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Abstract

The residency problem arises in the context of debugging optimized code: a user
may ask to see the value of a variable that is currently in scope, but whose value
has been overwritten (evicted) and is therefore not available. This creates a difficult
situation for the debugger. On the one hand, allowing users to examine the state
of programs as they execute is the raison d’ˆetre for having debuggers. On the
other hand, the debugger cannot return a value if the value is not in the computer.
Because the residency problem is very common in optimized code, it is critical
that any debugger for optimized code have some mechanism for dealing with it
appropriately.

There are two parts to this problem: detecting that the variable has been evicted
and is no longer resident; and responding appropriately to the user’s request for
its value. Although residency determination has been studied before, recovery of
evicted values apparently has not. In this paper we present Limited Eviction Re-
covery, a simple, practical solution for the residency problem. In this solution the
compiler informs the debugger of those locations in the binary where source vari-
ables are evicted, and the debugger makes copies of the values of the variables
before they are overwritten and lost. In order to avoid incurring too much cost,
the debugger only preserves the values of the variables most likely to be of inter-
est to the user. In addition to explaining our algorithm, this paper describes our
implementation of Limited Eviction Recovery, presents measurements taken of the
resulting system, and discusses some implications thereof.
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1 Introduction

One of the most difficult tasks that a debugger for optimized code must perform is
to find and return the value of a source variable in response to a user’s query. There
are three main problems that contribute to this difficulty: the currency problem, the
data location problem, and the residency problem. Collectively these are known
as thedata value problems [5]. The currency problem is detecting and recovering
from situations where the actual value of the variable is different from the value
the user would expect based on examining the source program. Such situations can
arise when optimizations change the order in which variable assignments occur.
The user, on discovering the actual value differs from the expected, may be misled
into thinking there is a bug when there is not one. Thedata location problem is de-
termining the correct location (register or memory address) in which to look for the
current value of a variable. This can be difficult because optimizations frequently
copy and move variables and often eliminate the store of the variables’ values to
memory. Theresidency problem is recognizing and coping with the case where
the requested variable’s value is not currently storedanywhere in the computer
and is therefore not available. In this paper we focus on the residency problem.
Approaches for handling the currency problem and the data location problem are
given elsewhere. [2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15]

The residency problem can arise because a variable’s lifetime is not necessarily
the same as its scope. At any point in the execution of a program, a variable which
may be within the current scope can also be “dead”, i.e. its value is no longer
needed for the computation. In such cases, the optimizer allows the variable’s
storage location to be re-used for some other value without first saving the value
of the dead variable anywhere. From the compiler’s point of view this is not a
problem, as the dead value is no longer needed for the computation. From the
debugger’s point of view this is unfortunate, because the user may wish to examine
that value anyway. Whenever a variable’s value is overwritten without first being
saved elsewhere, the compiler is said to haveevicted the variable, and the variable
is said to have becomenon-resident.

If variable evictions were rare, it might suffice to detect those few places where
they happened, and to inform the user in such cases that the variable’s value is
unavailable. However, variable evictions are widespread in optimized programs.
In a study performed by Adl-Tabatabai and Gross [1], they found that 30–60% of
all possible breakpoint locations had variables within scope that were evicted. Be-
cause variable evictions are so common, it is imperative for debuggers of optimized
code to properly address them.

In this paper we present Limited Eviction Recovery, a practical approach for
recovering the values of evicted variables in most situations. The rest of this paper
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is organized as follows: Section 2 presents and discusses general techniques for
handling evicted variables in a debugger. We present our algorithms and solution
in detail in Section 3. In Section 4 we describe an implementation of our solution.
Section 5 presents and analyzes measurements of our implementation, and our
conclusions are presented in Section 6. We know of no prior work on eviction
recovery, although Adl-Tabatabai and Gross [1] have presented a technique for
detecting evicted variables.

2 Potential Solutions for the Residency Problem

There are three basic approaches for dealing with evicted variables: detection, re-
construction, and value capture.

Detection is the simplest method. It involves merely keeping track of which
variables are evicted at each location in the target program. In response to a request
to see a variable’s value, if the variable is evicted, the debugger can inform the user
that the variable’s value is not currently available. As previously mentioned, this
is the approach taken by Adl-Tabatabai and Gross [1]. While relatively easy to
implement, this approach is not likely to be satisfactory. Given the frequency with
which eviction occurs, it is probable that a large number of user requests would
receive such a response, which in turn is likely to frustrate the user.

Reconstruction attempts to recompute the last value of an evicted variable from
other values, in the same way that that value was first computed. There are sev-
eral problems with this approach. To begin with, keeping track of all the com-
ponents required to reconstruct each variable in the program requires recording a
huge amount of additional data. Second, even if that data were collected and passed
to the debugger, it is possible that one or more of the contributing variables will
have been updated since the evicted variable received its value. In fact it is likely
that some of the operands themselves have been evicted, and would need to be re-
constructed. The sheer volume of information required by this approach makes it
impractical.

In value capture, which is the approach advocated in this paper, the debugger
notices when a variable is about to be evicted and captures the value of the variable
before the eviction takes place. The debugger stores these saved values in a special
list, which it uses to lookup the values of evicted variables in response to user
requests. We discuss this approach more fully in the next section.
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3 Limited Eviction Recovery

The obvious way for a debugger to capture values just before eviction is to use
hidden breakpoints [15]. Suppose that a variable is about to be evicted. In or-
der to copy the variable’s value before it is overwritten, execution of the target
program must be suspended prior to the eviction and control given to the debugger.
Therefore the debugger must set breakpoints on all instructions that evict variables.
Furthermore these are not user-specified breakpoints; since the debugger does not
pass control to the user at these positions, they arehidden breakpoints.

While these breakpoints are hidden from the user, they are not free. Every time
a hidden breakpoint is reached, the kernel must switch contexts and give control
to the debugger, which will collect the appropriate value and return control to the
kernel, which then resumes executing the target program. Given the high frequency
of variable eviction, using hidden breakpoints (each of which requires two context
switches) to save the value of every variable that is about to become evicted will
probably have a highly visible, negative impact on the running time of the program.
Thus there is a conflict between needing the ability to present evicted variables’
values to the user and keeping the impact on the execution speed of the target
program to a minimum.

To address this cost issue, we introduce Limited Eviction Recovery. In Lim-
ited Eviction Recovery, the debugger uses hidden breakpoints to copy the values
of evicted variables, but only in those subroutines where the user has already set a
control breakpoint, and only while the control breakpoints are active. Thus, while
the running time for those subroutines will be affected by the eviction recovery
scheme, the rest of the program will not. Since, by choosing to set a breakpoint
in the subroutine, the user has already indicated a willingness to slow down (stop)
execution time within the subroutine, this tradeoff seems fair. In fact our measure-
ments indicate that, in general, the time spent servicing hidden breakpoints and
recovering evicted variable values is completely overshadowed by the time spent
servicing the user’s control breakpoints.

The benefit of this approach is that, whenever execution of the target program
stops at a user-specified control breakpoint, the values of all variables local to that
subroutine will be available for the user to examine. The values of global variables
and of any arguments to any functions on the call stack will also be available for
examination, since they are normally assumed by the compiler to be live, and live
variables cannot be evicted. Thus the values of the variables the user is most likely
to be interested in are available for examination, while at the same time, by limiting
eviction recovery to subroutines where the user has set active control breakpoints,
the impact of eviction recovery on program run time is minimized.

Obviously this approach also has some limitations. Target program execution
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can be suspended for reasons other than a user-specified control breakpoint (e.g., a
data breakpoint, a user interrupt, or a fault). In such cases, eviction recovery may
not have been performed, so variables within the current subroutine may or may
not be available. Another problem is that, when moving up or down the call stack,
variables that arenot arguments to the function calls may or may not be available.
Similar problems also exist for debugging core dumps (post-mortem debugging).
In those situations where a user requests the value of an evicted variable for which
the debugger does not have a saved value, we fall back on detection, informing the
user that the requested value is unavailable.

4 Implementation Details

In order to test our ideas, we implemented Limited Eviction Recovery in Optdbx.
Optdbx is part of a suite of tools created to allow accurate, truthful debugging of
optimized code. These tools consist of a slightly modified version of the MIPS-
Pro 7.2 C compiler, a commercial compiler developed by Silicon Graphics, Inc.
(SGI) that optimizes aggressively; Optview, a tool which takes a C source program
and generates an optimized version of the source, based on the optimizations the
MIPS-Pro 7.2 C compiler performed when it compiled the program; and Optdbx,
a modified version of the SGI dbx debugger. More complete descriptions of these
tools can be found elsewhere [10, 11]. Here we will focus on those portions rele-
vant to eviction recovery.

We modified the compiler to perform dataflow analysis on the final version of
the optimized binary in order to discover the correct locations in which to look
for the values of all source variables. This was necessary for solving the data
location problem [9]. In the process of doing this dataflow analysis, the compiler
also discovers all the places in the target program where variable eviction occurs.
The compiler records information about each eviction location in a special portion
of the symbol table, which Optdbx later uses. We use the DWARF 2.0 symbol table
format [8], creating a new, company-specific section in the table, as allowed by the
DWARF specification, to contain the variable eviction information.

There are three parts to performing Limited Eviction Recovery in Optdbx: set-
ting up or discontinuing eviction recovery within a subroutine; servicing the hidden
breakpoints; and servicing user requests for evicted variables. We will discuss each
of these in turn.

In order to set up or discontinue eviction recovery, Optdbx keeps a counter
for every subroutine in the executing program. This counter tracks the number of
control breakpoints the user currently has set in the subroutine. Every time the user
sets a breakpoint in a subroutine or chooses to step into the subroutine, Optdbx
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checks the subroutine’s breakpoint counter, and increments it. If the requested
breakpoint is the first breakpoint the user has set in the subroutine, Optdbx sets
up eviction recovery within that subroutine (as described below). Similarly, every
time the user removes a control breakpoint or chooses to step out of a subroutine,
Optdbx decrements the subroutine’s breakpoint counter. If the breakpoint counter
goes to zero, Optdbx discontinues eviction recovery within that subroutine. To set
up eviction recovery within a subroutine, Optdbx checks the symbol table to find
all the addresses within the subroutine that evict variables. It then sets a hidden
breakpoint at each of those addresses. To discontinue eviction recovery within a
subroutine, Optdbx removes these hidden breakpoints.

During execution of the target program, if the kernel encounters one of the hid-
den breakpoints it suspends execution of the program and passes control to Optdbx.
Optdbx checks the symbol table to see which variable is about to be evicted and
then copies the variable’s value from its current location to a special list Optdbx
maintains.1 Once the value has been captured in this way, control is returned to the
kernel, which resumes executing the target program.

Any time the user requests a variable’s value, Optdbx consults the symbol ta-
ble, using the current program-counter value, to see where the variable is presently
stored. If the symbol table indicates that the variable is currently evicted, Optdbx
looks up the variable’s name in its special list and checks to see if there is a cor-
responding value. If the value is in the list, Optdbx returns the value. Otherwise
Optdbx reports to the user that the variable’s value is currently unavailable. As
previously mentioned, this last case can occur if execution has been suspended for
some reason other than a control breakpoint, or if the user has changed frames in
the execution stack, and the program is in a subroutine for which eviction recovery
was not enabled.

The MIPS-Pro 7.2 C compiler consists of roughly 500,000 lines of C and C++
code. Modifying the compiler to perform the dataflow analysis in order to detect all
the locations at which source variables are evicted took roughly two months, and
required writing or modifying roughly 1,500 lines of code. Adding a new section
to the symbol table to record the eviction information involved writing about 500
lines of code and took 2-3 weeks.

The SGI dbx debugger, on which Optdbx is based, consists of roughly 150-
200,000 lines of C++ code. Modifying the debugger to count the control break-
points in each subroutine, to set and remove the hidden breakpoints when appro-
priate, to determine which variable is about to be evicted when a hidden break-

1A separate list is actually maintained for each stack frame for each subroutine, in order to handle
recursion correctly. Optdbx stores the list with the other information it maintains about each stack
frame.
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# # Avg.
Time w/o Time w/ Slowdown Static Dynamic Time/
Recovery Recovery secs. (%) Traps Traps Recovery

go 666 706 (4 funcs) 40 (6.0%) 37 1,614 0.025
compress 784 788 (1 funcs) 4 (0.5%) 19 552 0.007
li 566 799 (1 funcs) 233 (41.0%) 12 21,600 0.011
ijpeg 270 377 (6 funcs) 107 (39.6%) 64 8,136 0.013
perl 309 323 (7 funcs) 14 (4.5%) 74 590 0.024
philspel 1 122 (3 funcs) 121 (12,100.0%) 16 9,940 0.012
eval-emon 1 97 (4 funcs) 96 (9,600.0%) 570 612 0.168
measure1 9 1,985 (1 funcs) 1,976 (21,955.6%) 149 78,204 0.025

Average – – – – – 0.036

Table 1: Eviction recovery timing measurements (in seconds)

point is reached, to find and copy the variable’s value, and to return the appropriate
value when the user requests an evicted variable required writing or modifying ap-
proximately 1,000 lines of code and took about two months. Thus the total effort
involved in implementing Limited Eviction Recovery required writing or modify-
ing about 3,000 lines of code and took 4.5 months. The amount of work would
have been less if the implementer had already been familiar with the compiler and
debugger code. These numbers show that Limited Eviction Recovery can be im-
plemented within existing compilers and debuggers with only a moderate amount
of effort.

5 Measurements and Analysis

The reason we have given for choosing our approach, rather than performing evic-
tion recovery throughout the entire program, was the claim that attempting the lat-
ter would have too much of a negative impact on the execution time of the program,
while the solution we chose would not.

To verify this claim we took several different timing measurements within the
debugger. These measurements were taken by running benchmark programs from
within the debugger, using various levels of eviction recovery. We modified the
debugger to perform eviction recovery in selected functions, without setting any
control breakpoints, since such breakpoints would interfere with our timing mea-
surements. The time it took each program to execute was measured. As the most
important question to answer is not how long it takes the CPU to execute the code,
but how long the user has to wait for the program to complete, the time measured
was the total elapsed time, from the user’s perspective. This time was obtained by
modifying the debugger to print the current system time both when it initially starts
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executing the program to be monitored, and when the execution of the program ter-
minates. We then took the difference between these two times.

The programs we used as benchmarks include five of the C programs from the
SPEC95 benchmark suite (go, compress, li, ijpeg and perl). Since
we were concerned about the possibility that the SPEC benchmark programs might
have characteristics that are not representative of other C programs, we also mea-
sured some C programs written by graduate students at the University of California,
Berkeley. These programs arephilspel, a small program that takes a dictionary
and a document and performs spell-checking on the document;eval-emon, a
5,000 line program that takes as input files containing data from hardware coun-
ters, and performs a series of calculations on this data, determining such things
as cache miss rates; and,measure1, a group of simulation scripts for testing a
network resource clustering algorithm. The results of our eviction recovery mea-
surements on these eight benchmarks are shown in Table 1. All the times shown
are in seconds.

The first column of numbers shows the time it took to execute the program
without any eviction recovery. The second column shows the execution time with
eviction recovery being performed in one or more functions. The number of func-
tions with eviction recovery is shown in parentheses. The third column shows the
difference between the first two columns, indicating the time spent on eviction
recovery. The actual slowdown in seconds in shown first, followed by the percent-
age slowdown in parentheses. The next two columns show the number of hidden
breakpoints set (static) and the number of eviction recoveries performed during ex-
ecution (dynamic). The final column shows the average time spent on each eviction
recovery. This varies anywhere from 7 milliseconds to 168 milliseconds, with the
overall average being 36 milliseconds.

The reader should note that these are worst-case measurements. For simplicity,
we implemented the hidden breakpoints using context switches, which are expen-
sive. It would probably be possible to speed up eviction recovery significantly by
using code patching instead. Also, since we measured eviction recovery in selected
subroutines without setting and removing control breakpoints, we perform eviction
recovery in each selected subroutineevery time it is called, rather than on user re-
quest. This is not the way in which we expect Limited Eviction Recovery to be
used.

Not surprisingly, the largest percentage slowdown in our measurements oc-
curred in the three programs with very short “normal” execution times (two of the
programs took one second or less to execute without eviction recovery). In seven
out of the eight benchmarks, the additional time spent on eviction recovery ranged
from a few seconds to less than four minutes. At first glance this slowdown may
seem a heavy penalty to pay for eviction recovery. Indeed it confirms our origi-
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nal hypothesis that performing full eviction recovery everywhere would cost too
much in terms of execution time. In fact it would be easy to erroneously con-
clude from these numbers that even our partial eviction recovery is too expensive
and impractical. But such a conclusion overlooks a critical aspect of our limited
eviction recovery scheme: eviction recovery is only performedwhile the user has
breakpoints set in the subroutine.

The following example should help illustrate the importance of this point.
While looking for appropriate subroutines in which to set up eviction recovery
for our measurements, we came across one case in the SPEC benchmarks where a
single function was called over 100 million times during execution. However for
each individual call to the subroutine only 30 eviction recoveries were performed.
At an average of 0.036 seconds per eviction recovery, performing eviction recovery
in this subroutine would add an additional 1.08 seconds to the execution time of the
program, each time the subroutine is called with eviction recovery activated. Re-
call that in our scheme eviction recovery should only be activated in this subroutine
while the user has an active control breakpoint set there. Since obtaining the user’s
request at the breakpoint and servicing it will take far longer than 1.08 seconds, it
is fairly safe to state that, for any given invocation of the subroutine, the time spent
performing eviction recovery will be completely overshadowed by the time spent
servicing the breakpoint, and will probably pass unnoticed. It is also likely that the
user will only leave the breakpoint active in the subroutine for a tiny fraction of the
100 million times the function is called. For the rest of the subroutine invocations,
when the breakpoint is not active, eviction recovery will not be performed and the
subroutine will execute at its normal speed. However if we performed eviction re-
covery in the subroutine every time it is called, which is the methodology we used
for collecting our measurements in Table 1, it would take an additional 3.4years
to execute. Admittedly this particular example is a little extreme, but it does show
the importance of limiting eviction recovery to only those subroutine invocations
for which an active control breakpoint is set. Although full eviction recovery is not
practical for this subroutine, Limited Eviction Recovery is.

6 Conclusions

Optimizing compilers often produce code that evicts variables while they are still
in scope. This poses a major problem for debuggers when users ask to see the
values of such variables. A debugger can prepare to answer such user queries by
saving the variable values at the time of eviction. However doing this requires the
use of hidden breakpoints, and using hidden breakpoints forall evictions can be
slow. We have therefore proposed Limited Eviction Recovery, a scheme which
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reduces the performance impact by selecting only the most critical evicted values
for saving: the values evicted during the execution of a subroutine in which the
user has set control breakpoints. We have implemented this scheme and we have
shown that, although performing full eviction recovery might be too costly, in terms
of the effects on program execution time, performing limited eviction recovery is
practical and greatly improves the information available to users about the values
of variables.
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