
April 15, 1996

SRC
Research
Report 141a

Distributed Active Objects

Marc H. Brown and Marc A. Najork

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301



Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art in computer
systems. From our establishment in 1984, we have performed basic and applied research to support
Digital’s business objectives. Our current work includes exploring distributed personal computing
on multiple platforms, networking, programming technology, system modelling and management
techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by building hardware and soft-
ware prototypes and using them as daily tools. Interesting systems are too complex to be evaluated
solely in the abstract; extended use allows us to investigate their properties in depth. This experi-
ence is useful in the short term in refining our designs, and invaluable in the long term in advancing
our knowledge. Most of the major advances in information systems have come through this strat-
egy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is in established
fields of theoretical computer science, such as the analysis of algorithms, computational geometry,
and logics of programming. Other work explores new ground motivated by problems that arise in
our systems research.

We have a strong commitment to communicating our results; exposing and testing our ideas in the
research and development communities leads to improved understanding. Our research report se-
ries supplements publication in professional journals and conferences. We seek users for our proto-
type systems among those with whom we have common interests, and we encourage collaboration
with university researchers.

Robert W. Taylor, Director



Distributed Active Objects

Marc H. Brown and Marc A. Najork

April 15, 1996



Publication History

This report will appear in the proceedings of the Fifth International World Wide Web Conference,
May 6–10, 1996, http://www5conf.inria.fr/.

cDigital Equipment Corporation 1996

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the Systems Research Center. All rights
reserved.



Abstract

Many Web browsers now offer some form of active objects, written in a variety of lan-
guages, and the number and types of active objects are growing daily in interesting and in-
novative ways. This report describes our work on Oblets, active objects that are distributed
over multiple machines. Oblets are written in Obliq, an object-oriented scripting language
for distributed computation. The high-level support provided by Oblets makes it easy to
write collaborative and distributed applications.



1 Overview

One of the most exciting recent developments in Web-browser technology is active objects, where
the browser downloads a program, executes it, and displays the program’s user interface in a Web
page. Sun’s HotJava browser with Java applets pioneered active objects, showing Web pages with a
wide range of content, from bouncing balls to spreadsheets to simulated science experiments. Many
browsers now offer some form of active objects, written in a variety of languages.

This report describes distributed active objects, that is, active objects that can communicate
with other active objects located on different machines across the Internet. High-level support for
distributed computation makes it easy to write groupware, computer-supported cooperative work
(CSCW) applications, and multi-player games as active objects.

Our environment for writing distributed active objects is based on Obliq [Cardelli95], an
objected-oriented scripting language that was specifically designed for constructing distributed
applications in a heterogeneous environment. We call active objects written in Obliq Oblets
(Obliq applets). We have also built a family of Web browsers (DeckScape [Brown94], WebCard
[Brown95], and WebScape) capable of running Oblets.

Obliq supports distributed computation by implementing all objects as network objects [Bir-
rell93]. The methods of a network object can be invoked by other processes, in addition to the pro-
cess that created the object. The initial connection between two processes occurs when one process
registers an object with a name server under a unique name, and another process subsequently im-
ports the object from that name server. Once the connection is established, network objects can be
passed to other processes just as simply as passing any other type of data.

For network objects, method calls and field accesses have the same syntax regardless of where
the object resides. It might reside in the same address space as the caller, or in a different ad-
dress space either on the caller’s machine or on some other (possibly different type of) machine.
Thus, from a programmer’s perspective, there is no difference between local and remote objects.
As a result, network objects provide a uniform way for communication among Oblets, regardless
of whether the Oblets are on the same Web page or on different Web pages displayed by different
browsers on different machines. Moreover, network objects communicate directly, without server
intervention. Thus, Oblets do not impose any load on an HTTP server, nor does a heavily loaded
server affect their performance.

The rest of this report consists of four sections with increasingly complex examples, followed
by a review of related work. The next section introduces fundamental concepts by showing a sim-
ple, non-distributed Oblet for adding two numbers. Section 3 shows the basics of distribution by
developing a two-person game of tic-tac-toe. Section 4 shows a prototypical CSCW application—
a chat room. The chat room allows an arbitrary number participants. The final example, Section
5, shows how to coordinate several different Oblets by developing a multi-view animation of an
algorithm.

1



2 A Simple Oblet

An Oblet is an Obliq program that defines a variable named oblet. This variable must contain an
Obliq object with at least two fields: vbt and run. The vbt field is bound to a widget that will be
installed on the screen when the Web page containing the Oblet is loaded. The run field is bound
to a method that is invoked just after the vbt field is evaluated.

Oblets are placed into HTML documents via insert, an HTML tag proposed by the World
Wide Web Consortium (W3C) for inserting multimedia objects into HTML3 pages [HTML3]. The
markup for putting the Oblet at URL foo.obl into a document is:

<insert code="foo.obl" type="application/x-oblet"> </insert>

The insert tag also supports a variety of standard attributes, such as suggested dimensions, bor-
der size, and alignment. If suggested dimensions are not specified, the preferred dimensions of the
widget contained in the Oblet’s vbt field are used.

The following screen dump shows a simple Oblet for adding two numbers:

The user interface for that Oblet, defined by a FormsVBT s-expression [Avrahami89], is stored
in the file adder.fv:

(HBox
(Numeric %num1)
(Text "+")
(Numeric %num2)
(Text "=")
(Text %sum "0"))

A user interface in FormsVBT is a hierarchical arrangement of components. These include pas-
sive visual elements (e.g., Text), basic interactors (e.g., Numeric), modifiers that add interactive
behavior to other components (e.g., Button), and layout operators that organize other components
geometrically (e.g., HBox). Components can be further categorized as a split, filter, or leaf, based
on the number of child components they support. A split can have any number of children (e.g.,
HBox), a filter has exactly one child (e.g., Border), and a leaf has no children (e.g., Text).

2



A component in FormsVBT can be given a name so that its attributes can be queried and modi-
fied at runtime. Names are also used for attaching callback procedures to interactors. In this Oblet,
the two Numeric interactors are named num1 and num2, and the Text component where the
sum will be displayed is named sum.

The source for this Oblet is as follows:

let doAdd =
proc (fv)
let n1 = form_getInt (fv, "num1");
let n2 = form_getInt (fv, "num2");
form_putText (fv, "sum", fmt_int (n1+n2))

end;

let oblet = {
vbt => form_fromURL (BaseURL & "adder.fv"),
run =>
meth (self)

form_attach (self.vbt, "num1", doAdd);
form_attach (self.vbt, "num2", doAdd);

end
};

This Obliq program defines two variables: doAdd and oblet. Variable doAdd is a procedure
that retrieves the values of both numeric interactors, and stores their sum in the component named
sum.

Variable oblet is an object with two fields, vbt and run. The vbt field is bound to a form,
a widget that displays a FormsVBT s-expression. The procedure form_fromURL takes a URL
as an argument and returns a form whose description is stored at this URL. The global variable
BaseURL is the Oblet’s absolute URL up through the last slash. The run method in this Oblet
just attaches the callback procedure doAdd to the two numeric interactors. This procedure will
be invoked whenever the user clicks on the plus or minus buttons of either interactor, or types a
number into the editing field between the buttons. The form in which the event occurred is passed
as an argument to the callback procedure. Recall that when the Web page containing this Oblet is
loaded, the vbt field will be evaluated and the result displayed on the page, the run method will
be invoked, and finally the page will become visible.

3



3 A Distributed Game Oblet

This section describes an Oblet for playing tic-tac-toe. We’ll first develop a single-site game; then,
we’ll show how to extend this game to two sites. The following screen dumps show the first three
moves in the single-site game:

The FormsVBT description for this Oblet contains a message line that indicates whose turn it
is, a game grid consisting of nine squares, and a “RESET” button at the bottom that is used to clear
the squares. The message line is a Text component named status. Each square of the game
grid consists of a Button and a Text component. The Button components are named btn1,
..., btn9, and the Text components are named lab1, ..., lab9. The “RESET” button is named
reset. Finally, the form’s top-level component has the name board.

4



The code for the Oblet is as follows:

let otherPlayer =
proc (p)
if p is "X" then "O" else "X" end

end;

let oblet = {
vbt => form_fromURL (BaseURL & "tic-tac-toe.fv"),
c => ok,

reset =>
meth (self)

for i = 1 to 9 do
form_putText (self.vbt, "lab" & fmt_int(i), "");

end;
end,

move =>
meth (self, label, player)

form_putText (self.vbt, label, player);
form_putText (self.vbt, "status", otherPlayer(player) & " is next");

end,

nextTurn =>
meth (self)

self.c := otherPlayer(self.c);
end,

run =>
meth (self)

self.c := "X";

let doReset =
proc(fv)
self.reset ();

end;

let doPress =
proc (m)
let label = "lab" & fmt_int(m);
if form_getText (self.vbt, label) is "" then

self.move (label, self.c);
self.nextTurn ();

end;
end;

form_attach (self.vbt, "reset", doReset);
for i = 1 to 9 do

let p = proc(fv) doPress(i) end;
form_attach (self.vbt, "btn" & fmt_int(i), p)

end;
end

};

5



This Oblet, in addition to the required vbt field and runmethod, also has a field c and methods
reset, move, and nextTurn. The field c will be a string indicating the player about to move,
either “X” or “O”. The reset method clears the label displayed in each square of the game grid.
The move method stores the string player into the Text component whose name is label,
and also updates the message line to indicate whose turn is next. The nextTurnmethod changes
whose turn it is, that is, it changes the value of the field c. The last two methods use the procedure
otherPlayer, which takes one player’s symbol and returns his opponent’s symbol.

The body of the run method initializes field c, and then attaches callback procedures to the
various interactors on the board. Procedure doReset is attached to the “RESET” button; it will
invoke the reset method of the object oblet. A procedure p is attached to each of the nine
buttons, btn1, ..., btn9. This procedure effectively captures the value of i, the index of each
square on the game grid. When p is invoked (in response to a user clicking in a square), it calls
procedure doPress(i), which checks that the square is empty, and if so, invokes the Oblet’s
move and nextTurnmethods.

We now convert the single-site version of tic-tac-toe into a two-site, distributed version. The
following figure shows a snapshot of a two-site game in progress. The left image shows the browser
(WebScape) used by player “O”, the right image shows the browser (DeckScape) used by player
“X”. The message line indicates that player “X” is next, and the Oblet of player “O” is grayed out,
indicating that it is non-responsive for the time being.

The changes to the Oblet code are remarkably simple. First, we extend the oblet to include
an extra field, opp, which is the oblet of the opponent. Second, we use the field c in a slightly
different way: In the single-site version, cwas a string that indicated whose turn it was; it changed
after each turn. In the two-site version, it is also a string, but it never changes. Rather, it is initialized
to the player in whose browser the Oblet is run. Finally, there are changes to the nextTurn and
run methods. Here is the entire Oblet, with unchanged parts elided:

6



let otherPlayer = ...;

let oblet = {
vbt => ...,
c => ok,
opp => ok,
reset => ...,
move => ...,

nextTurn =>
meth (self)

if form_getReactivity(self.vbt, "board") is "active" then
form_putReactivity(self.vbt, "board", "dormant");

else
form_putReactivity(self.vbt, "board", "active");

end;
end,

run =>
meth (self)

try
self.opp := net_import ("TicTacToe", "ash.pa.dec.com");
self.opp.opp := self;
self.c := "X";

except net_failure =>
net_export ("TicTacToe", "ash.pa.dec.com", self);
form_putReactivity (self.vbt, "board", "dormant");
self.c := "O";

end;

let doReset =
proc(fv)
self.reset ();
self.opp.reset ();

end;

let doPress =
proc (m)
let label = "lab" & fmt_int(m);
if form_getText (self.vbt, label) is "" then

self.move (label, self.c);
self.opp.move (label, self.c);
self.nextTurn ();
self.opp.nextTurn ();

end;
end;

form_attach (self.vbt, "reset", doReset);
for i = 1 to 9 do

let p = proc(fv) doPress(i) end;
form_attach (self.vbt, "btn" & fmt_int(i), p)

end;
end

};

7



We start a game by visiting the tic-tac-toe Web page, which causes the tic-tac-toe Oblet to be
loaded and its run method to be invoked. The first part of the run method attempts to import
an object called TicTacToe from the name server at machine ash.pa.dec.com. This call
succeeds if there already is a player waiting for a game to begin. In this case, the opponent’s oblet
is stored in our opp field, our oblet is stored in our opponent’s opp field, and we choose “X” to
be our symbol. If the attempt to import TicTacToe fails, then we export our oblet to the name
server at ash.pa.dec.com, make our game board dormant (i.e., grayed out and unresponsive
to mouse activity), and choose “O” as our symbol. For the sake of simplicity, we ignore the race
condition of more than one player executing this code simultaneously.

The change to the doReset callback is simple: we invoke the reset method not only on
our oblet, but also on our opponent’s oblet. The change to the doPress callback is similar:
rather than invoking move and nextTurn only on our oblet, we also invoke these methods on
our opponent’s oblet. The rest of the run method is unchanged: callbacks are attached to the
interactors.

The final change in the Oblet is to the nextTurn method. In the single-site version, we
changed the value of field c from “X” to “O” and vice versa. Here, we change the reactivity of
the game board from active to dormant and vice versa. Therefore, each player can press a button
only when it is his turn to move.

It is worth emphasizing that self.opp denotes an object that resides on the opponent’s ma-
chine. This implies that the assignment to self.opp.opp and the execution of the
self.opp.reset, self.opp.move, and self.opp.nextTurn method calls take place
on this other machine.

4 A Distributed Chat Room Oblet

Oblets are flexible enough to allow distributed computations to have arbitrary topologies. In the
tic-tac-toe example, we had two oblet objects performing peer-to-peer communication. In this
example, we use a star topology to implement a multi-person chat room. At the center of the star, we
have a conference control object; at the periphery are the Oblets belonging to the participants. When
a user types into his chat room Oblet, it informs the conference controller of the new text, which
then relays the update to all the participating Oblets; in other words, Oblets do not communicate
with other Oblets directly. Our chat room also provides a mechanism for floor control.

The following three images show the chat room Oblet running in different browsers (WebScape,
WebCard, and DeckScape). Each browser is running on a different machine. The participants in
the chat room are Moe, Larry, and Curly. Currently the floor is with Moe, as indicated by the status
line over the editing region and by the color of the editing region in Moe’s browser.

8



9



Here is the FormsVBT s-expression for the chat room Oblet:

(Rim (Pen 10)
(VBox
(Text %floorWith "The floor is free right now")
(Glue 10)
(Shape (Width 300) (Height 200)

(Frame Lowered
(Filter Passive
(TextEdit (BgColor "White") %mainEditor))))

(Glue 10)
(HBox

(Text "Your Name:")
(Frame Lowered (TypeIn (BgColor "White") %myName))
Fill
(Button %grabFloor "Grab Floor"))))

The floorWith component is the message line above the large editing region; it will contain a
message indicating who owns the floor. The mainEditor is the large (300x200) editing region.
The Filter component surrounding the region is used to set the reactivity of the region; in the
passive state, the region is unresponsive to mouse and keyboard activity, but it is not grayed out,
as it would be in the dormant state. The type-in field where each participant identifies himself is
named myName. Finally, the “Grab Floor” button has been given the name grabFloor.

As we shall see, callback procedures will be attached to the “Grab Floor” button and to the large
editing region. When the user clicks on the “Grab Floor” button, the message line on all participat-
ing Oblets will indicate who owns the floor (using the contents of the type-in field of the Oblet now
owning the floor), the editing region on all Oblets (other than the one owning the floor) will become
passive, and the editing region in the Oblet owning the floor will become active and its color will
change to pink. When the user who owns the floor types a keystroke into the editing region, all of
the participating Oblets will be notified of the updated text.

Recall that Oblets do not communicate with other Oblets directly. Rather, they use a conference
control object to report the changes, and this object then relays the changes to the other Oblets. Here
is the definition of the conference control object:

10



let ProtoConfControl = {
oblets => [],
onFloor => ok,
contents => "",

register =>
meth (self, oblet)

self.oblets := self.oblets @ [oblet];
oblet.updateText (self.contents);
if self.onFloor isnot ok then

oblet.transferFloor (self.onFloor);
end;

end,

transferFloor =>
meth (self, name)

self.onFloor := name;
foreach o in self.oblets do

o.transferFloor (name);
end;

end,

updateText =>
meth (self, contents)

self.contents := contents;
foreach o in self.oblets do

o.updateText (contents);
end;

end
};

The oblets data field is an array of the Oblets that have registered themselves with the con-
ference control object. Each element of this array is an oblet that typically resides on a differ-
ent machine. The onFloor data field is the name of the user who currently has the floor, and
the contents data field contains the current contents of the editing region. These two fields are
needed in order to initialize the display of a new participant entering this chat room.

The registermethod will be called by a new Oblet oblet when it is initialized, as part of
its run method. The new Oblet is appended to the oblets array, and then it is notified both of
the current contents of the editing region and of the owner of the floor, if there is one.

The transferFloormethod will be called by an Oblet when the user clicks on the “Grab
Floor” button. This method stores in onFloor the name of the user who now owns the floor, and
then iterates through all of the Oblets in the conference, invoking the transferFloormethod
on each Oblet to inform it of the new floor owner.

Finally, the updateTextmethod will be called on each keystroke by the Oblet that owns the
floor, passing in the current contents of the editing region. (Passing just the keystroke is not suffi-
cient, since a single character could result in various editing actions, depending on the key bindings
used by the Oblet.) The updateTextmethod stores incontents the new contents of the editing
region and then updates all of the Oblets in the chat room by invoking the updateTextmethod
on each one.

11



We are now ready to examine the code for the Oblet:

let oblet = {
vbt => form_fromURL (BaseURL & "chatroom.fv"),

transferFloor =>
meth (self, name)

form_putReactivity (self.vbt, "mainEditor", "passive");
form_putBgColor (self.vbt, "mainEditor", color_named("white"));
form_putText (self.vbt, "floorWith", "The floor is with " & name);

end,

updateText =>
meth (self, contents)

form_putText (self.vbt, "mainEditor", contents);
end,

run =>
meth (self)

var confControl = ok;
try

confControl := net_import("ConfControl", "ash.pa.dec.com");
except net_failure =>

confControl := ProtoConfControl;
net_export("ConfControl", "ash.pa.dec.com", confControl);

end;

let doGrabFloor =
proc (fv)
confControl.transferFloor (form_getText (fv, "myName"));
form_putReactivity (fv, "mainEditor", "active");
form_putBgColor (fv, "mainEditor", color_named("pink"));

end;

let doKeyEvent =
proc (fv)
confControl.updateText (form_getText (fv, "mainEditor"));

end;

confControl.register (self);
form_attach (self.vbt, "grabFloor", doGrabFloor);
form_attach (self.vbt, "mainEditor", doKeyEvent);

end
};

The Oblet defines two methods, transferFloor and updateText; as we just saw, these
methods will be invoked by the conference control object in response to a user in an arbitrary Oblet
in the chat room grabbing the floor or typing into the editing region, respectively. These methods
are straightforward: the transferFloormethod makes the editing region passive and sets its
background to be white, and then updates the message line. The updateTextmessage changes
the contents of the editing region.

12



The Oblet’s runmethod first contacts the name server on the machine ash.pa.dec.com to
obtain a conference control object registered under the name ConfControl. If there is such an
object, it is stored in the variable confControl. Otherwise, a new conference control object is
registered with the name server and also stored in confControl. As in the tic-tac-toe example,
we do not show the code necessary for preventing the race condition of several users executing the
try-except statement simultaneously. After defining callback procedures doGrabFloor and
doKeyEvent, this Oblet registers itself with the conference controller, and finally attaches the
callback procedures to the “Grab Floor” button and to the editing region.

The doGrabFloor callback procedure invokes the transferFloor method on the
confControl object (which then calls the transferFloormethod on all Oblets in the chat
room, including this one), and then makes its own editing region active and colored pink. The
doKeyEventcallback procedure simply invokes theupdateTextmethod on theconfControl
object, passing to it the text in the editing region.

Again, it is important to point out that invoking a method m on the confControl object is
done just by calling confControl.m(), regardless of where the confControlobject resides.
In this example, the conference control object will be local to the Oblet that creates it, and remote
to all other Oblets.

There are many features that could be added to the chat room in a fairly straightforward way.
For example, it would be nice to be able to prevent another user from taking away the floor, to
allow users to leave the chat room, to create new chat rooms, to see existing chat rooms, to handle
exceptions that might result from network partitions, and so on. In addition, one can easily imagine
more efficient implementations, such as reporting only changes to the editing region rather than
reporting the region’s entire contents after each keystroke.

13



5 Oblets for Algorithm Animation

Obliq’s network objects provide a uniform and elegant way for objects to communicate, regard-
less of the address space they exist in and the machine they reside on. The two previous examples
showed the obvious use for network objects: to communicate among objects on different machines.
The example in this section uses network objects to allow Oblets running in the same browser (on
the same Web page or on different Web pages) to communicate. This could be achieved through
simpler mechanisms; after all, all Oblets on the same browser are in the same address space. How-
ever, network objects minimize the number of concepts needed by a programmer, since they handle
this case in the exact same way as the distributed case. Moreover, network objects make it easy to
reuse Oblets in distributed settings without any code changes.

14



This example uses network objects to coordinate multiple Oblets in the domain of algorithm
animation [Brown84]. A typical algorithm animation system has a control panel and a collection of
views, each in its own window. The control panel is used for specifying data, starting the algorithm,
controlling the animation speed, and so on. In order to animate an algorithm, strategically important
points of its code are annotated with procedure calls that generate interesting events. These events
are reported to the algorithm animation system, which in turn forwards them to all interested views.
Each view responds to interesting events by updating its display appropriately.

The screen dump on the previous page shows an animation of first-fit binpacking. The control
panel and the views are implemented by separate Oblets.

We use an event manager object, similar to the conference control object in the chat room ex-
ample, to relay interesting events from the algorithm to the views. For each interesting event there
is a corresponding method both in the event manager object and in each view Oblet. When an in-
teresting event occurs, the algorithm Oblet invokes the corresponding method of the event manager
object, which in turn relays the event to each view. Typically, views react by showing some ani-
mation reflecting the changes in the program. In order for the animation in the views to happen si-
multaneously, the event manager forks a thread for each registered view, the thread calls the view’s
method corresponding to the interesting event, and the event manager waits until all of the threads
have completed before returning to the algorithm.

For example, when a binpacking algorithm is trying to insert a particular weight w into a bin b
that already contains a number of weights totaling up to amt, it calls z.probe(w,b,amt). The
probe method of the event manager object z is implemented as follows:

let z = {
views => [],
...
probe =>
meth (self,w,b,amt)

let threads =
foreach v in self.views map
let closure = proc() v.probe(w,b,amt) end;
thread_fork(closure)

end;
foreach t in threads do

thread_join(t)
end;

end;
...

};

The screen dump on the previous page showed the Oblets for the control panel and each view
all on the same Web page. However, there is no need for the Oblets to be located on the same
page. In fact, if we put each Oblet on a separate page, the user can dynamically select the set of
views visible (or even have more than one copy of any view). In the screen dump on the following
page, the Web page containing the control panel has links for pages containing the various views.
Clicking on such a link brings up a page for the view, which the DeckScape browser can optionally
display in a separate window.

15



At first blush, it would appear that this example uses network objects merely for the coding el-
egance they offer, rather than for any of their distributed aspects. That is, in the two screen dumps
in this section, all of the Oblets exist in the same address space, namely that of the browser. How-
ever, because Oblets are network objects, we have far more flexibility. For instance, we can use the
Oblets — without any changes — in an Electronic Classroom setting. In such a setting, the instruc-
tor and all students run Deckscape on their individual machines (using the same name server). The
instructor uses the control page Oblet to drive the animation, and each student sees a set of views
portraying the workings of the algorithm. This scenario is explored in depth elsewhere [Brown96].

16



6 Related Work

Oblets bring together active objects and distributed computation. The best known language for
active objects is Java [Java]. HotJava was the first browser to support Java applets; in the mean-
time support for Java applets has been integrated into Netscape Navigator. Most major commercial
browser vendors have subsequently announced intended support for Java applets.

The most serious potential competitor to Java-based browsers is probably Microsoft’s Internet
Explorer, which plans to integrate support for active objects written in Visual Basic (as well as for
those written in Java) [Microsoft]. However, the current version of Internet Explorer does not sup-
port active objects.

In the research community, a number of browsers have been developed that support other lan-
guages for writing active objects. Most of these browsers are written in interpreted languages and
support active objects written in the same language. Examples include Hush [vanDoorn95] and
SurfIt! [SurfIt!], implemented in Tcl/Tk; MMM [MMM], implemented in CAML/Tk; and Grail
[Grail], implemented in Python.

None of the browsers and languages mentioned above has any high-level support for distributed
programming. However, the HORB system [HORB] adds the equivalent of network objects to Java.
It consists of a name server and a compiler that creates network object classes based on Java inter-
face specifications. Unlike Obliq, HORB is a first-order language, meaning that only data, but not
computations, can be migrated over the network. Also, HORB does not provide distributed garbage
collection.

Obliq [Cardelli95] is a lexically-scoped language that supports distributed object-oriented com-
putation. It has been integrated into commercial Web browsers by defining an Obliq MIME type
and configuring the browser to use the Obliq interpreter as an external viewer [Bharat95]. Many
other distributed languages exist, commercially (e.g., General Magic’s Telescript [Telescript]) and
in academia (e.g., Orca [Bal92]). However, we are not aware of any such language having been
integrated with a Web browser.

17



7 Conclusion

The example Oblets shown in this report have been small, for didactic reasons. However, Obliq is
a full-strength programming language with access to a rich set of libraries, including multimedia
objects and even Web pages.

The DeckScape browser below shows a “Virtual TV” Oblet; the main screen and each of the
buttons show live video streams. New video streams can be added by typing the IP address of a
video server into the type-in field.

The WebScape browser on the next page shows an Oblet that implements the look-and-feel of
DeckScape, but uses a different color for the main canvas. Within this Oblet, we are visiting Web
pages containing the various binpacking animation Oblets we saw before. This Oblet consists of
about 500 lines of Obliq code and 200 lines of FormsVBT user-interface specification.

18



We have not explored the issues of security and fault tolerance, both very important and very
real problems. In the area of security, Web browsers should be able to authenticate the origin of
an Oblet and to protect the user against malicious Oblets. In the area of fault tolerance, Oblets
should be able to gracefully handle disruption of network services and nonavailability of network
resources.

Many analysts feel that two of the most important technology themes for the remainder of the
decade are the Web and using computers for collaboration. Oblets provide an elegant programming
framework for bringing collaborative and distributed applications to the Web.

19



References

[Avrahami89] Gideon Avrahami, Kenneth P. Brooks, Marc H. Brown.
A Two-View Approach To Constructing User Interfaces.
Computer Graphics, 23(3):137–146, July 1989.

[Bal92] H.E.Bal, M.F.Kaashoek, and A.S.Tanenbaum.
Orca: A Language for Parallel Programming of Distributed Systems.
IEEE Transactions on Software Engineering, 18(3):190–205, March 1992.

[Bharat95] Krishna Bharat and Luca Cardelli.
Distributed Applications in a Hypermedia Setting.
Proc. of the 1st Intl. Workshop on Hypermedia Design,
pages 185–192, June 1995.

[Birrell93] Andrew D. Birrell, Greg Nelson, Susan Owicki, and Edward P. Wobber.
Network Objects.
Proc. of the 14th ACM Symposium on Operating System Principles,
pages 217–230, December 1993.

[Brown84] Marc H. Brown and Robert Sedgewick.
A System for Algorithm Animation.
Computer Graphics, 18(3):177–186, July 1984.

[Brown94] Marc H. Brown and Robert A. Shillner.
DeckScape: An Experimental Web Browser.
Computer Networks and ISDN Systems, 27(1995) 1097–1104.

[Brown95] Marc H. Brown.
Browsing the Web with a Mail/News Reader.
Proc. of the 8th ACM Symposium on User Interface Software and Technology,
pages 197–198, November 1995.

[Brown96] Marc H. Brown and Marc A. Najork.
Collaborative Active Textbooks: A Web-Based Algorithm Animation System
for an Electronic Classroom.
Research Report #142, Digital Equipment Corporation Systems Research
Center, Palo Alto, CA (May 1996).

[Cardelli95] Luca Cardelli.
A Language with Distributed Scope.
Computing Systems, 8(1):27–59, January 1995.

[Grail] Grail Home Page.
http://monty.cnri.reston.va.us/grail-0.2/

[HTML3] HTML3 Linking and Embedding Model.
http://www.w3.org/hypertext/WWW/TR/WD-insert-951221.html

20



[HORB] HORB Home Page.
http://ring.etl.go.jp/openlab/horb/

[Java] Java: Programming for the Internet.
http://java.sun.com/

[Microsoft] Internet Development Toolbox.
http://www.microsoft.com/INTDEV/

[MMM] MMM Browser Home page.
http://pauillac.inria.fr/˜rouaix/mmm/

[SurfIt!] SurfIt!
http://pastime.anu.edu.au/SurfIt/

[Telescript] Telescript.
http://www.genmagic.com/Telescript/index.html

[vanDoorn95] Matthijs van Doorn and Anton Eliëns.
Integrating Applications and the World-Wide Web.
Computer Networks and ISDN Systems, 27(1995) 1105–1110.

21


