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Abstract

There are many difficulties to be overcome in the process of designing and im-
plementing a debugger for optimized code. One of the first problems facing the
designer of such a debugger is determining how to accurately map between loca-
tions in the source program and locations in the corresponding optimized binary.
The solution to this problem is critical for many aspects of debugger design, from
setting breakpoints, to implementing single-stepping, to reporting error locations.
Previous approaches to debugging optimized code have presented many different
techniques for solving this location mapping problem (commonly known as the
code location problem). These techniques are often very complex and sometimes
incomplete.

Identifying key instructions allows for a simple yet formal way of mapping
between locations in the source program and the optimized target program. In this
paper we present the concept of key instructions. We give a formal definition of key
instructions and present algorithms for identifying them. We then show how they
greatly simplify many location mapping tasks, regardless of the particular approach
taken for solving other problems related to debugging optimized code. Finally we
briefly describe our experiences implementing and using key instructions. The
concepts presented in this paper are fundamental rather than complex; but they are
of profound importance in the field of debugging optimized code and are therefore
worthy of careful attention and articulation.
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1 Introduction

There are two well-known sets of problems in debugging optimized code: data
value problems and code location problems [9, 25].

Data value problems are the difficulties involved in finding and returning the
value of a variable in response to a user’s query. These problems include the res-
idency problem, the data location problem, and the currency problem. The resi-
dency problem arises when the variable’s current value is deemed temporarily dead
by the compiler, and allowed to be overwritten without first being saved elsewhere.
When the value is overwritten, it becomes lost (non-resident), and therefore it is
impossible to find the value and return it to the user. The data location problem is
determining where to look for the variable’s value. Assuming the value is available,
it might be in any of several registers or addresses in memory, depending on the
current PC. The currency problem arises because, even assuming one can find the
current actual value of a variable, this value may be different from the value the user
expects, based on an examination of the original source program. This difference
between the actual and expected values of a variable can occur because optimiza-
tions can change the order in which independent assignments are executed, or can
delay or prematurely execute an assignment (with respect to the source program).
How one presents the value to the user without causing undue confusion is a topic
that has concerned many researchers over the years [2, 6, 8, 9, 11, 21, 22, 25].

Code location problems arise in mapping between locations in the source pro-
gram and locations in the optimized target program. As compiler optimizations be-
come more common and increasingly complex, the gap between a source program
and its optimized target program becomes ever greater. As instructions generated
from various source statements are duplicated, combined, moved, deleted and in-
terleaved with instructions from other source statements, it becomes very difficult
to decide where in the target program any given source statement begins or ends.
Yet it is critical for debuggers of optimized code to be able to map precisely be-
tween locations in the source program and the corresponding locations in the target
program. Debuggers need this mapping to implement all debugger functions that
require suspending execution at particular locations in the source program. These
functions include setting control breakpoints, single-stepping between statements,
and stepping into and returning from subroutines. The mapping information is also
necessary for reporting the location of execution errors.

Past research on debugging optimized code has focused mainly on solving the
data value problems, particularly the currency problem. The code location prob-
lems have been largely ignored, except as mappings generated in the process of
working on the currency problem. Thus the “solutions” to the code location prob-
lem to date are often complex or ad hoc, and sometimes incomplete (see Section 6
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for more details).
In this paper we present a simple and complete solution to the code location

problem, based on the concept of key instructions. In Section 2 we give a more
detailed problem description, using syntactic and semantic breakpoints to illustrate
the difficulties. We both define key instructions formally and present algorithms
for identifying them in Section 3, where we discuss key instructions as they relate
to setting breakpoints. In Section 4 we discuss the usefulness of key instructions
for implementing other debugger functions, and we elaborate on the various ways
key instructions can be used to solve many problems in debugging optimized code.
We discuss our implementation experiences with key instructions in Section 5. In
Section 6 we review previous work in this area, and in Section 7 we present our
conclusions.

2 Syntactic Versus Semantic Breakpoints

The code location problem can be most clearly illustrated by considering which
instruction in the optimized program should be used as the breakpoint for a given
statement. There are two basic schemes for setting breakpoints in optimized code:
syntactic breakpoints and semantic breakpoints [8, 9, 25]. The difference between
these two schemes is which instruction in the binary is used for the breakpoint
location. As the name implies, syntactic breakpoint locations are based on the
syntax of the original source program, while semantic breakpoint locations are
based on the instructions generated from the source statements (their semantics).

Using a syntactic breakpoint scheme, the basic idea is to ensure that the break-
points for statements are reached in the same order as the statements occur in the
original source program. In other words, if one single-stepped through the opti-
mized binary, stopping at each syntactic breakpoint as it is reached, it would super-
ficially appear that the statements were executing exactly in the order indicated by
the source program. We say “superfically” because, since the syntactic breakpoint
for any given statement S has nothing to do with the location of the code for S,
the state of the program at any given breakpoint may wildly differ from what one
would expect based on examining the source.

Using a semantic breakpoint scheme, the breakpoint for any given statement S
will be set at one of the instructions generated from S. Thus, while single-stepping
from semantic breakpoint to semantic breakpoint, the statements may appear to be
executing out of order with respect to the original program. However if one pays
attention to which statements have executed up to the breakpoint (based on the
single-stepping), the program state should be approximately what one expects.

Figure 1 and Table 1 help illustrate the differences between syntactic and se-
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Source Code Instructions

S1: i = init; I0: ADD $r9 $r7 $r6 /* S3: c + x */
S2: while (i < n) { I1: MOV $r10 $r8 /* S1 */
S3: m = c + x + y + n; I2: ADD $r12 $r13 $r11 /* S3,S4: y + n */
S4: s = s + (m * (y + n)); I3: ADD $r16 $r9 $r12 /* S3 */
S5: i++; I4: MUL $r14 $r16 $r12 /* S4: m * $r12 */
S6: } TOP: I5: BGEQ $r10 $r11 BOT /* S2 */

I6: ADDI $r10 $r10 1 /* S5 */
I7: ADD $r15 $r15 $r14 /* S4: s + $r14 */
I8: B TOP /* S6 */

BOT: I9: ...

(a) (b)

Figure 1: An example of optimized code.

Source Syntactic Semantic
Statement Breakpoint Breakpoint

S1 I1 I1
S2 I5 I5
S3 I5 I3
S4 (I6 or I7) I7
S5 (I6 or I7) I6
S6 I8 I8

Table 1: The syntactic and semantic breakpoints for code in Figure 1.
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mantic breakpoints. Figure 1(a) shows a small piece of C source code. Figure 1(b)
shows the instructions generated from the source code after optimizations have
moved statement S3 and loop-invariant portions of S4 out of the while loop. We
are assuming, for the sake of this illustration, that the variable m is not used after
the loop shown, so moving statement S3 out of the loop without setting a guard on
it does not alter the semantics of the program. Table 1 shows the instructions at
which to set the syntactic and semantic breakpoints for the statements in Figure 1.
For statements S1, S2, and S6, the syntactic and semantic breakpoints happen to
be the same. The interesting cases are statements S3, S4, and S5. The instructions
that implement statement S3 are instructions I0, I2, and I3. Since I3 calculates the
final value for m and leaves it in register $r16, I3 is the logical place to put the
semantic breakpoint for statement S3. The syntactic breakpoint for S3, however,
cannot come before the syntactic breakpoint for statement S2, namely I5. Thus the
first location at which the syntactic breakpoint for S3 can occur is at instruction I5.
The semantic breakpoints for statements S4 and S5 would be at instructions I7 and
I6, respectively. The syntactic breakpoints for these two statements are more diffi-
cult to place. Table 1 shows the syntactic breakpoints for each of these statements
being at either instruction I6 or instruction I7. An important point that is not clear
from the table is that, whichever instruction is used as the syntactic breakpoint for
one statement, the other statement must use the same instruction. This is because,
although the optimizer switched the order in which the instructions for these two
statements gets executed, the syntactic breakpoints must still occur in the same or-
der as the original source statements. One can either choose to set the breakpoint
for statement S4 at instruction I7, in which case the syntactic breakpoint for S5
must also be at instruction I7; or, one can set the syntactic breakpoint for statement
S5 at instruction I6, in which case the syntactic breakpoint for statement S4 must
also be at instruction I6.

Each breakpoint scheme has advantages and disadvantages. Using syntactic
breakpoints, the breakpoints for different statements always occur in the order one
would expect. For example, the syntactic breakpoint for statement S3 occurs after
the syntactic breakpoint for S2. If a syntactic breakpoint is set on statement S3,
then execution will be suspended each time the loop is executed. However, the first
time the breakpoint for statement S3 is reached, the code for the statement will
have already executed. This may defeat the purpose for which the breakpoint was
set.

Using semantic breakpoints, one is guaranteed that the code for the statement
on which the breakpoint has been set has not yet executed. On the other hand, the
breakpoints may not occur in the order or locations expected, based on examining
the source. For example, if a user wants to suspend execution each time through
the loop, she might set a breakpoint on statement S3. However, using semantic
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breakpoints, execution would only be suspended once, before the loop was ever
entered.

Syntactic breakpoints are most appropriate for transparent approaches to de-
bugging optimized code, where one attempts to make the effects of optimizations
as transparent to the user as possible, because they allow the statements to appear
to execute in the order specified by the original source program. Semantic break-
points are most appropriate for non-transparent approaches, where one attempts to
show users some of the effects of optimizations. The concepts presented in this
paper are useful for either approach, for different reasons. When introducing the
concept of key instructions, it is most helpful to focus on semantic breakpoints, as
they allow the most clear illustration of key instructions. Section 4.1 describes how
key instructions may be used to help implement syntactic breakpoints.

Given that one has decided to use semantic breakpoints, there is still the prob-
lem of determining where exactly to set the breakpoint. In particular, it may be
difficult to decide which instruction, precisely, is “where a statement occurs in
the binary”. Consider Figure 1 and Table 1 again. Statements S1, S2, S5, and
S6 each have only one corresponding instruction, so selecting the semantic break-
points for those statements is trivial. But statements S3 and S4 each have multiple
corresponding instructions. For statement S3 we could have selected any of the
instructions I0, I2 or I3. We chose I3 because that is where the final calculation is
performed. However we could as easily have chosen I0, which is the first instruc-
tion generated from S3. Similar arguments could be made for choosing either of I2
or I7 for statement S4. For more complicated statements the choice may be even
more difficult. To address this problem we present the idea of key instructions.

3 Atoms and Key Instructions

We start by giving an informal definition of key instructions. A key instruction is
the single instruction generated from a source statement that most closely embod-
ies the overall semantics of the source statement. This definition suggests that key
instructions are the logical locations in the optimized binary for setting semantic
breakpoints. The concept of key instructions is not entirely new. Both Copper-
man [8] and Zellweger [25] mention something similar in passing, when discussing
possible breakpoint implementations. In particular Copperman mentions the idea
of a representative instruction that “most closely reflects the effect of the statement
on user-visible entities” [7, pp.393–394]. But neither he nor Zellweger elaborates
the idea or explores how to identify such instructions.
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3.1 Source program locations and atoms

Before one can reasonably discuss mapping between locations in the source pro-
gram and locations in the target program, one needs to define what precisely is
meant by “location” in each type of program. For the purposes of this paper, a
location in the target program is the start of any instruction. But a “location” in the
source program is more difficult to define.

A commonly used definition for setting breakpoints is “the beginning of any
executable statement in the source”. At first glance this definition appears to work
fairly well. However, because we are dealing with optimized target programs,
there are a few problems with it. Ideally source locations for setting breakpoints
would correspond to all places in the source where interesting events take place,
for some definition of “interesting” (we give our definition in the next paragraph).
Many high-level programming languages allow statements that may contain multi-
ple such events. In unoptimized programs one can still use the source statement as
a reasonable location for setting breakpoints, because all the interesting events for
any given source statement execute in a cluster, with no intervening events from
any other statement. This is not true once a program has been optimized. Opti-
mizations may cause the code for events that occur in the same source statement to
be widely scattered in the target program. To deal with this problem we introduce
the concept of an atom.

Before we can formally define an atom, we need to introduce some other termi-
nology. Many high-level programming languages contain both simple and complex
statements, where a simple statement is one that contains at most one piece of key
functionality, and a complex statement is one that contains more than one piece of
key functionality. Key functionality is any functionality that changes the state of
the program (at the source level), i.e. either the value of a source variable or the
control flow of the program. In the context of the preceding paragraph, “interesting
events” are those that correspond to pieces of key functionality.

Examples of source-level events that cause a program’s state to change (and
which therefore represent pieces of key functionality) include:

• assigning a value to a source variable, field, array element, etc.

• branching statements (conditionals, loops)

• function calls and returns

• general control flow statements (goto, continue, try, break, etc.)

Since we are talking about mapping from source program locations to the target
program, we will consider only source-level-visible state changes; changes to the
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cache behavior, for example, are not relevant to this work. For the rest of this
paper, whenever we talk about a state change, we mean a source-level-visible state
change.

For each piece of source code that can cause state to change, a key instruction
needs to be defined. Because complex source statements may have multiple pieces
each of which causes a state change in the program, the source statement is the
wrong level at which to discuss source program locations. Instead we introduce
the term “atom”, where an atom is a source statement, or a piece of a source state-
ment, that causes a single state change in the program. In other words, an atom
is the largest piece of contiguous source text that contains only one piece of key
functionality. Every atom will have its own key instruction in the target program.

If two atoms happen to occur on the same source line, they both need key
instructions, each with a source location tag that distinguishes it from the other1.

In order to select the key instruction for each atom, we first need a way to iden-
tify all the instructions for each atom. The most logical method for doing this is by
the source position the compiler associates with each target instruction. The front
end of the compiler will generate a new “source position”, containing file, line,
and column position information, for each atom. As the internal representation is
generated, each piece is assigned the source position corresponding to the atom
from which it came. Assuming the compiler propagates source position informa-
tion correctly through its various phases, the target instructions will each have a
source position indicating the location of the atom from which it was generated.2

Depending on the source and optimizations, some instructions may have multiple
corresponding source positions.

Figure 2 illustrates the concept of atoms further. In Figure 2(a), the assignment
statement, the increment statement and the function calls are all “atomic” state-
ments (i.e. they contain only one atom). Figure 2(b) shows a set of “non-atomic”
statements. The carets underneath the statements mark each atom within these
complex statements. These are the positions where breakpoints would be set. In
the for statement shown, there are three separate atoms: the initial assignment
to i, the increment of i, and the test-and-branch. The assignment statement in
the body of the for loop contains two atoms, one that updates elements of the ar-
ray a and one that increments k. The if statement shown contains four atoms: the
fopen function call, the assignment to fptr, the test-and-branch, and the error
function call in the then-clause. If the if statement had an else-clause, all of the
atoms in the else-clause would also be considered atoms within the if statement.

1Therefore it is critical to record the column position, as well as the line and file, for each source
position recorded by the compiler.

2The requirement that the compiler accurately propagate source location information is not par-
ticular to this approach; it is critical for any attempt to debug optimized code.
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a[i] = j; for (i = 0; i < n; i++) {
i++; ˆ ˆ ˆ
foo(i); a[k++] = b[i-j];
bar(j); ˆ ˆ
... }

if (NULL == (fptr = fopen(filename)))
ˆ ˆ ˆ

error();
ˆ

...

(a) Atomic stmts (b) Non-atomic stmts

Figure 2: Examples of atomic and non-atomic statements in C

3.2 Identifying key instructions

Given the set of instructions generated from an atom, there are several options for
selecting the key instruction. We have chosen the key instruction to be defined as
follows:

Definition 1 Let A be an atom in the source program. Let I be the list of instruc-
tions in the optimized target program that the compiler generated from a single
instance of A (no code duplication). The key instruction for A is the single instruc-
tion in I that may cause a user-visible state change to the program.

As mentioned, this definition assumes no code duplication. To cover the case
where optimizations perform code duplication, the instructions for each instance
of the duplicated atom must be considered independently, and a separate key in-
struction identified for each instance. We go into this topic in more detail later.

According to Definition 1, the key instruction for an atom is the unique in-
struction that causes a (source-level visible) state change — in other words the
instruction that updates a source variable or causes a change in the control flow.
By definition all atoms must have such an instruction. The remaining problem,
therefore, is to figure out which of the instructions in I may cause source-visible
state changes.

Identifying the instruction that causes a change in the control flow is easy. An
instruction causes a change in the control flow if and only if it is a conditional
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branching instruction. Since one can tell by direct examination whether or not an
instruction is a conditional branching instruction, identifying key instructions of
this type is trivial.

The difficulty arises in attempting to identify instructions that update the value
of source-level variables. We are assuming here that this identification process is to
be done after the final optimized code has been generated, so the only information
available is the target instructions and the target-atom associations. The assignment
key instructions have no particular characteristics that set them apart from any other
instructions. In unoptimized code, one might look for the instructions that write
to memory locations, assuming that the instructions that update source variables
must be some subset of those instructions. However, a common optimization is to
eliminate the final write of a variable’s value to memory, especially if the variable
is a local variable.

If we make a set of simplifying assumptions, which are true in many circum-
stances for many compilers, then we can rely on the execution order of the in-
structions to help us find the key instructions for assignment statements. The key
instruction for an assignment to a source variable is the instruction that writes the
final right-hand side value of the assignment to the variable’s location in memory;
or, if the write to memory has been optimized away, then it is the instruction that
calculates the final right-hand side of the assignment and leaves the value in a reg-
ister. Because of this property, all instructions for calculating the right-hand side
of the assignment, for calculating the variables’ addresses, and for branching to
any exception code, must come before the key instruction. Therefore if all of the
following assumptions are true, then the key instruction for an assignment atom
will be the last non-nop instruction in the set of instructions generated from the
assignment atom:3

• All duplicate copies of code for any given assignment atom occur in distinct
basic blocks (i.e. at most one key instruction for the atom is in any basic
block).

• Once the right-hand side has been calculated, the actual assigning of the
value to a location never requires more than one instruction.

• There is no “clean up” code for the assignment, as might be the case with
speculative execution.

If we make these assumptions, then we can identify the key instructions as fol-
lows: For each atom, we go through the list of instructions generated from that

3By “last”, we mean the last one encountered by going through the instructions in the order in
which they would be executed (assuming this can be determined statically).
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atom, in execution order. The first conditional branching instruction encountered
becomes the key instruction for the atom. If no such branching instruction is en-
countered, then the key instruction is the last non-nop instruction encountered. The
full algorithm for this approach is shown in Appendix A. We call this algorithm the
Instruction Order Algorithm.

S1: while (i < n) { I0: BGEQ $r7 $r10 END /*S1*/
S2: cur = cur->next; I1: ADDI $r4 $cur 16 /*S2*/
S3: i++; I2: LOAD $cur $r4 /*S2*/

} I3: ADDI $r7 $r7 1 /*S3*/
I4: ADDI $r4 $cur 16 /*S2*/
I5: LOAD $cur $r4 /*S2*/
I6: ADDI $r7 $r7 1 /*S3*/
I7: ADDI $r4 $cur 16 /*S2*/
I8: LOAD $cur $r4 /*S2*/
I9: ADDI $r7 $r7 1 /*S3*/

I10: GOTO I0 /*S1*/
I11: END: ...

(a) (b)

Figure 3: An example of an unrolled loop.

The main problem with this algorithm is that it relies on the property that the
key instruction for an assignment atom will always be the last non-nop instruction
for that atom, which in turn relies on assumptions that are not always true. For ex-
ample, if an optimization causes an assignment atom to be duplicated in the target
program, one needs to identify a key instruction for each copy of the assignment
atom, in order to be able to set breakpoints at all copies when the user requests a
breakpoint at the assignment atom. This is not a problem if the different copies end
up in different basic blocks, since in that case one only needs to modify the algo-
rithm to examine each basic block separately. If duplicate copies of an assignment
atom end up in the same basic block however, as can happen with loop unrolling,
then one has a serious problem: in addition to the last non-nop instruction for the
atom, other instructions in the basic block will also be key instructions for the as-
signment atom, and we have no easy way of identifying which instructions these
are.

There are three circumstances that contribute to this difficulty in identifying
key instructions for assignment atoms. First, optimizations often eliminate the
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instruction that writes the value to the variable’s location in memory. Thus the
key instruction will be the instruction that calculates the final value for the right-
hand side of the assignment atom. It could be any one of a number of operator
instructions, any of which could occur multiple times in the calculation. The upshot
is that one cannot rely on the type of the instruction for identifying key instructions
for assignment atoms. Second, one cannot use variable names to sort out the key
instruction, because there are no variable names in the instructions. Third, because
of duplication, one cannot rely on the position of the instructions to identify the
key instruction for an assignment atom. Figure 3 illustrates this problem. Each of
the statements shown in Figure 3(a) is atomic. Figure 3(b) shows the instructions
for this loop in a single basic block, where the loop has been unrolled three times.
Statement S2 is responsible for the instructions I1, I2, I4, I5, I7, and I8. Statement
S3 is responsible for instructions I3, I6, and I9. In both cases the last instructions,
I8 and I9, are indeed key instructions for the statements. However some of the
other instructions are also key instructions. The difficult question is, which ones?

The combination of circumstances described above makes it impossible to se-
lect the key instruction for assignment statements purely by examining the instruc-
tions. The only way to select the key instruction for an assignment statement in the
presence of code duplication is to carefully examine the semantics of the source
assignment statement and of each of the instructions. Doing so would require a
complicated analysis. However the compiler itself does perform the required anal-
yses earlier in the compilation process, when it first parses the source and generates
the internal representation of the program. Therefore it makes sense to take advan-
tage of the compiler.

As before, we assume the compiler has correctly assigned source position in-
formation to the instructions. In addition, when the front end of the compiler gener-
ates the internal representation, it now must tag the pieces of the internal represen-
tation that will eventually become the key instructions for the assignment atoms.
These tags get propagated through the compiler, and are used later to identify all
the key instructions for assignment atoms. Key instructions for other atoms can
still be identified using the method given in the previous algorithm. The complete,
general algorithm for selecting key instructions is presented in Appendix B.

3.3 Concerns about atoms and semantic breakpoints

One possible concern with using atoms as locations for setting breakpoints is de-
vising a way for users to identify atoms and set multiple breakpoints on a single
source line. A solution would be to continue the standard tradition of allowing
users to request breakpoints at the beginning of source lines that correspond to
the beginning of executable statements, and, if the source line contains multiple
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atoms, having the debugger identify and set breakpoints for each atom. Thus a
single breakpoint request could result in breakpoints for multiple source locations.

Another concern at this point is what to do for source locations that correspond
to syntactic sugar, and hence never actually generate instructions. Some examples
of this are begin-end keywords, opening and closing curly braces (in C, Java, and
C++), and the else keyword in if statements. Such a syntactic construct appears
to programmers to be a statement in the programming language, and therefore ap-
pears to be fair game as a location for requesting a breakpoint. But it is not an atom;
one cannot use its key instruction for setting the breakpoint because there are no
instructions for the construct. The most logical solution is to disallow breakpoints
at such constructs. When the user attempts to set a breakpoint at such a location,
one can automatically set the breakpoint at the next atom in the source program.
This is similar to what is done by many current debuggers for unoptimized code.

4 Other Uses of Key Instructions

In this section we demonstrate the usefulness and versatility of key instructions by
showing how they can solve or simplify many problems in the area of debugging
optimized code. We also show the generality of key instructions by explaining
how different and opposing approaches to solving other problems in the area of
debugging optimized code can all benefit from using key instructions.

4.1 Setting syntactic breakpoints

The usefulness of key instructions for setting semantic breakpoints should be ob-
vious. Surprisingly, they are also useful for setting syntactic breakpoints. Recall
that the location for a syntactic breakpoint has very little to do with where the ac-
tual instructions for a source statement ended up in the target program, while it
has everything to do with the order of the statements in the original source. How-
ever when setting syntactic breakpoints for a set of statements whose order has
shifted around, one needs to decide which statements are the “anchor” statements
and which statements have moved, and key instructions can help.

To illustrate this point, consider a source program consisting of the two state-
ments, S1 and S2, in that order. Suppose that the optimizer puts the instructions
for S1 after the instructions for S2 in the target program. Given that we want to use
syntactic breakpoints, the breakpoint for S1 must come before the breakpoint for
S2. (This situation arose back in Figure 1 and Table 1, for statements S2 and S3
and their corresponding instructions, I5 and I3.)

In this type of situation one would like to say that one of the two statements
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was stationary (the “anchor” statement), while the other statement moved past the
anchor statement. One would then set the syntactic breakpoint for the anchor state-
ment at the instructions corresponding to that statement, and place the breakpoint
for the other statement appropriately, relative to the breakpoint for the anchor state-
ment. The only remaining questions then become how to identify the anchor state-
ments, and at which of their (possibly) multiple corresponding instructions do we
set the breakpoint?

One reasonable scheme for identifying anchor points states that control flow
statements (i.e. branches and joins on the control flow graph) are anchored, and
other statements may or may not have moved. Once the anchor points are identi-
fied, it is simplest if the syntactic and semantic breakpoints for them are the same
(the key instruction for the statement). This then sets up a frame of reference for
selecting the other breakpoints, between the anchor points. Again, it would be nice
if as many as possible of the syntactic breakpoints coincided with the semantic
breakpoints, as this would have the behavior closest to that expected by the user.
Therefore it helps to know where the semantic breakpoints are. This is exactly the
information one obtains from key instructions.

4.2 Implementing debugger functions

There are four basic debugger functions that critically depend on having a good
solution to the code location problem: setting control breakpoints, single-stepping
between source statements, stepping into a called subroutine, and returning from a
subroutine to the next statement after the subroutine call. Actually, the last three are
special cases of the first (setting control breakpoints). In particular single-stepping
consists of removing the breakpoint from the current statement and setting a break-
point on the next statement, for some definition of “next”; stepping into a subrou-
tine is equivalent to setting a breakpoint on the first statement of the subroutine;
and returning is equivalent to setting a breakpoint on the first statement after the
subroutine call in the caller.

Key instructions provide a natural mechanism for setting semantic breakpoints:
to set a breakpoint on any given atom one merely finds the key instruction(s) for
the atom and set the breakpoint(s) there. Since the compiler helps identify the
key instructions and the debugger needs to use them, the information about which
instructions are key instructions needs to be passed from the compiler to the de-
bugger via the symbol table. Fortunately, the DWARF 2.0 standard symbol table
format [16] gives us a natural way to pass this information. The DWARF line table
format (part of the symbol table) contains a flag for each entry, originally intended
to mark instructions that correspond to the end of source statements. This is very
close to the meaning of key instructions, so we can use this flag to indicate key
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instructions without changing or violating the DWARF specification.
Modifying the debugger functions described above to use key instructions is

quite simple and straightforward. Without key instructions or some other well-
defined mapping scheme, implementing these functions to work properly on opti-
mized programs would be difficult and complex.

4.3 Solving the data location problem

Recall that the data location problem, one of the three main data value problems,
is determining where to look for the value of any particular variable, at any given
breakpoint in the program, in response to a user’s request. Because variables’
“home” locations may vary during the execution of an optimized program, one
must construct a variable range table [9], which contains precise information about
where to look for a variable at any given time during program execution.

Prior to the introduction of key instructions, this information had to be col-
lected separately for each variable for each pass of each optimization that the com-
piler performed. The code for collecting this information had to be distributed
throughout the code for performing the optimizations themselves. In these imple-
mentations it is very easy for the code that collects the variable location information
to be broken by the optimizer writer any time an optimization is added, removed,
reordered or changed. Furthermore because the code for collecting this informa-
tion is not all in one place but is distributed throughout the optimization code, bugs
in the variable location collection code are hard to find and fix.

By taking advantage of key instructions, we have been able to design and im-
plement a simpler, more robust scheme for collecting this variable location infor-
mation. The basic idea is to perform a dataflow analysis [3] on the final represen-
tation of the program, after all the optimizations have been performed. Thus the
data only needs to be collected once; the collection is completely independent of
which particular optimizations were performed and how they were implemented;
the code for collecting the information is all in one place, making the code easier to
maintain; and all memory accesses, register copies, register spills and recoveries,
etc. are explicit.

The reason no one has been able to do this before is that performing the dataflow
analysis critically depends on being able to identify which instructions correspond
to assignments to source-level variables. As explained in Section 3, this is impossi-
ble to determine if one has just the instructions to examine. But the key instruction
tags give exactly this information. A complete description of this solution is given
in another paper [18]. It could not have been done without key instructions.
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4.4 Non-Transparent debugging: Rewriting and reordering code

Non-transparent debugging of optimized code is an approach where the debugger
allows the user to see some of the effects of the optimizations performed by the
compiler [5, 17, 19, 25]. Key instructions are useful for such approaches, as they
allow the debugger to determine where each atom in the source program actually
executes. Two ways in which key instructions are useful in this context are: to
indicate which complex source statements need to be rewritten as simpler, atomic
statements (because the key instructions corresponding to the atoms have been
widely separated in the optimized target program); and to allow the debugger to
reorder the source statements and atoms to reflect the actual order in which they
are executed. The order of execution can be determined, in turn, by the order of
the key instructions in the target program.

4.5 Transparent debugging: Detecting currency

There are two basic parts to the currency problem: detecting when a variable is (or
may be) non-current; and recovering from the non-currency. Although a use of key
instructions for recovering from non-currency has not yet been discovered, they
can certainly aid in detecting it. A variable is non-current at a particular breakpoint
if either: the source program shows an assignment should have already occured,
but the optimizer delayed the assignment to some point past the breakpoint; or
the source program shows an assignment should occur sometime later, and the
optimizer moved the assignment so that it has already occurred. In other words,
non-currency is caused by out-of-order assignments to variables, relative to the
source program.

By examining the key instructions corresponding to assignments to source vari-
ables, one can determine the order in which assignments actually occur and com-
pare it to the order in which their corresponding source statements occur to tell
which assignments are out of order. This in turn should make it not too difficult to
tell which variables are likely to be non-current where. Once this has been deter-
mined, any of several proposed schemes for recovering from non-currency may be
implemented [6, 11, 21].

5 Description of an Implementation

The previous section discussed possible uses of key instructions. In this section
we briefly describe an implementation of key instructions and their use within an
actual system for debugging optimized code.
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Optview and Optdbx are prototype tools we implemented which use key in-
structions to demonstrate the practicality of a particular non-transparent approach
for debugging optimized code. In this approach, a new version of the source pro-
gram is generated. This new source program reflects many of the optimizations
actually performed on the original program by the compiler during the compilation
process. The user and the debugger then use the new, optimized source program
for communicating about the state of the executing program. The original source
program is available to the user merely for reference. In order to show that these
ideas are workable on real systems, we implemented Optview to work in con-
junction with the Silicon Graphics (SGI) Mips-Pro 7.2 C compiler, a commercial,
aggressively optimizing compiler. We implemented Optdbx on top of the SGI dbx
debugger, another commercial tool.

5.1 Implementation details

Optview [20] is a tool that collects information from the compiler about the opti-
mizations performed during the compilation. Optview then generates an optimized
version of the source program, which the user examines and uses when debugging
with Optdbx.

Optdbx is a modified version of the dbx debugger. It uses a graphical inter-
face to show users the optimized source generated by Optview and to help users
navigate through it. We modified the underlying dbx debugger so that the debug-
ging functions described in Section 4.2 use the key instruction information from
the symbol table. We also modified the variable lookup function to use the variable
range table information, and we implemented a partial solution to the residency
problem (described in the Introduction).

As indicated previously, it is necessary for the compiler to help identify key
instructions for source assignment statements. Accordingly we modified the front
end of the compiler to tag the pieces of the intermediate representation, when they
are first generated, that will eventually become key instructions for assignment
statements. The key instruction tags are propagated appropriately through the vari-
ous phases of the compiler, and, when the binary instructions are finally generated,
those that correspond to key instructions for assignment statements are already
tagged. The compiler uses the algorithm shown in Appendix B to identify all the
key instructions and write the appropriate tags to the symbol table for Optdbx. We
also modified the compiler to collect the variable range table information, as de-
scribed in Section 4.3, and to write this information to the symbol table. The only
other change we made to the compiler was to have it call Optview after all opti-
mizations (including instruction scheduling) are completed and immediately prior
to writing the instructions to the binary file.
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When the user requests a breakpoint on a particular source line, Optdbx finds
the corresponding key instruction(s) and sets the breakpoint(s) there. A single
breakpoint request may result in multiple breakpoints being set in the binary, be-
cause some optimizations cause code to be duplicated.

In the preceding paragraph, note that we described users as setting breakpoints
on source lines, rather than on atoms. Dbx was originally designed to allow users
to set breakpoints only at the beginning of source lines, and in particular only
those lines that corresponded to the beginning of an executable statement. To avoid
making massive changes to dbx, Optdbx continues this policy of allowing at most
one breakpoint per source line. A result of this choice is that source locations
in Optdbx system do not necessarily correspond to single atoms. Optview, our
tool that generates optimized source, alleviates this problem to some extent. In the
process of generating the optimized source program, Optview also splits apart non-
atomic statements wherever it can, rewriting them as atomic statements. It does this
in order to be able to move the various atoms around more freely in the optimized
source, allowing the optimized source to more accurately reflect the order in which
the atoms are executed in the binary.

There are many difficult issues particular to our non-transparent approach to de-
bugging optimized code, but they are not relevant to this paper; they are addressed
elsewhere [19, 20]. While Optview and Optdbx use key instructions to implement
a non-transparent approach to debugging optimized code, the concept and use of
key instructions is completely orthogonal to the transparency/non-transparency is-
sue. Indeed key instructions provide the basic groundwork on which it is possible
to build many different solutions to other problems in the area of debugging opti-
mized code.

5.2 Key instructions and delay slots

While implementing the stepping and breaking functions in Optdbx, we came
across an interesting problem related to key instructions in delay slots. In optimized
code it sometimes happens that a key instruction for one source statement will be
scheduled in the delay slot for another source statement. Such occurrences cause
problems when attempting to set a breakpoint on the statement whose key instruc-
tion is in the delay slot. In the MIPS processor, delay slot instructions can never
be executed separately from their branch instruction, thus execution can never halt
on a delay slot instruction. Since key instructions indicate where breakpoints for
source statements are supposed to be set, the result in our initial implementation
was that breakpoints for statements with delay slot key instructions were never
reached. They appeared to be skipped over.

Our solution to this problem is to make the branch instruction itself the key
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instruction for the delay slot statement. In those situations where the branch in-
struction is also a key instruction for a different source statement, the instruction
is annotated with both optimized source locations. Whenever execution halts on
the branch statement, the current source position is indicated as being both source
statements.

5.3 Effort involved

The SGI Mips-Pro 7.2 C compiler consists of roughly 500,000 lines of C and C++
source code. Modifying the compiler to track and identify key instructions took
roughly 5 months and required writing or changing 1,500-2,000 lines of code. The
5 months includes the time it took to become familiar with the compiler source.
Making all the changes to the debugger functions (to use key instructions) took
about 1 month, and required changing about 200 lines of code. It can be seen from
these numbers that adapting existing compilers and debuggers to identify and use
key instructions is not too difficult a task.

It is difficult to compare these costs with the costs of implementing other ap-
proaches, as such data is unavailable for the most part. The only numbers we have
found are for Zellweger’s Navigator debugger, which involved modifying 1,500
lines of the compiler (out of 50,000 lines) and adding 1,000 lines to the debugger;
and Wismüller’s modifying the compiler to build his graphs, which involved 2,200
lines of code (out of 94,000 lines). Looking at the absolute number of lines of code
added or modified in each of these approaches, our approach perhaps required a bit
less but is roughly comparable. If one considers the number of lines added or mod-
ified as a percentage of the size of the overall compiler, then our approach required
the smallest amount of change (0.44%, as opposed to 5% for Zellweger and 2.34%
for Wismüller).

6 Previous Work

The earliest approach for solving the code location problem was designed by Zell-
weger for the Navigator debugger [24]. Zellweger uses two tables to record and
maintain mappings between the source and the optimized binary. The source table
maintains the source-to-object mapping, and the object table maintains the object-
to-source mapping. In her system, the compiler records and updates information in
the tables during optimizations. The source table maps from a source statement to
the beginning of each sequence of instructions generated from the source statement.
This scheme works because in the system for which it was written, all optimiza-
tions preserve the actual ordering of computations along any execution path. There
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are no code hoisting or sinking optimizations, and no instruction scheduling.
Coutant, Meloy and Ruscetta [9] use syntactic breakpoints to solve the code

location problem. In their DOC debugger, statement boundaries are tracked by
attaching a label to the first instruction for a statement, when the internal repre-
sentation is first generated. If that instruction gets moved or deleted, the label is
moved to the next instruction. If there is no next instruction, it is moved to the
preceding instruction. Thus as optimizations are performed, the statement labels
are constantly being updated.

The CXdb debugger [17] builds very fine-grained mappings between a source
program and its optimized binary. For every “source unit” (an expression, a state-
ment, a block, a loop, or a routine) in the source program it records the source
program starting and ending positions of the unit in a table. It then builds a sec-
ond table, the source range table, which describes the object code ranges for each
source unit. Stepping and setting breakpoints can be done at the granularity of any
source unit. Semantic breakpoints are implemented by setting the breakpoint at the
first instruction in each range of instructions for the specified source unit, based on
the source range table. This approach is very accurate but requires a huge amount
of data and bookkeeping.

Copperman [7] and Wismüller [22] both present indirect solutions to the code
location problem. Both of them focus on solving the currency problem. In the
process of doing so they construct flow graphs representing the source program,
the object program, and the relationships between then. As solutions to the code
location problem, these approaches are incomplete.

The approach suggested by Adl-Tabatabai [2] comes closest to our key instruc-
tion approach. He uses a dual labelling scheme, one set of labels for each direc-
tion in the mapping (source-to-target, target-to-source). Statement labels indicate
the instruction(s) at which to set the breakpoint for a given source statement, and
marker labels indicate which source statement should be attributed for a runtime
error. The statement labels serve the same general purpose as key instructions.
However, he does not give any precise definitions or algorithms for how to identify
appropriate initial locations for statement labels, although he does describe how
these labels need to be updated and moved, in order to be correctly maintained
throughout various optimizations. Again the idea is to place all the labels before
any optimizations occur, then to update the labels during the optimization process.

The most recent approach was presented by Wu, et. al. [23]. This approach is
the most complicated. Each source statement is mapped to a set of object locations:
an anchor point, an intercept point, a finish point, and an escape point. Assume S
is the statement at which the user requests a breakpoint. The anchor point is the
first scheduled instruction for S. The intercept point is the first instruction before
the anchor point that was generated from any statement that comes after S in the
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source program. The finish point is the last instruction after the anchor point that
was generated by any statement that comes before S in the source program. When
a breakpoint is set on S in the source program, the debugger suspends execution at
the intercept point for S. Once the intercept point is reached, an interpreter takes
over. The interpreter traverses the code from the intercept point to the finish point,
interpreting only those instructions generated from statements that come before S
in the source program. When the interpreter reaches the finish point, the debugger
informs the user the breakpoint has been reached and services the user’s requests.
If an escape point for S is reached before a finish point, the interpreter gives up and
normal execution resumes (after some cleanup).

In addition to the work described above, there is a large body of work on de-
bugging optimized code that does not present any solution to the code location
problem [6, 10, 11, 12, 13, 14, 15, 21].

7 Conclusion

In this paper we have presented a simple, complete solution to the code location
problem for debugging optimized code. We have introduced and described the
concepts of atoms and key instructions. We have given a formal definition of key
instructions and presented algorithms for identifying them. We have also shown the
usefulness of key instructions for several different aspects of debugging optimized
code. In addition to solving the code location problem, key instructions allow a
much simpler solution to the data location problem than was previously possible.
They are also of use for identifying anchor points for setting syntactic breakpoints,
and can help with both transparent and non-transparent solutions to the currency
problem.

Our implementations of Optview and Optdbx demonstrate the practicality of
these concepts and prove that the ideas presented in this paper can be incorporated
into existing compilers and debuggers without too much work.

In summary, atoms and key instructions provide a fundamental framework,
based on simple ideas, that greatly simplifies or facilitates solutions for many prob-
lems in the area of debugging optimized code. They are worthy of careful consid-
eration.
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A Instruction Order Algorithm for selecting key instruc-
tions

For each atom, A, in the source program do
I <- target instructions generated from A
key <- null
k <- 0
while (k < |I|) do

if (I[k] is not a nop instruction)
key <- I[k]

fi
if (I[k] is a branching instruction)

break;
fi
k <- k + 1

od
A.key_instruction <- key

od

B General algorithm for selecting key instructions

PHASE 1 (Front-end of the compiler):
For every statement S in program do

parse statement S
perform semantic analyses and checks for S
generate internal representation, IR(S), for S
if (S contains assignment A to source variable V)

find the piece of IR(S) that writes value to V
set "key" flag on that piece of IR(S) to true

fi
od

PHASE 2 (After final instructions have been generated):
For each atom, A, in the source program do

if (A is an assignment to a variable)
find all instructions for A with "key" flag set
mark those instructions as key instructions
skip to next atom

else
I <- target instructions generated from A
key <- null
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k <- 0
while (k < |I|) do

if (I[k] is not a nop instruction)
key <- I[k]

fi
if (I[k] is a branching instruction)
break;

fi
k <- k + 1

od
fi
A.key_instruction <- key

od
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