
is located t of the way from ā to b̄, so that P = (1− t)ā + tb̄. We then have

F (P ) = f(κ2(P )) = f(P 2)

= f
(
((1− t)ā + tb̄ )2

)
= f

(
(1− t)2 ā2 + 2t(1− t) āb̄ + t2 b̄2

)
= (1− t)2f(ā2) + 2t(1− t)f(āb̄) + t2f(b̄2).

In degenerate cases, we might choose the three Bézier points f(ā2), f(āb̄),
and f(b̄2) to be collinear, or even choose all three to coincide. The instancing
transformation f would then collapse the plane of Figure 6.1 down either to a
line or to a point. But this collapsing happens only to our parabolic instance
F , not to the prototypical parabola κ2.

6.3 The moment curves

In a similar way, the nth-power map κn : L→ Symn(L̂)↓ defined by κn(P ) :=
P n provides a prototype for all polynomial curves of degree at most n. For
example, when n = 3, we have t̄ 3 = (C+tϕ)3 = C3+3t C2ϕ+3t2 Cϕ2+t3 ϕ3,
so our prototypical cubic is the twisted cubic curve (x, y, z) := (3t, 3t2, t3),
sitting in the affine 3-space

Sym3(L̂)↓ = R3[C, ϕ]↓ = {C3 + xC2ϕ + y Cϕ2 + z ϕ3 | x, y, z ∈ R}.

In projective geometry, the curve that results from the analogous construction
is called the rational normal curve of degree n. Since we are working in an
affine space, instead of in its projective closure, we’ll refer to κn by its other
name: the moment curve of degree n.

The tangent lines, osculating planes, and so forth of the moment curve
κn are related to the multiplication in the algebra of sites as follows.
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Proposition 6.3-1 Let κn : L→ Symn(L̂)↓ be the moment curve of degree
n given by κn(P ) := P n, for all points P on the affine line L. A unit-weight
n-site s over L lies in the affine k-flat that osculates the curve κn to kth order
at P n just when the (n− k)-site P n−k divides s.

Proof As the real number h tends to 0, we have

t + h
n

= (t̄ + hϕ)n =
∑

0≤i≤n

(
n

i

)
t̄n−ihiϕi

=
∑

0≤i≤k

(
n

i

)
t̄n−ihiϕi + O(hk+1)

= t̄n−k
∑

0≤i≤k

(
n

i

)
t̄ k−ihiϕi + O(hk+1).

Thus, the moment curve κn is approximated to kth order, near the n-site t̄n,
by the k-flat that consists of all multiples of t̄n−k. ��

For example, consider the 3-site āb̄2. The one factor of ā puts us in the
osculating plane to the twisted cubic κ3 at ā3, while the two factors of b̄ put
us in the osculating plane at b̄3 twice, that is, on the tangent line at b̄3. So
the 3-site āb̄2 sits where that tangent line cuts that osculating plane.

The moment curve κn can serve as a prototype for all n-ic polynomial
parametric curves. Given any such curve F : L → O, sitting in some object
space O, there exists a unique affine map f : Symn(L̂)↓ → O that realizes F
as an instance of the prototype κn, that is, that satisfies F (P ) = f(κn(P )) =
f(P n), for all points P on L. Given some parameter interval [ā . . b̄] on L, one
convenient way to determine which n-ic segment F ([ā . . b̄]) we want in some
design of ours is to specify the instancing transformation f by specifying the
images under f of the n-sites ān, ān−1b̄, through b̄n, those images being the
Bézier points of the segment F ([ā . . b̄]).

Note that the instancing transformation f may well fail to be injective.
Indeed, the prototypical cubic κ3 is twisted, spanning the affine 3-space
Sym3(L̂)↓. So, the instancing transformation for any planar cubic segment
will definitely fail to be injective; its four Bézier points will be coplanar.
When the instancing transformation f fails to be injective in this way, the
differential geometry in the object space gets affected. For example, all of
the osculating planes of a planar cubic coincide, so we can’t construct the
point f(āb̄c̄) geometrically by intersecting the osculating planes to F at the
parameter values ā, b̄, and c̄. But the differential geometry of the prototype
is not affected. We can still intersect the osculating planes to κ3 at ā3, b̄3,
and c̄3 to find the 3-site āb̄c̄ and then apply the instancing transformation f .
The resulting point f(āb̄c̄) is the blossom value F̃ (ā, b̄, c̄), as we discuss next.
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6.4 The relationship to blossoming

Let F : L → O be an n-ic, parametric curve in some affine object space O.
The polar form or blossom of F is the unique symmetric, n-affine function
F̃ : Ln → O that agrees with F on the diagonal, that is, that satisfies

F̃ (P, . . . , P︸ ︷︷ ︸
n

) = F (P ).

The term “polar form” points out the relationship to polarization in other
contexts; but we are using the term “blossom” in this monograph, to alleviate
overuse of the word “form”. The blossom gives us an enlightening way to
name the Bézier points of any segment of F , the kth Bézier point of the
segment F ([ā . . b̄]) being the blossom value

F̃ (ā, . . . , ā︸ ︷︷ ︸
n−k

, b̄, . . . , b̄︸ ︷︷ ︸
k

).

But the algebra of sites gives us an even better naming scheme for Bézier
points. We realize the particular n-ic curve F as an affine transform of
the prototype κn; that is, for some affine map f : Symn(L̂)↓ → O, we have
F (P ) = f(κn(P )) = f(P n), for all points P in L. It immediately follows
that the blossom of F is given by

F̃ (P1, . . . , Pn) = f(P1 · · ·Pn),

since that right-hand side is clearly symmetric, n-affine, and agrees with F
on the diagonal. In particular, we can now write the kth Bézier point of the
segment F ([ā . . b̄]) simply as f(ān−k b̄ k).

This is a significant notational improvement. By exploiting exponential
notation, we can now write down the kth Bézier point in running text, without
requiring a displayed formula and horizontal braces.

Furthermore, that improved notation is just one of the rewards for an
underlying conceptual advance: replacing concatenation with multiplication.
When computing a blossom value F̃ (P1, . . . , Pn), we assemble the points
P1 through Pn by concatenating them into a sequence. Concatenation is
automatically associative; but we must explicitly require the blossom F̃ to
be symmetric in order to get commutativity.† Multiplication is better in every
way: It is automatically both associative and commutative; it also distributes

†We could build in commutativity by using a multiset (a.k.a. bag or suite) as the input
to the blossom, rather than a sequence. But multisets are unfamiliar, and they introduce
their own notational challenges. For example, the domain space of the blossom would then
be the set of all multisets of size n whose n elements are points on the parameter line L
— a set for which there is no standard notation.
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Figure 6.2: The de Casteljau Algorithm on the prototypical cubic κ3

over addition; and the notations associated with it are more concise, to boot.
Thus, moving from concatenation to multiplication is a big win.

Two things combine to make that win available to us: First, the curve κn
is rich enough to serve as a prototype for all polynomial n-ics; and second,
that prototype κn is defined, not in some arbitrary way, but by exploiting
the multiplication in an algebra.

Why is κn rich enough to serve as a prototype? Because all of the higher-
order, nonaffine stuff that has to happen as part of evaluating an n-ic curve F
at an argument point P already happens as part of computing κn(P ). Once
we know the n-site κn(P ), we can compute F (P ) = f(κn(P )) by applying
the instancing transformation f , which is an affine map. But that property
of κn is shared by lots of other curves — indeed, by every n-ic polynomial
curve that is twisted in n different dimensions, so as to have an affine span
that is n-dimensional.

The second key point about the prototype κn is that we have defined
it using the multiplication in the algebra of sites, setting κn(P ) := P n.
The geometric structure of the de Casteljau Algorithm simply reflects the
multiplicative structure of that algebra. Figure 6.2 shows the de Casteljau
Algorithm working on the moment cubic κ3.

We don’t cover the details in this monograph, but a similar result holds
in the rational case. Every parametric rational n-ic curve is a projective
transform of the n-ic rational normal curve of algebraic geometry, which is
the projective closure of the n-ic moment curve κn.

Exercise 6.4-1 Which cubic sites over the affine line are real-lineal? What
does this question have to do with the twisted cubic κ3 of perfect cubes?

Answer: The discriminant of the 3-site s = r C3 +xC2ϕ+y Cϕ2 +z ϕ3 is
18rxyz + x2y2− 4ry3− 4x3z− 27r2z2. This discriminant is zero precisely on
the ruled surface that is swept out by the tangent lines to the twisted cubic
κ3, that is, precisely for those sites s that are divisible by a perfect square.
When the discriminant is positive, which it is on one side of that quartic
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ruled surface, the site s splits, over the reals, as the product of three distinct
anchors. When the discriminant is negative, the site s has, as its factors, one
real anchor and one pair of conjugate, complex anchors.

Exercise 6.4-2 What does the discriminant of a quartic site over the affine
line tell us about whether or not that site is real-lineal?

Answer: The 4-site r C4 +wC3ϕ + xC2ϕ2 + y Cϕ3 + z ϕ4 has, as its dis-
criminant, a homogeneous sextic polynomial in the coefficients (r, w, x, y, z)
with sixteen terms. Readers who want the details can type this to Maple [8]:

discrim(r*t^4 + w*t^3 + x*t^2 + y*t + z, t);

The zero-set of this discriminant is the 3-fold in the 4-space Sym4(L̂)↓ whose
4-sites are divisible by a perfect square. Such 4-sites may have the form
P 2QR, P 2EĒ, or E2Ē2, where P , Q, and R are real points on the line L,
while E is a complex point on L and Ē is its conjugate. Thus, 4-sites with zero
discriminant may have 4, 2, or 0 real anchors as factors. Note that the sites
of the first two types are swept out by the osculating planes to the moment
quartic κ4, as P moves along L. A 4-site with negative discriminant has,
as its factors, two distinct real anchors and one pair of conjugate, complex
anchors. A 4-site with positive discriminant may have either four distinct
real factors or else two pairs of conjugate, complex factors.

6.5 The Veronese surface

Now that we have some intuition for how the nth-power map behaves on the
line L, let’s consider how the squaring map behaves on the plane A; that is,
let’s return to the case n = 2, but now with d = 2. Let σ2 : A → Sym2(Â)↓

be the map defined by σ2(P ) := P 2, for each point P on the plane A. The
image σ2(A) is a curved surface (that is, a 2-fold) sitting in the affine 5-space

Sym2(Â)↓ = R2[C, ϕ, ψ]↓

= {C2 + b ϕ2 + c ψ2 + xϕψ + y Cψ + z Cϕ | b, c, x, y, z ∈ R}.

The projective completion of the image σ2(A) is called the Veronese surface
in algebraic geometry. To allow for higher degrees, we’ll call it the Veronese
surface of parametric degree 2. (Warning: The parametric degree is different
from the degree of the surface itself. Indeed, the Veronese surface σ2(A),
as a variety in 5-space, actually has degree 4. More generally, the Veronese
d-fold of parametric degree n, as a variety in projective space of dimension(
n+d
n

)
− 1, turns out [31] to have degree nd.)

Like the moment curve κn, the Veronese surface σ2 is a prototype — a
prototype for all parametric polynomial surfaces of degree at most 2. Let
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F : A → O be any parametric surface in an affine object space O whose
coordinates are given by polynomials of total degree at most 2 in u and
v, the coordinates on A. Then, there exists a unique affine transformation
f : Sym2(Â)↓ → O with F (P ) = f(σ2(P )) = f(P 2). Note that the domain of
the instancing transformation f here is 5-dimensional. If our surface instance
is to sit in 3-space, as is typically the case in CAGD, then the instancing
transformation f can’t possible be injective.

Bézier points and blossoming for quadratic surfaces hold no surprises.
The blossom of the quadratic surface F is given by F̃ (P,Q) = f(PQ), for
all points P and Q in the plane A. Given a reference triangle �RST in A,
the six 2-sites R2, RS, RT , S2, ST , and T 2 form an affine frame for the
5-space Sym2(Â)↓, and we often specify an affine instancing transformation
f by giving the images of these six frame points under f , those images being
the Bézier points of the quadratic triangular patch F (�RST ).

Which 2-sites in the affine 5-space Sym2(Â)↓ = R2[C, ϕ, ψ]↓ are lineal?
That is, for which coefficients (b, c, x, y, z) do there exist coefficients (u1, v1)
and (u2, v2), either real or complex, with

s = C2 + b ϕ2 + c ψ2 + xϕψ + y Cψ + z Cϕ

= (C + u1ϕ + v1ψ)(C + u2ϕ + v2ψ)?

Since there are five parameters on the first line and only four on the second,
it is clear that a typical 2-site s is not even complex-lineal. Instead, the five
coefficients (b, c, x, y, z) must satisfy one constraint in order for the resulting
2-site s to have any hope of factoring. That constraint is encoded by a
polynomial, which is again referred to as the discriminant. To write that
discriminant more symmetrically, let’s abandon the constraint of unit weight,
replacing the term C2 with aC2. It turns out that the 2-site

s = aC2

+ z Cϕ + y Cψ

+ b ϕ2 + xϕψ + c ψ2

factors over the complexes as the product of two anchors just when

∆(a, b, c, x, y, z) := 4abc + xyz − ax2 − by2 − cz2 = 0.(6.5-1)

Polynomials that have no nontrivial factors, even over the complex num-
bers, are called absolutely irreducible, and we shall apply that term also to
forms and sites. Thus, a quadratic site s over the plane A is either complex-
lineal or absolutely irreducible, according as its discriminant ∆ is zero or
nonzero. If s is complex-lineal, it may or may not factor also over the reals.

Warning: The word “discriminant” is used whenever some condition can
be tested by a single polynomial, regardless of what condition that might be.
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In the case d = 1 of sites over a line (as for univariate polynomials), every
n-site is complex-lineal, and the discriminant tests whether some two of those
n factors coincide. In the case d = 2 of sites over a plane (as for bivariate
polynomials), most n-sites are absolutely irreducible. For the particular case
n = d = 2, there is a single polynomial that tests for absolute irreducibility:
the discriminant polynomial ∆ in Equation 6.5-1.

Exercise 6.5-2 Assuming that the coefficients (a, b, c, x, y, z) of the 2-site
s = aC2 +z Cϕ+y Cψ+b ϕ2 +xϕψ+c ψ2 are real and that the discriminant
∆(a, b, c, x, y, z) is zero, when will s be real-lineal?

Hint: In order for s to factor over the reals, the three inequalities

x2 − 4bc ≥ 0

y2 − 4ac ≥ 0

z2 − 4ab ≥ 0

are clearly necessary, and it turns out that they are also sufficient.

A fine point: Given that ∆ = 0, any two of those three inequalities
are almost enough to imply the third. For example, the last two imply the
first except in the degenerate case a = y = z = 0, where ∆ = 0 holds
automatically and the last two inequalities hold automatically as equalities.

Exercise 6.5-3 Which 3-sites over the plane A are complex-lineal?

Answer: The space Sym3(Â)↓ of unit-weight 3-sites is 9-dimensional,
while the three factors of a lineal 3-site have only 6 degrees of freedom among
them. Hence, there are 9− 6 = 3 dimension’s worth of algebraic constraints
that must hold, among the coefficients of a 3-site, in order for that site to be
complex-lineal. Unfortunately, while one algebraic constraint can always be
encoded by a single polynomial, it typically takes more than k polynomials
to encode k dimension’s worth of constraints, the extra polynomials being
required to eliminate spurious roots. To say the same thing in more modern
language, most varieties of codimension k > 1 are not complete intersections.
In this exercise, requiring a 3-site over the plane A to be complex-lineal in-
volves 3 dimension’s worth of constraints; but the most efficient encoding
of those constraints that I know of uses 45 polynomials, each of which is a
quartic in the ten coefficients of a 3-site of arbitrary weight [45].

6.6 Degen’s analysis of quadratic surfaces

While this monograph proposes a new framework for research in CAGD,
most of the results from CAGD that we discuss — such as Bézier points —
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are quite basic. In contrast, this section comes closer to current research.
We here use the multiplication in the algebra of sites to illuminate Wendelin
Degen’s 1994 analysis [15] of quadratic surfaces.

In that paper, Degen analyzes the various types of surfaces that can oc-
cur as parametric rational quadratics (a.k.a. quadratic Bézier triangles) in
3-space. The prototype for such a surface is the Veronese surface σ2(A) =
{P 2 | P ∈ A}, consisting of the squares of the points in the plane A. That
surface of squares, we recall, is a quartic surface, sitting in the 5-space
Sym2(Â)↓. The instancing transformation for a quadratic Bézier triangle
projects the surface σ2(A), sitting in this 5-space, down into an object
3-space; so the dimension goes down by 2. A projection that reduces the
dimension by 1 projects along those lines that pass through a certain center
point. To reduce the dimension by 2, we must project, instead, along those
planes that pass through a certain center line, a line λ in 5-space. The heart
of Degen’s analysis considers the various geometric relationships that the
center line λ can have, both with the Veronese surface σ2(A) itself and with
the cubic 4-fold of complex-lineal sites, that is, the 4-fold ∆ = 0 characterized
by the vanishing of the discriminant ∆ in Equation 6.5-1.

Degen’s analysis is correct, complete, and pretty; but Degen missed some
opportunities because he worked purely geometrically with the 5-space in
which the Veronese surface sits. In fact, that 5-space Sym2(Â)↓ lies in the
algebra of sites Sym(A). We here exploit the multiplication of that algebra
to give us a new, more algebraic perspective on Degen’s results.

By the way, Degen used this same method of projection to tackle other
problems [18], in each case studying the geometric relationships between a
Veronese prototype and the central flat of the instancing transformation that
projects that prototype down into some object space. Whenever Veronese
prototypes are exploited in this way, the multiplication of the algebra of sites
may be a helpful algebraic adjunct to more geometric reasoning.

Warning: This section is rather technical; indeed, one of its goals is to
show how the algebra of sites performs when put to a significant test. Some
readers may prefer to skip on to Section 6.7.

We are trying not to rely on projective geometry in this monograph. So
the only quadratic surfaces that we can handle are the polynomial ones,
which are produced by projecting the Veronese surface σ2(A) down from
5-space into 3-space along a family of parallel planes. Speaking projectively,
the center line λ of such a projection is a line at infinity: the line at infinity
where all of those parallel planes intersect. In discussing Degen’s analysis,
however, we don’t want to restrict λ to be a line at infinity. Fortunately, we
don’t need projective geometry in order to discuss how an arbitrary line λ in
5-space relates to the Veronese surface σ2(A) and to the cubic 4-fold ∆ = 0.
We would need projective geometry to perform a projection from a line λ
that wasn’t at infinity; but we won’t discuss that projection.
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6.6.1 The planes in the 4-fold ∆ = 0

There turn out to be two families of planes that lie entirely within the cubic
hypersurface ∆ = 0, and those planes are important in analyzing the various
degenerate ways in which the center line λ can interact with the hypersurface
∆ = 0. What such planes can we think of?

First, let L denote any line in the affine plane A. The image of L under
the Veronese map σ2 will be a parabola, lying in some plane IL — a plane
that looks, in fact, just like Figure 6.1. All of the 2-sites in the plane IL factor
over the complexes. The 2-sites on the parabola itself are the squares of the
points on L; the 2-sites outside the parabola factor as PQ, where P and Q
are distinct, real points on L; and the 2-sites inside the parabola factor as
the product of a pair of conjugate complex points on L. Thus, the entire
plane IL lies inside the hypersurface ∆ = 0 of complex-lineal sites.

Second, let P be some point in A, and consider the plane TP := {PQ |
Q ∈ A}. Every site in the plane TP factors over the reals, so TP lies inside
the hypersurface ∆ = 0. In fact, the plane TP is the tangent plane to the
Veronese surface σ2 at P 2, as we shall see in Section 6.7.

So we have two families of planes, the first indexed by lines in A and the
second by points in A. How do planes from those two families intersect?

Consider first two planes IL and IM from the first family. If the lines L
and M coincide, then the image planes IL and IM also coincide, obviously. If
the lines L and M are distinct, they typically intersect in a unique point P .
(In affine geometry, L and M might be parallel; but let’s not worry about that
case, since projective geometry stands ready to deal with all of the special
cases caused by parallelism.) The 2-sites that lie in IL factor as the product
of two points — possibly conjugate complex — along L, and the analogous
claim holds for IM . Thus, the 2-site P 2 is the unique site that belongs to
both IL and IM . So two distinct planes from the first family intersect in a
unique site, and that site lies on the Veronese surface.

It’s a similar story for two planes TP and TQ from the second family. If
P = Q, then the tangent planes TP and TQ coincide. Otherwise, the 2-site
PQ is the unique site that belongs to both TP and TQ. But note that the
site PQ lies off of the Veronese surface, rather than on it; in that detail, the
second family differs from the first.

What about a plane IL from the first family and a plane TP from the
second? If P lies on L, then the planes IL and TP intersect in the entire line
of 2-sites {PQ | Q ∈ L}. But, if P does not lie on L, then the planes IL and
TP are skew.

The cubic 4-fold ∆ = 0 thus has two 2-parameter families of planes
that lie inside it, where two planes drawn from the same family intersect
in a flat of even dimension, while two planes drawn from different families
intersect in a flat of odd dimension. That geometry is hardly surprising, since
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the situation for a nonsingular quadric 4-fold in 5-space is the same, except
that each of the two families of planes lying inside a nonsingular quadric
is a 3-parameter family. The moral of the story is not that the geometry is
surprising, but rather that we can uncover that geometry easily by exploiting
the multiplication in the algebra of sites.

One place where these two families of planes arise is in Degen’s handling
of degenerate cases. Recall that Degen classifies the different ways in which
the center line λ of a proposed projection can intersect the cubic hypersurface
∆ = 0. The most degenerate thing that can happen is for λ to lie entirely
within the hypersurface ∆ = 0. Degen proves [16] that any such line λ lies,
in fact, either entirely inside the image plane IL, for a unique line L in A, or
entirely inside the tangent plane TP , for a unique point P in A. (Those two
options can happen simultaneously, if λ is the line where IL intersects TP ,
for some point P on some line L.)

Exercise 6.6-1 Given two distinct points P and Q in A, on how many
planes of each family does the site PQ lie? What about the site P 2?

Answer: The site PQ lies on one plane of the first family, the plane IL
where L is the line joining P to Q. It lies on two planes of the second family,
the planes TP and TQ. As for the site P 2, it lies on a one-parameter family
of planes of the first family: on the plane IL, for each line L passing through
P . It lies on just one plane of the second family, the plane TP .

6.6.2 The typical complete quadrilateral

Let’s now turn from the most degenerate things that can happen to the thing
that happens typically: Our proposed center line λ typically intersects the
cubic hypersurface ∆ = 0 at three distinct sites. Let’s further assume that
all three of those sites of intersection are real; this is the case that Degen [17]
refers to as (Aa). And finally, for simplicity, let’s assume that each of the
three sites of intersection factors, not only over the complexes, but actually
over the reals. So, for some three pairs of points {P1, Q1}, {P2, Q2}, and
{P3, Q3} in A, our center line λ intersects the hypersurface ∆ = 0 precisely
at the three sites P1Q1, P2Q2, and P3Q3. What geometric relationships hold
among the P ’s and Q’s?

Given two of the three pairs, say {P1, Q1} and {P2, Q2}, the third pair
{P3, Q3} is determined, since the line joining the site P1Q1 to P2Q2 intersects
the hypersurface ∆ = 0 at those two sites and at one more site, which must
be P3Q3. But we can also locate P3 and Q3 by carrying out a geometric
construction in the plane A. To do so, note that the four points P1, Q1, P2,
and Q2 are coplanar in A, so they must be linearly dependent; that is, there
must exist real numbers a1, b1, −a2, and b2 with

a1P1 + b1Q1 − a2P2 + b2Q2 = 0.
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(We write −a2 rather than a2 in order to make what follows symmetric
under cyclic permutations of the subscripts 1, 2, and 3.) To save writing,
let’s introduce p1 as an abbreviation for the anchor p1 := a1P1, and similarly
for q1 := b1Q1, p2 := a2P2, and q2 := b2Q2. In terms of those anchors, we
have the dependence

p1 + q1 − p2 + q2 = 0.(6.6-2)

Using that dependence, we find that

p1q1 + p2q2 = p1q1 + p2q2 + (p1 + q1 − p2 + q2)q2

= p1q1 + p1q2 + q1q2 + q2
2

= (p1 + q2)(q1 + q2).

Thus, the line joining P1Q1 to P2Q2 passes through the site (p1+q2)(q1+q2) =
(a1P1 + b2Q2)(b1Q1 + b2Q2); so the two anchors in that product must be
scaled versions of the points P3 and Q3, in some order. Choosing an order
and undoing the scaling, we set

P3 :=
a1P1 + b2Q2

a1 + b2
and Q3 :=

b1Q1 + b2Q2

b1 + b2
.

(If either of those denominators is zero, the corresponding point is at infinity;
let’s not worry about that possibility.) If we now set a3 := a1 + b2, b3 :=
−(b1 +b2), p3 := a3P3, and q3 := b3Q3, we have established the following four
equations, the first three of which are cyclically symmetric:

q1 − p2 + p3 = 0

p1 + q2 − p3 = 0

−p1 + p2 + q3 = 0

q1 + q2 + q3 = 0

The last two equations reveal that Q3 is the point where the line P1 ∨ P2

intersects the line Q1 ∨ Q2, while the first two reveal that P3 is given by
P3 = (P2 ∨ Q1) ∧ (P1 ∨ Q2). (Note that we are writing S ∨ T to denote
the line joining S to T , to avoid confusion with the 2-site ST .) To say the
same thing more symmetrically, of the eight possible combinations of one
point from each pair, the four collinear triples are the ones with an even
number of P ’s and an odd number of Q’s. So the three pairs of points
{P1, Q1}, {P2, Q2}, and {P3, Q3} are the pairs of opposite vertices of a com-
plete quadrilateral, as shown in Figure 6.3. Thus, a center line λ in 5-space
typically corresponds to a complete quadrilateral in the plane A in the sense
that the three intersections of λ with the hypersurface ∆ = 0 are the products
of that quadrilateral’s three opposite pairs of vertices. That’s neat.
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P1

P2

P3

Q1

Q2
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Figure 6.3: The complete quadrilateral from a typical center line λ

Geometry remark: The complete quadrilateral captures the most nondegen-
erate way in which three lineal 2-sites P1Q1, P2Q2, and P3Q3 over a plane
A can be collinear in the space Sym2(Â)↓. For other values of n, is there
an analogous geometric configuration that captures the most nondegenerate
way in which n + 1 lineal n-sites over an n-space A can span a flat in the
space Symn(Â)↓ whose dimension is less than n? When n = 3, the answer is
yes. Ramshaw and Saxe [44] analyze the solution for n = 3, a configuration
that captures the coplanarity of the four 3-sites P1Q1R1, P2Q2R2, P3Q3R3,
and P4Q4R4 by constraining those twelve points in 3-space to be incident to
two lines and thirteen planes, in a pattern described by the budget matroid
B2,1,1. Since complete quadrilaterals, which are the solution for n = 2, are
representations of the budget matroid B2,1, this suggests a pattern. Unfortu-
nately, it seems that the representations of the budget matroid B2,1,1,1 cannot
provide an analogous solution when n = 4, since it seems that there are only
30 dimensions’ worth of such representations, rather than the 34 dimensions’
worth that would be required.

Warning: Ramshaw and Saxe [44] don’t exploit the multiplication in the
algebra of sites; hence, they don’t prove that the four products (PiQiRi)1≤i≤4

are coplanar. (Indeed, I was only beginning to realize, back then, that it
makes sense to multiply points.) But they do prove a certain property of the
slopes of the twelve planes that result when those twelve points are projected
from an arbitrary line in 3-space, and that slope property turns out to be
equivalent to the coplanarity of the four products.

The dashed lines P1 ∨Q1, P2 ∨ Q2, and P3 ∨ R3 in Figure 6.3 are called
the diagonals of the complete quadrilateral, and they have a role to play
in Degen’s analysis as well. Let Di, for i from 1 to 3, be the vertex of
the dashed triangle that is opposite the side Pi ∨Qi, as shown in Figure 6.3.
Equation 6.6-2 tells us that p1 +q1 = p2−q2. The point D3 is the intersection
of the diagonals P1 ∨Q1 and P2 ∨Q2, so D3 must be a scalar multiple of the



6.6. DEGEN’S ANALYSIS OF QUADRATIC SURFACES 73
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Figure 6.4: The plane projector that corresponds to the triple point

anchor d3 := p1 + q1 = p2− q2. Introducing scalar multiples of D1 and D2 in
a similar way, we have

d1 := p2 + q2 = p3 − q3

d2 := p3 + q3 = p1 − q1

d3 := p1 + q1 = p2 − q2.

These formulas reveal some interesting collinearities in the 5-space Sym2(Â)↓,
as shown in Figure 6.4. The simple identity

(p1 − q1)
2 + 4p1q1 = (p1 + q1)

2

shows that the 2-sites D2
2, P1Q1, and D2

3 are collinear; and the same holds
with the subscripts cyclically permuted. Any two of those three collinearities
suffice to show that the plane in 5-space spanned by the three perfect squares
D2

1, D
2
2, and D2

3 contains our entire proposed center line λ, the line through
the collinear 2-sites P1Q1, P2Q2, and P3Q3. Thus, when Degen takes the
planes in 5-space through the line λ as the points of his object 3-space,
the particular plane shown in Figure 6.4 will belong to the resulting surface
instance — the projected image of the Veronese surface σ2(A) — for three
different reasons. In fact, that point in 3-space is the triple point of the
resulting quartic Steiner surface.

Recall what happens when we project the twisted cubic curve κ3(L) in
3-space, from some center point, to get a rational cubic curve in the plane.
For a typical choice of the center point C, there is a unique line through C
that intersects κ3(L) twice. That is, most points lie on a unique chord of
the twisted cubic, that chord giving rise to a double point on the projected,
planar cubic. If we define a 2-chord of the Veronese surface σ2(A) to be the
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plane spanned by the squares of three noncollinear points in the plane A,
Degen’s analysis shows that most lines λ in 5-space lie on a unique 2-chord
of the Veronese surface, that 2-chord giving rise to a triple point on the
projected surface in 3-space.

Exercise 6.6-3 The triple point of the Steiner surface in case (Aa) is the
intersection of three noncoplanar double lines, that is, lines where the Steiner
surface intersects itself. A point on one of those double lines corresponds to
a plane projector through λ that contains both S2 and T 2, for some two
distinct points S and T in the plane A. Where do the points S and T in
such a pair lie in Figure 6.3?

Answer: For some i between 1 and 3, the points S and T are harmonic
conjugates of Pi and Qi, along the dashed line Pi ∨ Qi. At the triple point
itself, any two of the three points D1, D2, and D3 can play the roles of S and
T ; for example, D1 and D2 are harmonic conjugates of P3 and Q3.

6.6.3 Extending Degen’s analysis to cubics

Extending Degen’s analysis from quadratics to cubics would be a challenging
endeavor in which the algebra of sites might well prove useful.

The prototype for a cubic Bézier triangle is the Veronese surface of para-
metric degree 3, the surface σ3(A) = {P 3 | P ∈ A}. This surface has degree
32 = 9 and sits in the 9-space Sym3(Â)↓. To end up with a surface in an
object 3-space, the instancing transformation must reduce the dimension by
6; thus, it will project from some central 5-flat H , sitting in 9-space, down
into the 3-space of all 6-flats that include H . The character of the Bézier
triangle that results from this projection will presumably depend upon how
the 5-flat H sits in 9-space, in relation to such structures as the following:

• the surface σ3(A) itself, the 2-fold of 3-sites that are perfect cubes;

• the 4-fold of 3-sites that are divisible by a perfect square;

• the 6-fold of complex-lineal 3-sites, the sites that are divisible by some
three anchors, typically all distinct;

• and the 7-fold of reducible 3-sites, the sites that have some anchor as a
factor, but where the quadratic cofactor may be absolutely irreducible.

Indeed, some of these dependencies are straightforward; for example, the
degree of the projected Bézier triangle will be 9 minus the number of points
where the central 5-flat H intersects the Veronese surface σ3(A) itself. But
other dependencies will be more subtle. We leave those questions open,
returning in a moment to the main thread of this monograph.
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By the way, it will follow from Proposition 6.7-2 that the second structure
in the list above, the 4-fold, is the union of the tangent planes to the Veronese
surface σ3; that is, for a point P in the plane A and a 3-site s over A, the
site s is divisible by P 2 just when s lies in the tangent plane to the surface
σ3 at P 3. In a similar way, the fourth variety in the list above, the 7-fold, is
the union, for all points P in the plane A, of the 5-flat that osculates σ3 to
first order at P 3. Note that each such osculating flat is 5-dimensional, since
it is spanned by the two first-derivatives ∂P 3/∂u and ∂P 3/∂v and the three
second-derivatives ∂2P 3/∂u2, ∂2P 3/∂u∂v, and ∂2P 3/∂v2.

Degen himself extended his work in a different direction by classifying the
types of surfaces that can arise as tensor-product surfaces of bidegree (2; 1)
in 3-space — that is, by classifying the Bézier rectangles that are quadratic
in one parameter direction and affine in the other [18]. We discuss tensor-
product surfaces in Section 6.8.

6.7 Polynomial d-folds of degree at most n

The theory of Veronese prototypes generalizes to n-ic d-folds, for any bound
n on the total degree and any parametric dimension d. Let A be our affine
domain space, now of dimension d. The linearization Â has dimension d+ 1,
so the algebras Sym(Â) and Sym(Â∗) of sites over A and forms on A are
essentially polynomial algebras with d + 1 variables. An n-ic polynomial
parametric d-fold, sitting in some affine object space O, is a map F : A→ O
that can be given by polynomials of total degree at most n in the coordi-
nates on A. There is a prototype for all such d-folds F : the nth-power map
θd,n : A→ Symn(Â)↓ given by θd,n(P ) := P n, for all points P in the d-space
A. In particular, for any n-ic parametric d-fold F : A→ O, there is a unique
affine transformation f : Symn(Â)↓ → O with F (P ) = f(θd,n(P )) = f(P n),
for all points P in A. We’ll refer to θd,n as the Veronese d-fold of parametric
degree n; the map θd,n is also known as the n-uple embedding of d-space [33].
The moment curve κn is the Veronese 1-fold κn = θ1,n, while the Veronese
surface σn is the Veronese 2-fold σn = θ2,n.

What is a Bézier point in this context? We choose some d-simplex of
reference, say [R0, . . . , Rd] in A. The points (R0, . . . , Rd) form an affine
frame for the affine space A and also form a basis for its linearization Â.
Hence, we can view the algebra of sites Sym(Â) as the polynomial algebra
R[R0, . . . , Rd]. Consider the n-sites Ri0

0 . . . Rid
d , where i0 through id are any

nonnegative integers with i0 + · · · + id = n. There are
(
n+d
n

)
such sites,

and they form an affine frame for the affine space Symn(Â)↓ of all unit-
weight n-sites over A. One convenient way to specify which affine instancing
transformation f : Symn(Â)↓ → O we have in mind is to specify the images
of the sites in that frame, each image f(Ri0

0 . . . Rid
d ) being a Bézier point of
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the resulting d-fold.

Exercise 6.7-1 Consider (real) n-sites of unit weight on an affine d-space.
How many dimension’s worth of such sites are there altogether? How many
are complex-lineal? Are real-lineal? Are perfect nth powers?

Answers:
(
n+d
n

)
− 1, nd, nd, and d.

What about the flat that osculates the Veronese d-fold θd,n to kth order
at the n-site θd,n(P ) = P n, for some k ≤ n? The only surprising thing about
that osculating flat is its dimension, which is

(
k+d
k

)
− 1. Let (C, ϕ1, . . . , ϕd)

be some Cartesian reference frame for the space A, and let (w, u1, . . . , ud)
be the dual basis for the linear space Â∗ of coanchors. If F : A → O is any
parametric d-fold, the flat that osculates F to 0th order at P is the point
F (P ). For the flat that osculates F to 1st order at P , we expand to include
the d vectors ∂F/∂u1(P ) through ∂F/∂ud(P ). For osculation to 2nd order,
we include

(
d+1
2

)
second-order partials, either pure or mixed: ∂2F/∂u2

1(P ),

∂2F/∂u1∂u2(P ), and so on. Osculation to 3rd order adds in
(
d+2
3

)
third-order

partials. For osculation to kth order, we have a total of(
d

1

)
+

(
d + 1

2

)
+ · · ·+

(
d + k − 1

k

)
=

(
d + k

k

)
− 1

vectors. In the particular case where F = θd,n is the Veronese d-fold of some
degree n ≥ k, all of these vectors will be linearly independent, since θd,n is a
prototype for any n-ic d-fold.

Proposition 6.7-2 Let A be an affine d-space, let θd,n : A → Symn(Â)↓ be
the Veronese d-fold of degree n, and let P be a point in A. The flat that
osculates θd,n to kth order at θd,n(P ) = P n is P n−k Symk(Â)↓, the flat of
dimension

(
k+d
k

)
− 1 that consists of all unit-weight multiples of P n−k.

Proof The only subtlety, in comparison with the proof of the case d = 1
in Proposition 6.3-1, is that we must consider approaching the point P in
some arbitrary way, not necessarily along a straight line. Let b denote some
vector in Rd and let ‖b‖ be the norm of b in some fixed norm for Rd —
it doesn’t matter which. We analyze the nth power (P + b · ϕ)n as ‖b‖
tends to zero, where b · ϕ denotes the vector b · ϕ := b1ϕ1 + · · · + bdϕd.
Let α = (α0, α1, . . . , αd) denote a multi-index of nonnegative integers with
|α| = n, and let α+ := (α1, . . . , αd) denote the dehomogenized version of α,
with α0 removed. By the Multinomial Theorem, we have

(P + b · ϕ)n =
∑
|α|=n

(
n

α

)
P α0 bα+ϕα+

=
∑
|α|=n
α0≥n−k

(
n

α

)
P α0 bα+ϕα+ + O(‖b‖k+1),
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as ‖b‖ goes to zero. The sum here is a multiple of P n−k and also has weight
1, since all terms have weight 0 except for P n. Thus, the flat P n−k Symk(Â)↓

osculates the Veronese d-fold θd,n to kth order at P n. ��

6.8 Tensor-product surfaces

Despite the generality of the preceding section, there is yet another case to
consider. So far, the degree bounds that we have been imposing are bounds
on the total degree in all of the variables. Another option is to impose
separate bounds on the degrees in disjoint sets of variables. In particular,
the most common way to define a polynomial surface in CAGD is to impose
separate bounds on the degrees of its defining polynomials in the two variables
u and v. The resulting surfaces are the tensor-product surfaces, which can
be thought of as curves of curves.

For tensor-product surfaces, we decompose the parameter plane A as the
product of two lines, say A = L1 × L2, and we linearize each of those lines
separately. Suppose that we choose C1 and ϕ1 to be a center point and a unit
vector for the line L1, while C2 and ϕ2 are the same for L2. Linearizing L1

gives us the linear 2-space L̂1 of anchors over L1, where each such anchor p1

can be written uniquely as a linear combination p1 = w1(p1)C1 + u1(p1)ϕ1.
The coanchors (w1, u1) here are the basis for L̂∗

1 that is dual to the basis
(C1, ϕ1) for L̂1. All the same goes for L2.

Both forms on L1×L2 and sites over L1×L2 have separate degrees n1 and
n2 in the two parameters L1 and L2, the pair (n1;n2) being called the bidegree
of the form or site. Table 6.1 gives the formulas by which we shall denote the
spaces of forms and sites of bidegree (n1;n2) when characterized abstractly or
when constructed by one of our three concrete constructions. On the first line,
we are abstractly characterizing the algebrization of the linear space L̂1⊕ L̂2

or L̂∗
1 ⊕ L̂∗

2 using a universal mapping condition, as discussed in Chapter 9.
On the second line, fixing our chosen bases, an (n1;n2)-form on L1 × L2 is a
polynomial in the four variables w1, u1, w2, and u2 that is homogeneous of
degree n1 in w1 and u1 and separately homogeneous of degree n2 in w2 and u2.
That space of polynomials is most simply written Rn1;n2[w1, u1;w2, u2]; but
people who understand the tensor-product construction will see that it can
equally well be written Rn1[w1, u1] ⊗Rn2[w2, u2], and that is how the term
“tensor-product surface” arose. An (n1;n2)-site over L1×L2 is analogous, but
with the anchor variables C1, ϕ1, C2, and ϕ2. Moving to the third line, we can
allow anchors or coanchors that are linearly dependent into our polynomials,
as long as we realize that any given (n1;n2)-site or (n1;n2)-form will then have
multiple, equivalent names, so we must mod out by an equivalence relation.
The fourth line exploits duality to interpret each of those equivalence classes
as a recipe for a real-valued function. We view an (n1;n2)-form as defining
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space of (n1;n2)-sites space of (n1;n2)-forms

Symn1;n2
(L̂1 ⊕ L̂2) Symn1;n2

(L̂∗
1 ⊕ L̂∗

2)

= Symn1
(L̂1)⊗ Symn2

(L̂2) = Symn1
(L̂∗

1)⊗ Symn2
(L̂∗

2)

Rn1;n2[C1, ϕ1;C2, ϕ2] Rn1;n2[w1, u1;w2, u2]

= Rn1[C1, ϕ1]⊗Rn2[C2, ϕ2] = Rn1[w1, u1]⊗Rn2[w2, u2]

Rn1;n2[L̂1; L̂2]/ ≈(L̂1;L̂2)
Rn1;n2[L̂

∗
1; L̂

∗
2]/ ≈(L̂∗

1 ;L̂∗
2)

(Rn1[L̂1]/ ≈L̂1
)⊗ (Rn2[L̂2]/ ≈L̂2

) (Rn1[L̂
∗
1]/ ≈L̂∗

1
)⊗ (Rn2[L̂

∗
2]/ ≈L̂∗

2
)

Bipolyn1;n2
(L̂∗

1 × L̂∗
2,R) Bipolyn1;n2

(L̂1 × L̂2,R)

= Polyn1
(L̂∗

1,R)⊗ Polyn2
(L̂∗

2,R) = Polyn1
(L̂1,R)⊗ Polyn2

(L̂2,R)

Table 6.1: Formulas for the space of sites or forms of bidegree (n1;n2)

a real-valued function of bidegree (n1;n2) on L̂1 × L̂2, while an (n1;n2)-site
defines a function on L̂∗

1 × L̂∗
2. But keep in mind that real-valued functions

on coanchors don’t have the obvious applications in CAGD that real-valued
functions on anchors have.

Given any site s over L1 × L2, we define the weight of s to be the real
number s(w1, w2) that results from evaluating s at the weight coanchors w1

and w2 of L1 and L2. That is, given any expression for s as a polynomial
whose variables are anchors over L1 or L2, we replace each anchor p1 on L1

by its weight w1(p1), we replace each anchor p2 on L2 by its weight w2(p2),
and we then simplify to get the weight s(w1, w2). Going back to the second
line in Table 6.1, if a site s of bidegree (n1;n2) has been represented as a
polynomial in Rn1;n2[C1, ϕ1;C2, ϕ2], then its weight is simply the coefficient
of the term Cn1

1 Cn2
2 .

Since L1 is an affine line, it is convenient to name the points on L1 using
real numbers. But the same holds for L2, and we don’t want to get the two
lines confused; hence, we shall use two different accents. Let’s denote by t̀
the point t̀ := C1 +tϕ1 with coordinate t on the line L1, while t́ := C2 +tϕ2 is
the point with that same coordinate on L2. (I suggest reading the formulas
t̀ and t́ as “t in” and “t out”.) For example, the formula 0̀1̀2́3́4́ denotes a
site over L1 × L2 of bidegree (2; 3), and the formula 0̀20́3 denotes another
such. In fact, we have 0̀20́3 = C2

1C
3
2 . When an (n1;n2)-site over L1 × L2 is

real-lineal, that is, splits as the product of n1 anchors over L1 and n2 anchors
on L2, we’ll typically write it with its L1 factors to the left of its L2 factors,
by convention. But we could equally well write the factors in any order. Like
the algebra of sites over A, the algebra of sites over L1 ×L2 is commutative,
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so x̀ý = ýx̀, for any real numbers x and y.
If we didn’t distinguish between points on L1 and points on L2 using

slanted accents, we would have to use some other technique to keep track of
which points lay on which lines. For example, some authors would denote
the (2; 3)-site 0̀1̀2́3́4́ as 0̄1̄⊗ 2̄3̄4̄, where the points to the left of the symbol
“⊗” are presumed to lie on L1, while those to the right lie on L2. With
this notation, the sites t̄ ⊗ 1 and 1 ⊗ t̄ are distinct, the former being the
point t̀ on L1, while the latter is the point t́ on L2. But don’t be confused
by this notation into thinking that the multiplication on sites somehow fails
to be commutative. No matter how we write things, we still have x̀ý =
(x̄⊗ 1)(1⊗ ȳ) = (1⊗ ȳ)(x̄⊗ 1) = ýx̀.

More generally, the tensor-product construction combines n1-forms on an
affine space A1 of dimension d1 with n2-forms on a space A2 of dimension d2 to
produce tensor-product forms of bidegree (n1;n2) on the product space A1×
A2, that product space having (d1; d2) as its bidimension. In a similar way,
it combines n1-sites over A1 with n2-sites over A2 to produce (n1;n2)-sites
over A1×A2. Even more generally, we could consider triple tensor products,
such as tensor-product forms with tridegree (n1;n2;n3) on a product space
A1 × A2 × A3 of tridimension (d1; d2; d3). But the most important case in
CAGD is tensor-product surfaces, where the parameter space is the product
L1 × L2 of two lines.

6.9 Tensor-product prototypes

The theory of Veronese prototypes extends to the tensor-product case, with
the help of another concept from algebraic geometry: the Segre embedding.

Let’s first consider the example of biquadratic tensor-product surfaces.
The prototype of such surfaces is the surface σ2;2 that takes the point (P1, P2)
in the product space L1 × L2 to the site σ2;2(P1, P2) := P 2

1 P
2
2 , lying in the

affine space (Sym2(L̂1) ⊗ Sym2(L̂2))
↓ = R2;2[C1, ϕ1;C2, ϕ2]

↓. That affine
space is 8-dimensional, a typical element of it, a unit-weight (2; 2)-site s on
L1 × L2, being uniquely expressible in the form

s = C2
1C

2
2 +s01C

2
1C2ϕ2 +s02C

2
1ϕ

2
2(6.9-1)

+s10C1ϕ1C
2
2 +s11C1ϕ1C2ϕ2 +s12C1ϕ1ϕ

2
2

+s20ϕ
2
1C

2
2 +s21ϕ

2
1C2ϕ2 +s22ϕ

2
1ϕ

2
2.

The sites s in that 8-space that lie on the prototypical surface σ2;2 are those
that factor as the product of two perfect squares: s = σ2;2(ù1, ú2) = ù2

1ú
2
2 =

(C1 +u1ϕ1)
2(C2 +u2ϕ2)

2. When we use a biquadratic surface patch in one of
our designs, say parameterized over the rectangle [à . . b̀]× [ć . . d́ ], we can view
that patch as an affine transform of the prototypical patch σ2;2([à. .b̀]×[ć. .d́ ]).
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And one convenient way to specify the instancing transformation that we
intend is to specify the images of the nine sites (à 2−i b̀ ić 2−j d́ j)0≤i,j≤2, those
nine images being the Bézier points of the resulting biquadratic patch.

Viewed more abstractly, the prototype σn1;n2 for tensor-product surfaces
of bidegree (n1;n2) can be thought of as σn1;n2 = θ(1;1),(n1;n2), a Veronese pro-
totype for forms of bidegree (n1;n2) on a product space of bidimension (1; 1).
The Segre embedding is a construction in algebraic geometry that is relevant
here, since it lets us combine two Veronese prototypes, say θd1,n1 and θd2,n2,
into a tensor-product prototype θ(d1;d2),(n2;n2). The Segre embedding [30, 34]
maps the product of (k1 − 1)-space and (k2 − 1)-space into (k1k2 − 1)-space.
For example, if A is an affine plane and B is an affine 3-space, so k1 = 3 and
k2 = 4, the Segre embedding maps A× B into an affine space of dimension
3 · 4− 1 = 11 by the rule

(
(1, u, v), (1, x, y, z)

)
�→


1, x, y, z,
u, ux, uy, uz,
v, vx, vy, vz


 ,

where we have written all three weight coordinates as explicit 1’s to make
the pattern clearer. Note that a point in the target 11-space, that is, a 3-by-4
matrix of real numbers with a 1 in the upper-left corner, lies in the image of
this Segre embedding just when that matrix has rank 1.

A tensor-product Veronese prototype is the image, under the appropriate
Segre embedding, of the Cartesian product of two separate Veronese pro-
totypes. For example, suppose that we want to construct θ(d1;d2),(n2;n2), the
prototype for forms of bidegree (n1;n2) on a product space of bidimension
(d1; d2). We begin with the separate Veronese prototypes θd1,n1 and θd2,n2,
which sit in affine spaces of dimensions

(
n1+d1
n1

)
− 1 and

(
n2+d2
n2

)
− 1. Setting

ki :=
(
ni+di
ni

)
for i in {1, 2}, we then use the Segre embedding with param-

eters (k1; k2) to embed the Cartesian product of those separate Veronese
prototypes into an affine space of dimension k1k2 − 1 =

(
n1+d1
n1

)(
n2+d2
n2

)
− 1.



Chapter 7

The Paired-Algebras
Framework

We have built the algebras of forms and sites as separate algebras, as shown
in Figure 5.1. But the two algebras realize their full power only when we pair
up the space Symn(Â

∗) of n-forms on A with the space Symn(Â) of n-sites
over A, for each n, so that each can represent the dual of the other. For
example, let P be a point in A and consider the evaluate-at-P functional
on n-forms, that is, the linear functional εP that takes an n-form f as its
argument and returns the real number εP (f) := f(P ). Once we choose a
pairing between n-forms and n-sites, we can represent that linear functional
εP as a certain n-site. It turns out that there are two reasonable choices:
Either εP = P n or εP = P n/n! .

Warning: We are about to take the only mathematical step in the entire
construction of the paired algebras where there is a real choice about what
to do. There are two candidate pairings between the spaces Symn(Â

∗) and
Symn(Â), the summed pairing and the averaged pairing, and they differ by
a factor of n! . Adopting the summed pairing leads to an annoying factor
of n! in any formula that evaluates an n-ic — for example, the denominator
in the formula εP = P n/n! . But it leads to simple, powerful, and familiar
formulas for differentiation. Adopting the averaged pairing would simplify
evaluation a bit, at the price of complicating differentiation a lot. I argue
in Appendix B that the summed pairing is the wiser overall choice, and
this monograph follows my advice. I hope that other researchers in CAGD
will find my arguments convincing, lest we all find ourselves bedeviled by
conflicting conventions. Sad to say, there is no way to make the formulas for
evaluation and for differentiation both come out pretty. Indeed, evaluating
an n-form is essentially the same process as differentiating that form n times
in the same direction — except that the latter result exceeds the former by
that annoying factor of n! .

This controversy about how to scale the pairing maps is unfortunate,

81
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Sym(Â) Sym(Â∗)

Sites Forms

Sym0(Â) Sym0(Â∗)

A

Sym2(Â) Sym2(Â∗)

Sym3(Â) Sym3(Â∗)

1

C,
ϕ, ψ

Â

C2,

Cϕ,Cψ,

ϕ2, ϕψ, ψ2

C3,

C2ϕ,C2ψ,

Cϕ2, Cϕψ,Cψ2,

ϕ3, ϕ2ψ, ϕψ2, ψ3

1

w,
u, v

Â∗

w2,
wu,wv,

u2, uv, v2

w3,

w2u,w2v,

wu2, wuv,wv2,

u3, u2v, uv2, v3

Figure 7.1: The paired-algebras framework
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but don’t be too downcast: The controversy concerns only a numeric factor.
The deep benefit of the pairing maps is that they allow us to exploit the
multiplication in the algebra of sites as a new tool with which to study linear
functionals on forms, and vice versa. For example, the formula εP = P n/n!
tells us that the evaluate-at-P functional εP is a perfect nth power. So, in
the linear space Symn(Â) of n-sites, what is the geometry of those n-sites
that represent point evaluations? Answer: Except for the annoying factor of
n! , that set is precisely the Veronese d-fold of parametric degree n, the set
θd,n(A) of all perfect nth powers of points.

7.1 Picturing our goal

Figure 7.1 shows our final goal at last, the paired-algebras framework. The
double-headed arrow on the nth level denotes the pairing that we shall adopt
between the spaces Symn(Â) and Symn(Â

∗), thereby allowing us to use each
to represent the dual of the other.

The issue about which pairings to adopt, the summed or the averaged,
leaves the lower levels in Figure 7.1 somewhat fuzzy. But note that there is
no issue about levels 0 and 1. On level 1, we want the fundamental pairing
between the spaces Â and Â∗ of anchors and coanchors. On level 0, we
want the pairing that combines two real numbers by multiplying them. The
annoying factor of n! becomes an issue only once n exceeds 1.

Math remark: In the paired-algebras framework, the linear space Symn(Â)∗

of dual functionals on n-sites is represented by the space Symn(Â
∗) of n-forms,

and the same is true with forms and sites reversed. Is a similar representation
possible for the algebras in their entirety? The whole algebra of sites Sym(Â)
is also a linear space, albeit of infinite dimension, so it has a dual Sym(Â)∗.
Can we use the whole algebra of forms Sym(Â∗) to represent that dual, all
at once? That is, can we combine all of the separate double-headed arrows
in Figure 7.1 into one fat double-headed arrow?

No, because of the blow-up in dimension that happens when we take
the dual of an infinite-dimensional space. The dual space Sym(Â)∗ is huge.
We can think of an element F in that dual space as a sum F =

∑
n≥0 fn,

where each fn is an n-form, but with no requirement that all but finitely
many of the (fn) must be zero. Instead, all of the (fn) may be nonzero
simultaneously. The infinite sum F still determines a linear map from sites
to real numbers as follows. Any site s can be uniquely expanded as a sum
s =

∑
n≥0 sn of its graded components (sn), where sn is an n-site and where

all but finitely many of the (sn) are zero. So we can define F (s) by the rule
F (s) :=

∑
n≥0〈fn, sn〉, and the resulting sum of real numbers will always be

a finite sum. But the algebra of all such infinite sums F =
∑

n≥0 fn is vastly
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larger than the algebra of forms, in which only finitely many of the graded
components (fn) are allowed to be nonzero.

Bourbaki [4] introduces the concept of the graded dual of a graded algebra,
which is the direct sum of the duals of the graded slices. By exploiting that
concept, we could combine all of the double-headed arrows in Figure 7.1 into
one fat arrow: a fat arrow asserting that each of the graded algebras Sym(Â)
and Sym(Â∗) can represent the graded dual of the other.

7.2 Lineals and perfect powers

To prepare for defining the pairing maps, we go over some easy lemmas about
the algebras of forms and sites.

Lemma 7.2-1 Given any affine space A of finite dimension d := dim(A)
and any nonnegative integer n, every n-form on A is a linear combination of
real-lineal n-forms. The same goes for sites over A.

Proof Fix some basis (c0, . . . , cd) for the space Â∗ of coanchors on A. As
on the second line of Table 5.1, we can then concretely construct the linear
space Symn(Â

∗) of n-forms on A as the space Rn[c0, . . . , cd] of all polynomials
that are homogeneous of degree n in the variables (c0, . . . , cd).

Let α denote a multi-index α = (α0, . . . , αd), where each αk is nonnegative
and where |α| := α0 + · · ·+ αd satisfies |α| = n. We then denote by cα the
n-form cα := cα0

0 · · · cαdd . The n-forms (cα)|α|=n form a basis for the space
Rn[c0, . . . , cd] of n-forms; let’s call it the monomial basis.

Every n-form on A is a linear combination of the
(
n+d
n

)
monomials in this

basis. And each of those monomials is clearly real-lineal — indeed, splits as
the product of n elements of our chosen basis (c0, . . . , cd) for Â∗. So every
n-form is a linear combination of real-lineal n-forms. ��

In fact, more is true.

Lemma 7.2-2 Given any affine space A of finite dimension d := dim(A)
and any nonnegative n, every n-form on A is a linear combination of n-forms
that are perfect nth powers. Again, the same goes for sites over A.

Proof We know from Lemma 7.2-1 that every n-form is a linear combination
of real-lineal n-forms. So it suffices to prove that every real-lineal n-form is
a linear combination of perfect nth powers.

Let f = h1 · · ·hn be a real-lineal n-form on A. In the case n = 2, we have

h1h2 =
(h1 + h2)

2 − h2
1 − h2

2

2
.(7.2-3)
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This is quadratic case of the Polarization Identity. An inclusion-exclusion
argument establishes the general case

h1 · · ·hn =
1

n!

∑
S⊆{1,...,n}

(−1)n−|S|
(∑
i∈S

hi

)n
,(7.2-4)

which expresses the product h1 · · ·hn as a linear combination of 2n−1 perfect
nth powers. ��

It might seem more natural to require the set S to be nonempty in the
sum in Equation 7.2-4, since the term resulting from S = ∅ is zero in any
case; that’s why there are only 2n− 1 terms, instead of 2n. But the resulting
term is actually 0n, which is 0 when n is positive, but is 00 = 1 when n = 0.
And that 1 is needed to make Equation 7.2-4 correct in the case n = 0.

Math remark: Both Lemma 7.2-1 and Lemma 7.2-2 hold equally well in the
algebrization of any linear space X; they don’t use any special properties of
the spaces Â∗ or Â of coanchors or anchors. Indeed, those lemmas hold even
when X is infinite dimensional, with the same proofs. But Lemma 7.2-2 does
not hold over fields of finite characteristic, because of the division by n! .

In the case of sites, Lemma 7.2-2 can be strengthened a bit further still.

Lemma 7.2-5 Given any affine space A of finite dimension d := dim(A)
and any nonnegative n, every n-site over A is a linear combination of n-sites
that are nth powers of points — that is, nth powers of anchors of unit weight.

Vacant remark: We make the convention that the real number 1 is the 0th

power of a point. This convention isn’t controversial when d ≥ 0, since
P 0 = 1, for all points P in A. When d = −1, however, there are no points
P in A to raise to the 0th power. We argue that 1 is a 0th power of a point
anyway, since we can write 1 as a product of 0 factors, a product in which all
factors are equal and all factors — of which there aren’t any — are points.

Proof When n = 0, an n-site over A is a real number and hence a scalar
multiple of 1, which is a 0th power of a point by the convention that we just
adopted. So we may suppose that n is positive.

Since (tp)n = tnpn for any real number t and anchor p, it suffices to
show that every n-site is a linear combination of nth powers of anchors
whose weights are not zero. To see this, choose a barycentric reference frame
(R0, . . . , Rd) for A, consisting entirely of points. Every n-site is then a linear
combination of the monomials (Rα)|α|=n, which form a basis for the space

Symn(Â) of n-sites. When we apply Equation 7.2-4 to such a monomial, all
of the nth powers that arise will have the form (β0R0 + · · ·+βdRd)

n, for some
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multi-index β with |β| ≤ n. If |β| = 0, then we are talking about 0n, which
is zero since n is positive. So we end up with nth powers of anchors whose
weights are positive integers. ��

Let’s use β · R to denote the sum β · R := β0R0 + · · · + βdRd. We saw,
in proving Lemma 7.2-5, that the perfect nth powers ((β ·R)n)|β|≤n span the

entire space Symn(Â) of n-sites. We shall show, in Proposition 8.4-1, that
the subset ((β · R)n)|β|=n actually forms a basis.

Exercise 7.2-6 Equation 7.2-3 expresses the product h1h2 as a linear com-
bination of three perfect squares; but the similar identity

h1h2 =
(h1 + h2)

2 − (h1 − h2)
2

4

uses only two squares, which is clearly the fewest possible. By generalizing
this latter identity, write the product h1 · · ·hn as a linear combination of only
2n−1 perfect nth powers.

Answer: We have

h1 · · ·hn =
1

2n−1n!

∑
S∪T={2,...,n}

S∩T=∅

(−1)|T |
(
h1 +

∑
i∈S

hi −
∑
j∈T

hj

)n
.

Could we get by with even fewer than 2n−1 perfect nth powers? In the case
n = 3, it turns out that four cubes are necessary; a Gröbner-basis calculation
with Maple [9] or Singular [27] establishes that it is impossible to write the
product xyz as the sum of three terms, each of which is the cube of a linear
combination of x, y, and z. But I don’t know whether eight fourth powers
are necessary, when n = 4; perhaps fewer would suffice?

7.3 The Permanent Identity

With those lemmas under our belt, it is time to define the pairing, for each n,
between n-forms on A and n-sites over A. That is, we want to pair the linear
spaces Symn(Â

∗) and Symn(Â). Those two linear spaces have the same finite
dimension; so there are lots of pairings between them. The key to a useful
theory is to find a pairing that interacts well with the multiplications in the
algebras of forms and sites.

By Lemma 7.2-1, defining such a pairing on n-forms and n-sites that
are real-lineal would suffice to define it everywhere. So let’s think about
an n-form f = h1 · · ·hn that is the product of n coanchors and an n-site
s = p1 · · · pn that is the product of n anchors. What value should we assign
to 〈f, s〉 = 〈h1 · · ·hn, p1 · · · pn〉? One value that might be relevant is the
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product 〈h1, p1〉〈h2, p2〉 · · · 〈hn, pn〉. But the order in which we numbered the
n factors h1 through hn of f was arbitrary, and the same for s; so there is no
reason why matching hi with pi, for i from 1 to n, makes more sense than
any other way of matching up the n coanchors with the n anchors. To be
symmetric, we should consider all possible such matchings and then — and
here is where the n! issue arises — we either sum or average the results.

Let’s say that a pairing map between n-forms and n-sites satisfies the
Summed Permanent Identity when, for all coanchors h1 through hn and for
all anchors p1 through pn, we have

〈h1 · · ·hn, p1 · · ·pn〉 =
∑
ν∈Sn

∏
k∈[1..n]

〈hk, pν(k)〉,(7.3-1)

where the summation index ν varies over the symmetric group Sn of all n!
permutations of the integers from 1 to n. The Averaged Permanent Identity
is the same, except that we divide the sum by n! :

〈h1 · · ·hn, p1 · · · pn〉 =
1

n!

∑
ν∈Sn

∏
k∈[1..n]

〈hk, pν(k)〉.(7.3-2)

The term “permanent” is appropriate because that sum is the permanent of
the n-by-n matrix whose (i, j)th entry is 〈hi, pj〉. Recall that the permanent
of a matrix is like the determinant, except that all products are added; in
the determinant, of course, products from even permutations ν are added,
but those from odd permutations are subtracted.† In the next section, we
show that there exists a unique pairing between n-forms and n-sites that
satisfies the Summed Permanent Identity; dividing that pairing by n! gives
the unique pairing that satisfies the Averaged Permanent Identity.

When we wrote the Permanent Identities, we used angle brackets both
for the pairing on the left-hand side, the new pairing between n-forms and
n-sites, and also for the pairing on the right-hand side, the fundamental
pairing between coanchors and anchors. In the particular case n = 1, that
could potentially lead to confusion. Fortunately, both of the Permanent
Identities reduce, in the case n = 1, to the identity 〈h1, p1〉 = 〈h1, p1〉. Since
the new pairing is thus required to agree with the old wherever the old is
defined, it causes no confusion to use the same angle brackets for both.

Exercise 7.3-3 What values do the two Permanent Identities mandate for
the pairing value 〈f, s〉 in the case n = 0, when the 0-form f and the 0-site
s are simply real numbers?

†Math remark: The permanent arises because we are studying the symmetric algebra
Sym(X). The analogous formula for the alternating algebra Alt(X) has the determinant
instead. That explains why the alternating algebra is appropriate for multivariate calculus,
where the determinant of a Jacobian measures the ratio of two signed volumes.
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Answer: The sum has a single term, and that single term is an empty
product; so both of the Permanent Identities mandate that 〈1, 1〉 = 1. By
bilinearity, it follows that 〈f, s〉 = fs, for all real numbers f and s.

We started this section by using Lemma 7.2-1 to restrict our attention to
n-forms and n-sites that are real-lineal. By using the stronger Lemma 7.2-2,
we could have gone further and restricted our attention to n-forms and n-sites
that are perfect nth powers. What do the Permanent Identities say about
that special case? When h1 = · · · = hn = h and p1 = · · · = pn = p,
the Summed Permanent Identity mandates that 〈hn, pn〉 = n! 〈h, p〉n, the n!
arising from the n! different ways of matching up the n identical h’s with
the n identical p’s. The Averaged Permanent Identity divides out that n! ,
giving the simpler formula 〈hn, pn〉 = 〈h, p〉n.

7.4 Defining the pairing

Recall, from Section 2.3, that every bilinear form B : X × Y → R has an
associated matrix M , under the convention that the scalar B(x, y) is given
by the matrix product xtMy. Furthermore, the bilinear form B is a pairing
just when its matrix M is invertible.

Proposition 7.4-1 Let A be an affine space of finite dimension d := dim(A),
and let n be nonnegative. There is a unique pairing between the space
Symn(Â

∗) of n-forms on A and the space Symn(Â) of n-sites over A that
satisfies the Summed Permanent Identity. We christen it the summed pairing.
Dividing the summed pairing by n! gives the averaged pairing, the unique
pairing that satisfies the Averaged Permanent Identity.

Proof We construct the spaces Symn(Â
∗) and Symn(Â) concretely by fixing

bases. Let (a0, . . . , ad) be some basis for the linearized space Â of anchors
over A, and let (c0, . . . , cd) be the basis for the space Â∗ of coanchors on A
that is dual to (a0, . . . , ad). The duality constraints tell us that

〈ci, aj〉 =

{
1 if i = j

0 otherwise.

We can then represent the space Symn(Â
∗) of n-forms as the space of poly-

nomials Rn[c0, . . . , cd], while the space Symn(Â) of n-sites is Rn[a0, . . . , ad].
Note that both spaces have dimension

(
n+d
n

)
.

Let γ denote a multi-index γ = (γ0, . . . , γd) with |γ| := γ0 + · · ·+ γd = n.
The n-forms (cγ)|γ|=n form the monomial basis for the space Rn[c0, . . . , cd]
of n-forms. In a similar way, the n-sites (aα)|α|=n form the monomial basis
for the space Rn[a0, . . . , ad] of n-sites. In order to define any bilinear map
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B : Rn[c0, . . . , cd] × Rn[a0, . . . , ad] → R, it suffices to specify the values of
B on those n-forms and n-sites that are monomials, that is, to define the(
n+d
n

)
-by-

(
n+d
n

)
matrix of real numbers (B(cγ, aα))|γ|=|α|=n. For the map B

to be a pairing, that matrix must have full rank.

Each n-form cγ and each n-site aα is real-lineal, so the Summed Perma-
nent Identity 7.3-1 leaves us no choice about how to fill in the matrix of
B. What value does it mandate for 〈cγ, aα〉? If the multi-indices γ and α
are distinct, then all n! ways of matching the n coanchor factors with the n
anchor factors will involve at least one match-up 〈ck, al〉 with k �= l. So all
n! terms in the resulting sum will be zero; for γ �= α, we have 〈cγ, aα〉 = 0.
What about when γ = α? To get a nonzero term in the sum, we must match
up, for each k from 0 to d, the γk copies of ck in cγ with the γk = αk copies
of ak in aγ , and we can do that in γk! ways. So the number of nonzero
terms is the product γ0! γ1! · · · γd! , which we shall abbreviate as γ! . Since
each nonzero term contributes 1, we conclude that the Summed Permanent
Identity mandates:

〈cγ, aα〉 =

{
γ! if γ = α

0 otherwise.

The matrix that we have just constructed is diagonal, with all of its di-
agonal entries nonzero; so it has full rank. We conclude that there exists
a unique pairing that satisfies all monomial instances of the Summed Per-
manent Identity, that is, all instances in which each coanchor factor hk lies
in our chosen basis (c0, . . . , cd) for Â∗ and each anchor factor pk lies in our
chosen basis (a0, . . . , ad) for Â.

It remains to verify that this unique pairing in fact satisfies all instances
of the Summed Permanent Identity. To see that, note that both sides of
the Summed Permanent Identity are (2n)-linear functions from (Â∗)n× (Â)n

to the reals; that is, both sides vary linearly as a function of each hk if the
other h’s and all of the p’s are held fixed, and the same for each pk. Thus,
the validity of the Summed Permanent Identity extends by linearity from
monomial instances to all instances. ��

The matrix that we construct in this proof has zeros off the diagonal and
has the positive integer γ! in the (γ, γ) slot on the diagonal. Once n ≥ 2, the
diagonal entries are not all ones, and that engenders a warning. We chose
the bases (c0, . . . , cd) and (a0, . . . , ad) for the spaces Â∗ of coanchors and Â
of anchors to be dual to each other. But the monomial bases (cγ)|γ|=n and
(aα)|α|=n that we then constructed for the spaces Rn[c0, . . . , cd] of n-forms and
Rn[a0, . . . , ad] of n-sites are not dual to each other — that is, they are not
dual under the unique pairing that satisfies the Summed Permanent Identity.
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Math remark: The existence of diagonal entries γ! that exceed 1 makes the
theory of symmetric algebras somewhat subtle. Among other things, over a
field of prime characteristic, the analog of the summed pairing may fail to be
a pairing; once n is at least the characteristic, the matrix that we get from
the Summed Permanent Identity has zeros on the diagonal, and hence fails
to have full rank. Alternating algebras are better behaved in this respect.
In the alternating algebras Alt(Â) and Alt(Â∗), the analogs of the monomial
basis elements are ai1 ∧ · · · ∧ ain and ci1 ∧ · · · ∧ cin for i1 < · · · < in, with no
repeated factors allowed. So the Summed Determinant Identity produces a
matrix in which all of the diagonal entries are ones.

Averaging, rather than summing, divides everything by n! , so the (γ, γ)
slot on the diagonal is γ!/n! . Recall that γ! divides n! , for all γ with |γ| = n,
since the quotient

(
n
γ

)
:= n!/γ! is a multinomial coefficient, and hence an

integer. So the diagonal entries γ!/n! = 1/
(
n
γ

)
are reciprocals of integers.

It’s bad news that the diagonal entries of these matrices are not all equal.
But it’s good news that all of the off-diagonal entries are zero. It follows that
the dual of a monomial basis differs only by some factorial scale factors from
being itself a monomial basis.

Proposition 7.4-2 Given a d-dimensional affine space A, let (a0, . . . , ad)
and (c0, . . . , cd) be dual bases for the spaces Â and Â∗ of anchors and coan-
chors, and consider the corresponding monomial bases (aα)|α|=n and (cγ)|γ|=n
for the spaces Symn(Â) and Symn(Â

∗) of n-sites and n-forms. Under the
summed pairing, the dual of the basis (aα)|α|=n is the scaled monomial ba-
sis (cγ/γ! )|γ|=n. Alternatively, putting the scale factors on the other side,
the dual of the basis (cγ)|γ|=n is the basis (aα/α! )|α|=n. Under the averaged
pairing, the scale factors are larger by a factor of n! ; so the dual of (aα) is
(
(
n
γ

)
cγ) and the dual of (cγ) is (

(
n
α

)
aα).

Proof In proving Proposition 7.4-1, we saw that the value 〈cγ, aα〉 given by
the summed pairing is

〈cγ, aα〉 =

{
γ! if γ = α

0 otherwise.

Thus, to end up with dual bases, it suffices to divide one basis or the other
by the factorial of its multi-index. Under the averaged pairing, we must also
multiply one basis or the other by n! . ��

7.5 Summing is better — trust me

We have reached an unpleasant juncture. We want to pair n-forms with
n-sites, and we have found two candidate pairings, differing by a factor of n! .
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Perfectly adequate theories can be erected based on either of those pairings,
and reasonable people could prefer either theory.

So far, we have been laying the groundwork for the two theories in parallel.
If we continue to develop the two in parallel, however, we shall be faced with
two versions of every new formula, which seems a recipe for confusion. Better,
instead, to develop one theory in isolation. We can return later to discuss
how the other theory would differ from the one that we then understand.

Until further notice, therefore, we are going to pair n-forms with n-sites
using the summed pairing, the unique pairing map that satisfies the Summed
Permanent Identity 7.3-1. We won’t reopen the summing-versus-averaging
debate until Appendix B, where we analyze how all of our formulas would
change if we averaged, instead of summing. Some things would get prettier,
others would get uglier. But Appendix B argues that, in the context of
CAGD, summing beats averaging overall.

Unfortunately, the costs of summing show up before its benefits; that
is, summing clutters up some formulas that you learn right away, thereby
enabling some formulas that you don’t learn until later to be cleaner. So
we are going to run across annoying factors of n! quite soon. Please grant
summing the benefit of the doubt until Appendix B.

7.6 Evaluating an n-form

Having chosen the summed pairing, we now have a slew of formulas to cover,
formulas that relate pairing to other operations on forms and sites. The first
of those operations is evaluation, and the basic rule for evaluation is this:

To evaluate an n-ic under the summed pairing, pair it with an
nth power and divide by n! .

Proposition 7.6-1 If f is any n-form on an affine space A and if P is any
point in A, evaluation of f at P is related to pairing by the formula

f(P ) = 〈f, P n/n! 〉.(7.6-2)

More generally, the same formula holds with the point P replaced by any
anchor p over A:

f(p) = 〈f, pn/n! 〉.(7.6-3)

Dually, if s is any n-site over A and h is any coanchor on A, we have

s(h) = 〈hn/n! , s〉.(7.6-4)
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Proof Lemma 7.2-2 tells us that every n-form on A is a linear combination
of perfect nth powers. Since evaluation at a fixed point P is a linear process,
it suffices to prove Formula 7.6-2 when f = hn is the nth power of some
coanchor h. In that case, the left-hand side is hn(P ) = (h(P ))n = 〈h, P 〉n.
On the right-hand side, the Summed Permanent Identity 7.3-1 tells us that
〈hn, P n/n! 〉 = 〈hn, P n〉/n! =

(
n! 〈h, P 〉n

)
/n! = 〈h, P 〉n. The same proof ap-

plies to any anchor p over A, and the proof of the dual result is symmetric. ��

This correspondence between evaluating an n-ic and pairing it with an
nth power gives us a new perspective from which to view Lemma 7.2-5. That
lemma tells us that every n-site is a linear combination of perfect nth powers
of points. So, if we know the value 〈f, P n〉 for every point P in A, we can
compute the value 〈f, s〉 for any n-site s, which determines the n-form f
completely. That is no surprise, since knowing the value 〈f, P n〉 is the same
as knowing the value f(P ) = 〈f, P n/n! 〉; and an n-form f is determined
by its values f(P ) at all points P . Indeed, the process of determining the
polynomial f from a sufficiently large and sufficiently independent set of its
values f(P ) is the familiar process of polynomial interpolation.

Back in Chapter 4, when we adopted the homogenized framework, we
noted that it makes sense to evaluate an n-form at an anchor that isn’t a
point. What does that process mean geometrically? There are two cases.

Consider first an anchor p whose weight w(p) is nonzero. Such an anchor
is a scalar multiple of a point; so we have p = w(p)P , where the point P
is given by P := p/w(p). Since an n-form f is homogeneous of degree n, it
follows that f(p) = f(w(p)P ) = w(p)nf(P ).

The remaining case is more subtle: the case of a vector π over A. What
is the value f(π)? It turns out that

f(π) =
1

n!
(Dπ)

nf.(7.6-5)

That is, evaluating an n-form at the vector π is the same as differentiating
that n-form n times, each time in the direction of the vector π — and then
dividing by n! . Note that the nth derivative of an n-form is a constant, so
the right-hand side of Formula 7.6-5 needs no further evaluation. We won’t
pause to verify Formula 7.6-5 now, since it will follow easily once we can
differentiate, as well as evaluate, by pairing with an appropriate site. But
Formula 7.6-5 should at least seem plausible, on the following grounds. A
vector is a scaled version of a point at infinity. So evaluating an n-form at
a vector means finding out the leading term of what happens as we go to
infinity in that direction. Fix any point Q in A and consider the function
g(t) := f(Q+tπ). Taylor’s Theorem tells us that g(t) =

∑
0≤k≤n g

(k)(0)tk/k! .
As t tends to infinity, the dominant term is the last, in which the coefficient
of tn is g(n)(0)/n! = ((Dπ)

nf)/n! = f(π). Thus, the value of an n-form at
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a vector tells us, in a natural way, about what happens as we go to infinity
in the direction of that vector. Note also that the denominator of n! in
Formula 7.6-5 is closely related to the denominators in a Taylor series.

So, evaluating an n-ic is essentially the same process as differentiating it
n times, always in the same direction — the same process, that is, except
for the annoying factor of n! . Our choice of the summed pairing, over the
averaged pairing, means that our formulas for evaluation are cluttered with
factors of n! , while our formulas for differentiation, coming soon, are pretty.
For the tradeoff between the two pairings, see Appendix B.

7.6.1 Evaluating the blossom of an n-form

Blossoming replaces n-ic dependence on a single parameter with n-affine
dependence on n symmetric parameters. By exploiting the paired algebras
of forms and sites, we have learned how to represent n-ic dependence on
a single parameter p as the process of pairing with the n-site pn/n! . This
makes it trivial to blossom: We merely pair, instead, with p1 · · · pn/n! .

Proposition 7.6-6 Let f be any n-form on an affine space A, let f̃ : An → R
be its multiaffine blossom (a.k.a. polar form), and let P1 through Pn be any
points in A. We then have

f̃(P1, . . . , Pn) = 〈f, P1 · · ·Pn/n! 〉.(7.6-7)

The blossom f̃ extends uniquely to a multilinear function f̃ : Ân → R, which
satisfies

f̃(p1, . . . , pn) = 〈f, p1 · · · pn/n! 〉.(7.6-8)

for all anchors p1 through pn on A.

Proof The product p1 · · · pn is a linear function of each factor, is symmetric,
and reduces to the nth power pn when p1 = · · · = pn = p. ��

7.7 Formulas for differentiation

Relating differentiation to pairing is more subtle, because differentiating an
n-form produces an (n − 1)-form, rather than a scalar. Here is the basic
story: Differentiating an n-form f in the direction of a vector π corresponds
to setting to π one of the n factors of the n-site with which f eventually
gets paired. The other factors of that n-site are set only later, when the
derivative Dπf is itself evaluated or further differentiated. This process is
best understood from a few examples.
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Proposition 7.7-1 Let f be an n-form on the affine space A, let π be a
vector over A, and let R be a point in A. Differentiating f in the direction π
and then evaluating the resulting (n− 1)-form at R is related to pairing by
the formula:

Dπf(R) = 〈f, πRn−1/(n− 1)! 〉.(7.7-2)

Proof Formula 7.6-2 tells us how to evaluate by pairing, so we can simply
calculate:

Dπf(R) = lim
t→0

f(R + tπ)− f(R)

t

= lim
t→0

〈f, (R + tπ)n/n! 〉 − 〈f, Rn/n! 〉
t

= lim
t→0
〈f, (R + tπ)n −Rn〉/n! t

= lim
t→0
〈f, (Rn + ntπRn−1 + O(t2))− Rn〉/n! t

= lim
t→0
〈f, ntπRn−1 + O(t2)〉/n! t

= 〈f, πRn−1/(n− 1)! 〉.

Note that Rn−1/(n−1)! is the site with which we would pair the (n−1)-form
Dπf , in order to evaluate it at the point R. So the differentiation merely sets
to π one of the factors of the n-site with which f eventually gets paired. ��

The fact that π is a vector, that is, that its weight is 0, plays no role
in that proof. Indeed, we shall use the standard limit formula to define the
derivative of a n-form f on A in the direction of any anchor p over A:

Dpf(R) := lim
t→0

f(R + tp)− f(R)

t
.

With this definition, Formula 7.7-2 extends from vectors to arbitrary an-
chors; we have Dpf(R) = 〈f, pRn−1/(n − 1)! 〉. But we have to be a bit
careful. In some contexts, the directions in which it is legal to differentiate
are restricted to be vectors. For example, when we say that two forms f and
g, possibly of different degrees, agree to kth order at a point R, we are saying
that Dπ1 · · ·Dπjf(R) = Dπ1 · · ·Dπjg(R), for any j ≤ k and any vectors π1

through πj . But only vectors are permissible as directions in this context,
not arbitrary anchors, as discussed in Section 7.11.

Differentiating multiple times is an easy generalization.

Proposition 7.7-3 Let f be an n-form on the affine space A and let p1

through pk and r be anchors over A, for some k ≤ n. Taking f and differ-
entiating k times, in the directions of the anchors p1 through pk, and then
evaluating the resulting (n−k)-form at r is related to pairing by the formula

Dp1 · · ·Dpkf(r) = 〈f, p1 · · · pkrn−k/(n− k)! 〉.(7.7-4)
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Proof The argument for k = 2 should make the pattern clear:

DpDqf(r) = lim
t→0

Dqf(r + tp)−Dqf(r)

t

= lim
t→0

〈f, q(r + tp)n−1/(n− 1)! 〉 − 〈f, qrn−1/(n− 1)! 〉
t

= lim
t→0
〈f, q(n− 1)rn−2tp + O(t2)〉/(n− 1)! t

= 〈f, pq rn−2/(n− 2)! 〉. ��

Each differentiation thus sets one factor of the n-site s with which the
n-form f eventually gets paired. Differentiating k times leaves us with an
(n − k)-form, which we can then evaluate at an anchor r by setting the
remaining n − k factors of s to rn−k/(n − k)! . If we differentiate n times,
we get the constant Dp1 · · ·Dpnf(r) = 〈f, p1 · · · pn〉, independent of r. If we
further specialize to the case p1 = · · · = pn = p in which all n directions are
the same, we find that (Dp)

nf = 〈f, pn〉. Since the rule for evaluation at p
is f(p) = 〈f, pn/n! 〉, we see that the relationship between evaluating an n-ic
and differentiating it n times is indeed as we claimed in Formula 7.6-5.

For the record, here is the formula for differentiating an n-form k times
and then evaluating the blossom of the resulting (n− k)-form at the anchors
r1 through rn−k:

(Dp1 · · ·Dpkf)∼(r1, . . . , rn−k) = 〈f, p1 · · · pk r1 · · · rn−k/(n− k)! 〉.

7.8 The contraction operators

If we set k of the factors of the n-site with which an n-form will eventually
get paired, we have essentially converted that n-form into an (n − k)-form.
The operator that does that conversion is called contraction.

Let A be an affine space, let f be an n-form on A, and let s be a k-site
over A, where k ≤ n. In the special case k = n, we know how to combine
f with s to produce a real number: the pairing value 〈f, s〉. When k < n,
we can’t get a real number. But we can produce, from f and s, a mapping
that takes (n − k)-sites to real numbers: the mapping t �→ 〈f, st〉, for any
(n − k)-site t. This mapping is an element of the dual space Symn−k(Â)∗,
which we are representing as the space Symn−k(Â

∗) of (n− k)-forms. Thus,
the n-form f and the k-site s together determine an (n − k)-form, which is
written f s and called the contraction of f on s or the s-contraction of f .
The terms “internal product” and “inner product” are also used. Note that,
in the expression f s, the vertical stroke of the operator symbol is next to
the operand of higher degree.
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Formally speaking, the contraction f s of f on s is completely defined
by the equation

〈f s, t〉 = 〈f, st〉.(7.8-1)

Intuitively, contraction is a flavor of partial evaluation. We can think of
our n-form f as a function that accepts an n-site as its input and returns a
real number. When we contract f on a k-site s, we are declaring that we
are interested in the values of that function only on those n-sites that are
multiples of s.

In the special case k = n, contracting an n-form f on a k-site s results in
a 0-form f s, that is, in a scalar. By setting t in Equation 7.8-1 to be the
0-site t := 1, we find that 〈f s, 1〉 = 〈f, s ·1〉 = 〈f, s〉. Since pairing a 0-form
with a 0-site simply multiplies the two scalars, as discussed in Exercise 7.3-3,
we conclude that f s = 〈f s, 1〉 = 〈f, s〉. Thus, when k = n, contraction
reduces to pairing.

It is convenient to extend the contraction operator f s to the case k > n
by setting f s = 0. To support this, we make the convention that 0, which we
have already agreed is an m-form for every nonnegative m, is also an m-form
— in fact, is the unique m-form — when m = n−k is negative. Extending the
contraction operator in this way makes the value f s well-defined whenever
f and s are homogeneous, whatever their degrees. We further extend to
those cases where the arguments f and s are inhomogeneous in the unique
way that preserves linearity. Having done so, the site f s is now well-defined
for any form f and any site s — even inhomogeneous ones.

Successive contractions commute with each other. Indeed, we have the
identity (f s) t = (f t) s = f (st). When f , s, and t, are all homogeneous,
this follows because all three expressions denote the unique form of degree
deg(f) − deg(s) − deg(t) that, when paired with any site u of that degree,
returns the real number 〈f, stu〉. When f , s, or t are inhomogeneous, the
result follows by linearity.

Just as we can contract a form on a site, we can contract a site on a form.
If s is an m-site and g is a k-form, the expression g s denotes an (m−k)-site
called the g-contraction of s or the contraction of s on g. It is the unique
(m−k)-site that makes 〈f, g s〉 = 〈fg, s〉, for all (m−k)-forms f on A. We
extend this dual contraction operator also to return zero when k > m, and
we further extend it by linearity to the inhomogeneous case.

If f is an n-form and s is an m-site, don’t get the two contractions f s
and f s confused. The operator with its vertical bar on the left, the form
side, produces an (n − m)-form, while the one with its vertical bar on the
right, the site side, produces an (m−n)-site. If n and m are distinct, at least
one of the two results will have negative degree and hence will perforce be
zero. If n = m, we have f s = f s = 〈f, s〉.
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7.9 Differentiation as contraction

We are interested in contractions primarily because they give us a more
concise way to write down the rule for how to differentiate in the paired
algebras. In particular, Formula 7.7-2 tells us that

Dpf(r) = 〈f, prn−1/(n− 1)! 〉 = 〈f p, rn−1/(n− 1)! 〉.

Since this holds for all anchors r, we conclude that the (n − 1)-form Dpf
coincides with the contraction f p; that is, we have the simpler formula

Dpf = f p.

Rephrasing that in English, we finally have a rule for differentiation that is
worthy to stand alongside our evaluation rule:

To differentiate under the summed pairing, simply contract.

This rule is deliciously simple; in particular, note that the degree of the
form being differentiated is irrelevant. Indeed, the formula Dpf = f p
holds even for forms f that are inhomogeneous. That delicious simplicity is
the reward that we have earned by tolerating the annoying factor of n! in
our evaluation rule. The rules for evaluation and differentiation under the
averaged pairing are different, as discussed in Appendix B.

Contracting on an anchor p, even one that isn’t a vector, corresponds
to differentiating in the direction p. Thus, all of the standard formulas for
differentiation carry over, including the product rule,

(fg) p = (f p)g + f(g p),

and the rule for perfect powers,

fk p = kfk−1(f p).

These identities hold for any forms f and g, regardless of their degrees,
and without even any requirement of homogeneity. But it is critical that
p be an anchor, that is, a 1-site. Contracting on a 0-site, that is, on a
real number b, is simply scalar multiplication; so we get the simpler rules
(fg) b = f(g b) = (f b)g = bfg and fk b = bfk. Contracting on m-sites
for m > 1 is more complicated, like differentiating m times; for example, if
f and g are forms and p and q are anchors, we can calculate that

fg pq = (f pq)g + (f p)(g q) + (f q)(g p) + f(g pq).
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7.10 Derivations and differential operators

Let G =
⊕

n≥0 Gn be any graded algebra. A linear map δ : G → G is called
a derivation when it satisfies the product rule

δ(xy) = δ(x)y + xδ(y),

for all x and y in G. A derivation δ is said to lower degree by 1 when
δ(Gn) ⊆ Gn−1, that is, when δ maps every element x that is homogeneous of
degree n to an element δ(x) that is homogeneous of degree n− 1.

We have been studying the algebra of forms Sym(Â∗), which is a graded
algebra. For any anchor p over A, let δp : Sym(Â∗) → Sym(Â∗) be the map
that contracts on p, so that δp(f) := f p. For any fixed anchor p over A,
the map δp is a derivation that lowers degree by 1.

It turns out that every derivation δ : Sym(Â∗) → Sym(Â∗) that lowers
degree by 1 is of the form δ = δp, for some anchor p over A. Here is why. Since
δ lowers degree by 1, δ must map 1-forms to real numbers; so δ restricts to a
linear functional on coanchors. But every such linear functional corresponds
to pairing with some anchor. So there exists some anchor p with δ(h) = 〈h, p〉,
for all coanchors h. Rephrasing this, we have δ(f) = f p = δp(f) for every
1-form f on A. We also have δ(1) = 1 p = δp(1) = 0, since the only
way that δ can lower the degree of the 0-form 1 is by taking it to 0, the
unique (−1)-form. (See also Exercise 7.10-1.) But every form f on A can
be written as a linear combination of products of zero or more coanchors.
The derivations δ and δp agree on the empty product 1, they agree on all
coanchors, they are both linear, and they both satisfy the product rule; so
we can conclude that δ(f) = δp(f) for all forms f .

Exercise 7.10-1 Let δ : G→ G be any derivation of an algebra G. Without
any assumption about what the derivation δ does to degrees, show that
δ(1) = 0. (Hint: Substitute x := y := 1 in the product rule.)

Exercise 7.10-2 Define a map δ : Sym(Â∗) → Sym(Â∗) by setting δ(f) :=
nf , for every n-form f . Show that δ is a derivation of the algebra of forms
that leaves degree unchanged.

Answer: For an n-form f and an m-form g, we have δ(fg) = (n+m)fg =
nfg + mfg = δ(f)g + fδ(g).

So every derivation of the algebra of forms that lowers degree by 1 simply
contracts on some anchor. Those derivations have the additional pleasant
property that they all commute with each other. For any anchors p and
q and any form f , we have (f p) q = (f q) p = f (pq); so we have
δp◦δq = δq◦δp. Indeed, the differential operators Dp and Dq actually commute
with each other more generally; we have Dp(Dq(f)) = Dq(Dp(f)), not just
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for the functions f in Poly(Â,R), but at least for all real-valued functions
f : Â→ R that are twice continuously differentiable.

Since the derivations δp, for anchors p in Â, commute with each other, we
can use them to build up a commutative algebra: the algebra of all differential
operators that can be expressed as polynomials in the derivations (δp)p∈Â.
Note that two different polynomials in the variables (δp)p∈Â may denote the
same operator. For example, if E := (Q + R + S)/3 is the centroid of a
reference triangle �QRS in A, then 3δE = δ3E = δQ + δR + δS. Sound
familiar? Indeed, this algebra of differential operators is simply the algebra
of sites in disguise. Any site s on A gives us such a differential operator by
contraction, by the rule f �→ f s.

Thus, if we already understand the algebra of forms, one way to con-
struct the algebra of sites is as a certain algebra of differential operators on
forms. For example, suppose that A is an affine plane. Working in Cartesian
coordinates, we could define an n-site over A to be a polynomial that is ho-
mogeneous of degree n, not in the three anchors (C, ϕ, ψ), but in the three
derivations (∂/∂w, ∂/∂u, ∂/∂v). We would then pair an n-site s with an
n-form f by applying, to the form f , the differential operator that s denotes.

I’ve never seen anyone do so, but it would make equal sense to treat sites
as basic and to define forms as certain differential operators on sites, replacing
the three coanchors (w, u, v) by the derivations (∂/∂C, ∂/∂ϕ, ∂/∂ψ).

People who define sites to be differential operators on forms get the right
answers, but they obscure the fundamental symmetry between forms and
sites. Suppose that we have somehow defined the algebra of forms Sym(Â∗).
Whatever technique we used to algebrize the linear space Â∗ of coanchors
would surely work, equally well, to algebrize the space Â of anchors, thus
producing the algebra of sites Sym(Â). It seems more natural to produce
forms and sites via the same technology, rather than to exploit differential
operators to define one of them in terms of the other.

It also seems strange, when talking about differential operators, to restrict
ourselves to operators that are polynomials in the three derivations ∂/∂w,
∂/∂u, and ∂/∂v. Typically, when defining differential operators, we also
allow multiplying by w, u, or v; for example, u(∂/∂u) is a common differential
operator that preserves degree. Of course, differential operators of this more
general type typically don’t commute; for example, the operator u(∂/∂u)
first partials with respect to u and then multiplies by u, not the reverse.

Exercise 7.10-3 People who define sites to be differential operators on
forms are naturally led to one of the two possible pairings. Which one is
it, the summed pairing or the averaged pairing?

Answer: The summed pairing. For example, they compute the real num-
ber 〈wn, Cn〉 = 〈wn, (∂/∂w)n〉 by applying the operator (∂/∂w)n to the
n-form wn, getting (∂/∂w)n(wn) = n! , rather than 1.
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Math remark: The derivations that we have defined, maps from an algebra
to itself, are a special case. There is a more general notion of a derivation
as a linear map δ : G → H that satisfies the product rule, where G is a
commutative algebra and H is a G-module. Generalizing the notion of a
derivation in this way lets us construct, for any commutative algebra, a
universal derivation of that algebra. For a concrete example, suppose that
G = Sym(Â∗) = R[w, u, v] is a polynomial algebra in three variables. The
universal derivation of G is the map d : G→ H defined by

d(f) :=
∂f

∂w
dw +

∂f

∂u
du +

∂f

∂v
dv,

where H is the free G-module with basis (dw, du, dv). Any derivation of G
can then be achieved by substituting appropriate values for the three symbols
dw, du, and dv. For example, if we substitute scalars pw, pu, and pv for dw,
du, and dv, we get a derivation δ : G → G that lowers degree by 1; in fact,
we get the derivation δp associated with the anchor p = pwC + puϕ + pvψ =
pw(∂/∂w) + pu(∂/∂u) + pv(∂/∂v). For another example, if we substitute w,
u, and v for dw, du, and dv, we get w(∂/∂w) + u(∂/∂u) + v(∂/∂v), the
degree-preserving derivation of Exercise 7.10-2.

7.11 Agreement to kth order

An n-form f on A can be evaluated, not only at points in A, but at any
anchor over A. As a consequence, f can also be differentiated, not only
in the directions of vectors over A, but in the direction of any anchor over
A. Evaluating a form at arbitrary anchors doesn’t lead to confusion. But
differentiating a form in the directions of anchors that aren’t vectors leads to
a subtlety that is worth discussing.

By the way, these generalized flavors of evaluation and differentiation
became available to us as soon as we homogenized. We started out, in the
nested-spaces framework, with a polynomial function f : A → R of degree
at most n. In converting to the homogenized approach, we linearized the
domain space A into Â and we homogenized f into the n-form f : Â → R.
Already at this point, it started making sense to use arbitrary anchors in
evaluation, and hence also in differentiation. Thus, the subtlety that this
section discusses has nothing to do with the algebra of sites.

The subtlety involves the naive concept of “all possible derivatives”. In
some cases, what this turns out to mean, precisely, is the derivatives in all
possible directions that are vectors — but not the derivatives in directions
that are anchors of nonzero weight.

For example, consider the notion of “agreement to kth order”. Two
smooth, real-valued functions f and g defined on A are said to agree to



7.11. AGREEMENT TO KTH ORDER 101

kth order at a point P in A when

Dπ1 · · ·Dπjf(P ) = Dπ1 · · ·Dπjg(P ),

for all j in [0 . .k] and all vectors π1 through πj over A. That is, all derivatives
of f and g of order at most k agree at P .

Suppose now that f is given by a polynomial of degree at most n, and
let that same symbol f denote the resulting n-form; and similarly for g, an
m-form. The identity above then reduces to the identity

〈f, π1 · · ·πjP (n−j)/(n− j)! 〉 = 〈g, π1 · · ·πjP (m−j)/(m− j)! 〉.

Might this identity hold with the vectors π1 through πj generalized to become
arbitrary anchors?

If n = m, then that generalized identity does hold. A more concise way
to phrase the situation is as follows: Two n-forms f and g agree to kth order
at P just when 〈f, s〉 = 〈g, s〉 for all n-sites s that are multiples of P n−k, as
we essentially saw in Proposition 6.7-2.

If k = 0 and hence j = 0, the generalized identity holds trivially, since
there are no parameters πi to remove restrictions from.

But, if n and m are distinct and k ≥ 1, there is no hope. Substitut-
ing π1 := · · · := πj := P , we find that we must have 〈f, P n/(n − j)! 〉 =
〈g, Pm/(m− j)! 〉 for all j from 0 to k, and that is possible only if both f and
g are zero to kth order at P . Thus, when we require two forms of differing
degrees to agree to some order at some point, we must restrict the directions
of differentiation (πi) to be vectors.

Suppose that f is a fixed n-form and that we want to determine g to be
the unique k-form that agrees with f to kth order at P . How do we construct
that unique g via the paired algebras? We must arrange that

〈f, π1 · · ·πjP (n−j)/(n− j)! 〉 = 〈g, π1 · · ·πjP (k−j)/(k − j)! 〉,(7.11-1)

for all j in [0 . . k] and all vectors π1 through πj over A. Let (P, ϕ1, . . . , ϕd) be
some Cartesian reference frame for the affine d-space A that uses the point P
as the center of its coordinate system. Every k-site over A can be expanded
as a linear combination of monomials of the form P k−jϕα, where j is in [0 . .k]
and α = (α1, . . . , αd) is a multi-index with |α| := α1 + · · ·+ αd = j. For any
monomial k-site of the form P k−jϕα, Equation 7.11-1 tells us the value that
we must assign to 〈g, P k−jϕα〉. Assigning arbitrary values to those pairings
determines a unique k-form g, since those monomials form a basis for the
space Symk(Â) of k-sites. And the k-form g that is so determined will, in
fact, satisfy Equation 7.11-1 for all vectors π1 through πj, since each πi is a
linear combination of (ϕ1, . . . , ϕd).

In Section 8.4.2, we shall analyze a differencing algorithm for computing
nth derivatives of an n-form, when that n-form is given to us by its values
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at the points of an evenly n-divided d-simplex. That algorithm is another
example where we must restrict the directions of differentiation to be vectors.



Chapter 8

Exploiting the Pairing

We have built the algebra of sites, in parallel with the algebra of forms; and
we have chosen, for each n, a pairing map between n-sites and n-forms. So
each dual functional on n-forms is now represented, for us, by an n-site.
Symmetrically, each dual functional on n-sites is represented by an n-form.
In this chapter, we study several ways in which those representations clarify
and simplify CAGD.

8.1 The duals of popular monomial bases

Several of the most popular bases for the linear space Symn(Â
∗) of n-forms

on A are monomial bases. For example, a power basis is the monomial basis
associated with a Cartesian reference frame for A, while a Bernstein basis
is a rescaling of the monomial basis associated with a barycentric reference
frame. In the paired-algebras framework, Proposition 7.4-2 tells us that the
duals of these popular bases are also rescalings of monomial bases.

8.1.1 Power-basis forms and Taylor-basis sites

Let A be an affine space of finite dimension d, and let (C, ϕ1, . . . , ϕd) be
a Cartesian reference frame for A. The point C together with the vectors
ϕ1 through ϕd form a basis (C, ϕ1, . . . , ϕd) for the linearized space Â. Let
(w, u1, . . . , ud) be the dual basis for Â∗. The monomials of total degree n in
the variables (w, u1, . . . , ud) form the power basis for n-forms on A associated
with this reference frame. To denote those monomials, let α := (α0, . . . , αd)
be a multi-index with |α| = n, and let α+ denote the dehomogenized multi-
index α+ := (α1, . . . , αd), so that α0 + |α+| = |α| = n. The power basis
consists of the n-forms (wα0 uα+)|α|=n.

We now apply Proposition 7.4-2. Since we have adopted the summed
pairing, we conclude that the dual basis for n-sites is the rescaled monomial
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basis (Cα0 ϕα+/α! )|α|=n. We shall refer to this basis as the Taylor basis
for n-sites associated with the reference frame (C, ϕ1, . . . , ϕd), since pairing
an n-form with the n-sites in this Taylor basis (Cα0 ϕα+/α! )|α|=n precisely
corresponds to expanding that n-form in a Taylor series around C.

Take the case d = 2 and n = 3, for a concrete example. Here, listed on
successive lines, are the power-basis cubic forms, the Taylor-basis cubic sites,
and the results of pairing those cubic sites with an arbitrary cubic form f :

w3 w2u w2v wu2 wuv wv2 u3 u2v uv2 v3

C3

6
C2ϕ

2
C2ψ

2
Cϕ2

2
Cϕψ Cψ2

2
ϕ3

6
ϕ2ψ
2

ϕψ2

2
ψ3

6

f(C) Dϕf(C) Dψf(C)
(Dϕ)2f(C)

2
DϕDψf(C)

(Dψ)2f(C)

2

(Dϕ)3f

6

(Dϕ)2Dψf

2

Dϕ(Dψ)2f

2

(Dψ)3f

6

Note that all three of the corner sites in this example represent evaluations.
The site C3/6 = εC represents evaluation at the center point C, clearly. But
the site ϕ3/6 = εϕ also represents evaluation — evaluation at the vector ϕ;
we have f(ϕ) = 〈f, ϕ3/6〉 = (Dϕ)3f/6.

8.1.2 Bernstein-basis forms and Bézier-basis sites

Let’s consider Bernstein bases for n-forms next. Let (R0, . . . , Rd) be a
barycentric reference frame for the d-dimensional affine space A. And let
(r0, . . . , rd) be the basis for Â∗ that is dual to the basis (R0, . . . , Rd) for Â.
The Bernstein basis for n-forms on A associated with the reference frame
(R0, . . . , Rd) (or with the reference d-simplex [R0, . . . , Rd]) consists of the
n-forms

((
n
α

)
rα
)
|α|=n. The multinomial scaling factor

(
n
α

)
makes the Bern-

stein n-forms a partition of unity; that is, we have

∑
|α|=n

(
n

α

)
rα(P ) =

∑
|α|=n

(
n

α

)
r0(P )α0 · · · rd(P )αd

= (r0(P ) + · · ·+ rd(P ))n = 1n = 1,

for all points P in A.

What basis is dual to the Bernstein basis? In traditional approaches
to CAGD, that dual basis consisted of certain dual functionals (ρα)|α|=n.
The d + 1 functionals at the corners, from ρ(n,0,...,0) through ρ(0,...,0,n), were
recognized as being the point evaluations εR0 through εRd . But the remaining
dual functionals were not typically viewed as having any simple form.

The paired-algebras framework lets us represent every one of those dual
functionals quite simply, as a monomial in the points (R0, . . . , Rd). By Propo-
sition 7.4-2, the basis dual to the Bernstein basis consists of the n-sites
(Rα/n! )|α|=n. Note that the corner n-sites are again point evaluations, from
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εR0 = Rn
0/n! through εRd = Rn

d/n! . The internal n-sites represent evaluations
of the blossom; we have

〈f, Rα/n! 〉 = f̃(R0, . . . , R0︸ ︷︷ ︸
α0

, . . . , Rd, . . . , Rd︸ ︷︷ ︸
αd

).

Indeed, for any n-form f , the pairing values 〈f, Rα/n! 〉 are precisely the
Bézier ordinates of f , the coefficients that are needed to expand f as a linear
combination of the Bernstein n-forms. As a result, it seems natural to refer
to the basis (Rα/n! )|α|=n as the Bézier basis for n-sites that is associated
with the barycentric reference frame (R0, . . . , Rd).

8.2 The de Casteljau Algorithm

The de Casteljau Algorithm can be thought of in various ways. From a
blossoming perspective, it starts with the Bézier ordinates of f , the blossom
values

f̃(R0, . . . , R0︸ ︷︷ ︸
α0

, . . . , Rd, . . . , Rd︸ ︷︷ ︸
αd

)

for |α| = n and, by taking repeated linear combinations, it computes an
arbitrary blossom value f̃(p1, . . . , pn), where p1 through pn are any anchors
over A. Now that we understand about n-sites, we can avoid all mention of
the n-form f as follows: The de Casteljau Algorithm computes an arbitrary
real-lineal n-site p1 · · · pn/n! as a linear combination of the Bézier n-sites
(Rα/n! )|α|=n.

Here’s how the de Casteljau Algorithm works. Let ei, for i in [0 . . d],
denote the multi-index that has a one in the ith place and zeros everywhere
else, so that α = α · e = α0e0 + · · · + αded. The de Casteljau Algorithm
computes an n-site over A that we shall denote Iα, for all |α| ≤ n:

for |α| = n do Iα := Rα/n! od;
for k from 1 to n do

for |α| = n− k do
Iα := r0(pk)Iα+e0 + · · ·+ rd(pk)Iα+ed

od;
od;
output I(0,...,0) = p1 · · · pn/n!

This works because, for all α with |α| = n− k, we have Iα = p1 · · · pkRα/n! .
The first statement establishes this invariant for k = 0. To analyze the
assignment in the inner loop inductively, consider the barycentric expansion
p = r0(p)R0 + . . . rd(p)Rd, which is valid for all anchors p over A. Setting
p := pk in that expansion and then multiplying by p1 · · · pk−1Rα/n! shows
that Iα is set correctly.
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8.3 Degree raising

Given the Bézier points of a polynomial curve or surface of degree at most
n, there are well-known rules for computing the Bézier points of that same
curve or surface, viewed as being of degree at most n + 1. The process is
called degree raising (a.k.a. degree elevation). As an exercise in the use of
the paired algebras, let’s rederive those well-known rules.

Each coordinate of the original curve or surface is a real-valued function
on the parameter space A, and homogenization converts each of them into
an n-form on A. Let f be one of those n-forms. If we homogenized up to
degree n + 1, rather than to degree n, the result would be wf , where w is
the weight coanchor on A. This suggests that degree raising corresponds to
multiplication by w. Indeed, since any point P in A has w(P ) = 1, we have
(wf)(P ) = w(P )f(P ) = f(P ); so the n-form f and the (n+1)-form wf agree
at all points. Note that they don’t agree at arbitrary anchors, however.

So our task is to compute the Bézier ordinates of wf in terms of those of f .
Letting [R0, . . . , Rd] be a reference d-simplex in A, the Bézier ordinates of f
are the values 〈f, Rα/n! 〉, where α varies over all multi-indices with |α| = n.
Similarly, the Bézier ordinates of wf are the values 〈wf,Rβ/(n + 1)! 〉, for
|β| = n + 1. We can compute the latter in terms of the former by using
the less popular contraction operator “ ”, the one that contracts a site on a
form to produce a site of lower degree.

From the definition of contraction, we have

〈wf,Rβ/(n + 1)! 〉 = 〈f, w Rβ/(n + 1)! 〉.

Contracting on a coanchor obeys the product rule, just like contracting on
an anchor, which is differentiation. Since w(R0) = · · · = w(Rd) = 1, we have
w Rβ = β0R

β−e0 + · · ·+ βdR
β−ed. Thus, for any β with |β| = n + 1, we get

the familiar formula for degree raising

〈wf,Rβ/(n + 1)! 〉 = 〈f, w Rβ/(n + 1)! 〉

(8.3-1)

= 〈f, (β0R
β−e0 + · · ·+ βdR

β−ed)/(n + 1)! 〉

=
β0

n + 1
〈f, Rβ−e0/n! 〉+ · · ·+ βd

n + 1
〈f, Rβ−ed/n! 〉.

If βi = 0 for some i, then the exponent β − ei will have a negative entry,
which might seem like trouble; while the paired-algebras framework does
allow us to multiply by points, it doesn’t allow us to divide by them. (Though
it could; see Section 8.5.) But any such troublesome term is multiplied by
βi = 0, and hence drops out of the sum. This is just like differentiating the
constant 1 via the power-law, where we have Dπ1 = Dπg

0 = 0 g−1Dπg = 0
for any g, whether or not g is invertible.
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Formula 8.3-1 expresses the βth Bézier ordinate of wf as an affine combi-
nation of d+1 of the Bézier ordinates of f . This process actually has nothing
to do with the particular n-form f . Here is that same formula, rewritten to
express the w-contraction of the Bézier (n + 1)-site Rβ/(n + 1)! as an affine
combination of d + 1 Bézier n-sites:

w
Rβ

(n + 1)!
=

β0

n + 1

(
Rβ−e0

n!

)
+ · · ·+ βd

n + 1

(
Rβ−ed

n!

)
.

8.4 The geometry of point evaluations

Representing dual functionals on n-forms as n-sites is helpful also when
studying those dual functionals that evaluate at points. Let εP be the dual
functional that evaluates n-forms at the point P , so that εP (f) := f(P ).
In traditional approaches to CAGD, this functional is just one element of a
space of linear functionals — rather abstract and disembodied. But we have
forged the connection f(P ) = 〈f, P n/n! 〉; so the functional εP is represented,
in the paired-algebras framework, by the n-site εP = P n/n! . Why is such a
concrete, algebraic formula possible and what does it buy us?

Such a formula is possible because the Veronese map θd,n, the map that
takes each point P in the d-space A to its nth power θd,n(P ) := P n, turns
out to encapsulate precisely the nonlinear stuff that has to happen as part
of evaluating an n-form. Evaluating an n-form f at a point P is not a linear
process; while the value f(P ) is a linear function of f , it is a nonlinear
function of P . But — and here is the key insight on which the paired-
algebras framework is built — the value f(P ) varies linearly as a function
of P n. We can evaluate any n-form f at the point P by plugging f and P n

into the bilinear map (f, s) �→ 〈f, s/n! 〉. Thus, raising P to the nth power
precomputes precisely enough information about P so that the subsequent
evaluation of any n-form at P is a linear process.

Math remark: Raising P to the nth power is linearly equivalent to evaluating
n-forms at P only over fields of characteristic zero. Over a field of prime
characteristic, raising P to the nth power may not give us enough information
to evaluate an arbitrary n-form at P . The problem shows up already for
functions of a single variable, say f(t̄ ) = f(C + tϕ). Raising t̄ to the nth

power means computing the coefficients in the binomial expansion

t̄n = (C + tϕ)n =
∑

0≤i≤n

(
n

i

)
ti Cn−iϕi.

In characteristic zero, knowing the values (
(
n
i

)
ti)0≤i≤n is linearly equivalent

to knowing the values (ti)0≤i≤n, the latter being what we need to evaluate



108 CHAPTER 8. EXPLOITING THE PAIRING

any n-form f at t̄. But in prime characteristic, we may have
(
n
i

)
= 0 for

some i in the range 0 < i < n, so we may not know enough. The fact that
the evaluate-at-P functional εP is represented by the n-site P n/n! serves as
a warning that we would be in trouble were n! to be 0.

Once we have the formula εP = P n/n! , we can use that correspondence
as a source of insight into the geometry of the point-evaluation functionals.
Indeed, given any points P1 through Pm in A, the geometric relationships
that hold among the functionals εPi are precisely those that hold among the
corresponding n-sites P n

i /n! . And since most geometric relationships aren’t
affected by a uniform scaling, we can often drop the annoying n! and consider
simply the nth powers P n

1 through P n
m.

For example, let d := dim(A) and let m :=
(
n+d
n

)
denote the dimension

of the space Symn(Â
∗) of n-forms on A. An n-form on A then involves m

degrees of freedom. So we might hope that we could specify an n-form f
on A by requiring that f interpolate arbitrary specified values at m fixed
points, say (P1, . . . , Pm). Whether that scheme works or not depends upon
the geometric structure of the points (Pi). The points (P1, . . . , Pm) are called
good for interpolation by d-variate n-ics when specifying arbitrary real values
for f(P1) through f(Pm) determines a unique n-form f . (Since the n-form
f has been homogenized, it is actually a polynomial in d + 1 variables; but
it is still referred to as d-variate.) In the univariate case d = 1, the points
(P1, . . . , Pn+1) are good for interpolation by n-ics whenever they are distinct,
as follows from the Vandermonde determinant. But the multivariate case is
more subtle. Note, for example, that we certainly can’t allow more than n+1
of our m =

(
n+d
n

)
points (Pi) to be collinear, since the n-form restricted to

that line is a univariate n-ic.

From basic linear algebra, the points (P1, . . . , Pm) will be good for inter-
polation by n-ics just when the point-evaluation functionals (εP1 , . . . , εPm) are
linearly independent, hence forming a basis for the dual space Symn(Â

∗)∗.
Now that we have the correspondence εP = P n/n! , we can make this criterion
more primal and concrete: The points (P1, . . . , Pm) are good for interpolation
by n-ics just when the n-sites (P n

1 , . . . , P
n
m) are linearly independent, hence

forming a basis for the space Symn(Â) of n-sites over A.

8.4.1 Evenly n-divided d-simplices

One standard example of a configuration of points that is good for interpo-
lation by d-variate n-ics is the vertices of an evenly n-divided d-simplex. In
this section, we introduce that configuration of points. For completeness,
we also verify that those points are indeed good for interpolation by n-ics.
Figure 8.1 shows an evenly 4-divided 2-simplex.
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R0

R1

R2

Figure 8.1: An evenly 4-divided 2-simplex

Let (R0, . . . , Rd) be a barycentric reference frame for a d-dimensional
affine space A. The points R0 through Rd are then the vertices of a d-simplex
[R0, . . . , Rd] in A. We want to subdivide that simplex evenly into subsimplices
whose linear dimensions are n times smaller. To do that, we let β ·R denote
the linear combination β · R := β0R0 + · · · + βdRd, where β = (β0, . . . , βd)
is a multi-index. Since R0 through Rd are all points, the dot product β · R
is an anchor over A of weight |β|. Consider the set of points (β · R/n)|β|=n.
We shall say that those m :=

(
n+d
n

)
points evenly n-divide the d-simplex

[R0, . . . , Rd]. Note that the edge from Ri to Rj is divided into n segments of
equal length by the points

Ri,
(n− 1)Ri + Rj

n
,
(n− 2)Ri + 2Rj

n
, . . . , Rj.

By the way, we must restrict n to be positive when evenly n-dividing
a d-simplex, since we are dividing by n to get points. The theory would
perhaps be cleaner if we dealt directly with the weight-n anchors (β ·R)|β|=n.
We might refer to those anchors as evenly n-replicating the d-simplex. An
evenly 0-replicated d-simplex would consist of the single anchor 0, for any
dimension d (vacant remark: including d = −1).

Proposition 8.4-1 Let (R0, . . . , Rd) be a barycentric reference frame for the
d-dimensional affine space A. For any positive n, the points (β · R/n)|β|=n
that result from evenly n-dividing the d-simplex [R0, . . . , Rd] are good for
interpolation by n-ics on A.

Proof We must show that the evaluation functionals (εβ·R/n)|β|=n form a

basis for the dual space Symn(Â
∗)∗ or, equivalently, letting sβ denote the

n-site

sβ :=
1

n!

(
β · R
n

)n
,

that the n-sites (sβ)|β|=n form a basis for the space Symn(Â). We’ll use
the latter language for practice, even though this proof doesn’t exploit the
multiplication in the algebra of sites.
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How can we prove that the particular family of n-sites (sβ)|β|=n forms a

basis? Let (fα)|α|=n be some family of n-forms on A. Letting m :=
(
n+d
n

)
,

we can construct an m-by-m matrix whose (α, β) entry is 〈fα, sβ〉. If that
matrix is invertible, it follows that both the n-forms (fα) and the n-sites (sβ)
must constitute bases. So it suffices to construct some family of n-forms (fα)
which, with the n-sites (sβ), generate an invertible matrix.

We effect that construction in a nonsymmetric way, letting the vertex
R0 play a special role. For i from 1 to d, let ϕi := (Ri − R0)/n be the
vector that separates two adjacent subdivision points along the edge joining
R0 to Ri. The sequence (R0, ϕ1, . . . , ϕd) constitutes a Cartesian reference
frame for the space A. In that reference frame, the point β · R/n can be
rewritten as R0 + (β+ · ϕ), where β+ := (β1, . . . , βd) denotes the multi-index
β with its zeroth component β0 removed. Let (w, u1, . . . , ud) be the basis
for the space Â∗ of coanchors that is dual to the basis (R0, ϕ1, . . . , ϕd) for
Â. From the duality constraints, we deduce that 〈w,R0 + (β+ · ϕ)〉 = 1,
while 〈ui, R0 + (β+ · ϕ)〉 = βi. It follows that, for any integer k, we have
〈ui − kw,R0 + (β+ · ϕ)〉 = (ui − kw)

(
R0 + (β+ · ϕ)

)
= βi − k. This value is

zero, of course, precisely when k = βi.
To generate lots of such zeros, we use falling-factorial powers. For any i

in [1 . . d] and any nonnegative k, we define the k-form uki by

u
k
i := ui(ui − w)(ui − 2w) · · · (ui − (k − 1)w).

These are analogs of the falling-factorial powers in combinatorics [24], but
homogenized. Note that uki

(
R0 + (β+ · ϕ)

)
will be zero just when k > βi,

because of the factor of ui − βiw in uki .
For any multi-index α, we denote by uα+ the product uα+ := u

α1

1 · · ·u
αd
d .

We then choose our family of n-forms (fα)|α|=n to be

fα := wα0uα+ = wα0u
α1

1 · · ·u
αd
d .

Pairing any n-form f with the n-site sβ corresponds to evaluating f at
the subdivision point R0 + (β+ · ϕ). So, if αi > βi for any i from 1 to d,
we conclude that 〈fα, sβ〉 = fα

(
R0 + (β+ · ϕ)

)
= 0. On the other hand, the

diagonal entry 〈fα, sα〉 definitely won’t be zero.
We now order both the rows and columns of our m-by-m matrix using

any common total ordering ≺ of the multi-indices with the property that
α0 > β0 implies α ≺ β; that is, larger values of α0 get listed first. It follows
that, whenever α " β, we have α0 ≤ β0. So either α = β or else we have
αi > βi, for some i in [1 . . d ]. For example, Figure 8.2 shows the matrix that
arises for bivariate cubics, under a certain ordering, using the abbreviations
(C, ϕ, ψ) := (R0, ϕ1, ϕ2) and (w, u, v) := (w, u1, u2). The matrix that results
from any such ordering will be upper-triangular with nonzero entries on the
diagonal, and will hence be invertible. ��
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C
3
/
6

(C
+
ϕ
)3
/
6

(C
+
ψ

)3
/
6

(C
+

2
ϕ
)3
/
6

(C
+
ϕ
+
ψ

)3
/
6

(C
+

2
ψ

)3
/
6

(C
+

3
ϕ
)3
/
6

(C
+

2
ϕ
+
ψ

)3
/
6

(C
+
ϕ
+

2
ψ

)3
/
6

(C
+

3
ψ

)3
/
6

w3 1 1 1 1 1 1 1 1 1 1
w2u 0 1 0 2 1 0 3 2 1 0
w2v 0 0 1 0 1 2 0 1 2 3
wu(u− w) 0 0 0 2 0 0 6 2 0 0
wuv 0 0 0 0 1 0 0 2 2 0
wv(v − w) 0 0 0 0 0 2 0 0 2 6
u(u− w)(u− 2w) 0 0 0 0 0 0 6 0 0 0
u(u− w)v 0 0 0 0 0 0 0 2 0 0
uv(v − w) 0 0 0 0 0 0 0 0 2 0
v(v − w)(v − 2w) 0 0 0 0 0 0 0 0 0 6




Figure 8.2: Proving Proposition 8.4-1 for bivariate cubics

Vacant remark: The proof of Proposition 8.4-1 used a Cartesian reference
frame, so it required d ≥ 0. But the result holds also for d = −1, trivially
since n is positive. If we were working with anchors instead of points, the
analogous result would hold as well for evenly 0-replicated (−1)-simplices,
and the proof would be only slightly less trivial.

8.4.2 The Differencing Algorithm

Suppose that we have specified an n-form f on A by choosing the values of
f at the points that result from evenly n-dividing the d-simplex [R0, . . . , Rd],
that is, by choosing the values

(
f(α · R/n)

)
|α|=n. Proposition 8.4-1 tells us

that f is uniquely determined by those values, so we can compute anything
that we like about f . There turns out to be a surprisingly easy way to
compute nth derivatives of f . That is, the computation itself is easy; we do n
stages of differencing, quite similar to the n stages of linear combinations in
the de Casteljau Algorithm. But the reason why this Differencing Algorithm
works is more subtle. In this section, as another example of the benefits
of the paired-algebras framework, we verify this Differencing Algorithm by
exploiting the multiplication in the algebra of sites.

Rephrasing this without mentioning the n-form f , Proposition 8.4-1 says
that the n-sites

(
(α·R/n)n/n!

)
|α|=n form a basis for the linear space Symn(Â)

of n-sites. So we can expand any n-site as a linear combination of those basis
elements. The Differencing Algorithm is a particularly simple way to expand
certain n-sites: the products π1 · · ·πn of n vectors over A.
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The Differencing Algorithm is quite similar to the de Casteljau Algorithm
in computational structure — surprisingly similar, given that the two algo-
rithms take quite different inputs. The de Casteljau Algorithm starts with
the sites in a barycentric monomial basis, while the Differencing Algorithm
starts with the nth powers of the points in an evenly n-divided d-simplex:

for |α| = n do Jα := (α · R/n)n/n! od;
for k from 1 to n do

for |α| = n− k do
Jα := n

(
r0(πk)Jα+e0 + · · ·+ rd(πk)Jα+ed

)
od;

od;
output J(0,...,0) = π1 · · ·πn

Recall that ei, for i in [0 . . d], denotes the multi-index that has a one in the
ith place and zeros elsewhere. The factor of n in the inner loop is justified
as follows. The numbers (r0(πk), . . . , rd(πk)) are the barycentric coordinates
of the vector πk in the reference frame (R0, . . . , Rd). But we want to take
differences with respect to one of the small simplices into which that large
simplex is divided. Viewed with respect to one of those small simplices, the
vector πk looks n times longer.

We verified the de Casteljau Algorithm quite easily, but several things
indicate that the Differencing Algorithm is more subtle. For one thing, the
Differencing Algorithm requires π1 through πn to be vectors, that is, to have
barycentric coordinates that sum to zero. If we try to use the Differencing
Algorithm to compute an n-site p1 · · ·pn whose factors are not vectors, it gets
the wrong answer. For another thing, the factor of n! that divides the input
sites has mysteriously disappeared in the output site; the result is π1 · · ·πn,
with no n! in the denominator.

If we substitute the definitions of the sites (Jα) computed earlier into
the formulas for those computed later, we can capture the correctness of the
Differencing Algorithm as the following hoped-for algebraic identity:

∑
0≤i1≤d...

...
0≤in≤d

ri1(π1)ri2(π2) · · · rin(πn)
(Ri1 + Ri2 + · · ·+ Rin)

n

n!
= π1 · · ·πn.

Note that (ei1 + · · ·+ ein) · R = Ri1 + · · ·+ Rin . Note also that the factors
of n in the inner-loop differences, nested n levels deep, cancel against the nn

in the denominators of the input sites.

We shall generalize that identity slightly and then prove it by induction
on n. The generalization reflects the fact that nth differences of polynomials
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of degree less than n are zero:

∑
0≤i1≤d...

...
0≤in≤d

ri1(π1) · · · rin(πn)
(Ri1 + · · ·+ Rin)

m

n!
=

{
π1 · · ·πn when m = n

0 when 0 ≤ m < n.

(8.4-2)

The base case of the induction is the trivial case n = m = 0. The sum on
the left has (d + 1)n = (d + 1)0 = 1 term, that single term being 0m/n! = 1.
The empty product on the right is also 1.

So assume that Equation 8.4-2 holds up to n and consider what happens
for some m with 0 ≤ m ≤ n + 1. We start off by pulling the sum over in+1

outside and then applying the Binomial Theorem:∑
0≤i1≤d...

...
0≤in+1≤d

ri1(π1) · · · rin+1(πn+1)
(Ri1 + · · ·+ Rin+1)

m

(n + 1)!

=
∑

0≤in+1≤d
rin+1(πn+1)

∑
0≤i1≤d...

...
0≤in≤d

ri1(π1) · · · rin(πn)
((Ri1 + · · ·+ Rin) + Rin+1)

m

(n + 1)!

=
∑

0≤in+1≤d
rin+1(πn+1)

∑
0≤k≤m

(
m

k

)
Rm−k
in+1

∑
0≤i1≤d...

...
0≤in≤d

ri1(π1) · · · rin(πn)
(Ri1 + · · ·+Rin)

k

(n + 1)!

The innermost of these three nested sums is zero by induction when k < n;
it doesn’t matter that the denominator is (n + 1)! instead of n! . So we can
raise the lower bound in the sum on k from 0 to n. We can also lower the
upper bound from m to m − 1, as follows. When k = m, the factor Rm−k

in+1

drops out, leaving nothing that depends upon in+1. So the terms with k = m
contribute some constant multiple of the outer sum r0(πn+1)+ · · ·+rd(πn+1).
But that sum is zero, since πn+1 is a vector.

Thus, we can tighten the bounds in the sum on k from 0 ≤ k ≤ m to
n ≤ k < m. So nothing at all remains when m < n + 1, as we had hoped.
When m = n + 1, the single value k = n gives us∑

0≤in+1≤d
rin+1(πn+1)(n + 1)Rin+1

∑
0≤i1≤d...

...
0≤in≤d

ri1(π1) · · · rin(πn)
(Ri1 + · · ·+ Rin)

k

(n + 1)!
.

The n + 1 that came from the
(
m
k

)
converts the (n + 1)! in the denominator

to an n! , after which the inductive hypothesis replaces the inner sum with
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π1 · · ·πn, leaving us — again as we had hoped — with( ∑
0≤in+1≤d

rin+1(πn+1)Rin+1

)
π1 · · ·πn = π1 · · ·πn+1.

8.5 Integrating over a simplex

We have talked a lot about multiplying by points; what about dividing by
them? Multiplying by points makes sense because we have extended the
affine space A of points into the algebra Sym(Â) of sites. If we wanted to,
we could further extend that algebra into a field: the field Quo(Sym(Â))
of quotients whose numerators and denominators are sites. We would then
need yet another new term; for example, we might refer to a quotient of
sites over A as a location over A. I don’t yet see many applications for
locations in CAGD, so I don’t yet recommend that we in CAGD take this
additional step, from sites to locations. But locations do have at least one
intriguing application; this section discusses a formula for integrating real-
valued functions over simplices that can be expressed more simply using
locations than using sites. Perhaps, when enough other applications have
been discovered, it will be time to take this further (and final?) step toward
allowing arithmetic on points: from points to anchors to sites to locations.

Some words about the mathematics of locations: Let (C, ϕ1, . . . , ϕd) be,
say, a Cartesian reference frame for the d-space A, and let (w, u1, . . . , ud)
be the basis for the linear space Â∗ of coanchors that is dual to that frame.
So the algebras Sym(Â) and Sym(Â∗) of sites and forms are isomorphic to
the polynomial algebras R[C, ϕ1, . . . , ϕd] and R[w, u1, . . . , ud]. Both of those
algebras are free of zero divisors; that is, for any two sites s and t over A,
we have st = 0 only when either s = 0 or t = 0, and similarly for forms
on A. Thus, each of those algebras, when viewed as a ring, is an integral
domain (a.k.a. is entire). So each of those algebras has a quotient field. The
quotient field Quo(Sym(Â∗)) of the algebra of forms is isomorphic to the field
of rational functions R(w, u1, . . . , ud) in the d+1 variables w and u1 through
ud; we allow ourselves to divide by any form that is not identically zero.
Alternatively, we can exploit duality to think of Quo(Sym(Â∗)) as the field
Rat(Â,R) of real-valued, rational functions on anchors. Locations over A
are elements of the quotient field Quo(Sym(Â)) of the algebra of sites, where
we allow ourselves to divide by any site that is not identically zero. The
field Quo(Sym(Â)) of locations over A is isomorphic to the field of rational
functions R(C, ϕ1, . . . , ϕd); or we can exploit duality to think of it as the
field Rat(Â∗,R) of real-valued, rational functions on coanchors.

Now, about that integration formula: Let [R0, . . . , Rd] be a reference
d-simplex for the affine space A. Recall that the Bézier ordinates of an
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n-form f on A are the real numbers 〈f, Rα/n! 〉 for |α| = n, the
(
n+d
n

)
scalars

that result from pairing f with each of the Bézier n-sites. Given some notion
of volume in the space A, say a measure µ on A, suppose that we want to
integrate the n-form f : A→ R with respect to µ over the reference simplex
[R0, . . . , Rd]. Lasserre and Avrachenkov [37] give a pretty formula for this
integral, based on the observation that all of the Bézier ordinates contribute
to the integral with equal weight. Thus, the integral is the volume of the
reference simplex times the average of the Bézier ordinates:∫

[R0,...,Rd]

f(P ) dµ(P ) =
µ([R0, . . . , Rd])(

n+d
n

) ∑
|α|=n

〈f, Rα/n! 〉.(8.5-1)

We won’t bother to prove Formula 8.5-1 here, our goal being instead to
use locations to simplify the sum on the right-hand side. One proof starts
by showing that the average of the Bézier ordinates is not affected when the
degree of f is raised. After raising the degree of f quite high, the many Bézier
ordinates that result closely approximate the values of f , so their average
becomes essentially a Riemann sum for the integral. Farin [20] sketches that
proof in the univariate case, and it works equally well in higher dimensions.

Both sides of Formula 8.5-1 are linear functions of the n-form f , so each
must correspond to pairing f with some n-site. Recalling that f(P ) =
〈f, P n/n! 〉, we have〈

f,
1

n!

∫
[R0,...,Rd]

P n dµ(P )

〉
=

〈
f,

µ([R0, . . . , Rd])

n!
(
n+d
n

) ∑
|α|=n

Rα

〉
.

So Formula 8.5-1 boils down to this relationship among the n-sites over A:∫
[R0,...,Rd]

P n dµ(P ) =
µ([R0, . . . , Rd])(

n+d
n

) ∑
|α|=n

Rα.(8.5-2)

Consider the special case d = 1, where we integrate over a line segment
[R0 . . R1]; and let’s write that segment as [R . . S] for simplicity. We get∫

[R..S]

P n dµ(P ) =
µ([R . . S])

n + 1
(Rn + Rn−1S + · · ·+ Sn).

If this were elementary calculus, we wouldn’t distinguish between a point
on the domain line and a real number. We could then express the length
µ([R . . S]) simply as (S − R), which would help the sum on the right to
collapse, leading to the elementary formula∫ S

R

P n dP =
Sn+1 −Rn+1

n + 1
.
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In the paired-algebras framework, however, that equation is nonsense, since
it alleges that an n-site equals an (n + 1)-site. To avoid such nonsense, we
must distinguish between the real number µ([R . . S]) and the vector S −R.

But let’s suppose that we have defined locations over A, thereby making
it legal to divide by nonzero sites, as well as to multiply by them. We can
then achieve much the same collapsing in a legitimate manner as follows,
multiplying and dividing by the nonzero vector S −R:∫

[R..S]

P n dµ(P ) =
µ([R . . S])

n + 1

(S −R)(Rn + Rn−1S + · · ·+ Sn)

S − R

=
µ([R . . S])

n + 1

Sn+1 −Rn+1

S −R
.

What happens when the dimension d exceeds 1? Can we still use division
by sites to achieve analogous collapsings? The following identity for bivariate
cubics with reference triangle �QRS points the way:

Q3

+Q2R + Q2S

+QR2 + QRS + QS2

+R3 + R2S + RS2 + S3 =
Q3+2

(Q−R)(Q− S)
+

R3+2

(R−Q)(R− S)

+
S3+2

(S −Q)(S − R)
.

We can make the univariate case fit that pattern by a little rewriting:∫
[R..S]

P n dµ(P ) =
µ([R . . S])

n + 1

(
Rn+1

R− S
+

Sn+1

S − R

)
.

More generally, for any dimension d and degree n, we shall prove that

∑
|α|=n

Rα =
∑

0≤k≤d

Rn+d
k∏

0≤j≤d
j �=k

(Rk −Rj)
.(8.5-3)

Equation 8.5-3 is a algebraic identity; as we shall prove in a moment, it
holds whenever the symbols R0 through Rd denote distinct elements of some
field. By substituting the right-hand side for the left in Equation 8.5-2, we
get a new integration formula, using locations, that is arguably simpler:∫

[R0,...,Rd]

P n dµ(P ) =
µ([R0, . . . , Rd])(

n+d
n

) ∑
0≤k≤d

Rn+d
k∏

0≤j≤d
j �=k

(Rk − Rj)
.(8.5-4)
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The good news about this new Formula 8.5-4 is that the sum on the right-
hand side has collapsed, leaving a sum with only d + 1 terms, instead of(
n+d
n

)
. But each term is more complicated; rather than summing n-sites, we

are summing locations over A whose numerators are (n+ d)-sites and whose
denominators are d-sites. The bad news about Equation 8.5-4 is that I don’t
know how to pair an n-form with such a location. Thus, it may well be that
Formula 8.5-4 is useless for actually computing integrals, serving only as an
intriguing, location-based way to abbreviate Formula 8.5-2.

It remains to prove Equation 8.5-3, which we shall do by a joint induction
on n and d. When d = 0, Equation 8.5-3 reduces to the trivial identity
Rn

0 = Rn
0 . When n = 0, the left-hand sum has an empty product as its single

term, so the left-hand side reduces to 1. To handle the right-hand side in
the case n = 0, suppose that we use the Lagrange Interpolation Formula
to interpolate the univariate polynomial t �→ td at the d + 1 distinct real
points t := r0 through t := rd. The Lagrange interpolant will reconstruct the
polynomial td exactly, so we find that

td =
∑

0≤k≤d

rdk
∏

0≤j≤d
j �=k

t− rj

∏
0≤j≤d
j �=k

rk − rj
.

Extracting the coefficients of td from each term in this polynomial identity,
we conclude that

1 =
∑

0≤k≤d

rdk∏
0≤j≤d
j �=k

rk − rj
,(8.5-5)

for all sequences (r0, . . . , rd) of distinct real numbers. If we multiplied this
Equation 8.5-5 through by the least common denominator

∏
0≤i<j≤d(rj−ri) of

the terms in the sum, however, we would be left with a polynomial identity.
So Equation 8.5-5 must also hold with (r0, . . . , rd) replaced by any d + 1
distinct elements of any field — in particular, by the points (R0, . . . , Rd) in
the affine space A. This establishes Equation 8.5-3 in the case n = 0.

Suppose now that both n and d are positive, and let’s rewrite the left-hand
side of Equation 8.5-3 in the equivalent form

S(d, n) :=
∑
|α|=n

Rα =
∑

0≤i1≤···≤in≤d
Ri1 · · ·Rin .

Partitioning this sum according as in = d or not, we have

S(d, n) = Rd S(d, n− 1) + S(d− 1, n).
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Applying the inductive hypothesis in each case, we find that

S(d, n) = Rd
∑

0≤k≤d

Rn−1+d
k∏

0≤j≤d
j �=k

(Rk − Rj)
+

∑
0≤k≤d−1

Rn+d−1
k∏

0≤j≤d−1
j �=k

(Rk −Rj)
.

We multiply both the numerator and denominator of the right-hand sum-
mand by Rk − Rd, to get

S(d, n) = Rd
∑

0≤k≤d

Rn−1+d
k∏

0≤j≤d
j �=k

(Rk − Rj)
+

∑
0≤k≤d−1

Rn+d−1
k (Rk − Rd)∏

0≤j≤d
j �=k

(Rk −Rj)
.

We can now raise the upper limit on k in the right-hand sum from d−1 to d,
since Rk−Rd = 0 when k = d. We then expand the right-hand sum into two
sums, the second of which cancels the left-hand sum, and we are left with

S(d, n) =
∑

0≤k≤d

Rn+d
k∏

0≤j≤d
j �=k

(Rk − Rj)
,

which completes the proof by induction.

Exercise 8.5-6 Prove Equation 8.5-3 without using induction by combining
the ideas in our proof of the case n = 0 with Leibniz’s Formula [13] from the
theory of divided differences.

Hint: Find the univariate polynomial of degree at most d that interpolates
the polynomial t �→ tn+d at the points t := r0 through t := rd. Using the
Lagrange Interpolation Formula as in our proof of the base case n = 0,
show that the right-hand side of Equation 8.5-3 gives the coefficient of td

in that interpolant. But that same coefficient is also the divided difference
[r0, . . . , rd]t

n+d. Show that the left-hand side of Equation 8.5-3 gives that
divided difference by using Leibniz’s Formula repeatedly, expanding tn+d as
the product of n + d copies of t.



Chapter 9

Universal Mapping Conditions

People who use the homogenized framework already have some familiarity
with linearization, the process that extends an affine space A into the lin-
ear space Â. The paired-algebras framework also relies on algebrization, the
process that extends a linear space X into the symmetric algebra Sym(X).
Both extensions can be achieved by various concrete constructions, three of
which we discussed in Section 4.9 for linearization and in Section 5.1 for alge-
brization. In those sections, we claimed that it didn’t matter which concrete
construction we employed, since we can characterize our goal abstractly using
a universal mapping condition. In this section, we explore universal mapping
conditions at various levels of abstraction.

9.1 Linearization via a universal condition

Let’s start with linearization, since it is both simpler and more familiar.
Given an affine space A, can we characterize its linearization Â abstractly
and uniquely? The “uniquely” part turns out to be hopeless; the closest that
we can come to “unique” while remaining abstract is “unique up to a unique
isomorphism”. Since we can’t achieve absolute uniqueness, let’s temporarily
refrain from talking about “the linearization” and from writing Â. Instead,
let’s try to abstractly characterize what it means for some linear space X to
be “a linearization” of the affine space A.

Since linearization is a process of extension, we expect a linearization X
of A to include A as a subset; indeed, we naively want A to sit, inside X, as
an affine hyperplane not containing the origin. Using that subset language,
here is the universal mapping condition that a linearization must satisfy.

Condition 9.1-1 For any affine space A, a linear space X ⊇ A is a lin-
earization of A when every affine map j : A→ Y , from A to any linear space
Y , extends uniquely to a linear map f : X → Y . That is, there must exist a
unique linear map f : X → Y that agrees with j on the subset A of X.

119



120 CHAPTER 9. UNIVERSAL MAPPING CONDITIONS

While we naively expect that any linearization X of the affine space A
will include A as a subset, it would be technically unfortunate to require
the relationship A ⊆ X. For example, we exploited duality in Section 4.9
to argue that the linear space Aff(A,R)∗ is a linearization of A. The space
Aff(A,R)∗ does not include A as a subset; but it does contain the evaluate-
at-P functional εP , for every point P in A, which is almost as good. To allow
for these sorts of linearizations, let’s stop requiring A ⊆ X and instead settle
for an affine map i : A→ X that lets us view A as sitting inside of X.

Condition 9.1-2 For any affine space A, a linear space X and an affine map
i : A → X, taken together, are a linearization of A when, for every linear
space Y and every affine map j : A → Y , there exists a unique linear map
f : X → Y with f ◦ i = j.

Condition 9.1-2 abstractly captures all of the concrete properties that we
want a linearization to have. Let’s first convince ourselves of that intuitively
by considering those properties in turn.

1. We want the affine map i : A→ X to be injective. (Indeed, we at first
built in that requirement by demanding that A ⊆ X.) If there were
distinct points P and Q in A with i(P ) = i(Q), we could construct an
affine map j : A → Y with j(P ) �= j(Q), and then no map f : X → Y
could possibly exist — linear or not — with f ◦ i = j.

2. We don’t want the image space i(A), which will be an affine subspace
of X, to include the origin of X. If there were any point P in A with
i(P ) = 0, we could construct an affine map j : A → Y with j(P ) �= 0,
and then, since linear maps must take zero to zero, no linear map
f : X → Y could possibly exist with f ◦ i = j.

3. It follows from the two previous points that the dimension of the linear
space X must exceed that of A. We want dim(X) to be precisely
dim(A) + 1, not larger. If dim(X) were larger, we could take any space
Y of positive dimension and consider the zero map j : A → Y . The
condition f ◦ i = j = 0 would require f to be zero on a subspace of X
of dimension dim(A) + 1, but we would be free to map the remaining
dimensions of X arbitrarily; so f would not be unique.

But much more is true. Any structure that is defined by a universal
mapping condition of the same flavor as Condition 9.1-2 is always uniquely
determined, up to a unique isomorphism. The following proposition shows
that in the particular case of Condition 9.1-2. But the structure of the
argument is quite general, so the analogous result holds, equally well, for any
structure that is defined by a universal mapping condition in this way.
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Proposition 9.1-3 Let A be an affine space, and, for k equal to 1 and 2, let
Xk be a linear space and ik : A→ Xk be an affine map. If both of the pairs
(X1, i1) and (X2, i2) are linearizations of A according to Condition 9.1-2,
then there exists a unique isomorphism between X1 and X2 that makes the
following diagram commute:

X1 X2

A
i2i1

h21

h12

❆
❆❆

✁
✁✁☛

✲✛

Warning: The map h21 in this diagram goes from X1 to X2, rather than
the reverse; that is, the subscripts should be read from right to left. That
looks weird in the diagram, but works well in a formula such as x2 = h21(x1),
where x1 belongs to X1 and x2 to X2. More generally, with the subscripts
in this order, the composition hij ◦ hkl makes sense just when the adjacent
subscripts coincide, when j = k. Section C.1 discusses the sad choices of
convention that now force either our diagrams or our formulas to look wrong.

Proof We first apply the universal mapping condition for (X1, i1) to the
pair (Y, j) := (X2, i2). We deduce that there exists a unique linear map
h21 : X1 → X2 with h21 ◦ i1 = i2. Symmetrically, there exists a unique linear
map h12 : X2 → X1 with h12 ◦ i2 = i1.

It remains to verify that h21 is an isomorphism with h12 as its inverse,
that is, that the compositions h12 ◦ h21 and h21 ◦ h12 are the identity maps
on X1 and X2, respectively. To prove the first of those claims, we apply the
universal condition for (X1, i1) to the pair (Y, j) := (X1, i1). So there exists
a unique linear map h11 : X1 → X1 with h11 ◦ i1 = i1. The identity map on
X1 is clearly one candidate for h11; but the composition h12 ◦ h21 is another
such candidate, since we have h12 ◦ h21 ◦ i1 = h12 ◦ i2 = i1. Since the map
h11 is unique, the composition h12 ◦ h21 must be the identity on X1. The
composition h21 ◦ h12 must be the identity on X2 symmetrically. ��

Thus, if we define linearization using a universal mapping condition, it
follows from purely formal reasoning that linearizations are unique, up to a
unique isomorphism — if they exist at all. This formal reasoning leaves open
the possibility that linearizations might not exist, however. To show that
they do exist, we need a more concrete argument, one that appeals to the
nature of affine and linear spaces.

Proposition 9.1-4 If A is any affine space, there exists a linear space X
and an affine map i : A → X that are a linearization of A according to
Condition 9.1-2.
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Proof We need to construct a concrete linearization (X, i), by some method.
The simplest method involves fixing a reference frame for A, so that’s what
we’ll do. We don’t have to worry about the resulting linearization depending,
in some bad way, on which frame we happen to choose, since all linearizations
of A are uniquely isomorphic.

Let (R0, . . . , Rd) be a barycentric reference frame for A. We construct X
as the linear space that has the new atoms (x0, . . . , xd) as a basis. We define
the map i : A→ X by setting i(Rk) := xk, for k in [0 . .d], and then extending
in the unique way that makes i affine; so we have i(t0R0 + · · · + tdRd) :=
t0x0 + · · ·+ tdxd, for all real numbers t0 through td with t0 + · · ·+ td = 1.

Note that the dimension of this linear space X is d + 1, as it should be,
and that the image i(A), sitting inside X, is a hyperplane not containing the
origin — to wit, the hyperplane t0 + · · ·+ td = 1. Those are indications that
the pair (X, i) might be a linearization of A. But the true test comes from
the universal mapping condition.

To verify Condition 9.1-2, let Y be any linear space and j : A → Y any
affine map. If some set map f : X → Y is to satisfy f ◦ i = j, we must have
f(xk) = f(i(Rk)) = j(Rk), for all k in [0 . . d]. If we also require that the
map f be linear, then those d+ 1 conditions determine a unique f , since the
atoms (x0, . . . , xd) are a basis of X. Finally, with f determined in this way,
the two affine maps f ◦ i and j agree on a barycentric reference frame for
A, so they agree on all of A. Thus, the concrete pair (X, i) does satisfy the
universal mapping condition and is hence a linearization of A. ��

So linearizations do exist; and they are automatically essentially unique,
since they are defined by a universal mapping condition. It is then convenient
to pretend that they are absolutely unique, introducing the notation Â to
denote “the linearization” of A. As we discussed in Section 4.9.5, this abuse of
language is harmless as long as, whenever two different concrete linearizations
of the same affine space A appear together in any argument, we use the
unique isomorphism between them to identify each element of one with the
corresponding element of the other. It is also convenient to pretend that A is
actually a subset of the linearization Â, so that we don’t need to write down
or even to name the underlying affine map i : A→ Â.

9.2 Algebrization via a universal condition

The theory of algebrization is very similar to that of linearization, based on
the following universal mapping condition.

Condition 9.2-1 Given a linear space X, a commutative algebra G and a
linear map i : X → G are a commutative algebrization of X when, for every
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commutative algebra H and every linear map j : X → H , there exists a
unique algebra homomorphism f : G→ H that satisfies f ◦ i = j.

Recall that an algebra homomorphism f : G→ H is a linear map that is also
a ring homomorphism; so we have f(x + y) = f(x) + f(y), f(tx) = tf(x),
f(xy) = f(x)f(y), and f(1) = 1, for all elements x and y of G and all real
numbers t.

Any two pairs (G1, i1) and (G2, i2) that are both commutative algebriza-
tions of a common linear space X will be uniquely isomorphic. The formal
statement of that claim and its proof are so similar to Proposition 9.1-3 that
we content ourselves with drawing the relevant commutative diagram:

G1 G2

X
i2i1 ❆
❆❆

✁
✁✁☛

✲✛

While essential uniqueness comes for free, we have to do some concrete
work to show that every linear space X does have a commutative algebriza-
tion. Fortunately, that work is quite easy, since we already know a lot about
polynomial algebras.

Proposition 9.2-2 If X is any linear space, there exists an algebra G and a
linear map i : X → G that are a commutative algebrization of X, according
to Condition 9.2-1. Furthermore, that algebra G has a grading in which the
image i(X) coincides with the first graded slice G1.

Proof As in Proposition 9.1-4, any concrete construction that succeeds will
suffice, so we needn’t be afraid to choose a basis. Let (x0, . . . , xd) be a basis
for X, where we set d := dim(X) − 1, for consistency with our intended
applications to the linear spaces Â and Â∗, where d = dim(A). Let G denote
the algebra G := R[v0, . . . , vd] of all polynomials in the d + 1 variables v0

through vd. We define a linear map i : X → G by setting i(xk) := vk for k in
[0 . . d] and then extending by linearity.

Note that the algebra G = R[v0, . . . , vd] is graded by total degree. Under
this grading, the first graded slice is the linear space R1[v0, . . . , vd], consisting
of all linear combinations of the variables. That linear space coincides with
the image space i(X).

It remains to verify Condition 9.2-1. So, let H be any commutative
algebra and let j : X → H be any linear map. If some set map f : G → H
is to satisfy f ◦ i = j, we must have f(vk) = f(i(xk)) = j(xk), for all k
in [0 . . d]. Those conditions are just enough to determine a unique algebra
homomorphism f : G→ H . To see this, consider any element y of G, so y is
a polynomial in the variables (v0, . . . , vd). Suppose that, for each k in [0 . . d],
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we substitute j(xk) for vk in the polynomial y. The resulting expression will
simplify to some element z of the algebra H . Any algebra homomorphism f
that takes vk to j(xk), for all k in [0 . . d], must take y to z. And performing
those substitutions does give an algebra homomorphism f : G→ H . Finally,
since the linear maps f ◦ i and j agree on the basis (x0, . . . , xd) of X, they
must agree on all of X. ��

So every linear space X does have a commutative algebrization, which
is automatically essentially unique. It is a convenient standard practice to
pretend that this algebrization is absolutely unique. We follow that practice
by talking about “the commutative algebrization” of X, which is written
Sym(X) and called the symmetric algebra of X. We also pretend that X
actually coincides with the first graded slice of its symmetric algebra Sym(X);
that is, we identify X with its image i(X) = Sym1(X).

In addition to the symmetric algebra Sym(X), which is commutative,
there are several noncommutative algebrizations of a linear space X, as we
discuss in the next section. But the symmetric algebra is the simplest, so we
are lucky that the algebras of forms and sites are symmetric algebras.

Exercise 9.2-3 Show that the following alternative universal mapping con-
dition also characterizes the symmetric algebra Sym(X).

Condition 9.2-4 Given a linear space X, a commutative graded algebra
G =

⊕
n≥0 Gn and a linear map i : X → G1 are a commutative algebrization

of X when, for every commutative graded algebra H =
⊕

n≥0 Hn and every
linear map j : X → H1, there exists a unique graded-algebra homomorphism
f : G→ H with f ◦ i = j.

9.3 Tensors

Most math texts that construct the symmetric algebra Sym(X) use tensors,
even though we have just seen that polynomials suffice. Polynomials suffice,
in fact, even for linear spaces X of infinite dimension or over arbitrary fields.
So why do math texts use tensors? There are two reasons.

First, some texts want to deal with scalars that come, not from a field,
but instead from some commutative ring R. The analog of a linear space,
in this more general context, is called an R-module. If M is any R-module,
it is possible to construct a commutative R-algebra Sym(M) that satisfies
the appropriate universal mapping condition. But polynomials don’t suffice
to construct Sym(M); you need tensors. Indeed, the first step on the road
to Sym(M) via polynomials would be to choose a basis for M ; but only the
nicest modules, the free modules, have bases. One of the reasons that linear
spaces are simpler than modules is that all linear spaces are free.
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To understand the other reason, we must broaden our sights to consider
noncommutative algebras. There are at least four different ways to algebrize
a linear space X, each characterized by its own universal mapping condition:

• The symmetric algebra Sym(X) is the free commutative algebra gen-
erated by X.

• The tensor algebra T (X) =
⊗

X is the free algebra — not required to
be commutative — generated by X.

• The alternating (a.k.a. skew-symmetric, exterior, or Grassmann) alge-
bra Alt(X) =

∧
X is the free algebra generated by X in which elements

of X skew-commute.

• Finally, if X has an associated quadratic form Q : X → R, the Clif-
ford algebra Clif(X) is the free algebra generated by X in which every
element x of X satisfies x2 = −Q(x).

Some math texts use tensors to build the symmetric algebra because they
need to develop the machinery of tensors anyway, in order to construct some
of these other algebras.

9.3.1 The tensor algebra

Recall that we characterized the symmetric algebra abstractly using either
of two universal mapping conditions, Condition 9.2-1 or 9.2-4. The tensor
algebra can be characterized abstractly using either of those conditions as
well, just omitting the requirement for commutativity.

To concretely construct the tensor algebra, people typically use tensor
products. Recall that the tensor product of two linear spaces X and Y is
a linear space X ⊗ Y of dimension dim(X) dim(Y ). The tensor product is,
itself, abstractly characterized by a universal mapping property involving
bilinear maps; but it would take us too far afield to review that.

Given any linear space X, let X⊗n denote the tensor product

X⊗n := X ⊗ · · · ⊗X︸ ︷︷ ︸
n factors

of X with itself n times. We can concretely construct the tensor algebra
T (X) as the direct sum T (X) :=

⊕
n≥0 X

⊗n. The tensor algebra is graded,
but, as soon as dim(X) exceeds 1, is not commutative. In particular, if x1

and x2 are two elements of X that are linearly independent, then x1 ⊗ x1,
x1 ⊗ x2, x2 ⊗ x1, and x2 ⊗ x2 are four linearly independent elements of
X⊗2 = X⊗X. If (b0, . . . , bd) is a basis for X, then the products bi1⊗· · ·⊗bin
form a basis for X⊗n, where the subscripts i1 through in vary independently
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from 0 to d. Thus, an arbitrary element of X⊗n has an n-dimensional matrix
of coefficients.

Let Y := X∗ be the dual space of X. The formula

〈y1 ⊗ · · · ⊗ yn, x1 ⊗ · · · ⊗ xn〉 = 〈y1, x1〉 · · · 〈yn, xn〉,

determines a natural pairing map between Y ⊗n = (X∗)⊗n and X⊗n, allowing
each to represent the dual of the other. That formula is analogous to the
Permanent Identity, but without any summing or averaging going on.

The elements of the space X⊗n are called n-contravariant tensors on X,
while the elements of Y ⊗n = (X∗)⊗n are n-covariant tensors on X. That
is, “contravariant” here means “primal”, while “covariant” means “dual”;
this usage arose in physics, for reasons that Dodson and Poston explain [19].
Sad to say, this usage conflicts with category theory, where “contravariant”
means “arrow-reversing”, while “covariant” means “arrow-preserving”.

If we have already constructed the tensor algebra T (X), there are sev-
eral ways to construct the symmetric algebra Sym(X) as a by-product. One
scheme realizes an element of Sym(X) as an equivalence class of tensors,
under an equivalence relation that makes multiplication commutative. More
precisely, we construct Sym(X) as the quotient T (X)/I, where I is the small-
est two-sided ideal in T (X) that contains x1⊗ x2−x2⊗x1, for all x1 and x2

in X. A second scheme looks, inside T (X), at the subset formed by the sym-
metric tensors, the ones whose nth homogeneous components have coefficient
matrices that are symmetric under all permutations of their n dimensions.
The second scheme constructs Sym(X) by equipping that set of symmetric
tensors with a new, symmetrized multiplication.

Because people read about these schemes in textbooks, they sometimes
end up believing that the symmetric algebra is, in some deep sense, an alge-
bra of tensors. Indeed, I fell into this trap myself when I claimed that the
algebra of sites is built using “the symmetric variant of the tensor-product
construction” [42, 43]. We can build Sym(X) in that way, if we like; but
tensors are overkill. It is more true to say that the symmetric algebra is an
algebra of polynomials. (And the real truth, of course, is that the symmetric
algebra is anything that satisfies the universal mapping condition.)

Lest any confusion on this point linger, keep in mind that the algebra of
sites is dual to the algebra of forms. Since we don’t need tensors to build the
algebra of forms, we don’t need them to build the algebra of sites either.

9.3.2 The alternating algebra

Let x1 and x2 be linearly independent elements of the linear space X. In
the tensor algebra T (X), the products x1 ⊗ x2 and x2 ⊗ x1 are linearly
independent. In the symmetric algebra Sym(X), the products x1x2 and
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x2x1 are equal. In the alternating algebra Alt(X), we arrange that x1 ∧x2 =
−(x2∧x1). That is, the multiplication in the algebra Alt(X) skew-commutes.
Of course, we can’t possibly have y∧ z = −(z ∧ y) for all elements y and z of
the algebra Alt(X); for example, multiplication by the identity commutes in
any algebra: We always have 1∧y = y = y∧1. Rather, a graded algebra G is
called skew-commutative (a.k.a. alternating) when its multiplication satisfies

yz = (−1)deg(y) deg(z)zy,(9.3-1)

for all homogeneous elements y and z in G. So it is homogeneous elements
y and z of odd degree that satisfy yz = −zy.

Math remark: Over a field of characteristic 2, we have 1 = −1, so skew-
commutativity as we have just defined it would reduce to commutativity.
Instead, skew-commutativity is defined to require both Identity 9.3-1 and
the identity y2 = 0, for all homogeneous elements y of odd degree. Note
that, when y is homogeneous of odd degree, Identity 9.3-1 gives us y2 = −y2,
which implies y2 = 0 whenever 2 �= 0.

To characterize the alternating algebra abstractly, we can use a universal
mapping condition similar to Condition 9.2-4; we simply replace the com-
mutative graded algebras in that condition with skew-commutative graded
algebras. But an algebra has to be graded before we can require it to be skew-
commutative. Therefore, the simpler Condition 9.2-1, which doesn’t mention
any grading, cannot be adapted to characterize the alternating algebra.

As for constructing the alternating algebra concretely, recall that there
are two methods for constructing the symmetric algebra Sym(X) from the
tensor algebra T (X), one by taking a quotient, the other by extracting a
subset. Both of those methods can be adjusted to produce the alternating
algebra Alt(X) instead. The first method constructs Alt(X) as the quo-
tient T (X)/J , where J is the smallest two-sided ideal in T (X) that contains
x ⊗ x, for all x in X. The second method looks, inside T (X), at the set
of skew-symmetric tensors, where an n-dimensional matrix of coefficients is
called skew-symmetric (a.k.a. alternating) when it is skew-symmetric in all(
n
2

)
pairs of dimensions. We can construct Alt(X) by equipping the set of

skew-symmetric tensors with a new, skew-symmetrized multiplication.

Math remark: Defining skew-symmetry in characteristic 2 has the same wrin-
kle that arose in defining skew-commutativity. In order to be skew-symmetric
in characteristic 2, a matrix (mij) must also be zero on the diagonal; that is,
we must have mii = 0, as well as mij = −mji.

Let’s denote the nth graded slice of the alternating algebra Alt(X) as
Altn(X); another good notation would be X∧n, but we want to emphasize
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the analogy between Alt(X) and Sym(X). Let’s also set d := dim(X) − 1,
since we have in mind applying this theory when X is either Â or Â∗,
with A an affine d-space. If (b0, . . . , bd) is a basis for X, then the products
(bi1 ∧ · · · ∧ bin)0≤i1<···<in≤d form a basis for Altn(X). Since equal subscripts
are forbidden, the linear space Altn(X) is smaller than Symn(X); in partic-
ular, we have dim(Altn(X)) =

(
d+1
n

)
, while dim(Symn(X)) =

(
d+n
n

)
. Indeed,

the whole alternating algebra is finite-dimensional; we have dim(Alt(X)) =
2d+1 = 2 dim(X).

Let Y := X∗ denote the dual space of X. In choosing pairing maps
between Altn(X) and Altn(Y ), we meet once again that contentious factor
of n! . There is a unique pairing between Altn(Y ) = Altn(X

∗) and Altn(X)
that satisfies the following Summed Determinant Identity:

〈y1 ∧ · · · ∧ yn, x1 ∧ · · · ∧ xn〉 =
∑
ν ∈Sn

sgn(ν)
∏

1≤k≤n
〈yk, xν(k)〉.(9.3-2)

The summation index ν here varies over the symmetric group Sn of all n!
permutations of the integers from 1 to n, while sgn(ν), the sign of ν, denotes
1 if ν is an even permutation and −1 if ν is odd. That sum is precisely the
determinant of the n-by-n matrix whose (i, j)th entry is 〈yi, xj〉. There is also
a unique pairing that satisfies the Averaged Determinant Identity, which is
the same, except divided by n! . As for whether summing or averaging is
better in the skew-symmetric context, let’s be glad that we have no current
need to decide. The tradeoffs will be different than in the symmetric case.
For example, note that the skew-symmetric nth power

P ∧n := P ∧ · · · ∧ P︸ ︷︷ ︸
n factors

of a point P is zero as soon as n exceeds 1; so who cares whether it gets
divided by n! or not.

When studying the alternating algebra itself, an element of the linear
space Altn(X) is typically called an n-vector over X, while an element of
Altn(X

∗) is an n-covector. One important application of the alternating
algebra is to calculus on manifolds, however, and that application has its own
nomenclature. Recall that a vector field is a map that assigns, to each point
in a manifold, a vector in the tangent space at that point. If we assign an
n-covector on that tangent space instead, we get a field of n-covectors; such
a field is, unfortunately, called a differential n-form. The unfortunate aspect
of this term is the further overloading of the word “form”. A differential
n-form on a smooth manifold has nothing to do with an n-form on a linear
space; indeed, the multiplications that underlie those two types of n-forms
skew-commute and commute, respectively. As for why differential n-forms
are the proper things to integrate over an n-manifold, the appearance of the



9.3. TENSORS 129

determinant in Equation 9.3-2 provides an indication, since that determinant
expresses the ratio between two measures of volume.

The alternating algebra has other important applications to geometry. In
particular, a lineal n-vector x1 ∧ · · · ∧ xn corresponds to an oriented volume
form on the subspace of X spanned by the vectors x1 through xn. If we
identify two such volume forms that differ by a scalar multiple, we get a
rule that associates, with each n-dimensional subspace of X, a line through
the origin of the space Altn(X). The set of all n-dimensional subspaces of
the linear space X is a Grassmann manifold, and this rule gives us a way
to realize that manifold as a variety in a projective space — essentially the
variety formed by those n-vectors over X that are lineal, that is, that can be
written as the wedge product of n vectors in X. This is why an alternating
algebra is also known as a Grassmann algebra. If we identify volume forms
that differ by positive scalar multiples, but distinguish between those that
differ by negative scalar multiples, we get an oriented version of this theory,
as Stolfi explains [46]. In the oriented theory, the product P ∧Q of two points
P and Q represents the oriented line from P toward Q.

9.3.3 The Clifford algebra

Some linear spaces come to us equipped with quadratic forms. For example,
a Euclidean space has a positive definite inner product, while a Minkowski
space has an indefinite but non-degenerate metric tensor. When the geometry
associated with that quadratic form is important to us, it may help to extend
that linear space into yet another algebra: a Clifford algebra. In particular,
researchers in CAGD have had good success recently explaining Pythagorean-
hodograph curves using Clifford algebras [10].

Some words about quadratic forms versus bilinear forms. Given any
quadratic form Q : X → R on a linear space X, there is always a bilin-
ear form B : X × X → R that satisfies the identity Q(x) = B(x, x). And,
since the characteristic of the real numbers R is not 2, we can determine
the bilinear form B uniquely by requiring that B be symmetric. The inner
product on a Euclidean space and the metric tensor on an Minkowski space
are often thought of as symmetric, bilinear forms. In defining the Clifford
algebra, however, all that we use directly is the diagonal Q of B.

Roughly speaking, the Clifford algebra Clif(X) is the free algebra that
contains X as a subspace and in which we have x2 = −Q(x), for all elements
x of X. Thus, Clifford-multiplying the vector x times itself results in the
particular scalar −Q(x). Note that the alternating algebra is a special case
of a Clifford algebra, the special case in which Q = 0, so x∧x = −Q(x) = 0.
Indeed, the Clifford algebra always has the same dimension as the alternating
algebra; but the multiplication in the Clifford algebra has, embedded inside
it in some way, the geometry associated with the form Q.
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Clifford algebras don’t fit well into the structures of this monograph, so
we won’t say much about them. In particular, beware that a Clifford alge-
bra is not graded, under our definition of that term from Section 2.4. Like
the alternating algebra Alt(X), the Clifford algebra Clif(x) is the direct sum
Clif(X) =

⊕
0≤n≤d+1 Clifn(X) of subspaces, where dim(Clifn(X)) =

(
d+1
n

)
,

for a total dimension of 2d+1 = 2 dim(X). But the multiplication of the Clifford
algebra does not send Clif i(X)×Clifj(X) into Clifi+j(X). Instead, the Clif-
ford product of an element of Clif i(X) with an element of Clifj(X) is a linear
combination of elements of Clifk(X), for k in {i + j, i + j − 2, i + j − 4, . . . ,
|i− j|}. The components of the product in these different “grades” reflect
different geometric relationships among the factors. For example, if x and y
are vectors in a Euclidean 3-space X, the grade-2 part of the Clifford product
xy corresponds to the cross product x × y (more precisely, it is an oriented
volume form on the plane that x and y span), while the grade-0, scalar part
of xy is minus their dot product.

We can present one possible concrete construction of the Clifford algebra,
based on ideas that we’ve already covered. One way to build Clif(X) is as
T (X)/K, where K is the the smallest two-sided ideal of the tensor algebra
T (X) that contains all elements of the form (x⊗ x) + Q(x), for x in X. For
a more concrete way to construct the Clifford algebra and for much other
wisdom, read Porteous [41].

By the way, the theory of Clifford algebras involves a contentious choice,
rather like our annoying factor of n! , except that it’s an annoying factor of
−1. Some authors require x2 = Q(x), rather than x2 = −Q(x). But including
the minus sign ends up singling out the positive definite forms Q as being
of special interest, and that seems more appealing than the alternative of
singling out the negative definite ones.



Appendix A

Some Category Theory

Category theory provides a general framework for defining things by universal
mapping conditions, as happens when we linearize an affine space or algebrize
a linear space. In particular, linearization and algebrization turn out to be left
adjoints of forgetful functors. We here review linearization and algebrization
from the enlightening perspective of category theory.

A.1 Fixing some type errors

Let’s start by fixing up some type errors in our discussion of linearization.
Let A be an affine space. We defined a linearization of A to be a linear space
X and an affine map i : A → X that satisfied a certain universal mapping
condition, Condition 9.1-2. But it is a type error for the codomain of an
affine map to be a linear space. The expression i : A→ X makes sense only
if we implicitly perform a type conversion on the codomain, replacing the
linear space X by that same set of points, but viewed as an affine space.
To perform that type conversion, we take the linear space X and we forget
about where the origin is; let’s denote the resulting affine space as T (X),
on the grounds that forgetting the origin is like performing some arbitrary
translation. Affine combinations t1x1 + · · · tmxm with t1 + · · ·+ tm = 1 still
make sense in the affine space T (X), and they have the same values that they
had in the linear space X. But linear combinations with t1 + · · ·+ tm �= 1 no
longer make sense in T (X).

If we insert the type-conversion operator T appropriately, we can define
what it means to be a linearization in a completely type-correct manner.

Condition A.1-1 For any affine space A, a linear space X and an affine map
i : A → T (X) are a linearization of A when, for every linear space Y and
every affine map j : A→ T (Y ), there exists a unique linear map f : X → Y
with T (f) ◦ i = j.

131



132 APPENDIX A. SOME CATEGORY THEORY

To make the final equation type-correct, we had to apply the type-conversion
operator T to the linear function f : X → Y , thereby converting it into an
affine function T (f) : T (X) → T (Y ). The two functions f and T (f) are
identical as set maps; that is, they take the same input points to the same
output points. The difference between them is purely type-theoretic: The
map f is a linear map between linear spaces, while T (f) is an affine map
between affine spaces.

Since T applies both to spaces and to maps, it isn’t an operator; to say
what it really is, we need some category theory. A category C is

1. a collection of objects ;

2. for each pair of objects X and Y , a collection of arrows C(X, Y ),
referred to as arrows from X to Y ;

3. for each object X, a special arrow in C(X,X), called the identity on
X; and

4. for each triple of objects X, Y , and Z in C, a composition operation
◦ : C(Y, Z) × C(X, Y ) → C(X,Z), taking the arrows f : X → Y and
g : Y → Z to an arrow g ◦f : X → Z. (Note the clumsiness that results
from composing from right-to-left, as we discuss in Section C.1; but
that clumsiness is standard in category theory.)

These structures must satisfy a few axioms:

1. Identity arrows must behave as identities for the composition operator
on arrows.

2. The composition on arrows must be associative.

In many important categories, the objects are spaces with some structure,
while the arrows are maps between spaces that preserve this structure. For
example, there is a category Aff , whose objects are affine spaces and whose
arrows are affine maps. Similarly, there is a category Lin of linear spaces
and linear maps, as well as a category Set of sets and set maps.

A functor is a structure-preserving map from one category to another. So
a functor F from C to D must map each object X of C to some object F(X)
of D and must map each arrow f : X → Y of C to an arrow F(f) : F(X) →
F(Y ) of D. A functor is also required to map identity arrows to identity
arrows and to commute with composition, so that F(g ◦ f) = F(g) ◦ F(f).

Using this language, we can recognize the operator T above as a functor
from Lin to Aff of a particularly simple type: It converts linear spaces into
affine spaces by forgetting the origin, and it converts linear maps into affine
maps by forgetting the origins in both the domain and codomain. Functors
of this type are called forgetful functors.
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A.2 Linearization as a functor

Introducing the forgetful functor T from Lin to Aff has allowed us to fix
the type errors in our definition of a linearization. The resulting concept is
perfectly respectable in category theory, where an arrow i : A→ T (X) that
satisfies Condition A.1-1 would be referred to universal from A to T , that
is, universal from the object A to the functor T .

But there is an important property of linearization that we have not yet
captured. So far, we have been treating the parameter A as a fixed affine
space. That suggests that our ability to linearize A might depend upon
some special property of A; perhaps some affine spaces can be linearized,
but others cannot. No. One of the good things about linearization is that
we can linearize any affine space. Even more, we can extend any affine map
f : A → B between affine spaces uniquely into a linear map f̂ : Â → B̂
between the corresponding linearizations. Thus, the process of linearization
is actually a functor in the other direction, from Aff back to Lin. Instead of
writing hat accents, let’s refer to this new functor as L. So, given any affine
space A, the functor L produces for us a linear space L(A); and, given any
affine map f : A→ B, we get a linear map L(f) : L(A) → L(B).

The universal mapping condition is now revealed to be some flavor of
pseudo-inverse relationship between the two functors L and T . But note
that L is not even a one-sided inverse of T , on either side. We can’t have
L(T (X)) = X for any linear space X, nor can we have T (L(A)) = A for any
affine space A, because L increases the dimension by one, while T preserves
the dimension. We also can’t have L(T (L(A))) = L(A) or any other such
identity in which one pair of functor applications drops out. Instead, the
pseudo-inverse relationship between L and T is of a different nature.

A.3 Left adjoints

Let’s restate the universal mapping condition, using both the forgetful func-
tor T and the linearizing functor L — in particular, replacing X by L(A):

Condition A.3-1 For every affine space A, the linear space L(A) and the
affine map iA : A → T (L(A)) have the property that, for every linear space
Y and every affine map j : A → T (Y ), there exists a unique linear map
f : L(A) → Y with T (f) ◦ iA = j.

Rather than defining what it means to be a linearization of a particular affine
space A, this condition expresses the pseudo-inverse relationship that holds
between the functors T and L. The key to that pseudo-inverse relationship
is a certain system of one-to-one correspondences between sets of arrows.
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Treating the affine space A and the linear space Y as free parameters,
consider the set Aff(A, T (Y )) of all affine maps from A to T (Y ) and the set
Lin(L(A), Y ) of all linear maps from L(A) to Y . Condition A.3-1 gives us a
map from the former to the latter; for every j in Aff(A, T (Y )), there exists
a unique f in Lin(L(A), Y ). We also have a map the other way; given any
f in Lin(L(A), Y ), applying the functor T to f and then composing with iA
on the right gives us a map T (f) ◦ iA, which lies in Aff(A, T (Y )). The final
equality in the universal condition tells us that those forward and backward
maps are inverses. Thus, for every affine space A and every linear space Y ,
we have a one-to-one correspondence between

Aff(A, T (Y )) ←→A,Y Lin(L(A), Y ).(A.3-2)

It is those correspondences that lie at the heart of the relevant pseudo-inverse
relationship. The functor L is said to be left adjoint to T — or, equivalently,
the functor T is right adjoint to L — when these correspondences exist,
for all A and Y , and when they behave naturally with respect to affine
and linear maps, as we’ll discuss below. The resulting relationship is called
an adjunction. Note that L is a left adjoint because it appears in a left-
hand argument in Correspondence A.3-2, while T is a right adjoint because
it appears in a right-hand argument. (The meanings of “left adjoint” and
“right adjoint” thus depend, unfortunately, on our convention that functions
compose from right to left. Perhaps more semantic terms, such as source
adjoint and target adjoint, would be a better idea?)

What happens if we set the linear space Y , in Correspondence A.3-2,
to be L(A)? We then get the set Lin(L(A),L(A)) on the right, which is
interesting because that set has a distinguished element: the identity on
L(A). The arrow on the left that corresponds to that identity on the right
is a special affine map from A to T (L(A)). In fact, it is the map that we
denoted iA in Condition A.3-1; it shows how the affine space A sits, as an
affine hyperplane, inside its linearization L(A). The maps iA are called the
units of the adjunction.

For completeness, we should mention that an adjunction has counits as
well, which are linear maps in our example. To find the counits, we set A to
T (Y ) in Correspondence A.3-2 and then map the identity on the left over to
the right. The result is a special linear map cY : L(T (Y )) → Y . If we convert
a linear space Y into an affine space by forgetting about its origin and then
re-linearize it by adding a new, external origin, the counit cY projects out the
newly added dimension, projecting along lines that are parallel to the line
joining the new origin to the old. Note that the units in our example go from
simple to complicated, while the counits go from complicated to simple. As
for figuring out whether L or T gets applied first, that depends upon which
is the left adjoint and which is the right adjoint.
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A.4 Behaving naturally

Given two categories and two functors that go back and forth between them,
an adjunction exists between the two functors when there is a system of one-
to-one correspondences as in Correspondence A.3-2 that behaves naturally
with respect to arrows in the two categories. For completeness, we sketch
briefly in this section what it means to “behave naturally”. For more details,
see Mac Lane’s fine text [40].

Let g : Y → Z be some arrow in the category Lin. The adjunction gives
us the horizontal one-to-one correspondences in the following diagram:

Aff(A, T (Y )) ←→A,Y Lin(L(A), Y )#T (g)∗

#g∗
Aff(A, T (Z)) ←→A,Z Lin(L(A), Z)

The vertical maps come from g. Given any linear map from L(A) to Y , as
on the top right, we can apply first that map and then g to get a linear
map from L(A) to Z, as on the bottom right; the vertical arrow labeled g∗
represents that “follow up with g” process. The arrow on the left labeled
T (g)∗ represents the analogous “follow up with T (g)” process. In order to
behave properly with respect to linear maps, this diagram must commute.

Behaving properly with respect to affine maps is similar. Let h : A→ B
be some arrow in the category Aff . The adjunction gives us the horizontal
correspondences in this diagram:

Aff(B, T (Y )) ←→B,Y Lin(L(B), Y )#h∗
#L(h)∗

Aff(A, T (Y )) ←→A,Y Lin(L(A), Y )

Given any affine map from B to T (Y ), as on the top left, we can apply first
h and then that map to get a map from A to T (Y ), as on the bottom left;
the vertical arrow labeled h∗ represents that “prepare with h” process. The
vertical arrow labeled L(h)∗ represents the analogous “prepare with L(h)”
process. That diagram must also commute.

A.5 A ladder of adjunctions

Enough, already, of category theory. What does category theory tell us about
the process of algebrization that underlies the paired-algebras framework?

Let CAlg denote the category whose objects are commutative algebras
and whose arrows are algebra homomorphisms. Given any commutative
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Figure A.1: A ladder of adjunctions

algebra, if we forget how to multiply, we are left with a linear space; thus,
there is an obvious forgetful functor from CAlg to Lin. Let’s denote that
functor M, on the grounds the it forgets how to multiply. The process of
algebrization is precisely a functor A that is left adjoint to the forgetful
functor M. That is, writing A(X) for the symmetric algebra Sym(X), we
have one-to-one correspondences

Lin(X,M(G)) ←→X,G CAlg(A(X), G).

Figure A.1 shows a ladder of adjunctions of which we have explained
the top two steps. On the right, we have forgetful functors going down,
M : CAlg → Lin and T : Lin → Aff . On the left, their left adjoints go
back up, linearization L : Aff → Lin and algebrization A : Lin→ CAlg.

It is helpful to add on one more step at the bottom of the ladder. Let U
denote the forgetful functor from Aff to Set, the functor that takes an affine
space and forgets everything about it except for the underlying set of points
— U for underlying. The left adjoint of U is the functor G that, given any
set S, produces the “affinization” or “geometrization” of S, an affine space
for which the points in S form a barycentric frame. Note that we again have
one-to-one correspondences

Set(S,U(A)) ←→S,A Aff(G(S), A).

So we have a ladder with four rungs, each adjacent pair of rungs connected
by a forgetful functor, going down, and its left adjoint, going back up. Going
down is always easy. Stepping up from Set to Aff is also conceptually
easy, although the resulting affine spaces can be quite large. The other two
upward steps, linearization and algebrization, are more subtle. But note that
jumping up from Set to Lin, taking two steps at once, is easy; given a set S,
the linear space L(G(S)) is simply a linear space that has S as a basis. And
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jumping all the way up the ladder from Set to CAlg is easy as well; given
a set S, the commutative algebra A(L(G(S))) is simply the algebra R[S] of
all polynomials whose variables lie in S. If we jump up from a set S to any
rung, we simply get the free thing of that type that is generated by S: the
free affine space with S as a barycentric reference frame, the free linear space
with S as a basis, or the free commutative algebra with S as its generating
variables. The subtlety comes only when we have already stepped up and we
want to step farther up.

Indeed, recall that the easiest concrete construction that we found for
linearizing an affine space A involved choosing a barycentric reference frame
for A and then forming L(A) as the linear space with those frame points as
a basis. In terms of the ladder in Figure A.1, choosing a barycentric frame
for A means finding some set S with G(S) = A. Note that this is not at
all the same as computing U(A), since the functors G and U are adjoints,
not inverses. Having found some S with G(S) = A, we can then jump up
from Set to Lin in one easy step, by forming the linear space that has S as
a basis. Thus, jumping up from the ground is so easy that we use it as a
subroutine when stepping up one rung.

Given a linear space X, jumping up from Set is also the easiest way to
construct the symmetric algebra A(X) = Sym(X). We choose some basis
for X; that is, we find some set S with X = L(G(S)). We then construct
A(X), in a big jump back up, as the polynomial algebra R[S].

This ability to step up by backing down to ground level and then jumping
one higher is a special property of the particular ladder of adjunctions in
Figure A.1. For example, we couldn’t employ the same strategy to step up
above CAlg, if we added a new rung at the top of the ladder, since not
every commutative algebra is the polynomial algebra generated by some set
of variables. One of the things that make Aff and Lin simple is that every
object has a frame or basis; but that doesn’t hold for CAlg.

Exercise A.5-1 In preparation for the day when locations over A might
join sites over A as basic objects in CAGD, so that we can divide by points
as well as multiply by them, extend the adjunction ladder of Figure A.1 with
one more rung at the top.

Hint: First replace the former top rung CAlg by the smaller category
EAlg of entire algebras, that is, commutative algebras that are free of zero
divisors and that hence, when viewed as rings, are integral domains (a.k.a.
entire rings). And verify that the functors M and A form an adjunction also
between Lin and EAlg. We can then add, as a new top rung, the category
RFld consisting of those fields that include the real numbers as a subfield.
The forgetful functor D : RFld→ EAlg forgets how to divide, while its left
adjoint Q : EAlg→ RFld forms quotients.
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A.6 Injective units

All of the left adjoints that we have been studying (including the functor Q
in Exercise A.5-1) have the special property that they only add in new, good
stuff; they don’t squash out any old, bad stuff. In general, left adjoints of
forgetful functors may have to do some of both.

For an example of squashing out old, bad stuff, consider the category
Grp, whose objects are groups and whose arrows are group homomorphisms.
And consider the subcategory Ab, with only the abelian groups. There is
an obvious forgetful functor F : Ab→ Grp; it takes an abelian group H to
that same group F(H) := H , but now viewed as a general group; that is,
the functor F forgets the axiom for commutativity.

The forgetful functor F has a left adjoint C. How does C work? Given
an arbitrary group G, we must produce, in some sense, the free abelian
group generated by G. Let [G,G] denote the commutator subgroup of G,
the subgroup generated by all elements of the form xyx−1y−1, for x and y in
G. The commutator subgroup [G,G] is normal, so we can form the quotient
group G/[G,G], which will be abelian. That quotient is C(G). In particular,
we have the required one-to-one correspondences:

Grp(G,F(H))←→G,H Ab(C(G), H).

Thus, the left adjoint C produces an abelian group C(G) from an arbitrary
group G by squashing out any bad, nonabelian stuff in G.

To determine whether a particular left adjoint adds in new, good stuff,
squashes out old, bad stuff, or does some of both, we examine the units of
the adjunction. An injective unit had no need to squash out any old, bad
stuff, while a surjective unit had no need to add in any new, good stuff. All
of the adjunctions in the ladder of Figure A.1 (even when extended as in
Exercise A.5-1) have injective units, while the unit that maps an arbitrary
group G to the “abelianized” group F(C(G)) = G/[G,G] is surjective.

A.7 Right adjoints

Linearization and algebrization can be viewed as left adjoints of forgetful
functors; but what about right adjoints of forgetful functors? Do they ever
arise? I don’t know of any examples in CAGD; but, for completeness, here
is a natural forgetful functor in topology whose left adjoint and right adjoint
are both useful.

Let Top be the category whose objects are topological spaces and whose
arrows are continuous maps. There is an obvious forgetful functor F from
Top to Set, the functor that forgets the topology. An adjoint of that forgetful
functor must take an arbitrary set W and invent some topology for it.
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If S is to be the left adjoint of F , we must have one-to-one correspon-
dences

Set(W,F(U)) ←→W,U Top(S(W ), U).

That is, any set map from W to any topological space U must, when we
equip W with the topology that S chooses for it, turn out to be continuous.
So S must equip W with the discrete topology, the topology in which every
subset of W is open.

On the other hand, if T is to be the right adjoint of F , we must have
one-to-one correspondences

Set(F(U),W ) ←→U,W Top(U, T (W )).

That is, any set map from any topological space U to W must, when we
equip W with the topology that T chooses for it, turn out to be continuous.
So T must equip W with the trivial topology, the topology in which only W
and the empty set are open.

A.8 Tensor-product surfaces revisited

Gentle reader, you will have to decide for yourself whether the unification,
systematization, and type correctness provided by category theory are worth
its conceptual overhead. But we can at least mention one instance where
category theory would have assisted us in this monograph. That instance
involves the tensor-product surfaces in Section 6.8, which turn out to be
related to the notion of coproducts in category theory.

Products and coproducts are category-theoretic notions that may or may
not exist in a given category. They are abstractly characterized by universal
mapping conditions; indeed, the product, when it exists, is the right adjoint
of a certain diagonal functor, while the coproduct, when it exists, is the left
adjoint of that same functor. For the details, see Mac Lane [40].

Products and coproducts exist in all four of the categories that are the
rungs on the adjunction ladder in Figure A.1. In the category Set, products
are Cartesian products and coproducts are disjoint unions. In Aff , products
are again Cartesian products, while coproducts are affine hulls; that is, to
form the coproduct A - B of two affine spaces A and B, we position them
in some larger affine space so as to be skew and so that no line in A is
parallel to any line in B and we then take the affine hull of their union.
We thus have dim(A - B) = dim(A) + dim(B) + 1. In Lin, products are
Cartesian products, while coproducts are direct sums. Note that Lin is one
of the unusual categories where (finite) products and (finite) coproducts are
isomorphic; we have X × Y = X ⊕ Y , for linear spaces X and Y . Finally, in
CAlg, products are Cartesian products while coproducts are tensor products.
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On our adjunction ladder, coproducts are more interesting than products,
since they correspond to different notions in each of the four categories.
Those notions are tied together by the general theorem that any functor
that is a left adjoint preserves coproducts. Note that the geometrization,
linearization, and algebrization functors G, L, and A are all left adjoints of
forgetful functors. So we get three theorems for free:

1. If S and T are sets, the affine space G(S - T ) that has the disjoint
union S - T as a barycentric frame is the affine hull G(S) - G(T ) of
the affine spaces that have S and T as frames.

2. If A and B are affine spaces, the linearization L(A-B) of their affine
hull is the direct sum L(A)⊕L(B) of their linearizations.

3. If X and Y are linear spaces, the algebrization A(X⊕Y ) of their direct
sum is the tensor product A(X)⊗A(Y ) of their algebrizations.

The third of those theorems helps to explain why we build tensor-product
surfaces as we do. Starting with the direct product L1 × L2 of two affine
parameter lines L1 and L2, the obvious thing to do would be to linearize that
entire plane at once. But that result L(L1 × L2) wouldn’t be decomposable
into parts associated with L1 and L2, since linearization doesn’t preserve
products; indeed, it would be 3-dimensional. So we instead linearize each
affine parameter line separately, getting the linear space L(L1) × L(L2) =
L̂1 × L̂2. At this point, we take advantage of the unusual property of Lin to
convert the product into a coproduct, rewriting L̂1 × L̂2 as the direct sum
L̂1⊕ L̂2. The third theorem from the list above then does the algebrizing for
us: We have Sym(L̂1 ⊕ L̂2) = Sym(L̂1)⊗ Sym(L̂2), a tensor-product algebra
of sites. Tensor-product surfaces get their name from the dual algebra of
forms, which is the tensor product Sym(L̂∗

1)⊗ Sym(L̂∗
2) in a similar way.

Exercise A.8-1 Exercise A.5-1 extends the ladder of adjunctions, replacing
CAlg with EAlg and then adding RFld as a new top rung. Do the categories
EAlg of entire algebras and RFld of fields that include the real numbers as
a subfield have products? Have coproducts?

Hint: The tensor product is a coproduct in the category EAlg, just as in
CAlg. The category RFld also has coproducts, which can be constructed by
first forming the tensor product and then forming quotients. But the direct
product of two algebras always has zero divisors, since we have (1, 0) ·(0, 1) =
(0, 0) = 0; so the categories EAlg and RFld do not have products.



Appendix B

To Sum or to Average?

(Often the coefficient 1/n! is put in front of the formula for ι; this
makes no essential difference, but leads to awkward formulas for
contractions.) – William Fulton and Joe Harris [22]

In this appendix, we analyze which pairing leads to a superior theory, the
summed pairing or the averaged pairing. Fulton and Harris, the authors of
the quote above, are pure mathematicians who adopt the summed pairing.
When they promptly stumble across an annoying factor of n! , they analyze
the averaged pairing as an alternative in the single pithy sentence quoted
above. We here consider the issues at far greater length, on our way to the
same conclusion.

B.1 Searching for pretty formulas

One way to judge which pairing is better is to see which leads to the simpler
formulas. Table B.1 gives a good sample of formulas, both in their summed
and their averaged versions.

The third line in Table B.1 points out a minor problem with averaging. In
the averaging column, we find that Dπf(P ) = 〈f, nπP n−1〉. If I were teaching
this theory to students, I would worry that my students would rewrite this
formula as Dπf(P ) = 〈f, πnP n−1〉 and would then justify the annoying factor
of n to themselves by recalling that

∂

∂x
(P n) = nP n−1∂P

∂x
.(B.1-1)

That justification is a delusion based on a coincidence. We are differentiating
the n-form f in this formula, not the n-site P n. If you are still in any doubt,
compare with the blossomed formula in the line below, where there is no
P n−1 to remind us of the valid but irrelevant Equation B.1-1.
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summing averaging

evaluate an n-form f at a point P f(P ) = 〈f, P n/n! 〉 f(P ) = 〈f, P n〉
evaluate the blossom f̃ of an n-form f
at the points (P1, . . . , Pn)

f̃(P1, . . . , Pn) = 〈f, P1 · · ·Pn/n! 〉 f̃(P1, . . . , Pn) = 〈f, P1 · · ·Pn〉

differentiate an n-form f in the direc-
tion of the vector π and evaluate the
resulting (n− 1)-form at P

Dπf(P ) = 〈f, πP n−1/(n− 1)! 〉 Dπf(P ) = 〈f, nπP n−1〉

differentiate an n-form f in the direc-
tion of the vector π and evaluate the
blossom of the resulting (n − 1)-form
at the points (P1, . . . , Pn−1)

(Dπf)∼(P1, . . . , Pn−1)

= 〈f, πP1 · · ·Pn−1/(n− 1)! 〉
(Dπf)∼(P1, . . . , Pn−1)

= 〈f, nπP1 · · ·Pn−1〉

differentiate an n-form f in the direc-
tion of the vector π

Dπf = f π Dπf = f nπ

differentiate an n-form k times, in the
directions of the vectors π1 through πk,
and then evaluate the (n−k)-form that
results at P

Dπ1 · · ·Dπkf(P )

= 〈f, π1 · · ·πkP n−k/(n− k)! 〉
Dπ1 · · ·Dπkf(P )

= 〈f, (n!/(n− k)! )π1 · · ·πkP n−k〉

differentiate an n-form k times, in the
directions of the vectors π1 through πk

Dπ1 · · ·Dπkf = f π1 · · ·πk Dπ1 · · ·Dπkf = f (n!/(n− k)! )π1 · · ·πk

differentiate an n-form n times, in the
directions of the vectors π1 through πn,
thus producing a constant

Dπ1 · · ·Dπnf = 〈f, π1 · · ·πn〉 Dπ1 · · ·Dπnf = 〈f, n! π1 · · ·πn〉

differentiate an n-form n times, each
time in the direction of the vector π,
thus producing a constant

(Dπ)
nf = 〈f, πn〉 (Dπ)

nf = 〈f, n! πn〉
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summing averaging

evaluate an n-form at a
point

(EP )nf = 〈f, P n/n! 〉 (EP )nf = 〈f, P n〉

set one argument of the blos-
som of an n-form to a point

EPf = f P/n EPf = f P

differentiate an n-form n
times, each time in the di-
rection of the same vector

(Dπ)
nf = 〈f, πn〉 (Dπ)

nf = 〈f, n! πn〉

differentiate an n-form once,
in the direction of a vector

Dπf = f π Dπf = f nπ

Table B.2: Basic formulas under the summed and averaged pairings

Comparing the first line in Table B.1 to the last, we are reminded that
evaluating an n-form is like differentiating n times, always in the same di-
rection — except for that factor of n! . Comparing the second line to the
next-to-last, we see that evaluating the blossom of an n-form is like differen-
tiating n times, in arbitrary directions — again, except for the factor of n! .
But is there any evaluation-like operator that corresponds to differentiating
only once? We can define such an operator as follows, an operator EP that
does (1/n)th of the work of evaluating an n-form at P . In blossoming terms,
what EP does is to set one of the arguments of the blossom to P ; that is, we
require that

(EPf)∼(Q1, . . . , Qn−1) = f̃(Q1, . . . , Qn−1, P ).

We then have (EP )nf = f(P ). Using this new operator EP , we can boil
down Table B.1 into the more basic Table B.2, above.

Table B.2 shows that the summed pairing makes differentiation simple,
hence forcing evaluation to divide, while the averaged pairing makes evalua-
tion simple, hence forcing differentiation to multiply. Since evaluation seems
more basic than differentiation, perhaps it is better to average.

On the contrary: There is a deep reason why summing is better; but it
will take us a few paragraphs to develop the argument. The first step is
to note that some of the numeric factors of n or n! in Table B.2 are more
expensive than others, the expensive ones being the ones on lines two and
four, the lines where the left-hand sides don’t involve n.

On lines one and three, we are evaluating an n-form completely or differ-
entiating it n times. That is, we are applying the nth-order operator (EP )n

or (Dπ)
n to set all n factors of the n-site with which that n-form gets paired.

So we have to know n — we have a good reason for needing to know it. If
we have to multiply or divide by n! as well, that is only an annoyance.
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But lines two and four are a different story. It makes sense to apply the
operator EP or Dπ to an n-form f without knowing n; indeed, we can even
apply those operators to inhomogeneous forms. If we are forced to require
that f be an n-form solely because we have to multiply or divide by n, that
is worse than annoying; it could be crippling.

For an example of those crippling effects, consider the product rule for
differentiation: Dπ(fg) = Dπ(f)g+fDπ(g). This rule is valid for all forms f
and g, independent of their degrees; in fact, it is valid even for forms f and
g that are inhomogeneous. Under the summed pairing, that rule turns into
an analogous rule for contracting a product on an anchor, also valid for all
forms f and g:

fg π = (f π)g + f(g π) [under summing].(B.1-2)

But suppose that we choose averaging instead of summing, so that Dπ(f) =
f nπ. Then, in order to state the rule for contracting a product on an anchor,
the two forms involved have to be homogeneous and we have to know their
degrees; if f is an n-form and g is an m-form, we have

fg (n + m)π = (f nπ)g + f(g mπ)


under averaging

with deg(f) = n
and deg(g) = m.




The crippling thing here is replacing a single, general rule with a two-
parameter family of narrow sub-rules. It is the off-diagonal sub-rules that
are particularly crippled, in this case. On the diagonal m = n, where both f
and g are n-forms, we can divide through by m + n = 2n to get

fg π =
(f π)g + f(g π)

2

[
under averaging
with deg(f) = deg(g).

]
Note that this rule differs from Rule B.1-2 as averaging differs from summing.

So the multiplication by n in the averaged formula Dπf = f nπ is
crippling. What about the division by n in the summed formula EPf =
f P/n; is it also crippling? It has the potential to be, since it forces us
to know the degree of a form f before we can apply the operator EP to f .
If there were powerful identities in which the operator EP was applied to
inhomogeneous forms, summing would cripple our ability to translate those
identities into the paired-algebras framework. But there aren’t. That’s why
you’ve known about the operator Dπ for decades, while you learned about
EP only a minute ago — because Dπ has the powerful identities, not EP .
For example, the product rule for EP is a two-parameter family of sub-rules;
when f is an n-form and g is an m-form, we have

EP (fg) =
n

n + m
(EPf)g +

m

n + m
f(EP g).
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We should tolerate being annoyed to avoid being crippled, so lines two and
four in Table B.2 matter more than lines one and three. Since the operator
Dπ satisfies more powerful identities than does EP , line four matters more
than line two. To me, at least, this seems like a strong argument in favor of
choosing the pairing that makes line four simple: the summed pairing.

The choice of whether to sum or to average is an issue of taste on which
reasonable people may differ. And averaging definitely seems more attractive
initially — I started out by averaging myself. But I now believe that CAGD
will be better served in the long run if we adopt the summed pairing.

By the way, pure mathematicians often sum, rather than average, because
they want their theory to apply over fields of prime characteristic. Over a
field whose characteristic is a prime p, we have n! = 0 for all n ≥ p, so we
can’t divide by n! . That argument is irrelevant in CAGD, of course, where
the only fields of interest are the reals and perhaps the complexes. But it
certainly isn’t a bad thing for us in CAGD to adopt the same convention as
the majority of pure mathematicians, since that will make it easier for us to
read their textbooks.

B.2 Other options for avoiding annoyance

We have discussed the summed pairing and the averaged pairing as if they
were our only possible options: a binary choice. There are other alternatives,
of course, and several of them are worth mentioning — although not, in my
opinion, worth adopting.

One way to avoid the annoying factors would introduce both the summed
pairing and the averaged pairing, using different notations (perhaps 〈 , 〉 and
[ , ]). We could then use the summed pairing in formulas for differentiation
and the averaged pairing in formulas for evaluation. But having two pairings
around would be confusing. For example, when describing one basis as being
dual to another, we would have to specify under which pairing. The cost in
confusion would probably outweigh the benefit in reduced annoyance.

Several other schemes for mitigating the annoying factors involve rescaled
exponentials, which incorporate a denominator of n! into the concept of an
nth power. I learned of this clever idea from Greub’s text [26]; I don’t know
who first came up with it. There are several ways to exploit this idea, so
that we can adopt the summed pairing and still end up with pretty evaluation
formulas. In one of those ways, the rescaling of the exponentials is explicit;
in the other, it is implicit.

With explicit rescaling, we would introduce a new notation, perhaps
xn/! := xn/n! , reading “xn/!” as “x to the n slash bang”. Exploiting this new
notation, the formula for evaluating an n-form f under the summed pairing
would be f(P ) = 〈f, P n/!〉, which is slightly prettier than f(P ) = 〈f, P n/n! 〉.
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We could also write other famous formulas more neatly using these rescaled
exponentials. For example, we could expand an analytic function f : R→ R
in a Taylor series around b as

f(x) =
∑
n≥0

f (n)(b)(x− b)n/!.

Even better, we could write the Binomial Theorem as

(x + y)n/! =
∑

0≤k≤n
x(n−k)/!yk/!.

All three of the factorials that normally constitute the binomial coefficient(
n
k

)
are hidden here in the three rescaled exponentials. But other formulas

are prettier using standard exponentials. For example, the rule xixj = xi+j

for multiplying by adding exponents is prettier than the alternative

xi/!xj/! =

(
i + j

i

)
x(i+j)/!.

So we would probably end up using both rescaled and standard exponentials.
I am afraid that the cost in confusion from having two different exponentials
would outweigh the small benefit in reduced annoyance.

A more radical approach would implicitly rescale all exponentials of an-
chors. Rather than introducing a new notation, we would define pn, for an
anchor p over A, to mean

pn :=

n factors︷ ︸︸ ︷
p · p · · ·p

n!
,

leading to the summed-pairing evaluation formula f(p) = 〈f, pn〉. But that
radical approach is a nonstarter in our context, because it would destroy
the symmetry between the algebras of forms and sites. In building up a
form out of coanchors, it is a universal, well-established convention that the
exponentials used are standard exponentials. Symmetry requires that we use
standard exponentials also in building up a site out of anchors.

By the way, Greub adopts that radical approach in building his symmetric
algebras. But things are a bit different for Greub because he uses the special
symbol “∨” to denote the multiplication in his symmetric algebra, rather
than a centered dot or simple juxtaposition. The products in his symmetric
algebras hence look less like standard products, so it is not so shocking that
his exponentials,

xn :=

n factors︷ ︸︸ ︷
x ∨ x ∨ · · · ∨ x

n!
,

are rescaled, rather than standard. (Whether rescaling or not, some authors
would prefer to write x∨n in this context, rather than xn.)
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More Math Remarks

C.1 Thoughts about functional notations

In this monograph, we follow the standard mathematical conventions for
notating functions in three respects:

1. When applying a function f to a datum x, we write f(x), with the
function on the left; that is, we denote functions as prefix operators.
The alternative would be some flavor of postfix operator, as in the
expressions (x)f , xf , or xf .

2. We compose functions from right to left, so that applying f ◦ g means
applying first g and then f . The alternative, of course, would be a
composition operator that worked from left to right. (If you ever need
such an operator, consider using a semicolon, setting g;f := f ◦ g. The
analogy with computer programs almost requires that applying g;f
means applying g first.)

3. When denoting the type of a function, we give its domain first and its
codomain second, connected by a rightward-pointing “to” arrow; for
example, we might declare f to be “a function from A to B” and write
f : A → B. The alternative would be to give the codomain first and
the domain second, connected by a leftward-pointing “from” arrow. In
this alternative scheme, we would declare that same function f from A
to B as “a function to B from A” and write f : B ← A.

Unfortunately, the third of those standard conventions is inconsistent with
the first two. Prefix application and right-to-left composition interact better
with “from” arrows than with “to” arrows. For example, it was our use of
“to” arrows that made the declaration of the linear map h12 : X2 → X1 in
Proposition 9.1-3 seem backward. We would have been better off if we had
declared the map h12 with a “from” arrow, as h12 : X1 ← X2.

147
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Sadly, we mathematicians may be stuck with this inconsistency for a long
time. Switching to “from” arrows works fine in limited contexts; but do we
really want all of the arrows in our commutative diagrams to point from right
to left? And, probably also, for consistency, from bottom to top? Postfix
application and left-to-right composition also work fine in certain contexts.
But how do you read the postfix application (x)f in English? The prefix
application f(x) is “f of x” or “f at x”. Perhaps (x)f could be “x into f” or
“x through f” or “x sent to f”? Also, suppose that we want to deemphasize
the argument x by setting it in smaller type. If f is a prefix operator, there
is no difficulty: The argument x becomes a subscript, as in fx. Are we ready
for subscripts on the left, as in xf? How would we read that expression?
What about double subscripts, as in nxf?

By the way, duality is one context where it might be helpful to adopt both
of the sets of consistent conventions simultaneously, using one for primal
functions and the other for their duals. For example, we could use prefix
application, right-to-left composition, and “from” arrows on the primal side,
but postfix application, left-to-right composition, and “to” arrows on the
dual side. Thus, we might introduce the primal linear functions f : X ← Y
and g : Y ← Z. Their composition f ◦ g would then be applied as a prefix
operator to an element z of Z, getting f ◦ g(z) = f(g(z)) in X. The dual
functions would then be f ∗ : X∗ → Y ∗ and g∗ : Y ∗ → Z∗. Their composition
f ∗; g∗ would be applied as a postfix operator to an element x∗ of X∗, getting
(x∗)f ∗; g∗ = ((x∗)f ∗)g∗ in Z∗. One advantage of this scheme is that the
primal operator f and its dual f ∗ are represented by the same matrix. To
apply f , we multiply that matrix by a column vector on the right; to apply
f ∗, we multiply that same matrix by a row vector on the left. We would have
the identity (f ◦ g)∗ = f ∗; g∗, an analog of de Morgan’s Law.

C.2 Paired algebras in wilder contexts

The paired-algebras framework for CAGD exploits some mathematics that
produces a pair of algebras (Sym(X), Sym(Y )) from a dual pair (X, Y ) of
linear spaces. As we developed that theory in this monograph, we mentioned
various things that can go wrong in contexts wilder — that is, more general
— than ours. In this section, let’s review that story, starting out with the
most restrictive assumptions, which lead to the prettiest theory.

C.2.1 Fields of characteristic zero

For the very prettiest theory, the spaces X and Y should be finite-dimensional
linear spaces over the complex numbers, or, more generally, over any alge-
braically closed field of characteristic zero. For example, over such a field,
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every univariate n-ic splits into n linear factors, and a bivariate quadratic
splits into two linear factors just when its discriminant is zero.

The real numbers are the field of scalars that is most relevant in CAGD.
The reals have characteristic zero, but are not algebraically closed. That
makes factoring forms and sites more complicated. But the rest of the theory
is unaffected, as it would be over any field of characteristic zero.

C.2.2 Fields of prime characteristic

Suppose that we start with finite-dimensional linear spaces X and Y , but over
a field whose characteristic is a prime p. For simplicity, let’s assume for now
that the scalar field is infinite; for example, it might be the algebraic closure of
the field Z/(p) for some prime p or the field (Z/(p))(t) of rational functions in
an indeterminate t, where the coefficients in the numerator and denominator
polynomials are taken from Z/(p). We can still build the symmetric algebras
Sym(X) and Sym(Y ). And, for each n, there is still a unique scalar-valued
bilinear map on Symn(X)× Symn(Y ) that satisfies the Summed Permanent
Identity. Unfortunately, that map is no longer a pairing, in general. Indeed,
as soon as n is at least p, the Summed Permanent Identity implies that
〈x1 · · ·xn, y1 · · · yn〉 = 0 when either x1 = · · · = xn or y1 = · · · = yn, since
the resulting sum then has n! = 0 identical terms. The Averaged Permanent
Identity is even worse, since it tries to get rid of this factor of n! = 0 by
dividing by it. The linear spaces Symn(X) and Symn(Y ) still have the same
dimension, so there still exist lots of pairing maps between them — but none
of those pairing maps interact with the multiplications in the two algebras
as specified by the Permanent Identity.

It is a serious blow to the theory that the bilinear map defined by the
Permanent Identity is not a pairing. Furthermore, that failure cannot be
repaired by, for example, rearranging the numeric factors in some clever
way; rather, the case of prime characteristic really is different. To see how,
consider the cubing map σ : Â → Sym3(Â) given by σ(q) := q3 for any
anchor q over A and the evaluation-of-a-cubic map ε : Â→ Sym3(Â

∗)∗ given
by ε(q)(f) = εq(f) := f(q). Over a field of characteristic zero, the maps σ
and ε behave essentially the same; so, by choosing the proper pairing, we
can represent Sym3(Â

∗)∗ as Sym3(Â) in such a way that ε(q) is represented
by σ(q), for all anchors q. (The pairing that does precisely that, of course,
is the averaged pairing; under the superior summed pairing, ε(q) = σ(q)/6.)
Over a field of characteristic p = 3, however, the maps σ and ε behave quite
differently. For example, when A is an affine plane, we have

σ(wC + uϕ + vψ) = (wC + uϕ + vψ)3 = w3C3 + u3ϕ3 + v3ψ3,

with the remaining seven terms dropping out, due to their multinomial coeffi-
cients of 3 or 6. Thus, the cube of any anchor over A lies in the 3-dimensional
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subspace of Sym3(Â) spanned by the 3-sites C3, ϕ3, and ψ3. Over any infinite
field, however, even one of prime characteristic, the values of any polynomial
determine its coefficients uniquely. Hence, the linear functionals in the set
ε(Â) span all 10 dimensions of the space Sym3(Â

∗)∗. So there is no hope
that some juggling of scale factors could allow us to represent Sym3(Â

∗)∗ as
Sym3(Â) in such a way that ε(q) is represented by σ(q), for all q.

By the way, over fields of prime characteristic, the term “Veronese” is
associated with evaluating an n-ic, rather than with raising to the nth power.
For example, in characteristic 3, the “Veronese surface of parametric degree
3” refers to the image of the evaluation map ε : Â→ Sym3(Â

∗)∗, rather than
to the (degenerate) image of the cubing map σ : Â→ Sym3(Â).

C.2.3 Finite fields

If our field of scalars is not only of prime characteristic but is actually fi-
nite, then the values of a polynomial are no longer enough, in general, to
uniquely determine the coefficients of that polynomial. This means that the
evaluation-of-an-n-ic map ε can be degenerate, as well as the raise-to-the-
nth-power map σ.

For an example, let A be an affine plane once again, but now over the field
Z/(3) of cardinality 3. So there are only 9 points in A and only 27 anchors
over A. Consider the ninth-power map σ : Â→ Sym9(Â) and the evaluation-
of-a-nonic map ε : Â → Sym9(Â

∗)∗. The equation σ(q) = q9 = (q3)3 shows
that σ(wC+uϕ+vψ) = w9C9+u9ϕ9+v9ψ9, so the ninth powers of all anchors
over A lie in a 3-dimensional subspace of Sym9(Â); thus, the map σ is quite
degenerate. But the evaluation map ε must be somewhat degenerate also, just
by counting. Since there are only 27 anchors over A, the linear functionals
in the set ε(Â) can’t span more than 27 dimensions, while the full space
Sym9(Â

∗)∗ has dimension 55. (In fact, since ε(0) = 0 and ε(−q) = −ε(q), we
can tighten the bound on the dimension from 27 to (27− 1)/2 = 13, and 13
turns out to be the exact answer.)

This degeneracy of ε torpedoes one of the three concrete constructions
of the symmetric algebra Sym(X) that we discussed in Section 5.1, the one
that exploits duality. Over a finite field, we have to construct the algebra
Sym(X) by dealing in some way with polynomials whose variables lie in X.
We can’t exploit duality to replace each such polynomial by the scalar-valued
function on Y = X∗ that it defines, since two distinct such polynomials may
define the same function.

On the other hand, some things get nicer over a finite field. A subspace,
such as a line or a plane, has only finitely many points in it. So we can
associate, with such a subspace, a polynomial that has all of the points in
that subspace as its roots; see Macdonald [39].
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C.2.4 Linear spaces of infinite dimension

If X is a linear space of infinite dimension, then its dual space Y := X∗ is
vastly bigger than X, so the concept of a pairing breaks down already in
degree 1. We can still build the algebra Sym(X), and it is still an algebra
of polynomials — albeit polynomials in an infinite number of variables. And
we can build the algebra Sym(Y ) as well. But Sym(Y ) is so much bigger
than Sym(X) that those two algebras cannot be paired (except in degree 0,
where Sym0(X) = Sym0(Y ) = R).

For those who are curious, here is what I mean when I say that the dual
space X∗ is “vastly bigger” than X. Let F be a field and let X be a linear
space over F whose dimension κ := dimF (X) is infinite; so κ is an infinite
cardinal. It then turns out [6] that dimF (X∗) = |X∗| = |F |κ ≥ 2κ > κ.

C.2.5 Modules over commutative rings

Things get still wilder when we generalize from linear spaces over a field to
modules over a commutative ring R. Here are a few of the problems that
can arise in that context.

First, the additive group of the ring R may have torsion. If so, we end up
with all of the problems associated with fields of prime characteristic, only
worse. Different elements of R may have different additive orders, and those
orders need not be prime.

Second, as we mentioned in Section 9.3, only the nicest R-modules M ,
the free modules, have any bases at all. So a construction of the symmetric
algebra Sym(M) that starts by choosing a basis may not be applicable. The
field of rational numbers Q, viewed as a module over the integers Z, provides
a simple example of a torsion-free module that is not free.

Bourbaki [4, 5] is a good source for the theory of the symmetric algebra
at this level of generality and subtlety.

C.2.6 The division ring of quaternions

What about a ring R that isn’t commutative? We can still define the concept
of an R-module, but we must now specify whether scalars multiply from the
left or from the right. Let’s think about left R-modules, where the scalar
multiplication takes r in R and m in M to rm in M . Things are now wilder
yet; for example, a free left R-module can have bases of different cardinalities.

Exercise C.2-1 Consider real (or integral — it doesn’t matter) matrices
m := (mij)i,j≥0 with infinitely many rows and columns, each of which is
eventually identically zero. The product of two such matrices is another such,
so the set of all such matrices forms a noncommutative ring R. Consider the



152 APPENDIX C. MORE MATH REMARKS

ring R itself as a left R-module. The module R is free, since the identity
matrix i forms a basis of cardinality one; for any m in R, the equation
m = ri has the unique solution r = m. Show that the following matrices j
and k form a basis of cardinality two:

j :=




1 0 0 0 0 0 . . .
0 0 1 0 0 0 . . .
0 0 0 0 1 0 . . .
. . . . . . . . . . . . . . . . . . .


 k :=




0 1 0 0 0 0 . . .
0 0 0 1 0 0 . . .
0 0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . . .


 .

That is, for any m in R, show that there exist unique matrices r and s in R
with m = rj + sk.

Left modules over division rings are much better behaved — indeed,
are almost as well behaved as linear spaces over fields. A division ring
(a.k.a. skew field) is a nonzero† ring in which every nonzero element is in-
vertible. If R is a division ring, then every left R-module M is free and all
bases for M have the same cardinality.

The division ring that is most likely to be of interest in CAGD is the
quaternions H. It would be interesting to study how much of the theory of
the paired algebras survives when working with left H-modules. One bad
sign is that only a pale shadow of the theory of determinants carries over to
matrices of quaternions. While we would naively hope that the determinant
of a matrix m of quaternions was itself a quaternion, say h, the best that can
be done — see Artin [2] — is to define det(m) to be a nonnegative real number
that captures, roughly speaking, the norm |h|. The theory of permanents of
matrices of quaternions is likely to be a shadow that is similarly pale, and
that would be bad news for the paired algebras.

†There is a unique ring {0}, called the zero ring, in which 1 = 0; we don’t want the
zero ring to qualify as a division ring.
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