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Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state
of the art in computer systems. From our establishment in 1984 by Digital
Equipment Corporation (now Compaq), we have performed basic and ap-
plied research to support the company’s business objectives. Our interests
span scaleable systems (including hardware, networks, distributed systems,
and programming languages and technology), the Internet (including the
web, and internet appliances), and human/computer interaction.

Our strategy is to test the technical and practical value of our ideas by
building hardware and software prototypes and using them as daily tools.
Interesting systems are too complex to be evaluated solely in the abstract;
extended use allows us to investigate their properties in depth. This ex-
perience is useful in the short term in refining our designs, and invaluable
in the long term in advancing our knowledge. Most of the major advances
in information systems have come through this strategy, including personal
computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some
of it is in established fields of theoretical computer science, such as the
analysis of algorithms, computational geometry, and logics of programming.
Other work explores new ground motivated by problems that arise in our
systems research.

We have a strong commitment to communicating our results; exposing and
testing our ideas in the research and development communities leads to im-
proved understanding. Our research report series supplements publication
in professional journals and conferences while our technical note series com-
plements research reports and journal/conference publication by allowing
timely dissemination of recent research findings. We seek users for our pro-
totype systems among those with whom we have common interests, and we
encourage collaboration with university researchers.
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Author’s Abstract

We present an algorithm, called Disk Paxos, for implementing a reliable
distributed system with a network of processors and disks. Like the origi-
nal Paxos algorithm, Disk Paxos maintains consistency in the presence of
arbitrary non-Byzantine faults. Progress can be guaranteed as long as a
majority of the disks are available, even if all processors but one have failed.
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1 Introduction

Fault tolerance requires redundant components. Maintaining consistency in
the event of a system partition makes it impossible for a two-component
system to make progress if either component fails. There are innumerable
fault-tolerant algorithms for implementing distributed systems, but all that
we know of equate component with processor. But there are other types of
components that one might replicate instead. In particular, modern net-
works can now include disk drives as independent components. Because
commodity disks are cheaper than computers, it is attractive to use them as
the replicated components for achieving fault tolerance. Commodity disks
differ from processors in that they are not programmable, so we can’t just
substitute disks for processors in existing algorithms.

We present here an algorithm called Disk Paxos for implementing an
arbitrary fault-tolerant system with a network of processors and disks. It
maintains consistency in the event of any number of non-Byzantine failures.
That is, the algorithm tolerates faulty processors that pause for arbitrarily
long periods, fail completely, and possibly restart; and it tolerates lost and
delayed messages. Disk Paxos guarantees progress if the system is stable and
there is at least one nonfaulty processor that can read and write a majority
of the disks. Stability means that each processor is either nonfaulty or has
failed completely, and nonfaulty processors can access nonfaulty disks.

Disk Paxos is a variant of the classic Paxos algorithm [3, 10, 12], a simple,
efficient algorithm that has been used in practical distributed systems [13,
16]. Classic Paxos can be viewed as an implementation of Disk Paxos in
which there is one disk per processor, and a disk can be accessed directly
only by its processor.

In the next section, we recall how to reduce the problem of implementing
an arbitrary distributed system to the consensus problem. Section 3 infor-
mally describes Disk Synod, the consensus algorithm used by Disk Paxos.
It includes a sketch of an incomplete correctness proof and explains the rela-
tion between Disk Synod and the Synod protocol of classic Paxos. Section 4
briefly discusses some implementation details and contains the conventional
concluding remarks. An appendix gives formal specifications of the consen-
sus problem and the Disk Synod algorithm, and sketches a rigorous correct-
ness proof.
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2 The State-Machine Approach

The state-machine approach [5, 14] is a general method for implementing
an arbitrary distributed system. The system is designed as a deterministic
state machine that executes a sequence of commands, and a consensus al-
gorithm ensures that, for each n, all processors agree on the nth command.
This reduces the problem of building an arbitrary system to solving the con-
sensus problem. In the consensus problem, each processor p starts with an
input value input [p], and all processors output the same value, which equals
input [p] for some p. A solution should be:

Consistent All values output are the same.

Nonblocking If the system is stable and a nonfaulty processor can com-
municate with a majority of disks, then the processor will eventually
output a value.

It has long been known that a consistent, nonblocking consensus algorithm
requires a three-phase commit protocol [15], with voting, prepare to commit,
and commit phases. Nonblocking algorithms that use fewer phases don’t
guarantee consistency. For example, the group communication algorithms
of Isis [2] permit two processors belonging to the current group to disagree
on whether a message was broadcast in a previous group to which they both
belonged. This algorithm cannot, by itself, guarantee consistency because
disagreement about whether a message had been broadcast can result in
disagreement about the output value.

The classic Paxos algorithm [3, 10, 12] achieves its efficiency by using
a three-phase commit protocol, called the Synod algorithm, in which the
value to be committed is not chosen until the second phase. When a new
leader is elected, it executes the first phase just once for the entire sequence
of consensus algorithms performed for all later system commands. Only the
last two phases are performed separately for each individual command.

In the Disk Synod algorithm, the consensus algorithm used by Disk
Paxos, each processor has an assigned block on each disk. The algorithm
has two phases. In each phase, a processor writes to its own block and reads
each other processor’s block on a majority of the disks.1 Only the last phase
needs to be executed anew for each command. So, in the normal steady-
state case, a leader chooses a state-machine command by executing a single
write to each of its blocks and a single read of every other processor’s blocks.

1There is also an extra phase that a processor executes when recovering from a failure.
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The classic result of Fischer, Lynch, and Patterson [4] implies that a
purely asynchronous nonblocking consensus algorithm is impossible. So,
real-time clocks must be introduced. The typical industry approach is to
use an ad hoc algorithm based on timeouts to elect a leader, and then have
the leader choose the output. It is easy to devise a leader-election algorithm
that works when the system is stable, which means that it works most of
the time. It is very hard to make one that always works correctly even when
the system is unstable. Both classic Paxos and Disk Paxos also assume a
real-time algorithm for electing a leader. However, the leader is used only to
ensure progress. Consistency is maintained even if there are multiple leaders.
Thus, if the leader-election algorithm fails because the network is unstable,
the system can fail to make progress; it cannot become inconsistent. The
system will again make progress when it becomes stable and a single leader
is elected.

3 An Informal Description of Disk Synod

We now informally describe the Disk Synod algorithm and explain why
it works. We also discuss its relation to classic Paxos’s Synod Protocol.
Remember that, in normal operation, only a single leader will be executing
the algorithm. The other processors do nothing; they simply wait for the
leader to inform them of the outcome. However, the algorithm must preserve
consistency even when it is executed by multiple processors, or when the
leader fails before announcing the outcome and a new leader is chosen.

3.1 The Algorithm

We assume that each processor p starts with an input value input [p].2 As
in Paxos’s Synod algorithm, a processor executes a sequence of numbered
ballots, with increasing ballot numbers. A ballot number is a positive inte-
ger, and different processors use different ballot numbers. For example, if
the processors are numbered from 1 through N , then processor i could use
ballot numbers i , i + N , i + 2N , etc. A ballot has two phases:

Phase 1 Choose a value v .

Phase 2 Try to commit v .

In either phase, a processor aborts its ballot if it learns that another pro-
cessor has begun a higher-numbered ballot. In that case, the processor may

2If processor p fails, it can restart with a new value of input [p].
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then choose a higher ballot number and start a new ballot. If the processor
completes phase 2 without aborting—that is, without learning of a higher-
numbered ballot—then value v is committed and the processor can output it.
Since a processor does not choose the value to be committed until phase 2,
phase 1 can be performed once for any number of separate instances of the
algorithm.

To ensure consistency, we must guarantee that two different values can-
not be successfully committed—either by different processors or by the same
processor in two different ballots. To ensure that the algorithm is nonblock-
ing, we must guarantee that, if there is only a single processor p executing
it, then p will eventually commit a value.

In practice, when a processor successfully commits a value, it will write
on its disk block that the value was committed and also broadcast that
fact to the other processors. If a processor learns that a value has been
committed, it will abort its ballot and simply output the value. It is obvious
that this optimization preserves correctness; we will not consider it further.

To execute the algorithm, a processor p maintains a record dblock [p]
containing the following three components:

mbal The current ballot number.

bal The largest ballot number for which p reached phase 2.

inp The value p tried to commit in ballot number bal .

Initially, bal equal 0, inp equals a special value NotAnInput that is not a
possible input value, and mbal is any ballot number. We let disk [d ][p] be
the block on disk d in which processor p writes dblock [p]. We assume that
reading and writing a block are atomic operations.

Processor p executes phase 1 or 2 of a ballot as follows. For each disk
d , it tries first to write dblock [p] to disk [d ][p] and then to read disk [d ][q ]
for all other processors q . It aborts the ballot if, for any d and q , it finds
disk [d ][q ].mbal > dblock [p].mbal . The phase completes when p has written
and read a majority of the disks, without reading any block whose mbal
component is greater than dblock [p].mbal . When it completes phase 1, p
chooses a new value of dblock [p].inp, sets dblock [p].bal to dblock [p].mbal (its
current ballot number), and begins phase 2. When it completes phase 2, p
has committed dblock [p].inp.

To complete our description of the two phases, we now describe how pro-
cessor p chooses the value of dblock [p].inp that it tries to commit in phase 2.
Let blocksSeen be the set consisting of dblock [p] and all the records disk [d ][q ]
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read by p in phase 1. Let nonInitBlks be the subset of blocksSeen consisting
of those records whose inp field is not NotAnInput . If nonInitBlks is empty,
then p sets dblock [p].inp to its own input value input [p]. Otherwise, it sets
dblock [p].inp to bk .inp for some record bk in nonInitBlks having the largest
value of bk .bal .

Finally, we describe what processor p does when it recovers from a fail-
ure. In this case, p reads its own block disk [d ][p] from a majority of disks
d . It then sets dblock [p] to any block bk it read having the maximum value
of bk .mbal , and it starts a new ballot by increasing dblock [p].mbal and be-
ginning phase 1.

3.2 Why the Algorithm Works

Suppose processor p can read and write a majority of the disks, and all
processors other than p stop executing the algorithm. In this case, p will
eventually choose a ballot number greater than the mbal field of all blocks
on the disks it can read, and its ballot will succeed. Hence, this algorithm
is nonblocking, in the sense explained above.

We now explain, intuitively, why the Disk Synod algorithm maintains
consistency. First, we consider the following shared-memory version of the
algorithm that uses single-writer, multiple-reader regular registers.3 Instead
of writing to disk, processor p writes dblock [p] to a shared register; and it
reads the values of dblock [q ] for other processors q from the registers. A
processor chooses its bal and inp values for phase 2 the same way as before,
except that it reads just one dblock value for each other processor, rather
than one from each disk. We assume for now that processors do not fail.

To prove consistency, we must show that, for any processors p and q ,
if p finishes phase 2 and commits the value vp and q finishes phase 2 and
commits the value v q , then vp = v q . Let bp and bq be the respective ballot
numbers on which these values are committed. Without loss of generality,
we can assume bp ≤ bq . Moreover, using induction on bq , we can assume
that, if any processor r starts phase 2 for a ballot br with bp ≤ br < bq ,
then it does so with dblock [r ].inp = vp.

When reading in phase 2, p cannot have seen the value of dblock [q ].mbal
written by q in phase 1—otherwise, p would have aborted. Hence p’s read
of dblock [q ] in phase 2 did not follow q ’s phase 1 write. Because reading
follows writing in each phase, this implies that q ’s phase 1 read of dblock [p]

3A regular register is one in which a read that does not overlap a write returns the
register’s current value, and a read that overlaps one or more writes returns either the
register’s previous value or one of the values being written [6].
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must have followed p’s phase 2 write. Hence, q read the current (final)
value of dblock [p] in phase 1—a record with bal field bp and inp field vp.
Let bk be any other block that q read in its phase 1. Since q did not
abort, bq > bk .mbal . Since bk .mbal ≥ bk .bal for any block bk , this implies
bq > bk .bal . By the induction assumption, we obtain that, if bk .bal ≥ bp,
then bk .inp = vp. Since this is true for all blocks bk read by q in phase 1,
and since q read the final value of dblock [p], the algorithm implies that q
must set dblock [q ].inp to vp for phase 2, proving that vp = v q .

To obtain the Disk Synod algorithm from the shared-memory version,
we use a technique due to Attiya, Bar-Noy, and Dolev [1] to implement
a single-writer, multiple reader register with a network of disks. To write
a value, a processor writes the value together with a version number to a
majority of the disks. To read, a processor reads a majority of the disks
and takes the value with the largest version number. Since two majorities of
disks contain at least one disk in common, a read must obtain either the last
version for which the write was completed, or else a later version. Hence,
this implements a regular register. With this technique, we transform the
shared-memory version into a version for a network of processors and disks.

The actual Disk Synod algorithm simplifies the algorithm obtained by
this transformation in two ways. First, the version number is not needed.
The mbal and bal values play the role of a version number. Second, a
processor p need not choose a single version of dblock [q ] from among the
ones it reads from disk. Because mbal and bal values do not decrease, earlier
versions have no effect.

So far, we have ignored processor failures. There is a trivial way to
extend the shared-memory algorithm to allow processor failures. A processor
recovers by simply reading its dblock value from its register and starting a
new ballot. A failed process then acts like one in which a processor may
start a new ballot at any time. We can show that this generalized version
is also correct. However, in the actual disk algorithm, a processor can fail
while it is writing. This can leave its disk blocks in a state in which no value
has been written to a majority of the disks. Such a state has no counterpart
in the shared-memory version. There seems to be no easy way to derive
the recovery procedure from a shared-memory algorithm. The proof of the
complete Disk Synod algorithm, with failures, is much more complicated
than the one for the simple shared-memory version. Trying to write the
kind of behavioral proof given above for the simple algorithm leads to the
kind of complicated, error-prone reasoning that we have learned to avoid.
Instead, we sketch a rigorous assertional proof in the appendix.
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3.3 Deriving Classic Paxos from Disk Paxos

In the usual view of a distributed fault-tolerant system, a processor performs
actions and maintains its state in local memory, using stable storage to
recover from failures. An alternative view is that a processor maintains the
state of its stable storage, using local memory only to cache the contents of
stable storage. Identifying disks with stable storage, a traditional distributed
system is then a network of disks and processors in which each disk belongs
to a separate processor; other processors can read a disk only by sending
messages to its owner.

Let us now consider how to implement Disk Synod on a network of
processors that each has its own disk. To perform phase 1 or 2, a processor
p would access a disk d by sending a message containing dblock [p] to disk
d ’s owner q . Processor q could write dblock [p] to disk [d ][p], read disk [d ][r ]
for all r �= p, and send the values it read back to p. However, examining
the Disk Synod algorithm reveals that there’s no need to send back all that
data. All p needs are (i) to know if its mbal field is larger than any other
block’s mbal field and, if it is, (ii) the bal and inp fields for the block having
the maximum bal field. Hence, q need only store on disk three values: the
bal and inp fields for the block with maximum bal field, and the maximum
mbal field of all disk blocks. Of course, q would have those values cached in
its memory, so it would actually write to disk only if any of those values are
changed.

A processor must also read its own disk blocks to recover from a failure.
Suppose we implement Disk Synod by letting p write to its own disk before
sending messages to any other processor. This ensures that its own disk
has the maximum value of disk [d ][p].mbal among all the disks d . Hence,
to restart after a failure, p need only read its block from its own disk. In
addition to the mbal , bal , and inp value mentioned above, p would also keep
the value of dblock [p] on its disk.

We can now compare this algorithm with classic Paxos’s Synod proto-
col [10]. The mbal , bal , and inp components of dblock [p] are just lastTried [p],
nextBal [p], and prevVote[p] of the Synod Protocol. Phase 1 of the Disk
Synod algorithm corresponds to sending the NextBallot message and receiv-
ing the LastVote responses in the Synod Protocol. Phase 2 corresponds to
sending the BeginBallot and receiving the Voted replies.4 The Synod Pro-
tocol’s Success message corresponds to the optimization mentioned above

4In the Synod Protocol, a processor q does not bother sending a response if p sends
it a disk block with a value of mbal smaller than one already on disk. Sending back the
maximum mbal value is an optimization mentioned in [10].

7



of recording on disk that a value has been committed.
This version of the Disk Synod algorithm differs from the Synod Protocol

in two ways. First, the Synod Protocol’s NextBallot message contains only
the mbal value; it does not contain bal and inp values. To obtain the Synod
Protocol, we would have to modify the Disk Synod algorithm so that, in
phase 1, it writes only the mbal field of its disk block and leaves the bal and
inp fields unchanged. The algorithm remains correct, with essentially the
same proof, under this modification. However, the modification makes the
algorithm harder to implement with real disks.

The second difference between this version of the Disk Synod algorithm
and the Synod Protocol is in the restart procedure. A disk contains only
the aforementioned mbal , bal , and inp values. It does not contain a sepa-
rate copy of its owner’s dblock value. The Synod Protocol can be obtained
from the following variant of the Disk Synod algorithm. Let bk be the block
disk [d ][p] with maximum bal field read by processor p in the restart proce-
dure. Processor p can begin phase 1 with bal and inp values obtained from
any disk block bk ′, written by any processor, such that bk ′.bal ≥ bk .bal .
It can be shown that the Disk Synod algorithm remains correct under this
modification too.

4 Conclusion

4.1 Implementation Considerations

Implicit in our description of the Disk Synod algorithm are certain assump-
tions about how reading and writing are implemented when disks are ac-
cessed over a network. If operations sent to the disks may be lost, a processor
p must receive an acknowledgment from disk d that its write to disk [d ][p]
succeeded. This may require p to explicitly read its disk block after writing
it. If operations may arrive at the disk in a different order than they were
sent, p will have to wait for the acknowledgment that its write to disk d
succeeded before reading other processors’ blocks from d . Moreover, some
mechanism is needed to ensure that a write from an earlier ballot does not
arrive after a write from a later one, overwriting the later value with the
earlier one. How this is achieved will be system dependent. (It is impossible
to implement any fault-tolerant system if writes to disk can linger arbitrarily
long in the network and cause later values to be overwritten.)

Recall that, in Disk Paxos, a sequence of instances of the Disk Synod
algorithm is used to commit a sequence of commands. In a straightforward
implementation of Disk Paxos, processor p would write to its disk blocks the
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value of dblock [p] for the current instance of Disk Synod, plus the sequence
of all commands that have already been committed. The sequence of all
commands that have ever been committed is probably too large to fit on a
single disk block. However, the complete sequence can be stored on multiple
disk blocks. All that must be kept in the same disk block as dblock [p] is a
pointer to the head of the queue. For most applications, it is not necessary
to remember the entire sequence of commands [10, Section 3.3.2]. In many
cases, all the data that must be kept will fit in a single disk block.

In the application for which Disk Paxos was devised (a future Compaq
product), the set of processors is not known in advance. Each disk contains
a directory listing the processors and the locations of their disk blocks.
Before reading a disk, a processor reads the disk’s directory. To write a
disk’s directory, a processor must acquire a lock for that disk by executing
a real-time mutual exclusion algorithm based on Fischer’s protocol [7]. A
processor joins the system by adding itself to the directory on a majority of
disks.

4.2 Concluding Remarks

We have presented Disk Paxos, an efficient implementation of the state
machine approach in a system in which processors communicate by accessing
ordinary (nonprogrammable) disks. In the normal case, the leader commits
a command by writing its own block and reading every other processor’s
block on a majority of the shared disks. This is clearly the minimal number
of disk accesses needed.

Disk Paxos was motivated by the recent development of the Storage Area
Network (SAN)—an architecture consisting of a network of computers and
disks in which all disks can be accessed by each computer. Commodity disks
are cheaper than computers, so using redundant disks for fault tolerance is
more economical than using redundant computers. Moreover, since disks
do not run application-level programs, they are less likely to crash than
computers.

Because commodity disks are not programmable, we could not simply
substitute disks for processors in the classic Paxos algorithm. Instead we
took the ideas of classic Paxos and transplanted them to the SAN environ-
ment. What we obtained is almost, but not quite, a generalization of classic
Paxos. Indeed, when Disk Paxos is instantiated to a single disk, we obtain
what may be called Shared-Memory Paxos. Algorithms for shared memory
are usually more succinct and clear than their message passing counter-
parts. Thus, Disk Paxos can be considered yet another revisiting of classic
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Paxos that exposes its underlying ideas by removing the message-passing
clutter. Perhaps other distributed algorithms can also be made more clear
by recasting them in a shared-memory setting.
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Appendix

We now give a precise specification of the consensus problem solved by
the Disk Synod algorithm and of the algorithm itself. The specification is
written in TLA+ [11], a formal language that combines the temporal logic of
actions (TLA) [8], set theory, and first-order logic with notation for making

11



definitions and encapsulating them in modules. In the course of writing the
specifications, we try to explain any TLA+ notation whose meaning is not
self-evident. These specifications have been debugged with the aid of the
TLC model checker [17].5

We prove only consistency of the algorithm. We feel that the nonblocking
property is sufficiently obvious not to need a formal proof. We therefore do
not specify or reason about liveness properties. This means that we make
hardly any use of temporal logic.

A.1 The Specification of Consensus

We now formally specify the consensus problem. We assume N processors,
numbered 1 through N . Each processor p has two registers: an input register
input [p] that initially equals some element of a set Inputs of possible input
values, and an output register output [p] that initially equals a special value
NotAnInput that is not an element of Inputs. Processor p chooses an output
value by setting output [p]. It can also fail, which it does by setting input [p]
to any value in Inputs and resetting output [p] to NotAnInput . The precise
condition to be satisfied is that, if some processor p ever sets output [p] to
some value v , then

• v must be a value that is, or at one time was, the value of input [q ] for
some processor q

• if any processor r (including p itself) later sets output [r ] to some value
w other than NotAnInput , then w = v .

We specify only safety. There is no liveness requirement, so the specification
is satisfied if no processor ever changes output [p].

TLA+ specifications are organized into modules. The specification of
consensus is in a module named SynodSpec, which begins:

module SynodSpec
extends Naturals

The extends statement imports the Naturals module, which defines the set
Nat of natural numbers and the usual arithmetic operations. It also defines
i . . j to be the set of natural numbers from i through j . We next declare
the specification’s two constants: the number N of processors, and the set

5The typeset versions were generated manually from the actual TLA+ specifications
by a procedure that may have introduced errors.
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Inputs of inputs; and we assert the assumption that N is a positive natural
number.

constant N , Inputs
assume (N ∈ Nat) ∧ (N > 0)

In TLA+, every value is a set, so we don’t have to assert that Inputs is a
set. We next define two constants: the set Proc of processors, and the value
NotAnInput . In TLA+, ∆= means is defined to equal, and choose x :F (x )
equals an arbitrary value x such that F (x ) is true (if such an x exists).

Proc ∆= 1 . . N
NotAnInput ∆= choose c : c /∈ Inputs

We next declare the variables input and output .

variables input , output

To write the specification, we introduce two internal variables: allInput ,
which equals the set of all current and past values of input [p], for all pro-
cessors p; and chosen, which records the first input value output by some
processor (and hence, the value that all processors must henceforth output).
These variables are internal or “hidden” variables. In TLA, such variables
are bound variables of the temporal existential quantifier ∃∃∃∃∃∃ . Since inter-
nal variables aren’t part of the specification, they should not be declared
in module SynodSpec. One way to introduce such variables in TLA+ is to
declare them in a submodule. So, we introduce a submodule called Inner .

module Inner
variables allInput , chosen

Before going further, we explain some TLA+ notation. In programming
languages, the variables input and output would be arrays indexed by the
Proc. What programmers call an array indexed by S , mathematicians call
a function with domain S . TLA+ uses the notation [x ∈ S �→ e(x )] for the
function f with domain S such that f [x ] = e(x ) for all x in S . It denotes by
[S → T ] the set of all functions f with domain S such that f [x ] ∈ T for all
x ∈ S . TLA+ allows a conjunction or disjunction to be written as a list of
formulas bulleted by ∧ or ∨. Indentation is used to eliminate parentheses.

We now define IInit to be the predicate describing the initial state.
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IInit ∆= ∧ input ∈ [Proc → Inputs]
∧ output = [p ∈ Proc �→ NotAnInput ]
∧ chosen = NotAnInput
∧ allInput = {input [p] : p ∈ Proc}

We next define the two actions, Choose(p) and Fail(p), that describe the
operations that a processor p can perform. In TLA, an action is a formula
with primed and unprimed variables that describes the relation between the
values of the variables in a new (primed) state and their values in an old
(unprimed) state. For example, in a system with the two variables x and y ,
the action (x ′ = x +1)∧ (y ′ = y) corresponds to the programming-language
statement x : = x + 1. A conjunct with no primed variables is an enabling
condition.

In TLA+, the expression [f except ! [x ] = e] represents the function f̂
that is the same as f except that f̂ [x ] = e. Thus, f ′ = [f except ! [c] = e]
corresponds to the programming-language statement f [c] : = e, except that
it says nothing about variables other than f . An action must explicitly state
what remains unchanged. We do this with the expression unchanged v ,
which means v ′ = v . Leaving a tuple 〈v1, . . . , vn 〉 unchanged is equivalent
to leaving all its components v i unchanged.

The Choose(p) action represents the processor p choosing its output.
It is enabled iff output [p] equals NotAnInput . If chosen is NotAnInput ,
then chosen and output [p] are set to any element of allInput . Otherwise,
output [p] is set to chosen.

Choose(p) ∆=
∧ output [p] = NotAnInput
∧ if chosen = NotAnInput

then ∃ ip ∈ allInput : ∧ chosen ′ = ip
∧ output ′ = [output except ! [p] = ip]

else ∧ output ′ = [output except ! [p] = chosen]
∧ unchanged chosen

∧ unchanged 〈input , allInput 〉

The Fail(p) action represents processor p failing. It is always enabled. It
sets output [p] to NotAnInput , sets input [p] to any element of Inputs, and
adds that element to the set allInput .

Fail(p) ∆=
∧ output ′ = [output except ! [p] = NotAnInput ]
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∧ ∃ ip ∈ Inputs : ∧ input ′ = [input except ! [p] = ip]
∧ allInput ′ = allInput ∪ {ip}

∧ unchanged chosen

We next define the next-state action INext , which describes all possible
steps. We then define ISpec, the specification with the internal variables
chosen and allInput visible. It asserts that the initial state satisfies IInit ,
and every step either satisfies INext or leaves all the variables unchanged.
Formula ISpec is defined to be a temporal formula, using the ordinary op-
erator ✷ (always) of temporal logic, and the TLA notation that [N ]v equals
N ∨ (v ′ = v). These definitions end the submodule.

INext ∆= ∃ p ∈ Proc : Choose(p) ∨ Fail(p)
ISpec ∆= IInit ∧ ✷[INext ]〈input , output , chosen, allInput 〉

Finally, we define SynodSpec, the complete specification, to be ISpec with
the variables chosen and allInput hidden—that is, quantified with the tem-
poral existential quantifier ∃∃∃∃∃∃ of TLA. The precise meaning of the TLA+

constructs used here is unimportant.

IS (chosen, allInput) ∆= instance Inner
SynodSpec ∆= ∃∃∃∃∃∃ chosen, allInput : IS (chosen, allInput)!ISpec

This ends module SynodSpec.

A.2 The Disk Synod Algorithm

The Disk Synod algorithm is specified by a module DiskSynod that imports
all the declarations and definitions from the SynodSpec module.

module DiskSynod
extends SynodSpec

The algorithm assumes that different processors use different ballot numbers.
Instead of fixing some specific assignment choice of ballot numbers, we let
Ballot(p) represent the set of ballot numbers that processor p can use, where
Ballot is an unspecified constant operator.

We have described the algorithm in terms of a majority of disks. The
property of majorities we need is that any two majorities has a disk in com-
mon. If there are an even number d of disks, we can maintain that property
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even if we consider certain sets containing d/2 disks to constitute a majority.
We let IsMajority be an unspecified predicate so that if IsMajority(S ) and
IsMajority(T ) is true for two sets S and T of disks, then S and T are not
disjoint.

The module now declares Ballot , IsMajority , and the constant Disk that
represents the set of disks. It also asserts the assumptions we make about
them. In TLA+, the expression subset S denotes the set of all subsets of
the set S .

constants Ballot( ), Disk , IsMajority( )

assume ∧ ∀ p ∈ Proc : ∧ Ballot(p) ⊆ {n ∈ Nat : n > 0}
∧ ∀ q ∈ Proc \ {p} : Ballot(p) ∩ Ballot(q) = {}

∧ ∀ S ,T ∈ subset Disk :
IsMajority(S ) ∧ IsMajority(T ) ⇒ (S ∩ T �= {})

We next define two constants: the set DiskBlock of all possible records that
a processor can write to its disk blocks, and the record InitDB that is the
initial value of all disk blocks. In TLA+, [f 1 �→ v1, . . . , f n �→ vn ] is the
record r with fields f 1, . . . , f n such that r .f i = v i , for all i in 1 . . n, and
[f 1 : S 1, . . . , f n : Sn ] is the set of all such records with v i an element of
the set S i , for all i in 1 . . n. The set

⋃
S , the union of all the elements of

S , is written union S . For example, union {A,B ,C} equals A ∪ B ∪C .

DiskBlock ∆= [mbal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
bal : (union {Ballot(p) : p ∈ Proc}) ∪ {0},
inp : Inputs ∪ {NotAnInput} ]

InitDB ∆= [mbal �→ 0, bal �→ 0, inp �→ NotAnInput ]

We now declare all the specification’s variables—except for input and output ,
whose declarations are imported from SynodSpec. We have described the
variables disk (the contents of the disks) and dblock above. We let phase[p]
be the current phase of processor p, which will be set to 0 when p fails and
to 3 when p chooses its output. For convenience, we let each processor start
in phase 0 and begin the algorithm as if it were recovering from a failure.
The variables disksWritten and blocksRead record a processor’s progress
in the current phase; disksWritten[p] is the set of disks that processor p
has written, and blocksRead [p][d ] is the set of values p has read from disk
d . More precisely, blocksRead [p][d ] is a set of records with block and proc
fields, where [block �→ bk , proc �→ q ] is in blocksRead [p][d ] iff p has read the
value bk from disk [d ][q ] in the current phase. For convenience, we declare
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vars to be the tuple of all the specification’s variables. We also define the
predicate Init that defines the initial values of all variables.

variables disk , dblock , phase, disksWritten, blocksRead

vars ∆= 〈input , output , disk , phase, dblock , disksWritten, blocksRead 〉
Init ∆= ∧ input ∈ [Proc → Inputs]

∧ output = [p ∈ Proc �→ NotAnInput ]
∧ disk = [d ∈ Disk �→ [p ∈ Proc �→ InitDB ]]
∧ phase = [p ∈ Proc �→ 0]
∧ dblock = [p ∈ Proc �→ InitDB ]
∧ output = [p ∈ Proc �→ NotAnInput ]
∧ disksWritten = [p ∈ Proc �→ {}]
∧ blocksRead = [p ∈ Proc �→ [d ∈ Disk �→ {}]]

We now define two operators that describe the state of a processor during
the current phase: hasRead(p, d , q) is true iff p has read disk [d ][q ], and
allBlocksRead(p) equals the set of all disk [d ][q ] values that p has read during
the current phase. The TLA+ expression let def in exp equals expression
exp in the context of the local definitions in def .

hasRead(p, d , q) ∆= ∃ br ∈ blocksRead [p][d ] : br .proc = q

allBlocksRead(p) ∆=
let allRdBlks ∆= union {blocksRead [p][d ] : d ∈ Disk}
in {br .block : br ∈ allRdBlks}

We now define InitializePhase(p) to be an action that sets disksWritten[p]
and blocksRead [p] to their initial values, to indicate that p has done no
reading or writing yet in the current phase. This action will be used to
define other actions that make up the next-state relation; it itself is not part
of the next-state relation.

InitializePhase(p) ∆=
∧ disksWritten ′ = [disksWritten except ! [p] = {}]
∧ blocksRead ′ = [blocksRead except ! [p] = [d ∈ Disk �→ {}]]

We now define the actions that will form part of the next-state action. These
actions describe all the atomic actions of the algorithm that a processor p
can perform. The first is StartBallot(p) in which p initiates a new ballot.
We all p to do this at any time during phase 1 or 2. The action sets phase[p]
to 1, increases dblock [p].mbal , and initializes the phase,
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StartBallot(p) ∆=
∧ phase[p] ∈ {1, 2}
∧ phase ′ = [phase except ! [p] = 1]
∧ ∃ b ∈ Ballot(p) : ∧ b > dblock [p].mbal

∧ dblock ′ = [dblock except ! [p].mbal = b]
∧ InitializePhase(p)
∧ unchanged 〈input , output , disk 〉

In action Phase1or2Write(p, d), processor p writes disk [d ][p] and adds d to
the set disksWritten[p] of disks written by p. The action is enabled iff p is in
phase 1 or 2.6 In the TLA+ expression [f except ! [c] = e], an @ appearing
in e stands for f [c]. Thus, x ′ = [x except ! [c] = @+1] corresponds to the
programming-language statement x [c] : = x [c] + 1.

Phase1or2Write(p, d) ∆=
∧ phase[p] ∈ {1, 2}
∧ disk ′ = [disk except ! [d ][p] = dblock [p]]
∧ disksWritten ′ = [disksWritten except ! [p] = @ ∪ {d}]
∧ unchanged 〈input , output , phase, dblock , blocksRead 〉

Action Phase1or2Read(p, d , q) describes p reading disk [d ][q ]. It is enabled
iff d is in disksWritten[p], meaning that p has already written its block to
disk d. (This implies that p is in phase 1 or 2.) We allow p to reread a
disk block it has already read. If disk [d ][q ].mbal is less than p’s current
mbal value, then blocksRead [p][d ] is updated and p continues executing its
ballot. Otherwise, p aborts the ballot and begins a new one. The except
construct has a more general form for “arrays of arrays”. For example,
the formula x ′ = [x except ! [a][b] = e] corresponds to the programming-
language statement x [a][b] : = e.

Phase1or2Read(p, d , q) ∆=
∧ d ∈ disksWritten[p]
∧ if disk [d ][q ].mbal < dblock [p].mbal

then ∧ blocksRead ′ =
[blocksRead except

! [p][d ] = @ ∪ {[block �→ disk [d ][q ], proc �→ q ]}]
∧ unchanged

〈input , output , disk , phase, dblock , disksWritten 〉
else StartBallot(p)

6We could add the enabling condition d /∈ disksWritten[p], but it’s not necessary
because the action is a no-op, leaving all variables unchanged, if p has already written its
current value of dblock [p] to disk d .
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The action EndPhase1or2(p) describes processor p successfully finishing
phase 1 or 2. It is enabled when p is in phase 1 or 2 and, on a majority
of the disks, p has written its block and read every other processor’s block.
When p finishes phase 1, it sets dblock [p].inp and dblock [p].bal as described
in Section 3.1 and starts phase 2. When p finishes phase 2, it sets output [p],
sets phase[p] to 3, and terminates. (However, it could still fail and start
again.) The TLA+ except construct applies to records as well as functions,
and it can have multiple “replacements” separated by commas.

EndPhase1or2(p) ∆=
∧ IsMajority({d ∈ disksWritten[p] :

∀ q ∈ Proc \ {p} : hasRead(p, d , q)})
∧ ∨ ∧ phase[p] = 1

∧ dblock ′ =
[ dblock except

! [p].bal = dblock [p].mbal ,
! [p].inp =

let blocksSeen ∆= allBlocksRead(p) ∪ {dblock [p]}
nonInitBlks ∆=

{bs ∈ blocksSeen : bs.inp �= NotAnInput}
maxBlk ∆=

choose b ∈ nonInitBlks :
∀ c ∈ nonInitBlks : b.bal ≥ c.bal

in if nonInitBlks = {} then input [p]
else maxBlk .inp ]

∧ unchanged output
∨ ∧ phase[p] = 2

∧ output ′ = [output except ! [p] = dblock [p].inp]
∧ unchanged dblock

∧ phase ′ = [phase except ! [p] = @ + 1]
∧ InitializePhase(p)
∧ unchanged 〈input , disk 〉

Action Fail(p) represents a failure by processor p. The action is always
enabled. It chooses a new value of input [p], sets phase[p] to 0 and initializes
dblock [p], output [p], disksWritten[p], and blocksRead [p].

Fail(p) ∆=
∧ ∃ ip ∈ Inputs : input ′ = [input except ! [p] = ip]
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∧ phase′ = [phase except ![p] = 0]
∧ dblock′ = [dblock except ![p] = InitDB]
∧ output′ = [output except ![p] = NotAnInput]
∧ InitializePhase(p)
∧ unchanged disk

The next two actions describe failure recovery. In Phase0Read(p, d), proces-
sor p reads disk [d ][p], recording the value read in blocksRead [p]. Again, we
allow redundant reads of the same disk block. In EndPhase0(p), processor
p completes its recovery and enters phase 1, as described in Section 3.1.

Phase0Read(p, d) ∆=
∧ phase[p] = 0
∧ blocksRead ′ = [blocksRead except

! [p][d ] = @ ∪ {[block �→ disk [d ][p], proc �→ p]}]
∧ unchanged 〈input , output , disk , phase, dblock , disksWritten 〉

EndPhase0(p) ∆=
∧ phase[p] = 0
∧ IsMajority({d ∈ Disk : hasRead(p, d , p)})
∧ ∃ b ∈ Ballot(p) :

∧ ∀ r ∈ allBlocksRead(p) : b > r .mbal
∧ dblock ′ = [dblock except

! [p] = [ (choose r ∈ allBlocksRead(p) :
∀ s ∈ allBlocksRead(p) : r .bal ≥ s.bal)

except ! .mbal = b] ]
∧ InitializePhase(p)
∧ phase ′ = [phase except ! [p] = 1]
∧ unchanged 〈input , output , disk 〉

As in most TLA specifications, we define the next-state action Next that
describes all possible steps of all processors. We then define the formula
DiskSynodSpec, our specification of the algorithm, to assert that the ini-
tial state satisfies Init and every step either satisfies Next or leaves all the
variables unchanged.

Next ∆= ∃ p ∈ Proc :
∨ StartBallot(p)
∨ ∃ d ∈ Disk : ∨ Phase0Read(p, d)

∨ Phase1or2Write(p, d)
∨ ∃ q ∈ Proc \ {p} : Phase1or2Read(p, d , q)

∨ EndPhase1or2(p)
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∨ Fail(p)
∨ EndPhase0(p)

DiskSynodSpec ∆= Init ∧ ✷[Next ]vars

The module ends by asserting the correctness of the algorithm, which means
that the algorithm’s specification implies the formula SynodSpec that is its
correctness condition.

theorem DiskSynodSpec ⇒ SynodSpec

A.3 An Assertional Proof

We now sketch a proof of the correctness of the Disk Synod algorithm—
that is, a proof that DiskSynodSpec implies SynodSpec. Formula SynodSpec
equals ∃∃∃∃∃∃ chosen, allInput : ISpec.7 To prove such a formula, we must find
Skolem functions with which to instantiate the bound variables chosen and
allInput , and then prove that DiskSynodSpec implies ISpec, when chosen and
allInput are defined to equal those Skolem functions. The choice of Skolem
functions is called a refinement mapping. However, we cannot define such
a refinement mapping because chosen and allInput record history that is
not present in the actual state of the algorithm. Instead, we add chosen
and allInput to the algorithm specification as history variables. Formally,
we define a specification HDiskSynodSpec such that

DiskSynodSpec ≡ ∃∃∃∃∃∃ chosen, allInput : HDiskSynodSpec

We then prove that HDiskSynodSpec implies ISpec, from which we infer by
simple logic that DiskSynodSpec implies SynodSpec.

The initial predicate HInit of HDiskSynodSpec is the conjunction of the
initial predicate Init of DiskSynodSpec with formulas that specify the initial
values of chosen and allInput . Its next-state action HNext is the conjunction
of the next-state action Next of DiskSynodSpec with formulas that specify
the values of chosen ′ and allInput ′ as functions of the (unprimed and primed)
values of the other variables. A general theorem of TLA asserts that, if the
variable x does not occur in I , N , or the tuple y of variables, then

I ∧ ✷[N ]y ≡ ∃∃∃∃∃∃ x : (I ∧ (x = f (y))) ∧ ✷[N ∧ (x ′ = g(x ,y,y′))]〈x ,y〉
7Actually, ∃∃∃∃∃∃ chosen, allInput : ISpec is not a legal TLA+ formula; we should instead

write ∃∃∃∃∃∃ chosen, allInput : IS(chosen, allInput)!ISpec.
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for any f and g . This result implies that the specification obtained from
HDiskSynodSpec by hiding (existentially quantifying) chosen and allInput
is equivalent to DiskSynodSpec.

We define HDiskSynodSpec in a module HDiskSynod that extends the
DiskSynod module and declares chosen and allInput as variables.

module HDiskSynod
extends DiskSynod
variables allInput , chosen

The initial values of chosen and allInput are the same as in the initial
predicate of Ispec.

HInit ∆= ∧ Init
∧ chosen = NotAnInput
∧ allInput = {input [p] : p ∈ Proc}

The action HNext ensures that chosen equals the first output value that is
different from NotAnInput , and that allInput always equals the set of all
input values that have appeared thus far.

HNext ∆=
∧ Next
∧ chosen ′ = let hasOutput(p) ∆= output ′[p] �= NotAnInput

in if ∨ chosen �= NotAnInput
∨ ∀ p ∈ Proc : ¬hasOutput(p)

then chosen
else output ′[choose p ∈ Proc : hasOutput(p)]

∧ allInput ′ = allInput ∪ {input ′[p] : p ∈ Proc}
The module then defines HDiskSynodSpec in the usual way, and asserts that
it implies ISpec, with chosen and allInput replaced by the variables of the
same name declared in the current module. (Again, the details of how this
is expressed in TLA+ are not important.)

HDiskSynodSpec ∆= HInit ∧ ✷[HNext ]〈vars, chosen, allInput 〉
theorem HDiskSynodSpec ⇒ IS (chosen, allInput)!ISpec

We now outline the proof of this theorem. Let ivars be the tuple of all
variables of ISpec:
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ivars ∆= 〈input , output , chosen, allInput 〉
To prove that HDiskSynodSpec implies ISpec we must prove8

theorem R1 HInit ⇒ IInit

theorem R2 HInit ∧ ✷[HNext ]〈vars, chosen, allInput 〉 ⇒ ✷[INext ]ivars

The proof of R1 is trivial. To prove R2, standard TLA reasoning shows that
it suffices to find a state predicate HInv for which we can prove:

theorem R2a HInit ∧ ✷[HNext ]〈vars, chosen, allInput 〉 ⇒ ✷HInv

theorem R2b HInv ∧ HInv ′ ∧ HNext ⇒ INext ∨ (unchanged ivars)

A predicate HInv satisfying R2a is said to be an invariant of the specification
HInit ∧ ✷[HNext ]〈vars, chosen, allInput 〉. To prove R2a, we make HInv strong
enough to satisfy:

theorem I1 Hinit ⇒ HInv

theorem I2 HInv ∧ HNext ⇒ HInv ′

A predicate HInv satisfying I 2 is said to be an invariant of the action HNext .
A standard TLA theorem asserts that I 1 and I 2 imply R2a.

There are two general approaches to defining HInv . In both, we write
HInv as a conjunction HI 1 ∧ . . .∧HI k . In the bottom-up method, we define
the HI i in increasing order of i , so that each conjunction HI 1 ∧ . . .∧HI k is
an invariant of HNext . We stop when we obtain an invariant strong enough
to prove R2b. In the top-down method, we start by defining HI k so that
R2b is satisfied with HI k substituted for HInv . We then define the HI i in
decreasing order of i so that HI i∧. . .∧HI k∧HNext ⇒ HI ′i+1, stopping when
we obtain an invariant of HNext . In practice, one uses a combination of the
two methods—with a lot of backtracking. Here, we present the invariant in
a bottom-up fashion.

If the set of disks is empty, then IsMajority(D) is false for all subsets D of
Disk . (This follows from the assumption about IsMajority by substituting D
for both S and T .) Hence, HDiskSynodSpec implies that the system remains
forever in its initial state, trivially satisfying ISpec. It therefore suffices to
consider only the case when Disk is nonempty:

assume Disk �= {}
8The symbols IInit and INext are not defined in the current context; to be rigorous,

we should define them to equal IS(chosen, allInput)!IInit and IS(chosen, allInput)!INext ,
respectively.
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The standard starting point for a TLA proof is a simple “type invariant”,
which we call HInv1, asserting that all variables have the correct type:

HInv1 ∆=
∧ input ∈ [Proc → Inputs]
∧ output ∈ [Proc → Inputs ∪ {NotAnInput}]
∧ disk ∈ [Disk → [Proc → DiskBlock ]]
∧ phase ∈ [Proc → 0 . . 3]
∧ dblock ∈ [Proc → DiskBlock ]
∧ output ∈ [Proc → Inputs ∪ {NotAnInput}]
∧ disksWritten ∈ [Proc → subset Disk ]
∧ blocksRead ∈ [Proc → [Disk →

subset [block : DiskBlock , proc : Proc]]]
∧ allInput ∈ subset Inputs
∧ chosen ∈ Inputs ∪ {NotAnInput}
∧ input ∈ [Proc → Inputs]

Our first lemma asserts that HInv1 is an invariant of HNext :

lemma I2a HInv1 ∧HNext ⇒ HInv1′.

The proofs of Theorem R2b and of most lemmas appear in Section A.4
below.

Before going any further, we define some useful state functions. First,
we let MajoritySet be the set of all subsets of the set of disks containing
a majority of them; we let blocksOf (p) be the set of all copies of p’s disk
blocks in the system—that is, dblock [p], p’s blocks on disk, and all blocks
of p read by some processor; and we let allBlocks be the set of all copies of
all disk blocks of all processors.

MajoritySet ∆= {D ∈ subset Disk : IsMajority(D)}
blocksOf (p) ∆=

let rdBy(q , d) ∆= {br ∈ blocksRead [q ][d ] : br .proc = p}
in {dblock [p]} ∪ {disk [d ][p] : d ∈ Disk}

∪ {br .block : br ∈ union {rdBy(q , d) : q ∈ Proc, d ∈ Disk}}
allBlocks ∆= union {blocksOf (p) : p ∈ Proc}

The next conjunct of HInv describes some simple relations between the
values of the different variables.
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HInv2 ∆=
∧ ∀ p ∈ Proc :

∀ bk ∈ blocksOf (p) : ∧ bk .mbal ∈ Ballot(p) ∪ {0}
∧ bk .bal ∈ Ballot(p) ∪ {0}
∧ (bk .bal = 0) ≡ (bk .inp = NotAnInput)
∧ bk .mbal ≥ bk .bal

∧ ∀ p ∈ Proc, d ∈ Disk :
∧ (d ∈ disksWritten[p]) ⇒ ∧ phase[p] ∈ {1, 2}

∧ disk [d ][p] = dblock [p]
∧ (phase[p] ∈ 1, 2) ⇒ ∧ (blocksRead [p][d ] �= {}) ⇒

(d ∈ disksWritten[p])
∧ ¬hasRead(p, d , p)

∧ ∀ p ∈ Proc :
∧ (phase[p] = 0) ⇒ ∧ dblock [p] = InitDB

∧ disksWritten[p] = {}
∧ ∀ d ∈ Disk : ∀ br ∈ blocksRead [p][d ] :

∧ br .proc = p
∧ br .block = disk [d ][p]

∧ (phase[p] �= 0) ⇒ ∧ dblock [p].mbal ∈ Ballot(p)
∧ dblock [p].bal ∈ Ballot(p) ∪ {0}
∧ ∀ d ∈ Disk : ∀ br ∈ blocksRead [p][d ] :

br .block .mbal < dblock [p].mbal
∧ (phase[p] ∈ {2, 3}) ⇒ (dblock [p].bal = dblock [p].mbal)
∧ output [p] = if phase[p] = 3 then dblock[p].inp else NotAnInput

∧ chosen ∈ allInput ∪ {NotAnInput}
∧ ∀ p ∈ Proc : ∧ input [p] ∈ allInput

∧ (chosen = NotAnInput) ⇒ (output [p] = NotAnInput)

The invariance of HInv1 ∧ HInv2 follows from Lemma I 2a and:

lemma I2b HInv1 ∧ HInv2 ∧ HNext ⇒ HInv2′

The next conjunct of HInv expresses the observation that if processors
p and q have each read the other’s block from disk d during their current
phases, then at least one of them has read the other’s current block.

HInv3 ∆= ∀ p, q ∈ Proc, d ∈ Disk :
∧ phase[p] ∈ {1, 2}
∧ phase[q ] ∈ {1, 2}
∧ hasRead(p, d , q)
∧ hasRead(q , d , p)
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⇒ ∨ [block �→ dblock [q ], proc �→ q ] ∈ blocksRead [p][d ]
∨ [block �→ dblock [p], proc �→ p] ∈ blocksRead [q ][d ]

lemma I2c HInv1 ∧ HInv3 ∧ HNext ⇒ HInv3′

The next conjunct of the invariant expresses relations among the mbal and
bal values of a processor and of its disk blocks. Its first conjunct asserts that,
when p is not recovering from a failure, its mbal value is at least as large as
the bal field of any of its blocks, and at least as large as the mbal field of
its block on some disk in any majority set. Its second conjunct asserts that,
in phase 1, its mbal value is actually greater than the bal field of any of its
blocks. Its third conjunct asserts that, in phase 2, its bal value is the mbal
field of all its blocks on some majority set of disks. The fourth conjunct
asserts that the bal field of any of its blocks is at most as large as the mbal
field of all its disk blocks on some majority set of disks.

HInv4 ∆=
∀ p ∈ Proc :

∧ (phase[p] �= 0) ⇒
∧ ∀ bk ∈ blocksOf (p) : dblock [p].mbal ≥ bk .bal
∧ ∀D ∈ MajoritySet :

∃ d ∈ D : ∧ dblock [p].mbal ≥ disk [d ][p].mbal
∧ dblock [p].bal ≥ disk [d ][p].bal

∧ (phase[p] = 1) ⇒ (∀ bk ∈ blocksOf (p) : dblock [p].mbal > bk .bal)
∧ (phase[p] ∈ {2, 3}) ⇒

(∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][p].mbal = dblock [p].bal)
∧ ∀ bk ∈ blocksOf (p) :

∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][p].mbal ≥ bk .bal

lemma I2d HInv1 ∧HInv2 ∧ HInv2′ ∧ HInv4 ∧ HNext ⇒ HInv4′

Before going further, we define maxBalInp(b, v) to assert that every
block in allBlocks with bal field at least b has inp field v .

maxBalInp(b, v) ∆= ∀ bk ∈ allBlocks : (bk .bal ≥ b) ⇒ (bk .inp = v)

We now come to a conjunct of HInv that provides some high-level insight
into why the algorithm is correct. It asserts that, if a processor p is in
phase 2, then either its bal and inp values satisfy maxBalInp, or else p must
eventually abort its current ballot. Processor p will eventually abort its
ballot if there is some processor q and majority set D such that p has not
read q ’s block on any disk in D , and all of those blocks have mbal values
greater than dblock [p].bal . (Since p must read at least one of those disks, it
must eventually read one of those blocks and abort.)
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HInv5 ∆=
∀ p ∈ Proc :

(phase[p] = 2) ⇒ ∨ maxBalInp(dblock [p].bal , dblock [p].inp)
∨ ∃D ∈ MajoritySet , q ∈ Proc :

∀ d ∈ D : ∧ disk [d ][q ].mbal > dblock [p].bal
∧ ¬hasRead(p, d , q)

lemma I2e
HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv3 ∧ HInv4 ∧ HInv5 ∧HNext ⇒ HInv5′

Before defining our final conjunct, we define a predicate valueChosen(v)
that is true if v is the only possible value that can be chosen as an output.
It asserts that there is some ballot number b such that maxBalInp(b, v) is
true. This condition is satisfied if there is no block bk in allBlocks with
bk .bal ≥ b. So, valueChosen(v) must require that some processor p has
written blocks with bal field at least b to a majority set D of the disks. (By
maxBalInp(b, v), those blocks must have inp field v). We also ensure that,
once valueChosen(v) becomes true, it can never be made false. This requires
the additional condition that no processor q that is currently executing
phase 1 with mbal value at least b can fail to see those blocks that p has
written. So, valueChosen(v) also asserts that, for every disk d in D , if q has
already read disk [d ][p], then it has read a block with bal field at least b.

valueChosen(v) ∆=
∃ b ∈ union {Ballot(p) : p ∈ Proc} :

∧ maxBalInp(b, v)
∧ ∃ p ∈ Proc, D ∈ MajoritySet :

∀ d ∈ D : ∧ disk [d ][p].bal ≥ b
∧ ∀ q ∈ Proc :

∧ phase[q ] = 1
∧ dblock [q ].mbal ≥ b
∧ hasRead(q , d , p)

⇒ (∃ br ∈ blocksRead [q ][d ] : br .bal ≥ b)

It’s obvious that, if valueChosen(v) = valueChosen(w), then v = w .
The final conjunct of HInv asserts that, once an output has been cho-

sen, valueChosen(chosen) holds, and each processor’s output equals either
chosen or NotAnInput .

HInv6 ∆= ∧ (chosen �= NotAnInput) ⇒ valueChosen(chosen)
∧ ∀ p ∈ Proc : output [p] ∈ {chosen,NotAnInput}

lemma I2f HInv1 ∧ HInv2 ∧ HInv2′ ∧ HInv3 ∧HInv6 ∧ HNext ⇒ HInv6′
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We define HInv to be the conjunction of HInv1–HInv6.

HInv ∆= HInv1 ∧ HInv2 ∧HInv3 ∧ HInv4 ∧ HInv5 ∧ HInv6

Theorem I 2 then follows easily from Lemmas I 2a–I 2f .

A.4 Proofs

We now sketch the proofs of most of the lemmas from Section A.3 and of
Theorem R2b. We give hierarchically structured proofs [9]. A structured
proof consists of a sequence of statements and their proofs; each of those
proofs is either a structured proof or an ordinary paragraph-style proof. The
j th step in the current level-i proof is numbered 〈i〉j. Within a paragraph-
style proof, 〈i〉j denotes the most recent statement with that number. The
proof statement “〈i〉j. Q.E.D.” denotes the current goal—that is, the level
i − 1 statement being proved by this step. A proof statement

Assume: A
Prove: P

asserts that the assumption A implies P . If P is the current goal, then this
is abbreviated as

Case: A

An assumption constant c ∈ S asserts that c is a new constant parameter
that we assume is in S . We prove ∀ c ∈ S :P(c) by proving

Assume: constant c ∈ S
Prove: P(c)

The assumption constant c ∈ S s.t. A(c) also assumes that c also sat-
isfies A(c). A proof statement

〈i 〉j choose c ∈ S s.t. P(c)

asserts the existence of a value c in S satisfying P(c), and defines c to be
such a value. To prove this statement, we must demonstrate the existence
of c.

We recommend that proofs be read hierarchically, from the top level
down. To read the proof of a long level-i step, you should first read the
level-(i + 1) statements that form its proof, together with the proof of the
final “Q.E.D.” step (which is usually a short paragraph), and then read the
proof of each level-(i + 1) step, in any desired order.
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We also use a hierarchical scheme for naming subformulas of a formula.
If F is the name of a formula that is a conjunction, then F .i is the name of its
i th conjunct. A similar scheme is used for a disjunction, except using letters
instead of numbers, so F .c is the name of the third disjunct of F . If F is the
name of the formula P ⇒ Q , then F .L is the name of P and F .R is the name
of Q . If F is the name of the formula ∃ x :P(x ) or ∀ x :P(x ), then F (e)
is the name of the formula P(e), for any expression e. This is generalized
in the obvious way for abbreviated quantifications like ∃ x , y :P(x , y). For
example, HInv5(n).R.b(E ,m)(dd).2 is the formula ¬hasRead(n, dd , m).

We now give the proofs. We omit the proofs of Lemmas I 2a and I 2b,
which require a simple but tedious case analysis for the different disjuncts
of Next . In the informal paragraph-style proofs, we use HInv1 implicitly in
many places by tacitly assuming that variables have values of the right type.
For example, we deduce phase ′[p] = 2 from

phase ′ = [phase except ! [p] = 2]

without mentioning that this follows only if phase is a function whose domain
contains p, which is implied by HInv1.

A.4.1 Lemma I2c

We prove Lemma I 2c by proving:

Assume: 1. HInv1 ∧ HInv3 ∧HNext
2. constants p, q ∈ Proc, d ∈ Disk
3. HInv3(p, q , d).L′

Prove: HInv3(p, q , d).R′

〈1〉1. Case: ¬HInv3(p, q , d).L
〈2〉1. Case: Phase1or2Read(p, d , q)

Proof: Action Phase1or2Read(p, d , q) adds the record
[block �→ dblock [q ], proc �→ q ]

to blocksRead [p][d ], making HInv3(p, q , d).R.a ′ true.
〈2〉2. Case: Phase1or2Read(q , d , p)

Proof: Action Phase1or2Read(q , d , p) adds the record
[block �→ dblock [p], proc �→ p]

to blocksRead [q ][d ], making HInv3(p, q , d).R.b ′ true.
〈2〉3. Case: EndPhase0(p)

Proof: This implies ¬hasRead(p, d , q), so HInv3(p, q , d).L′ is false,
making HInv3(p, q , d)′ true.

〈2〉4. Case: EndPhase0(q)
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Proof: This implies ¬hasRead(q , d , p), so HInv3(p, q , d).L′ is false,
making HInv3(p, q , d)′ true.

〈2〉5. Q.E.D.
Proof: By assumption 3 and the level 〈1〉 case assumption, one of the
four conjuncts of HInv3(p, q , d).L is changed from false to true. Steps
〈2〉1–〈2〉4 covers the four subactions of Next that can make one of those
conjuncts false.

〈1〉2. Case: HInv3(p, q , d).L
Proof: By HInv3 (which holds by assumption 1), the case assump-
tion implies HInv3(p, q , d).R. The only subactions of HNext that make
HInv3(p, q , d).R false are ones that remove elements from blocksRead [p][d ]
or blocksRead [q ][d ] or that change dblock [p] or dblock [q ]. The only such
subactions are ones with an InitializePhase(p) or InitializePhase(q) con-
junct, which make HInv3(p, q , d).R′ false, contrary to assumption 3.

〈1〉3. Q.E.D.
Proof: Immediate from steps 〈1〉1 and 〈1〉2.

A.4.2 Lemma BksOf

We now state and prove a simple result that will be used below.

lemma BksOf
Next ∧ HInv1 ⇒

(∀ p ∈ Proc :
blocksOf (p)′ ⊆ (blocksOf (p) \ {dblock [p]}) ∪ {dblock ′[p]} )

It is proved as follows.

Assume: p ∈ Proc
Prove: blocksOf (p)′ ⊆ (blocksOf (p) \ {dblock [p]}) ∪ {dblock ′[p]}
Proof: The only way an HNext step creates a new block for p, rather than
copying an existing one, is by changing dblock [p].

A.4.3 Lemma I2d

Assume: 1. HInv1 ∧ HInv2 ∧HInv2′ ∧HInv4 ∧ HNext
2. constant p ∈ Proc

Prove: HInv4(p)′

〈1〉1. HInv4(p).1′

〈2〉1. Case: (phase[p] = 0) ∧ (phase ′[p] �= 0)
〈3〉1. EndPhase0(p)
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Proof: By the level 〈2〉 case assumption, since EndPhase0(p) is the
only subaction of HNext that changes phase[p] from zero to a nonzero
value.

〈3〉2. Assume: constant bk ∈ blocksOf (p)′ s.t. bk �= dblock ′[p]
Prove: dblock ′[p].mbal ≥ bk .bal

〈4〉1. bk ∈ blocksOf (p)
Proof: Lemma BksOf and the level 〈3〉 assumption.

〈4〉2. choose D1 ∈ MajoritySet s.t.
∀ d ∈ D : disk [d ][p].mbal ≥ bk .bal

Proof: HInv4.4 and 〈4〉1 imply the existence of D1.
〈4〉3. ∀D ∈ MajoritySet : ∃ d ∈ D : disk [d ][p].mbal ≥ bk .bal

Proof: Using 〈4〉2, for any majority set D we can choose d to be
a disk in D1∩D , which is nonempty because any two majority sets
have an element in common.

〈4〉4. ∃ d ∈ Disk : ∃ rb ∈ readBlock [p][d ] : rb.block .mbal ≥ bk .bal
Proof: By HInv2.3(p).1.R.3, which holds by assumption 1 and
case assumption 〈2〉, hasRead(p, d , p) implies that blocksRead [p][d ]
consists of a single element whose block field equals disk [d ][p], for
any disk d . Step 〈3〉1 implies that hasRead(p, d , p) is true for all
d in some majority set D of disks. The level 〈3〉 goal then follows
from 〈4〉3.

〈4〉5. Q.E.D.
Proof: 〈4〉4 and 〈3〉1 imply dblock ′[p].mbal > bk .bal .

〈3〉3. HInv4(p).1.R.2′

〈4〉1. ∃D ∈ MajoritySet :
∀ d ∈ D : ∧ dblock ′[p].mbal > disk [d ][p].mbal

∧ dblock ′[p].bal ≥ disk [d ][p].bal
Proof: By 〈3〉1, dblock ′[p].mbal > br .mbal and dblock ′[p].bal ≥
br .bal for all br ∈ allBlocksRead(p). By 〈3〉1, the level 〈2〉 case as-
sumption, and HInv2.3(p).1, allBlocksRead(p) contains all blocks
disk [d ][p] for d in some majority set D of disks.

〈4〉2. Q.E.D.
Proof: HInv4(p).1.R.2′ follows from 〈4〉1 and 〈3〉1, which implies
that disk is unchanged.

〈3〉4. Q.E.D.
Proof: By 〈3〉2 and 〈3〉3, since 〈3〉2 implies HInv4(p).1.R.1(bk)′ ex-
cept for the case bk = dblock ′[p]; and HInv4(p).1.R.1(bk)′ follows
from 〈3〉1 and HInv2.1(p).4 in that case.

〈2〉2. Case: (phase[p] �= 0) ∧ (phase ′[p] �= 0)
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〈3〉1. ∧ dblock ′[p].mbal ≥ dblock [p].mbal
∧ dblock ′[p].bal ≥ dblock [p].bal

Proof: The only subactions of Next that change dblock [p] are
StartBallot(p), EndPhase1or2(p), EndPhase0(p), andFail(p)

Of these, only Fail(p) can decrease dblock [p].mbal or dblock [p].bal .
(HInv2.1(p).4 implies that EndPhase1or2(p) ∧ phase[p] = 1 can-
not decrease dblock [p].bal .) The level 〈2〉 case assumption implies
¬Fail(p).

〈3〉2. HInv4(p).1.R.1′

Proof: If bk ∈ blocksOf (p), then HInv4(p).1.R.1(bk)′ follows from
〈3〉1 and HInv4(p).1.R.1 (which holds by assumption 1 and the level
〈2〉 case assumption). If bk = dblock ′[p], then HInv4(p).1.R.1(bk)′

follows from HInv2.1(p)(bk).4′. We then obtain HInv4(p).1.R.1′ from
Lemma BksOf .

〈3〉3. HInv4(p).1.R.2′

Proof: HNext implies that disk ′[p][d ] equals disk [p][d ] or dblock [p],
so HInv4(p).1.R.2′ follows from 〈3〉1 and HInv4(p).1.R.1, which holds
by assumption 1 and the level 〈2〉 case assumption.

〈3〉4. Q.E.D.
Proof: By 〈3〉2 and 〈3〉3.

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2, since HInv4(p).1′ is trivially true if phase ′[p]
equals 0.

〈1〉2. HInv4(p).2′

〈2〉1. Case: (phase[p] �= 1) ∧ (phase ′[p] = 1)
〈3〉1. Case: phase[p] = 0

〈4〉1. EndPhase0(p)
Proof: By the levels 〈2〉 and 〈3〉 case assumptions.

〈4〉2. ∀ bk ∈ blocksOf (p) :
∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][p].mbal ≥ bk .bal

Proof: By HInv4(p).4.
〈4〉3. ∀ bk ∈ blocksOf (p) :

∀D ∈ MajoritySet : ∃ d ∈ D : disk [d ][p].mbal ≥ bk .bal
Proof: By 〈4〉2, since any two majority sets have a disk in com-
mon.

〈4〉4. ∀ bk ∈ blocksOf (p) :
∃ br ∈ allBlocksRead(p) : br .mbal ≥ bk .bal

Proof: By 〈4〉1, 〈4〉3, and HInv2.3(p).1.R.3 (which holds by as-
sumption 1 and the level 〈3〉 case assumption).

〈4〉5. Q.E.D.
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Proof: 〈4〉1 implies
∀ br ∈ allBlocksRead(p) : dblock ′[p].mbal > br .mbal

Therefore, HInv4(p).2.R(bk)′ follows from 〈4〉4 and 〈4〉1 if bk ∈
blocksOf (p). Step 〈4〉1 also implies

∃ bk ∈ blocksOf (p) : dblock ′[p].bal = bk .bal
so HInv4(p).2.R(bk)′ follows from 〈4〉4 if bk = dblock ′[p]. By
Lemma BksOf , this proves HInv4(p).2.R′.

〈3〉2. Case: phase[p] ∈ {2, 3}
〈4〉1. ∀ bk ∈ blocksOf (p) : dblock [p].mbal ≥ bk .bal

Proof: HInv4(p).1 and the level 〈3〉 case assumption (which imply
HInv4(p).1.R.1).

〈4〉2. ∧ dblock ′[p].mbal > dblock [p].mbal
∧ dblock ′[p].bal = dblock [p].bal

Proof: By HNext and the level 〈2〉 and 〈3〉 case assumptions,
which imply StartBallot(p).

〈4〉3. Q.E.D.
Proof: 〈4〉1 and 〈4〉2 imply HInv4(p).2.R(bk)′ for bk = dblock ′[p]
and bk ∈ blocksOf (p). Lemma BksOf then implies HInv4(p).2.R′.

〈3〉3. Q.E.D.
Proof: The level 〈2〉 case assumption implies that 〈3〉1 and 〈3〉2
cover all possibilities.

〈2〉2. Case: (phase[p] = 1) ∧ (phase ′[p] = 1)
Proof: By HNext , this implies dblock ′[p] = dblock [p], so Lemma BksOf
implies that HInv4(p).2′ follows from HInv4(p).2.

〈2〉3. Q.E.D.
Proof: Since HInv4(p).2′ is trivially true if phase ′[p] �= 1, the cases of
〈2〉1 and 〈2〉2 are exhaustive.

〈1〉3. HInv4(p).3′

〈2〉1. Case: (phase[p] �= 2) ∧ (phase ′[p] = 2)
〈3〉1. EndPhase1or2(p) ∧ (phase[p] = 1)

Proof: By HNext and the level 〈2〉 case assumption.
〈3〉2. ∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][p].mbal = dblock [p].mbal

Proof: By 〈3〉1 and HInv2.2(p).1.
〈3〉3. Q.E.D.

Proof: 〈3〉1 implies dblock ′[p].bal = dblock [p].mbal and disk ′ = disk ,
which by 〈3〉2 implies HInv4(p).3′

〈2〉2. Case: (phase[p] ∈ {2, 3}) ∧ (phase ′[p] ∈ {2, 3})
〈3〉1. dblock ′[p].bal = dblock [p].bal

Proof: By HNext and the level 〈2〉 case assumption.
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〈3〉2. ∀ d ∈ Disk :
Phase1or2Write(p, d) ⇒ (disk ′[d ][p].mbal = dblock [p].bal

Proof: By the level 〈2〉 case assumption and HInv2.3(p).3.
〈3〉3. Q.E.D.

Proof: HInv4(p).3′ follows from HInv4(p).3, 〈3〉1, and 〈3〉1, since
HNext ∧ ¬Phase1or2Write(p, d) implies disk ′[d ][p] = disk [d ][p], for
any disk d .

〈2〉3. Q.E.D.
Proof: HInv4(p).3′ follows from 〈2〉1 and 〈2〉2 because it is trivially
true if phase ′[p] /∈ {2, 3}, and HNext∧(phase ′[p] = 3) implies phase[p] ∈
{2, 3},

〈1〉4. HInv4(p).4′

〈2〉1. Case: EndPhase1or2(p) ∧ (phase[p] = 1)
〈3〉1. ∃D ∈ MajoritySet : ∀ d ∈ D : disk ′[d ][p].mbal ≥ dblock ′[p].bal

Proof: By 〈1〉3 and the level 〈2〉 case assumption, which implies
phase ′[p] = 2.

〈3〉2. disk ′ = disk
Proof: By the level 〈2〉 case assumption.

〈3〉3. Q.E.D.
Proof: If bk �= dblock ′[p], then HInv4(p).4(bk)′ follows from 〈3〉2
and HInv4(p).4(bk). If bk = dblock ′[p], then it follows from 〈3〉1.

〈2〉2. Case: Fail(p)
Proof: Fail(p) implies disk ′ = disk , so HInv4(p).4(bk)′ follows from
HInv4(p).4(bk) if bk �= dblock ′[p]. For bk = dblock [p], HInv4(p).4(bk)′

is trivial because Fail(p) implies dblock [p].bal = 0.
〈2〉3. Case: ∃ d ∈ Disk : Phase1or2Write(p, d)

Proof: In this case, we have
∃ d ∈ Disk : [disk ′ = disk except ! [d ][p] = dblock [p]]

and phase ′[p] �= 0. From this, HInv4(p).4, and HInv4(p).1.R.1′ (which
holds by 〈1〉1), we deduce HInv4(p).4(bk)′ for bk ∈ blocksOf (p) ∩
blocksOf (p)′. For bk = dblock ′[p], we obtain HInv4(p).4(bk)′ from
HInv2.1(p)(bk).4′. By Lemma BksOf , this proves HInv4(p).4′.

〈2〉4. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, 〈2〉3, since they consider all the subactions of
HNext that change bVal or disk [d ][p], for some disk d .

〈1〉5. Q.E.D.
Proof: By steps 〈1〉1–〈1〉4.
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A.4.4 Lemma I2e

Simple logic shows that, to prove Lemma I 2e, it suffices to prove:

Assume: 1. HInv1 ∧ HInv2 ∧HInv2′ ∧HInv3 ∧ HInv4 ∧ HInv5 ∧ HNext
2. constant p ∈ Proc
3. phase ′[p] = 2
4. ¬HInv5(p).R.a ′

Prove: HInv5(p).R.b ′

〈1〉1. Case: (phase[p] �= 2)
〈2〉1. EndPhase1or2(p) ∧ (phase[p] = 1)

Proof: By HNext , assumption 3, and the level 〈1〉 case assumption.
〈2〉2. choose bk ∈ allBlocks s.t.

(bk .bal ≥ dblocks ′[p].bal) ∧ (bk �= dblocks ′)
Proof: Assumption 4 and the definition of maxBalInp imply that there
exists bk ∈ allBlocks ′ such that bk .bal ≥ dblocks ′[p].bal and bk .inp �=
dblocks ′[p].inp. By Lemma BksOf and the definition of allBlocks, 〈2〉1
implies bk ∈ allBlocks.

〈2〉3. choose q ∈ Proc \ {p} s.t. bk ∈ blocksOf (q)
Proof: By 〈2〉2 and the definition of allBlocks, there is some pro-
cessor q such that bk ∈ blocksOf (q). 〈2〉1 and 〈2〉2 imply bk .bal ≥
dblock [p].mbal , so 〈2〉1 and HInv4(p).2 imply q �= p.

〈2〉4. ∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][q ].mbal ≥ dblock ′[p].bal
Proof: By 〈2〉3, HInv4(q).4, and 〈2〉2.

〈2〉5. ∃D ∈ MajoritySet : ∀ d ∈ D : disk [d ][q ].mbal > dblock ′[p].bal
Proof: By 〈2〉3 (which implies p �= q) and 〈2〉4, since 〈2〉1 (which
implies dblock ′[p].bal > 0), HInv2.1, and the assumption that differ-
ent processors have distinct ballot numbers imply disk [d ][q ].mbal �=
dblock ′[p].bal .

〈2〉6. Q.E.D.
Proof: 〈2〉1 implies ¬hasRead(p, d , q)′ , for all disks d . Hence, 〈2〉5
implies HInv5(p).R.b ′.

〈1〉2. Case: (phase[p] = 2) ∧ HInv5(p).R.a
〈2〉1. choose q ∈ Proc \ {p} s.t. ∧ EndPhase1or2(q) ∧ (phase[q ] = 1)

∧ dblock ′[q ].bal > dblock [p].bal
∧ dblock ′[q ].inp �= dblock [p].inp

Proof: HNext , Assumption 3, and the level 〈1〉 case assumption imply
that dblock ′[p] = dblock [p]. Assumption 4, the level 〈1〉 case assump-
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tion, the definition of maxBalInp, and Lemma BlksOf imply
∧ dblock ′[q ].bal ≥ dblock [p].bal
∧ dblock ′[q ].inp �= dblock [p].inp
∧ (dblock ′[q ].bal �= dblock [q ].bal) ∨ (dblock ′[q ].bal ≥ dblock [q ].bal)

for some processor q �= p. By HNext , this implies EndPhase1or2(q) ∧
(phase[q ] = 1). By HInv2.1 and the assumption that different pro-
cessors have different ballot numbers, this also implies dblock ′[q ].bal �=
dblock [p].bal .

〈2〉2. choose D ∈ MajoritySet s.t.
∀ d ∈ D : ∧ disk [d ][q ].mbal > dblock [p].bal

∧ hasRead(q , d , p)
Proof: By HInv2.2(q , d).1 and 〈2〉1, there is a majority set D such that
hasRead(q , d , p) and disk [d ][q ].mbal = dblock ′[q ].bal , for all d ∈ D . The
result then follows from 〈2〉1.

〈2〉3. ∀ d ∈ D : [block �→ dblock [p], proc �→ p] /∈ blocksRead [q ][d ]
Proof: By the level 〈1〉 case assumption, 〈2〉1, and the definitions of
maxBalInp and EndPhase1or2, if dblock [p] were in allBlocksRead(q),
then dblock ′[q ].inp would equal dblock [p].inp, contradicting 〈2〉1.

〈2〉4. ∀ d ∈ D : ¬∃ br ∈ blocksRead [p][d ] : br .block .mbar ≥ dblock [p].bal
Proof: By the level 〈1〉 case assumption (which implies phase[p] = 2),
HInv2.3(p).2.R.3, and HInv2.3(p).3.

〈2〉5. ∀ d ∈ D : ¬hasRead(p, d , q)
Proof: By HInv3, 〈2〉2 (which implies hasRead(q , d , p) for d ∈ D), the
level 〈1〉 case assumption (which implies phase[p] = 2), and 〈2〉1 (which
implies phase[q ] = 1), hasRead(p, d , q) implies

dblock [q ] ∈ allBlocksRead(p)
which is impossible by 〈2〉2 and 〈2〉4.

〈2〉6. Q.E.D.
Proof: Since 〈2〉1 implies that disk , dblock [p].bal and hasRead(p, d , q)
are unchanged, for all d ∈ Disk , 〈2〉2 and 〈2〉5 imply HInv5(p).R.b ′.

〈1〉3. Case: (phase[p] = 2) ∧ HInv5(p).R.b
〈2〉1. choose D ∈ MajoritySet , q ∈ Proc s.t.

(q �= p) ∧HInv5(p).R.b(D , q)
Proof: The level 〈1〉 case assumption implies the existence of D and q
satisfying HInv5(p).R.b(D , q). Since any two majority sets have a disk
in common, HInv4(p).3 then implies q �= p.

〈2〉2. Case: ∃ d ∈ D : Phase1or2Write(q , d)
〈3〉1. ∃ d ∈ D : disk ′ = [disk except ! [d ][q ] = dblock [q ]]

Proof: By the level 〈2〉 case assumption.
〈3〉2. dblock [q ].mbal > dblock [p].bal .
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Proof: By 〈2〉1 and HInv4(q).1.R(2).
〈3〉3. Q.E.D.

Proof: 〈3〉1, 〈3〉2, and 〈2〉1 imply HInv5(p).R.b(D , q)′.
〈2〉3. Case: ∃ d ∈ D : Phase1or2Read(p, d , q)

Proof: In this case, HInv5(p).R.b (the level 〈1〉 case assumption) im-
plies phase ′[p] = 1 (because the ballot must abort), contradicting as-
sumption 3.

〈2〉4. Q.E.D.
Proof: Assumption 3, the level 〈1〉 case assumption, and HNext imply
that dblock [p] is unchanged; and HNext implies that, for any d ∈ D :

∧ (disk ′[d ][q ] �= disk [d ][q ]) ⇒ Phase1or2Write(q , d)
∧ hasRead(p, d , q)′ ∧ ¬hasRead(p, d , q) ⇒ Phase1or2Read(p, d , q)

Hence, 〈2〉2 and 〈2〉3 cover the only cases in which HInv5(p).R.b(D , q)
can be made false. In all other cases, HInv5(p).R.b ′ follows from 〈2〉1.

〈1〉4. Q.E.D.
Proof: By HInv5(p), the cases in steps 〈1〉1, 〈1〉2, and 〈1〉3 are exhaus-
tive.

A.4.5 Lemma I2f

The proof of Lemma I 2f uses:

lemma VC ∀ v ∈ Inputs : HInv1 ∧ HInv4 ∧HNext ∧ valueChosen(v)
⇒ valueChosen(v)′

We prove Lemma VC by proving:

Assume: 1. constant b ∈ union {Ballot(p) : p ∈ Proc}
2. constants v ∈ Inputs, p ∈ Proc, D ∈ MajoritySet
3. maxBalInp(b, v)
4. valueChosen(v)(b).2(p,D)

Prove: maxBalInp(b, v)′ ∧ valueChosen(v)(b).2(p,D)′

〈1〉1. maxBalInp(b, v)′

〈2〉1. Case: ∃ q ∈ Proc : EndPhase1or2(q) ∧ (phase[q ] = 1)
〈3〉1. choose q ∈ Proc s.t. EndPhase1or2(q) ∧ (phase[q ] = 1)

Proof: q exists by the level 〈2〉 case assumption.
〈3〉2. Case: dblock [q ].mbal ≥ b

〈4〉1. ∃ d ∈ D : hasRead(q , d , p)
Proof: By 〈3〉1 (which implies hasRead(q , d , p) for all d in some
majority set), since any two majority sets have a disk in common.

〈4〉2. ∃ d ∈ D : ∃ br ∈ blocksRead [q ][d ] : br .block .bal ≥ b
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Proof: By 〈4〉1, case assumption 〈3〉, and assumption 4.
〈4〉3. dblock ′[q ].inp = v

Proof: By 〈4〉2, maxBalInp(b, v) (assumption 3), 〈3〉1, and the
definition of EndPhase1or2.

〈4〉4. Q.E.D.
Proof: 〈4〉3, maxBalInp(b, v) (assumption 3), 〈3〉1 (which implies
blocksOf (r)′ = blocksOf (r) for r �= q), and Lemma BlksOf imply
maxBalInp(b, v)′.

〈3〉3. Case: dblock [q ].mbal < b
Proof: By 〈3〉1, this implies dblock ′[q ].bal < b, so maxBalInp(b, v)
(assumption 3), 〈3〉1, and Lemma BlksOf imply maxBalInp(b, v)′.

〈3〉4. Q.E.D.
Proof: By 〈3〉2 and 〈3〉3.

〈2〉2. Q.E.D.
Proof: By 〈2〉1, since HNext ∧ (allBlocks ′ �= allBlocks) implies

∃ q ∈ Proc : ∨ EndPhase1or2(q) ∧ (phase[q ] = 1)
∨ Fail(q)

and maxBalInp(b, v) ∧ Fail(q) obviously implies maxBalInp(b, v)′.
〈1〉2. valueChosen(v)(b).2(p,D)′

〈2〉1. Assume: constant d ∈ D
Prove: disk ′[d ][p].bal ≥ b

〈3〉1. Case: Phase1or2Write(p, d)
〈4〉1. ∃ dd ∈ D : dblock [p].bal ≥ disk [dd ][p].bal

Proof: By HInv4(p).1.R.2 (which holds because the level 〈3〉 case
assumption implies phase[p] �= 0) and assumption 2.

〈4〉2. dblock [p].bal ≥ b
Proof: By 〈4〉1 and assumption 4, which implies disk [dd ][p].bal ≥
b for all dd ∈ D .

〈4〉3. Q.E.D.
Proof: By the level 〈3〉 case assumption, disk ′[d ][p] = dblock [p],
so 〈4〉2 implies disk ′[d ][p].bal ≥ b.

〈3〉2. Case: disk ′[d ][p] = disk [d ][p]
Proof: In this case, assumption 4 and the level 〈2〉 assumption imply
disk ′[d ][p] ≥ b.

〈3〉3. Q.E.D.
Proof: By 〈3〉1 and 〈3〉2, since:

HNext ∧ (disk ′[d ][p] �= disk [d ][p]) ⇒ Phase1or2Write(p, d)
〈2〉2. Assume: 1. constants q ∈ Proc, d ∈ D

2. phase ′[q ] = 1
3. dblock ′[q ].mbal ≥ b
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4. hasRead(q , d , p)′

Prove: ∃ br ∈ blocksRead ′[q ][d ] : br .block .bal ≥ b
〈3〉1. phase[q ] = 1

Proof: By the level 〈2〉 assumptions 2 and 4, since:
HNext ∧ (phase ′[q ] �= phase[q ]) ⇒ InitalizePhase(q)

and InitalizePhase(q) implies ¬hasRead(q , d , p)′ .
〈3〉2. dblock ′[q ].mbal = dblock [q ].mbal

Proof: By the level 〈2〉 assumption 4, since:
HNext ∧ (dblock ′[q ] �= dblock [q ]) ⇒ InitalizePhase(q)

and InitalizePhase(q) implies ¬hasRead(q , d , p)′ .
〈3〉3. Case: Phase1or2Read(q , d , p)

Proof: Assumption 4 implies and the level 〈2〉 assumption 2 imply
disk [d ][p].bal ≥ b. The case assumption and the level 〈2〉 assump-
tion 4 imply

[block �→ disk [d ][p], proc �→ p] ∈ blocksRead ′[q ][d ]
proving the level 〈2〉 goal.

〈3〉4. Case: ¬Phase1or2Read(q , d , p)
〈4〉1. hasRead(q , d , p)

Proof: By the level 〈3〉 case assumption and the level 〈2〉 assump-
tion 4, since:

HNext ∧ ¬hasRead(q , d , p) ∧ hasRead(q , d , p)′

⇒ Phase1or2Read(q , d , p)
〈4〉2. ∃ br ∈ blocksRead [q ][d ] : br .block .bal ≥ b

Proof: 〈3〉1, 〈3〉2 and the level 〈2〉 assumption 3 (which imply
dblock [q ].mbal ≥ b), and assumption 4.

〈4〉3. Q.E.D.
Proof: By 〈4〉2 and the level 〈2〉 assumption 4, since:

HNext ∧ hasRead(q , d , p)′ ⇒
(blocksRead [q ][d ] ⊆ blocksRead [q ][d ]′)

〈3〉5. Q.E.D.
Proof: By 〈3〉3 and 〈3〉4.

〈2〉3. Q.E.D.
Proof: 〈2〉1 and 〈2〉2 imply valueChosen(v)(b).2(p,D)′.

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2.

We now prove Lemma I 2f by proving:

Assume: HInv1 ∧HInv2 ∧ HInv2′ ∧ HInv3 ∧ HInv5 ∧ HInv6 ∧ HNext
Prove: HInv6′

〈1〉1. Assume: chosen ′ �= NotAnInput
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Prove: valueChosen(chosen)′

〈2〉1. Case: chosen = NotAnInput
〈3〉1. choose p ∈ Proc s.t. EndPhase1or2(p) ∧ (phase[p] = 2)

Proof: HInv2.5, HInv2.5′, and the level 〈1〉 and 〈2〉 assumptions
imply the existence of a p ∈ Proc such that:

(output [p] = NotAnInput) ∧ (output ′[p] �= NotAnOutput)
By HNext , this implies EndPhase1or2(p) ∧ (phase[p] = 2).

〈3〉2. maxBalInp(dblock [p].bal , dblock [p].inp)
Proof: 〈3〉1 implies

∃D ∈ MajoritySet : ∀ d ∈ D , q ∈ Proc : hasRead(p, d , q)
Since any two majority sets have a disk in common, this implies
¬HInv5(p).R.b. Hence, HInv5 and 〈3〉1 (which implies phase[p] = 2)
imply HInv5(p).R.a.

〈3〉3. maxBalInp(dblock [p].bal , chosen)′

Proof: 〈3〉1 implies
(chosen ′ = dblock [p].inp) ∧ (dblock ′[p].bal = dblock [p].bal)

which by 〈3〉2 implies maxBalInp(dblock ′ [p].bal , chosen ′). Lemma
BksOf and 〈3〉1 imply maxBalInp(b, v)′ = maxBalInp(b, v) for any
constants b and v .

〈3〉4. choose D ∈ MajoritySet s.t.
∀ d ∈ D , q ∈ Proc : hasRead(p, d , q) ∧ (disk [d ][p] = dblock [p])

Proof: D exists by 〈3〉1 and HInv2.2(p, d).1.
〈3〉5. Assume: constants q ∈ Proc, d ∈ D s.t.

∧ phase[q ] = 1
∧ dblock [q ].mbal ≥ dblock [p].bal
∧ hasRead(q , d , p)

Prove: [block �→ dblock [p], proc �→ p] ∈ blocksRead [q ][d ]
Proof: 〈3〉1 and HInv2.3(p).3 imply dblock [p].bal = dblock [p].mbal ;
HInv2.3(p).2.R.3 and the assumption dblock [q ].mbal ≥ dblock [p].bal
then imply

[block �→ dblock [q ], proc �→ q ] /∈ blocksRead [p][d ]
The result now follows from HInv3 and 〈3〉4.

〈3〉6. ∀ q ∈ Proc, d ∈ D :
∧ phase ′[q ] = 1
∧ dblock ′[q ].mbal ≥ dblock [p].bal
∧ hasRead(q , d , p)′

⇒ (∃ br ∈ blocksRead ′[q ][d ] : br .block .bal = dblock [p].bal)
Proof: By 〈3〉5, since 〈3〉1 implies that, if p �= q , then phase[q ],
dblock [q ], hasRead(q , d , p), and blocksRead are unchanged, for any
disk d ; and that phase ′[q ] = 1 implies p �= q .
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〈3〉7. Q.E.D.
Proof: 〈3〉3 implies valueChosen(chosen)′(dblock [p].bal).1; 〈3〉6 im-
plies valueChosen(chosen)′(dblock [p].bal).2(p,D).

〈2〉2. Case: chosen �= NotAnInput
〈3〉1. chosen ′ = chosen

Proof: By HNext and the level 〈2〉 case assumption.
〈3〉2. Q.E.D.

Proof: The level 〈2〉 case assumption and HInv6 imply
valueChosen(chosen)

By Lemma VC and 〈3〉1, this implies valueChosen(chosen)′.
〈2〉3. Q.E.D.

Proof: Immediate from 〈2〉1 and 〈2〉2.
〈1〉2. Assume: constant p ∈ Proc s.t. output ′[p] �= NotAnInput

Prove: output ′[p] = chosen ′

〈2〉1. Case: chosen = NotAnInput
〈3〉1. ∀ q ∈ Proc : output [q ] = NotAnInput

Proof: By HInv2.5 and the level 〈2〉 case assumption.
〈3〉2. Q.E.D.

Proof: 〈3〉1, the level 〈2〉 case assumption, and HNext imply that if
output ′[p] �= NotAnInput , then chosen ′ = output ′[p].

〈2〉2. Case: chosen �= NotAnInput
〈3〉1. valueChosen(chosen)

Proof: By the level 〈2〉 case assumption and HInv6.1.
〈3〉2. valueChosen(chosen)′

Proof: By 〈1〉1, since the level 〈2〉 case assumption and HNext imply
chosen ′ �= NotAnInput .

〈3〉3. chosen ′ = chosen
Proof: By 〈3〉1, 〈3〉2, and Lemma VC, since valueChosen(v) and
valueChosen(w) imply v = w .

〈3〉4. Case: output [p] = NotAnInput
〈4〉1. EndPhase1or2(p) ∧ (phase[p] = 2)

Proof: By the level 〈1〉 assumption, the level 〈3〉 case assumption,
and HNext .

〈4〉2. ∃D ∈ MajoritySet : ∀ q ∈ Proc : hasRead(p, d , q)
Proof: By 〈4〉1

〈4〉3. maxBalInp(dblock [p].bal , dblock [p].inp)
Proof: By HInv5(p) and 〈4〉1, since 〈4〉2 implies ¬HInv5(p).R.b
(because any two majority sets have a disk in common).
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〈4〉4. ∃ bk ∈ allBlocks, b ∈ union {Ballot(p) : p ∈ Proc} :
∧ maxBalInp(b, chosen)
∧ bk .bal ≥ b

Proof: By 〈3〉1 and the definition of valueChosen.
〈4〉5. dblock [p].inp = chosen

Proof: By 〈4〉3, 〈4〉4, and the definition of maxBalInp.
〈4〉6. Q.E.D.

Proof: 〈3〉3, 〈4〉1 (which implies output ′[p] = dblock [p].inp), and
〈4〉5 imply output ′[p] = chosen ′.

〈3〉5. Case: output [p] �= NotAnInput
Proof: In this case, HInv2.3(p).4, the level 〈1〉 assumption, and
HNext imply output ′[p] = output [p]; and HInv6.2 and 〈3〉3 imply
output ′[p] = chosen ′.

〈3〉6. Q.E.D.
Proof: By 〈3〉4 and 〈3〉5

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2

〈1〉3. Q.E.D.
Proof: HInv6′ follows immediately from 〈1〉1 and 〈1〉2.

A.4.6 Theorem R2b

We now prove Theorem R2b. First, we define IFail(p) and IChoose(p)
to be the actions Fail(p) and Choose(p) from submodule Inner of module
SynodSpec (with chosen and allInput being the variables declared in the
current context).

Let: IFail(p) ∆= IS (chosen, allInput)!Fail(p)
IChoose(p) ∆= IS (chosen, allInput)!IChoose

Assume: HInv ∧ HInv ′ ∧ HNext
Prove: (∃ p ∈ Proc : IFail(p) ∨ IChoose(p)) ∨ (unchanged ivars)

〈1〉1. Case: ∃ p ∈ Proc : Fail(p)
Proof: Fail(p) implies IFail(p).1 and the existence of ip ∈ Inputs such
that IFail(p).2(ip).1; and HNext then implies IFail(p).2(ip).2. We deduce
IFail(p).3 from Fail(p).4, HNext and HInv2.5.

〈1〉2. Case: ∃ p ∈ Proc : (phase[p] = 2) ∧ EndPhase1or2
〈2〉1. choose p ∈ Proc s.t. (phase[p] = 2) ∧ EndPhase1or2

Proof: p exists by the level 〈1〉 case assumption.
〈2〉2. Case: chosen = NotAnInput

〈3〉1. ∀ q ∈ Proc : output [q ] = NotAnInput
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Proof: By the level 〈2〉 case assumption and HInv2.5.
〈3〉2. ∀ q ∈ Proc \ {p} : output [q ] = NotAnInput

Proof: 〈3〉1 and 〈2〉1.
〈3〉3. chosen ′ = output ′[p]

Proof: By 〈3〉2, 〈2〉1 (which implies output ′[p] �= NotAnInput), and
HNext .

〈3〉4. Q.E.D.
Proof: 〈3〉1 implies IChoose(p).1; 〈2〉1, 〈3〉3, the level 〈2〉 case as-
sumption, and HNext imply IChoose(p).2; and 〈2〉1 and HInv2.5 im-
ply IChoose(p).3.

〈2〉3. Case: chosen �= NotAnInput
〈3〉1. chosen ′ = chosen

Proof: By HNext and the level 〈2〉 case assumption.
〈3〉2. output ′[p] = chosen

Proof: By HInv6′.2, 〈2〉1 (which implies output ′[p] �= NotAnInput),
and 〈3〉1.

〈3〉3. Q.E.D.
Proof: 〈2〉1 implies IChoose(p).1; 〈3〉1, 〈3〉2 and the level 〈2〉 case
assumption imply IChoose(p).2; and 〈2〉1, HNext , and HInv2.5 imply
IChoose(p).3.

〈2〉4. Q.E.D.
Proof: By 〈2〉2 and 〈2〉3.

〈1〉3. Q.E.D.
Proof: By 〈1〉1 and 〈1〉2, since

HInv2.5 ∧ HNext ∧ (ivars ′ �= ivars) ⇒
(input ′ �= input) ∨ (output ′ �= output)

and
HNext ∧ ((input ′ �= input) ∨ (output ′ �= output)) ⇒

∃ p ∈ Proc : Fail(p) ∨ ((phase[p] = 2) ∧ EndPhase1or2)
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