
March 10, 1998

SRC
Research
Report 151

Reports 100–150: The Abstracts

Compiled by James Mason

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Reports 100–150: The Abstracts

Compiled by James Mason

March 10, 1998

c©Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

This report supplements SRC Research Report 100 by giving a list of
abstracts and titles for the following fifty reports in the series. The
series is accessible at:

www.research.digital.com/SRC/publications/

Also at this web site is the SRC Technical Notes series and a feature
articles section.

SRC research reports are formal publications that are subject to peer
review while the technical notes series provides a fast track for the
publication of work in progress, position papers, and interim results.
The feature articles provide overviews of research projects for general
audiences.

Information on how to access and order research reports and subscribe
to publication announcements is given in section two of this document.

Contents

1 Abstracts of SRC Research Reports 100-150 1

2 Ordering Information 26
2.1 Reports . 26
2.2 Videotapes . 26

3 List of SRC Research Reports 100–150 28

iii

Reports 100–101b 1

1 Abstracts of SRC Research Reports 100-150

• SRC Research Report 100

The First 99 Reports
Compiled by James Mason
June 5, 1995. 122 pages.

This 100th issue in the SRC Research Report series contains indexed ab-
stracts of the previous ninety-nine, with title-page cartoons, and book and
journal source information. It also documents what software SRC makes
freely available for research and educational use.

• SRC Research Reports 101a and 101b

Report 101a
The Second Annual Video Review of Computational Geometry
Edited by Marc H. Brown and John Hershberger
May 4, 1993. 34 pages.

Computational geometry concepts are often easiest to understand visually,
in terms of the geometric objects they manipulate. Indeed, most papers in
the field rely on diagrams to communicate the intuition behind their results.
However, static figures are not always adequate.

The accompanying videotape showcases advances in the use of algorithm
animation, visualization, and interactive computing in the study of computa-
tional geometry. This report contains brief descriptions of all the segments
of the videotape. The eight segments in the video cover a wide range of geo-
metric concepts and software systems. The segments have been prepared by
researchers at eight different institutions.

Videotape 101b
The Second Annual Video Review of Computational Geometry
Edited by Marc H. Brown and John Hershberger
May 4, 1993. Time: 57:53

Reports 102–103 2

• SRC Research Report 102

Safe, Efficient Garbage Collection for C++
John R. Ellis and David L. Detlefs
June 10, 1993. 76 pages.

We propose adding safe, efficient garbage collection to C++, eliminating the
possibility of storage-management bugs and making the design of complex,
object-oriented systems much easier. This can be accomplished with almost
no change to the language itself and only small changes to existing imple-
mentations, while retaining compatibility with existing class libraries.

Our proposal is the first to take a holistic, system-level approach, integrat-
ing four technologies. The language interface specifies how programmers
access garbage collection through the language. An optional safe subset of
the language automatically enforces the safe-use rules of garbage collection
and precludes storage bugs. A variety of collection algorithms are com-
patible with the language interface, but some are easier to implement and
more compatible with existing C++ and C implementations. Finally, code-
generator safety ensures that compilers generate correct code for use with
collectors.

• SRC Research Report 103

A Coherent Distributed File Cache With Directory Write-behind
Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian, Garret Swart
June 10, 1993. 45 pages.

Extensive caching is a key feature of the Echo distributed file system. Echo
client machines maintain coherent caches of file and directory data and prop-
erties, with write-behind (delayed write-back) of all cached information.
Echo specifies ordering constraints on this write-behind, enabling applica-
tions to store and maintain consistent data structures in the file system even
when crashes or network faults prevent some writes from being completed.
In this paper we describe the Echo cache’s coherence and ordering seman-
tics, show how they can improve the performance and consistency of appli-
cations, and explain how they are implemented. We also discuss the general
problem of reliably notifying applications and users when write-behind is
lost; we addressed this problem as part of the Echo design but did not find a
fully satisfactory solution.

Reports 104–106 3

• SRC Research Report 104

New-Value Logging in the Echo Replicated File System
Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy Mann, Garret Swart
June 23, 1993. 39 pages.

The Echo replicated file system uses new-value logging. Echo’s use of new-
value logging provides a clean separation of the internals of the system into
one module that is concerned with logging and recovery, and another mod-
ule that is concerned with accessing and updating the file system’s on-disk
structures. The logging module provides a restricted form of transaction.
The restrictions simplify its implementation but impose constraints on the
file system module. The file system module easily satisfies these constraints,
resulting in a good match overall.

• SRC Research Report 105

The Vesta Approach to Precise Configuration of Large Software Systems
Roy Levin, Paul R. McJones
June 1993. 38 pages.

The problems of software configuration and release management limit the
size of systems that we can build efficiently. Today’s large systems strain
the capabilities of traditional development tools. The Vesta system provides
a novel repository and system builder that emphasize complete yet manage-
able descriptions of software components. These facilities enable Vesta to
eliminate much of the manual and error-prone drudgery of system construc-
tion without enforcing a particular methodology on its users. This paper
presents an overview of Vesta, followed by a series of detailed examples
that illustrate how Vesta’s facilities simplify the development of large sys-
tems. These examples are drawn from a year’s use of Vesta by a group of
about 25 researchers developing a rapidly changing software system of over
1.4 million source lines. That experience clearly demonstrates the power and
practicality of the Vesta approach and its advantages over conventional tools.

• SRC Research Report 106

The Vesta Repository: A File System Extension for Software Development
Sheng-Yang Chiu, Roy Levin
June 14, 1993. 34 pages.

Reports 106–107 4

Conventional file systems are increasingly recognized as an unsuitable basis
for software configuration management, especially for large systems. While
ordinary file systems have many useful properties, their facilities for manag-
ing coordinated changes that span many files are weak. To address this prob-
lem, the Vesta configuration management system implements a file system
extension that tailors the file abstraction to the needs of large-scale software
development.

This paper begins by presenting the essential properties required in the stor-
age facility that underlies a successful configuration management system. It
then defines a file-system-like abstraction derived from those properties and
explains how it can be implemented on top of a conventional file system.

• SRC Research Report 107

The Vesta Language for Configuration Management
Christine B. Hanna, Roy Levin
June 14, 1993. 60 pages.

Current approaches to software configuration management and system build-
ing do not scale up to support large-scale software engineering; common
practice involves numerous stopgap measures to work around this shortcom-
ing. The Vesta system is designed to eliminate this problem, by providing
(1) a language designed to support complete, concise system descriptions
and (2) a novel caching mechanism that permits efficient system building.

The Vesta system uses a functional programming language to describe con-
figurations. This language provides the flexibility and power needed to de-
scribe large software components. The system descriptions are specific and
complete, and include all of the sources that are used to build the system and
all of the instructions that tell how the sources are composed. Only informa-
tion written down in the description can influence construction of the system.
Nevertheless, the descriptions are concise and easy to read and write.

The language evaluator caches the results of evaluating function applica-
tions, which are the expensive operations in the Vesta language. Caching
in Vesta is automatic and persistent. Because the language is functional
and there are no side-effects, caching is conceptually straightforward. Vesta
caches the result of all function applications–from those at the leaves (e.g.,
compiling one source file), to those in the middle (e.g., packaging up a li-
brary), all the way to the top. Caching function applications at all levels
permits Vesta to build and rebuild large software systems efficiently.

Reports 108–109 5

• SRC Research Report 108

Bridges: Tools to Extend the Vesta Configuration Management System
Mark R. Brown, John R. Ellis
June 14, 1993. 42 pages.

Vesta is a highly flexible configuration management system that supports
large-scale development. Vesta provides a repository of immutable objects
and a functional programming language for writing concise yet complete
descriptions of configurations.

A Vesta bridge is a set of related functions and data types provided by tool
builders to a Vesta environment. For instance, a C bridge might include
a function for compiling C sources and a function for linking compiled C
sources into executable images.

Vesta has supported development on a significant scale. The Vesta proto-
type included several low-aspiration bridges that encapsulated existing tools
without modification; these bridges were straightforward to write. Vesta
also included one high-aspiration bridge, Vulcan, a compiler server based
on abstract-syntax trees. Vulcan gained both functionality and performance
from its integration with Vesta. Both types of bridge benefited from Vesta’s
single, uniform naming facility that replaced ad hoc name spaces of tradi-
tional environments.

Bridges themselves are described and configured within Vesta. This allows
tool builders to provide consistent collections of tools, control their evolu-
tion, and manage their installation using Vesta.

• SRC Research Report 109

Formal Parametric Polymorphism
Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien
July 15, 1993. 43 pages.

A polymorphic function is parametric if its behavior does not depend on the
type at which it is instantiated. Starting with Reynolds’s work, the study
of parametricity is typically semantic. In this paper, we develop a syntactic
approach to parametricity, and a formal system that embodies this approach,
called system R . Girard’s system F deals with terms and types; R is an
extension of F that deals also with relations between types.

In R, it is possible to derive theorems about functions from their types, or
“theorems for free”, as Wadler calls them. An easy “theorem for free” asserts

Reports 109–111 6

that the type∀(X)X → Bool contains only constant functions; this is not
provable in F. There are many harder and more substantial examples. Various
metatheorems can also be obtained, such as a syntactic version of Reynolds’s
abstraction theorem.

• SRC Research Reports 110a and 110b

Report 110a
Algorithm Animation Using 3D Interactive Graphics
Marc H. Brown and Marc A. Najork
September 15, 1993. 19 pages.

This report describes a variety of 3D interactive graphics techniques for visu-
alizing programs. The third dimension provides an extra degree of freedom
for conveying information, much as color adds to black-and-white images,
animation adds to static images, and sound adds to silent animations. The
examples in this report illustrate three fundamental uses of 3D: for providing
additional information about objects that are intrinsically two-dimensional,
for uniting multiple views, and for capturing a history of execution. The ap-
plication of dynamic three-dimensional graphics to program visualization is
largely unexplored.

Videotape 110b
Algorithm Animation Using 3D Interactive Graphics
Edited by Marc H. Brown and Marc A. Najork
September 15, 1993. Time: 8:20

• SRC Research Report 111

The Echo Distributed File System
Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann, and Garret
Swart
September 10, 1993. 22 pages.

Echo is an ambitious distributed file system. It was designed around a truly
global name space. It uses a coherent caching algorithm. It is fault tolerant.
And it is real–it was the primary file system for a large group of researchers.
Its novel aspects include an extensible “junction” mechanism for global nam-
ing; extensive write-behind with ordering semantics that allow applications
to maintain invariants without resorting to synchronous writes; and fault tol-
erance mechanisms that are highly configurable and that tolerate network

Reports 111–114 7

partitions. It was designed with the intention that its performance could be
as good as a local file system, while supporting large numbers of clients per
server. Its reliability was designed to be higher than other distributed file
systems, and higher than centralized systems. It was designed to work well
in arbitrarily large networks.

• SRC Research Report 112

Availability in the Echo File System
Garret Swart, Andrew Birrell, Andy Hisgen, and Timothy Mann
September 10, 1993. 43 pages.

The Echo file system project explored several issues in the design and im-
plementation of distributed file systems. This paper describes the aspects of
the Echo design that are related to providing high availability. These aspects
include the provision of redundant components (replicated disks and backup
servers), the replication of information, and recovery from failures. Further,
we discuss some less obvious mechanisms needed for providing truly high
availability: load control, dynamic reconfiguration of the system, and the
detection and reporting of faults. Finally, we discuss some of the impact of
our availability mechanisms on application software.

• SRC Research Report 113

Some Useful Modula-3 Interfaces
Jim Horning, Bill Kalsow, Paul McJones, Greg Nelson
December 25, 1993. 103 pages.

This manual describes a collection of interfaces defining abstractions that
SRC’s programmers have found useful over a number of years of experience
with Modula-3 and its precursors. We hope the interfaces will be useful as
a “starter kit” of abstractions, and as a model for designing and specifying
abstractions in Modula-3.

• SRC Research Report 114

Automated Proofs of Object Code for a Widely Used Microprocessor
Yuan Yu
October 5, 1993. 122 pages.

Computing devices can be specified and studied mathematically. Formal
specification of computing devices has many advantages; it provides a

Reports 114–116 8

precise characterization of the computational model, and allows for math-
ematical reasoning about models of the computing devices and programs
executed on them. While there has been a large body of research on program
proving, work has almost exclusively focused on programs written in high-
level programming languages. Here we address the important but largely
ignored problem of machine-code program proving. This work formally de-
scribes a substantial subset of the MC68020, a widely used microprocessor
built by Motorola, within the mathematical logic of the automated reason-
ing system Nqthm a.k.a. the Boyer-Moore Theorem Proving System. Based
on this formal model, we mechanized a mathematical theory to automate
reasoning about object code programs. We then mechanically checked the
correctness of MC68020 object code programs for binary search, Hoare’s
Quick Sort, the Berkeley Unix C string library, and other well-known algo-
rithms. The object code for these examples was generated using the Gnu C,
the Verdix Ada, and the AKCL Common Lisp compilers.

• SRC Research Report 115

Network Objects
Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber
February 28, 1994. Revised December 4, 1995. 48 pages.

A network object is an object whose methods can be invoked over a net-
work. This report describes the design and implementation of a network
objects system for Modula-3. The system is novel for its overall simplicity.
The report includes a thorough description of realistic marshaling algorithms
for network objects, precise informal specifications of the major internal in-
terfaces, preliminary experience, and performance results.

• SRC Research Report 116

Distributed Garbage Collection for Network Objects
Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, Edward Wobber
December 15, 1993. 18 pages.

In this report we present a fault-tolerant and efficient algorithm for dis-
tributed garbage collection and prove its correctness. The algorithm is a
generalization of reference counting; it maintains a set of identifiers for pro-
cesses with references to an object. The set is maintained with pair-wise
communication between processes, so no global synchronization is required.
The primary cost for maintaining the set is one remote procedure call when

Reports 116–118 9

an object reference is transferred to a new process for the first time. The dis-
tributed collector collaborates with the local collector in detecting garbage;
any local collector may be used, so long as it can be extended to provide no-
tification when an object is collected. In fact, the distributed collector could
be used without a local collector; in that case, the programmer would in-
sert explicit “dispose” commands to release an object. The algorithm was
designed and implemented as part of the Modula-3 network objects system,
but it should be suitable for a wide range of applications. It tolerates com-
munication and process failure, and can reclaim the space for objects held by
a crashed process. The algorithm balances functionality, performance, and
fault-tolerance in a way that makes it highly practical to use in implementing
distributed systems.

• SRC Research Report 117

Authentication in the Taos Operating System
Edward Wobber, Mart´ın Abadi, Mike Burrows, and Butler Lampson
December 10, 1993. 38 pages.

We describe a design for security in a distributed system and its implemen-
tation. In our design, applications gain access to security services through a
narrow interface. This interface provides a notion of identity that includes
simple principals, groups, roles, and delegations. A new operating system
component manages principals, credentials, and secure channels. It checks
credentials according to the formal rules of a logic of authentication. Our
implementation is efficient enough to support a substantial user community.

• SRC Research Report 118

Conjoining Specifications
Martı́n Abadi, Leslie Lamport
December 7, 1993. 65 pages.

We show how to specify components of concurrent systems. The specifica-
tion of a system is the conjunction of its components’ specifications. Prop-
erties of the system are proved by reasoning about its components. We con-
sider both the decomposition of a given system into parts, and the composi-
tion of given parts to form a system.

Reports 119–121 10

• SRC Research Report 119

How to Write a Long Formula
Leslie Lamport
December 25, 1993. 6 pages.

Standard mathematical notation works well for short formulas, but not for
the longer ones often written by computer scientists. Notations are proposed
to make one or two-page formulas easier to read and reason about.

• SRC Research Report 120

Dynamic Typing in Polymorphic Languages
Martı́n Abadi, Luca Cardelli, Benjamin Pierce, Didier Remy
January 26, 1994. 22 pages.

There are situations in programming where some dynamic typing is needed,
even in the presence of advanced static type systems. We investigate the in-
terplay of dynamic types with other advanced type constructions, discussing
their integration into languages with explicit polymorphism (in the style of
system F), implicit polymorphism (in the style of ML), abstract data types,
and subtyping.

• SRC Research Report 121

Extensible Syntax with Lexical Scoping
Luca Cardelli, Florian Matthes, and Mart´ın Abadi
February 21, 1994. 35 pages.

A frequent dilemma in programming language design is the choice between
a language with a rich set of notations and a small, simple core language. We
address this dilemma by proposing extensible grammars, a syntax-definition
formalism for incremental language extensions and restrictions.

The translation of programs written in rich object languages into a small
core language is defined via syntax-directed patterns. In contrast to macro-
expansion and program-rewriting tools, our extensible grammars respect scop-
ing rules. Therefore, we can introduce binding constructs while avoiding
problems with unwanted name clashes.

We develop extensible grammars and illustrate their use by extending the
lambda calculus with let-bindings, conditionals, and constructs from database
programming languages, such as SQL query expressions. We then give a for-
mal description of the underlying rules for parsing, transformation, and

Reports 121–124 11

substitution. Finally, we sketch how these rules are exploited in an imple-
mentation of a generic, extensible parser package.

• SRC Research Report 122

Obliq: A Language with Distributed Scope
Luca Cardelli
June 3, 1994. 64 pages.

Obliq is a lexically-scoped untyped interpreted language that supports dis-
tributed object-oriented computation. An Obliq computation may involve
multiple threads of control within an address space, multiple address spaces
on a machine, heterogeneous machines over a local network, and multiple
networks over the Internet. Obliq objects have state and are local to a site.
Obliq computations can roam over the network, while maintaining network
connections.

• SRC Research Report 123

Inside Hector: The Systems View
Loretta Guarino Reid and James R. Meehan
April 28, 1994. 43 pages.

Over a period of two and a half years, a team from the Systems Research
Center designed, built, and revised a set of software tools for the dictionary
division of Oxford University Press. Many aspects of this project were novel,
including the approach to lexicography, the software environment, the prob-
lems of scale, and the demands of high performance and high reliability. In
this paper, two members of the team describe some of the systems problems
they faced in building these tools, and the solutions they devised to solve
them.

• SRC Research Report 124

A Block-sorting Lossless Data Compression Algorithm
M. Burrows and D. J. Wheeler
May 10, 1994. 18 pages.

We describe a block-sorting, lossless data compression algorithm, and our
implementation of that algorithm. We compare the performance of our im-
plementation with widely available data compressors running on the same
hardware.

Reports 124–126 12

The algorithm works by applying a reversible transformation to a block of
input text. The transformation does not itself compress the data, but reorders
it to make it easy to compress with simple algorithms such as move-to-front
coding.

Our algorithm achieves speed comparable to algorithms based on the tech-
niques of Lempel and Ziv, but obtains compression close to the best statisti-
cal modelling techniques. The size of the input block must be large (a few
kilobytes) to achieve good compression.

• SRC Research Report 125

Prudent Engineering Practice for Cryptographic Protocols
Martı́n Abadi and Roger Needham
June 1, 1994. 25 pages.

We present principles for designing cryptographic protocols. The principles
are neither necessary nor sufficient for correctness. They are however help-
ful, in that adherence to them would have prevented a number of published
errors.

Our principles are informal guidelines; they complement formal methods,
but do not assume them. In order to demonstrate the actual applicability of
these guidelines, we discuss some instructive examples from the literature.

• SRC Research Report 126

The 1993 SRC Algorithm Animation Festival
Marc H. Brown
July 29, 1994. 31 pages.

This report describes the 1993 SRC Algorithm Animation Festival. The fes-
tival continues an experiment in developing algorithm animations by non-
experts, started the previous year, and described in SRC Research Report 98.
This year nineteen researchers at Digital Equipment Corporation’s Systems
Research Center worked for two weeks on animating algorithms. Most of
the participants had little (if any) experience writing programs that involved
graphics. This report explains why we organized the festival, and describes
the logistics of the festival and the advances in our algorithm animation sys-
tem. This report presents the complete code for a simple, but non-trivial,
animation of first-fit binpacking. Finally, this report contains snapshots from
the animations produced during the festival.

Reports 127–129 13

• SRC Research Report 127

TLA in Pictures
Leslie Lamport
September 1, 1994. 20 pages.

Predicate-action diagrams, which are similar to standard state-transition dia-
grams, are interpreted as formulas of TLA (the Temporal Logic of Actions).
We explain how these diagrams can be used to describe aspects of a specifi-
cation, even when the complete specification cannot be written as a diagram,
and to illustrate proofs.

• SRC Research Reports 128a and 128b

Report 128a
A Library for Visualizing Combinatorial Structures
Marc A. Najork and Marc H. Brown
September 1, 1994. 20 pages.

This paper describes ANIM3D, a 3D animation library targeted at visual-
izing combinatorial structures. In particular, we are interested in algorithm
animation. Constructing a new view for an algorithm typically takes dozens
of design iterations, and can be very time-consuming. Our library eases the
programmer’s burden by providing high-level constructs for performing ani-
mations, and by offering an interpretive environment that eliminates the need
for recompilations. This paper also illustrates ANIM3D’s expressiveness by
developing a 3D animation of Dijkstra’s shortest-path algorithm in just 70
lines of code.

Videotape 128b
A Library for Visualizing Combinatorial Structures
Marc A. Najork and Marc H. Brown
September 1, 1994. Time: 6:22

• SRC Research Report 129

Obliq-3D Tutorial and Reference Manual
Marc A. Najork
December 1, 1994. 110 pages.

Obliq-3D is an interpreted language that is embedded into the 3D animation
system Anim3D. Anim3D is based on a few simple, yet powerful constructs

Reports 129–130b 14

that allow a programmer to describe three-dimensional scenes and anima-
tions of such scenes. Obliq-3D, by virtue of its interpretive nature, provides
the programmer with a fast turnaround environment. The combination of
simplicity and fast turnaround allows application programmers to construct
non-trivial animations quickly and easily.

The first half of this report contains a tutorial to Obliq-3D, which develops
the various concepts of the animation system. The second part contains a
reference manual, which describes the functionality of Obliq-3D module by
module.

• SRC Research Reports 130a and 130b

Report 130a
Visual Obliq: A System for Building Distributed, Multi-User Applications by
Direct Manipulation
Krishna Bharat and Marc H. Brown
October 31, 1995. 29 pages.

This report describes Visual Obliq, a user interface development environ-
ment for constructing distributed, multi-user applications. Applications are
created by designing the interface with a GUI-builder and embedding call-
back code in an interpreted language, in much the same way as one would
build a traditional (non-distributed, single-user) application with a modern
user interface development environment. The resulting application can be
run from within the GUI-builder for rapid turnaround or as a stand-alone
executable. The Visual Obliq runtime provides abstractions and support for
issues specific to distributed computing, such as replication, sharing, com-
munication, and session management. We believe that the abstractions pro-
vided, the simplicity of the programming model, the rapid turnaround time,
and the applicability to heterogeneous environments, make Visual Obliq a
viable tool for authoring distributed applications and groupware.

Videotape 130b
Building a Distributed Application Using Visual Obliq
Krishna Bharat and Marc H. Brown
November 1, 1994. Time: 8:50

Reports 131a–133b 15

• SRC Research Reports 131a and 131b

Report 131a
The Juno-2 Constraint-Based Drawing Editor
Allan Heydon and Greg Nelson
December, 1994. 19 pages.

Constraints are an important enabling technology for interactive graphics ap-
plications. However, today’s constraint-based systems are plagued by several
limitations, and constraints have yet to live up to their potential.

Juno-2 is a constraint-based double-view drawing editor that addresses some
of these limitations. Constraints in Juno-2 are declarative, and they can in-
clude non-linear functions and ordered pairs. Moreover, the Juno-2 solver
is not limited to acyclic constraint systems. Juno-2 also includes a powerful
extension language that allows users to define new constraints. The system
demonstrates that fast constraint solving is possible with a highly extensible,
fully declarative constraint language.

The report describes what it is like to use Juno-2, outlines the methods that
Juno-2 uses to solve constraints, and discusses its performance.

Videotape 131b
The Juno-2 Constraint-Based Drawing Editor
Allan Heydon and Greg Nelson
February 1, 1995. Time: 13:32

• SRC Research Report 132

Processes are in the Eye of the Beholder
Leslie Lamport
December 25, 1994. 23 pages.

A two-process algorithm is shown to be equivalent to an N-process one, il-
lustrating the insubstantiality of processes. A completely formal equivalence
proof in TLA (the Temporal Logic of Actions) is sketched.

• SRC Research Reports 133a and 133b

Report 133a
The Third Annual Video Review of Computational Geometry
Marc H. Brown and John Hershberger December 30, 1994. 34 pages.

Reports 133a–134a 16

Computational geometry concepts are often easiest to understand visually,
in terms of the geometric objects they manipulate. Indeed, most papers in
the field rely on diagrams to communicate the intuition behind their results.
However, static figures are not always adequate.

Videotape 133b
The Third Annual Video Review of Computational Geometry
Marc H. Brown and John Hershberger
December 30, 1994. Time: 54:10

• SRC Research Reports 134a and 134b

Report 134a
From Quadrangular Sets to the Budget Matroids
Lyle Ramshaw and Jim Saxe
May, 1995. 162 pages.

The complete quadrilateral is a configuration with six points and four lines
in the projective plane. It is a classical result that, given the six roots of three
quadratic polynomials, we can use the complete quadrilateral (or its dual,
the complete quadrangle) to test geometrically whether or not those three
quadratics are linearly dependent. But does there exist some configuration
that provides an analogous geometric test for the linear dependence of four
cubic polynomials?

Yes, there is such a cubic analog of the complete quadrilateral; it has twelve
points, two lines, and thirteen planes in 3-space. In fact, the complete quadri-
lateral and its cubic analog are just two members of a large family of in-
triguing configurations that are defined in this monograph, using the notion
of a “budget”. The study of these “budget configurations” combines old-
fashioned geometry with modern combinatorics—from null systems to ma-
troids.

Why didn’t the classical geometers discover the budget configurations long
ago? Perhaps because they required their configurations to have a certain
numeric symmetry that a typical budget configuration doesn’t have.

The videotape animates the cubic analog of the complete quadrilateral, as
well as some other budget configurations that live in the plane or in 3-space.
By doing so, it tries both to give non-mathematicians some hint of these
discoveries and to lure mathematicians into reading the monograph.

Reports 134b–136 17

Videotape 134b
Introducing the Budget Configurations
Lyle Ramshaw
May 1995. Time: 45:57

• SRC Research Reports 135a and 135b

Report 135a
DeckScape: An Experimental Web Browser
Marc H. Brown and Robert A. Shillner
March 1, 1995. 13 pages.

This report describes DeckScape, an experimental World-Wide Web browser
based on a “deck” metaphor. A deck consists of a collection of Web pages,
and multiple decks can exist on the screen at once. As the user traverses
links, new pages appear on top of the current deck. Retrievals are done using
a background thread, so all visible pages in any deck are active at all times.
Users can move and copy pages between decks, and decks can be used as
a general-purpose way to organize material, such as hotlists, query results,
and breadth-first expansions.

Videotape 135b
The Deckscape Web Browser
Marc H. Brown and Robert A. Shillner
January 8, 1996. Time: 6:15

• SRC Research Report 136

A Functional Specification of the Alpha AXP Shared Memory Model
Manfred Broy
April 3, 1995. 34 pages.

We give a functional specification of the Alpha AXP architecture with spe-
cial emphasis on the Alpha Shared Memory Model. We keep the specifi-
cation as abstract as possible and modular in the sense that we provide an
independent description of the processors and the memory. We show how
to handle a number of critical aspects of the Alpha architecture within the
functional model, such as the specification of basic assumptions about the
behavior of the processors and the exclusion of causal loops. We use the

Reports 136–138 18

model for specifying the notion of lookahead and shortcut optimization for
the behaviors of the processors. This allows us to define the concept of
correct processor behavior by using the conservative sequential behavior as a
reference. Finally, we extend the model to the constructs for synchronization
in the Alpha architecture and include the instructions “read locked” as well
as “store conditional”.

• SRC Research Report 137

Proving Possibility Properties
Leslie Lamport July 4, 1995, Revised December 1, 1997. 13 pages.

A method is described for proving “always possibly” properties of speci-
fications in formalisms with linear-time trace semantics. It is shown to be
relatively complete for TLA (Temporal Logic of Actions) specifications.

• SRC Research Report 138

Migratory Applications
Krishna A. Bharat and Luca Cardelli
February 15, 1996. 24 pages.

We introduce a new genre of user interface applications that can migrate
from one machine to another, taking their user interface and application con-
texts with them, and continue from where they left off. Such applications
are not tied to one user or one machine, and can roam freely over the net-
work, rendering service to a community of users, gathering human input and
interacting with people. We envisage that this will support many new agent-
based collaboration metaphors. The ability to migrate executing programs
has applicability to mobile computing as well. Users can have their appli-
cations travel with them, as they move from one computing environment to
another. We present an elegant programming model for creating migratory
applications and describe an implementation. The biggest strength of our
implementation is that the details of migration are completely hidden from
the application programmer; arbitrary user interface applications can be mi-
grated by a single “migration” command. We address system issues such as
robustness, persistence and memory usage, and also human factors relating
to application design, the interaction metaphor and safety.

Reports 139a–141a 19

• SRC Research Reports 139a and 139b

Report 139a
WebCard: Integrated and Uniform Access to Mail, News, and the Web
Marc H. Brown
July 15, 1996. 10 pages.

This report describes WebCard, an integrated mail/news reader and Web
browser. As a mail/news reader, WebCard is fairly conventional; the inno-
vation is that Web pages are fully integrated into the mail/news reader. The
user interface is based on folders, which can contain mail messages, news ar-
ticles or Web pages. Folders can be used to organize material and to present
the pages returned by commands such as “search” and “auto surf”.

Videotape 139b
The WebCard Web Browser
Marc H. Brown
July 15, 1996. Time: 7:54

• SRC Research Report 140

Zippers: A Focus+Context Display of Web Pages
Marc H. Brown and William E. Weihl
May 22, 1996. 8 pages.

This report describes zippers, an application of outline-processor technol-
ogy to the display of Web pages. Zippers allow users to expand and contract
selected sections of a document, thereby displaying simultaneously the con-
tents of individual sections of a document as well as its overall structure.
Zippers can be implemented either directly in a Web browser or by a proxy
(and consequently used by any off-the-shelf Web browser); in either case, no
changes to HTML source files are required.

• SRC Research Reports 141a and 141b

Report 141a
Distributed Active Objects
Marc H. Brown and Marc N.Najork
April 15, 1996. 21 pages.

Many Web browsers now offer some form of active objects, written in a
variety of languages, and the number of types of active objects are growing

Reports 141a–143 20

daily in interesting and innovative ways. This report describes our work on
Oblets, active objects that are distributed over multiple machines. Oblets
are written in Obliq, an object-oriented scripting language for distributed
computation. The high-level support provided by Oblets makes it easy to
write collaborative and distributed applications.

Videotape 141b
Distributed Active Objects
Marc H. Brown and Marc A. Najork
May 1, 1996. Time: 9:08

• SRC Research Report 142

Collaborative Active Textbooks: A Web-Based Algorithm Animation System
for an Electronic Classroom
Marc H. Brown and Marc A. Najork
May 31, 1996. 26 pages.

This report describes CAT, a Web-based algorithm animation system. CAT
augments the expressive power of Web pages for publishing passive multi-
media information with a full-fledged interactive algorithm animation sys-
tem. It improves on previous Web-based algorithm animations by providing
a framework that makes it easy to construct new animations, including those
that involve multiple views. Because views of the same running algorithm
may reside on different machines, CAT is particularly well-suited for elec-
tronic classrooms. This strategy is an improvement over the electronic class-
room systems we are aware of, which simply display the same X window
on multiple machines. We believe our framework generalizes to electronic
textbooks in arbitrary domains.

• SRC Research Report 143

To Provide or To Bound: Sampling in Fully Dynamic Graph Algorithms
Monika R. Henzinger and Mikkel Thorup
October 8, 1996. 11 pages.

In dynamic graph algorithms the following provide-or-bound problem has
to be solved quickly: Given a set S containing a subset R and a way of
generating random elements from S testing for membership in R, either (i)
provide an element of R or (ii) give a (small) upper bound on the size of

Reports 143–145 21

R that holds with high probability. We give an optimal algorithm for this
problem.

This algorithm improves the time per operation for various dyamic graph
algorithms by a factor ofO(log n). For example, it improves the time per
update for fully dynamic connectivity fromO(log3 n) toO(log2 n).

• SRC Research Report 144

Program Fragments, Linking, and Modularization
Luca Cardelli
February 15, 1997. 25 pages.

Module mechanisms have received considerable theoretical attention, but
the associated concepts of separate compilation and linking have not been
emphasized. Anomalous module systems have emerged in functional and
object-oriented programming where software components are not separately
typecheckable and compilable. In this paper we provide a context where
linking can be studied, and separate compilability can be formally stated
and checked. We propose a framework where each module is separately
compiled to a self-contained entity called a linkset; we show that separately
compiled, compatible modules can be safely linked together.

• SRC Research Report 145

Modularity in the Presence of Subclassing
Raymie Stata
April 28, 1997. 98 pages.

Classes are harder to subclass than they need be. This report addresses this
problem, showing how to design classes that are more modular and easier to
subclass without sacrificing the extensibility that makes subclassing useful
to begin with.

We argue that a class should have two interfaces, an “instance interface” used
by programmers manipulating instances of the class, and a “specialization
interface” used by programmers building subclasses of the class. Instance
interfaces are relatively well understood, but design principles for special-
ization interfaces are not.

In the context of single inheritance, we argue that specialization interfaces
should be partitioned into “class components”. A class component groups
part of a class’s state together with methods to maintain that state. Class

Reports 145–146 22

components establish abstraction boundaries within classes, allowing modu-
lar replacement of components by subclasses. Achieving this replaceability
requires reasoning about each component as an independent unit that de-
pends only on the specifications of other components and not on their imple-
mentations.

We introduce the concept of “abstract representation” to denote the view of
a class’s state given in its specialization interface. This view is more detailed
than the view used to describe instances of the class, revealing details that
describe the interfaces between class components. It is less detailed than
the actual implementation, hiding implementation details that should not be
exposed even to specializers.

We also consider multiple inheritance, specifically, Snyder’s model of encap-
sulated multiple inheritance. We advocate separating class components into
individual classes called “mixins”. Instantiable classes are built by combin-
ing multiple mixins. With the mixin style of design, class hierarchies have
more classes than in equivalent single-inheritance designs. These classes
have smaller, simpler interfaces and can be reused more flexibly.

To explore the impact our ideas might have on program design, we consider
classes from existing libraries in light of the proposed single- and multiple-
inheritance methodologies. To explore the impact our ideas might have on
language design, we present two different extensions to Java, one that pro-
vides a level of static checking for single-inheritance designs, and another
that adds the encapsulated model of multiple inheritance.

• SRC Research Report 146

Studies of Windows NT Performance using Dynamic Execution Traces
Sharon E. Perl and Richard L. Sites
April 4, 1997. 31 pages.

We studied two aspects of the performance of Windows NT processor band-
width requirements for memory accesses in a uniprocessor system running
benchmark and commercial applications, and locking behavior of a commer-
cial database on a small-scale multiprocessor. Our studies are based on full
dynamic execution traces of the systems, which include all instructions exe-
cuted by the operating system and applications over periods of a few seconds
(enough time to allow for significant computation). The traces were obtained
on Alpha PCs, using a new software tool called PatchWrx that takes advan-
tage of the Alpha architecture’s PAL-code layer to implement efficient,

Reports 146–147 23

comprehensive system tracing. Because the Alpha version of Windows NT
uses substantially the same code base as other versions, and therefore ex-
ecutes nearly the same sequence of calls, basic blocks, and data structure
accesses, we believe our conclusions are relevant for non-Alpha systems as
well. This paper describes our performance studies and interesting aspects
of PatchWrx.

We conclude from our studies that processor bandwidth can be a first-order
bottleneck to achieving good performance. This is particularly apparent
when studying commercial benchmarks. Operating system code and data
structures contribute disproportionately to the memory access load. We also
found that operating system software lock contention was a factor prevent-
ing the database benchmark from scaling up on the small multiprocessor,
and that the cache coherence protocol employed by the machine introduced
more cache interference than necessary.

• SRC Research Report 147

Should Your Specification Language Be Typed?
Leslie Lamport and Lawrence C. Paulson
May 1, 1997. 30 pages.

Most specification languages have a type system. The languages used in
some popular textbooks have half-baked type systems that are described in-
formally and never spelled out in detail. Such type systems tend to have
unexpected consequences, if not outright inconsistencies. Set theory can
serve as the basis for a specification language without types. This possibil-
ity, which has been widely overlooked, offers many advantages. Set theory
is simpler and more flexible than most typed formalisms. Polymorphism,
overloading, and subtyping can make a type system more powerful, but at
the cost of increased complexity, and such refinements can never attain the
flexibility of having no types at all. Typed formalisms have advantages too,
stemming from the power of mechanical type checking. While types serve
little purpose in hand proofs, they do help with mechanized proofs. In the
absence of verification, type checking can catch errors in specifications. It
may be possible to have the best of both worlds by adding typing annotations
to an untyped specification language.

We consider only specification languages, not programming languages.

Reports 148–150 24

• SRC Research Report 148

Service Combinators for Web Computing
Luca Cardelli and Rowan Davies
June 1, 1997. 15 pages.

The World-Wide Web is rich in content and services, but access to these re-
sources must be obtained mostly through manual browsers. We would like to
be able to write programs that reproduce human browsing behavior, includ-
ing reactions to slow transmission-rates and failures on many simultaneous
links. We thus introduce a concurrent model that directly incorporates the
notions of failure and rate of communication, and then describe program-
ming constructs based on this model.

• SRC Research Report 149

A Calculus for Cryptographic Protocols: The Spi Calculus
Martı́n Abadi and Andrew D. Gordon
January 25, 1998. 110 pages.

We introduce the spi calculus, an extension of the pi calculus designed for
describing and analyzing cryptographic protocols. We show how to use the
spi calculus, particularly for studying authentication protocols. The pi calcu-
lus (without extension) suffices for some abstract protocols; the spi calculus
enables us to consider cryptographic issues in more detail. We represent pro-
tocols as processes in the spi calculus and state their security properties in
terms of coarse-grained notions of protocol equivalence.

• SRC Research Report 150

Smooth Scheduling in a Cell-Based Switching Network
Thomas L. Rodeheffer and James B. Saxe
February 19, 1998. 36 pages.

This paper describes a method for scheduling data cell traffic through a
crossbar switch in such a way as to guarantee that the time slots for each
flow, and optionally for certain aggregates of flows, are approximately uni-
formly distributed throughout the duration of the scheduling frame. Such a
“smooth” schedule achieves reductions in both the latency of data flows and
the need for associated buffering memory. The method can be used to com-
pute smooth schedules even under conditions of maximum load, where the
bandwidth re-quirements of the flows to be scheduled are sufficient to con-
sume the entire capacity of the switch. This method has been implemented

25

for a working high-speed ATM switching network, AN2. We describe the
implementation, its performance, and possible future improvements.

26

2 Ordering Information

2.1 Reports

SRC Research Reports are available from SRC’s external publications web site:

http://www.research.digital.com/SRC/publications/

They are also available via anonymous ftp from internet node:

gatekeeper.dec.com (16.1.0.2)

The ftp path to them is:

/pub/DEC/SRC/research-reports/

For hardcopy orders of SRC research reports, please send electronic mail to the
address below or submit your order via the web site. Be sure to include your full
postal address and the number of the report you wish to receive.

src-report@pa.dec.com

Orders may also be placed by sending requests to:

Report Distribution
Digital Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301

If you’d like to be notified by electronic mail whenever a new publication of any
kind is made available on SRC’s web, please send email to:

src-report@pa.dec.com

with the words: “add to pub email” in the subject line of your message.

2.2 Videotapes

Videotapes accompanying several of these fifty reports are identified in the ab-
stracts section. Their reference numbers are 101b, 110b, 128b, 130b, 131b, 133b,

27

134b, 135b, 139b, and 141b. All are available in NTSC, PAL, and SECAM for-
mats. Please specify which format you require.

28

3 List of SRC Research Reports 100–150

• 100.The First 99 Reports
Compiled by James Mason

• 101a.The Second Annual Video Review of Computational Geometry
Edited by Marc H. Brown and John Hershberger

• 101b. (Video)
The Second Annual Video Review of Computational Geometry

Edited by Marc H. Brown and John Hershberger

• 102.Safe, Efficient Garbage Collection for C++
John R. Ellis and David L. Detlefs

• 103.A Coherent Distributed File Cache With Directory Write-behind
Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian,
Garret Swart

• 104.New-Value Logging in the Echo Replicated File System
Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy Mann,
Garret Swart

• 105.The Vesta Approach to Precise Configuration of Large Software
Systems
Roy Levin, Paul R. McJones

• 106.The Vesta Repository: A File System Extension for Software
Development
Sheng-Yang Chiu, Roy Levin

• 107.The Vesta Language for Configuration Management
Christine B. Hanna, Roy Levin

29

• 108.Bridges: Tools to Extend the Vesta Configuration Management System
Mark R. Brown, John R. Ellis

• 109.Formal Parametric Polymorphism
Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien

• 110a.Algorithm Animation Using 3D Interactive Graphics
Marc H. Brown and Marc A. Najork

• 110b.(Video)
Algorithm Animation Using 3D Interactive Graphics

Edited by Marc H. Brown and Marc A. Najork

• 111.The Echo Distributed File System
Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann,
Garret Swart

• 112.Availability in the Echo File System
Garret Swart, Andrew Birrell, Andy Hisgen, and Timothy Mann

• 113.Some Useful Modula-3 Interfaces
Jim Horning, Bill Kalsow, Paul McJones, Greg Nelson

• 114.Automated Proofs of Object Code for a Widely Used Microprocessor
Yuan Yu

• 115.Network Objects
Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber

• 116.Distributed Garbage Collection for Network Objects
Andrew Birrell, David Evers, Greg Nelson, Susan Owicki,
Edward Wobber

30

• 117.Authentication in the Taos Operating System
Edward Wobber, Mart´ın Abadi, Mike Burrows, and Butler Lampson

• 118.Conjoining Specifications
Martı́n Abadi, Leslie Lamport

• 119.How to Write a Long Formula
Leslie Lamport

• 120.Dynamic Typing in Polymorphic Languages
Martı́n Abadi, Luca Cardelli, Benjamin Pierce, Didier Remy

• 121.Extensible Syntax with Lexical Scoping
Luca Cardelli, Florian Matthes, and Mart´ın Abadi

• 122.Obliq: A Language with Distributed Scope
Luca Cardelli

• 123. Inside Hector: The Systems View
Loretta Guarino Reid and James R. Meehan

• 124.A Block-sorting Lossless Data Compression Algorithm
M. Burrows and D. J. Wheeler

• 125.Prudent Engineering Practice for Cryptographic Protocols
Martı́n Abadi and Roger Needham

• 126.The 1993 SRC Algorithm Animation Festival
Marc H. Brown

• 127.TLA in Pictures
Leslie Lamport

31

• 128a.A Library for Visualizing Combinatorial Structures
Marc A. Najork and Marc H. Brown

• 128b.(Video)
A Library for Visualizing Combinatorial Structures

Marc A. Najork and Marc H. Brown

• 129.Obliq-3D Tutorial and Reference Manual
Marc A. Najork

• 130a.Visual Obliq: A System for Building Distributed, Multi-User Applica-
tions by Direct Manipulation

Krishna Bharat and Marc H. Brown

• 130b.(Video)
Building a Distributed Application Using Visual Obliq

Krishna Bharat and Marc H. Brown

• 131a.The Juno-2 Constraint-Based Drawing Editor
Allan Heydon and Greg Nelson

• 131b.(Video)
The Juno-2 Constraint-Based Drawing Editor

Allan Heydon and Greg Nelson

• 132.Processes are in the Eye of the Beholder
Leslie Lamport

• 133a.The Third Annual Video Review of Computational Geometry
Marc H. Brown and John Hershberger

• 133b. (Video)
The Third Annual Video Review of Computational Geometry

Marc H. Brown and John Hershberger

32

• 134a.From Quadrangular Sets to the Budget Matroids
Lyle Ramshaw and Jim Saxe

• 134b.(Video)
Introducing the Budget Configurations

Lyle Ramshaw

• 135a.DeckScape: An Experimental Web Browser
Marc H. Brown and Robert A. Shillner

• 135b.(Video)
The Deckscape Web Browser

Marc H. Brown and Robert A. Shillner

• 136.A Functional Specification of the Alpha AXP Shared Memory Model
Manfred Broy

• 137.Proving Possibility Properties
Leslie Lamport

• 138.Migratory Applications
Krishna A. Bharat and Luca Cardelli

• 139a.WebCard: Integrated and Uniform Access to Mail, News, and the Web
Marc H. Brown

• 139b.(Video)
The WebCard Web Browser

Marc H. Brown

• 140.Zippers: A Focus+Context Display of Web Pages
Marc H. Brown and William E. Weihl

33

• 141a.Distributed Active Objects
Marc H. Brown and Marc N.Najork

• 141b.(Video)
Distributed Active Objects

Marc H. Brown and Marc A. Najork

• 142.Collaborative Active Textbooks: A Web-Based Algorithm Animation
System for an Electronic Classroom
Marc H. Brown and Marc A. Najork

• 143.To Provide or To Bound: Sampling in Fully Dynamic Graph Algorithms
Monika R. Henzinger and Mikkel Thorup

• 144.Program Fragments, Linking, and Modularization
Luca Cardelli

• 145.Modularity in the Presence of Subclassing
Raymie Stata

• 146.Studies of Windows NT Performance using Dynamic Execution Traces
Sharon E. Perl and Richard L. Sites

• 147.Should Your Specification Language Be Typed?
Leslie Lamport and Lawrence C. Paulson

• 148.Service Combinators for Web Computing
Luca Cardelli and Rowan Davies

• 149.A Calculus for Cryptographic Protocols: The Spi Calculus
Martı́n Abadi and Andrew D. Gordon

34

• 150.Smooth Scheduling in a Cell-Based Switching Network
Thomas L. Rodeheffer and James B. Saxe

