
April 3, 1995

SRC
Research
Report 136

A Functional Specification of the Alpha AXPTM

Shared Memory Model

Manfred Broy

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building hard-
ware and software prototypes and using them as daily tools. Interesting systems are
too complex to be evaluated solely in the abstract; extended use allows us to investi-
gate their properties in depth. This experience is useful in the short term in refining
our designs, and invaluable in the long term in advancing our knowledge. Most of
the major advances in information systems have come through this strategy, includ-
ing personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it
is in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

A Functional Specification of the Alpha AXPTM

Shared Memory Model

Manfred Broy

April 3, 1995

Manfred Broy is at the Institut für Informatik, Technische Universität München,
D–80290 München, Germany.

E-mail: broy@informatik.tu-muenchen.de

This work was partially sponsored by the German Sonderforschungsbereich 342
“Methoden und Werkzeuge für die Nutzung paralleler Rechnerarchitekturen”

Alpha AXP is a registered trademark of Digital Equipment Corporation.

cDigital Equipment Corporation 1995

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copies include the following: a notice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Califor-
nia; an acknowledgment of the authors and individual contributors to the work; and
all applicable portions of the copyright notice. Copying, reproducing, or republish-
ing for any other purpose shall require a license with payment of fee to the Systems
Research Center. All rights reserved.

Abstract

We give a functional specification of the Alpha AXP architecture with
special emphasis on the Alpha Shared Memory Model. We keep the speci-
fication as abstract as possible and modular in the sense that we provide an
independent description of the processors and the memory. We show how to
handle a number of critical aspects of the Alpha architecture within the func-
tional model, such as the specification of basic assumptions about the behav-
ior of the processors and the exclusion of causal loops. We use the model for
specifying the notion of lookahead and shortcut optimization for the behav-
iors of the processors. This allows us to define the concept of correct pro-
cessor behavior by using the conservative sequential behavior as a reference.
Finally, we extend the model to the constructs for synchronization in the Al-
pha architecture and include the instructions “read locked” as well as “store
conditional”.

Contents

1 Introduction 1

2 The Model 2
2.1 Basic Components . 2
2.2 Actions . 2
2.3 The Model of the Architecture 4

3 The Memory Architecture 6
3.1 Scheduling the Memory Requests 8
3.2 Responding to the Scheduled Memory Requests 10

4 The Processors 11

5 Summary of the Model 12

6 The Model at Work 13
6.1 Mathematics of the Model . 13
6.2 Causal Loops . 14
6.3 Sequential Execution of Processors 16
6.4 Speeding Up Executions . 16
6.5 Optimizations of Processor Behavior 17
6.6 Assumptions about Executions 22

7 Locking 24
7.1 Extension of the Model to Locking 24
7.2 Analysis of a Simple Locking Discipline 27

8 Conclusion 28

A Appendix: A More Liberal Scheduling Concept 28

B Appendix: Mathematical Basis 31

1 Introduction

The Alpha AXP architecture is a RISC architecture that was designed for high per-
formance and longevity (see [AARM 92]). A major design goal was to avoid any
elements that would become limitations during a 15-25 year design horizon. The ar-
chitecture allows and supports a factor-of-1000 increase in performance. It allows
multiple instruction streams and the execution of many instructions per clock cy-
cle, as well as multiple data streams and instruction stream memory management.
The interaction between the processors and the memory is highly underspecified to
allow implementations to be very flexible in adopting future speed-up techniques.

We give a functional specification of the Alpha architecture and in particular of
the Alpha Shared Memory using a data flow model. The “nondeterminism” in the
architecture is modeled by underspecification.

The mathematical basis for the functional model is “streams” and “stream pro-
cessing functions” (for a short introduction see the appendix B or, for more details,
[Broy 90]). Every device in the Alpha architecture is described by a logical formula
that characterizes the stream processing functions representing the behavior of the
components and the streams flowing between the components. This way the be-
havior of the processors and the behavior of the memory are described by separate
logical formulas. The behavior of the overall system is obtained by a composition
of the formulas describing the behaviors of the subsystems. This structure supports
independent reasoning about the different devices. It is possible to reason about the
behavior of the complete system by using the specification of its components.

There are numerous papers that deal with sequential consistency, serializabil-
ity and related aspects of concurrent access to memory and data base systems (see
[Shasha, Smir 88]). For modern machine architectures with caches and concurrent
execution of processors difficult issues of programming arise (see, for example,
[Attiya, Friedmann 94]). Our main motivation is a simple and powerful model of
such architectures. It also allows us to clarify a number of issues of high practical
relevance, such as the exclusion of causal loops and the definition of correct opti-
mization. These issues have not been addressed sufficiently in the literature, so far.

The paper is structured as follows. Section 2 describes the basic structure of the
model of the Alpha AXP architecture and its components. In sections 3 and 4 we
give the description of the behaviors of the memory and of the processors. Section
5 summarizes the description. The remaining part of the paper shows how to make
use of the description. In section 6 we study the exclusion of causal loops and ana-
lyze basic assumptionsabout the behavior of processors. We characterize speed-ups
of the processors by advanced lookahead when issuing memory requests. We define
the concept of lookahead and shortcut optimization of processor behaviors. This al-

1

lows us to define the correctness for processor behavior using the strictly sequential
behavior as the reference. Roughly speaking, the behavior of a processor is correct
if it is an optimization of the behavior of a strictly sequential processor. We prove
that for such optimizations the results of programs that run without shared mem-
ory are effectively equivalent to the results that we obtain for the processors with
strictly sequential behavior and a memory that does not reorder memory accesses.

In section 7 we extend the model to memory access with locked loads and con-
ditional stores. We show for a simple example how to prove properties of programs
using synchronization protocols.

In appendix A we give a more liberal scheduling strategy for the memory re-
quests of the processors than the one described in [AARM 92]. In appendix B we
include the essentials of the mathematics of the functional system model.

2 The Model

In this section we describe the structure of the mathematical model that we suggest
for the Alpha architecture.

2.1 Basic Components

The Alpha architecture consists of a number of processors and a memory. The mem-
ory consists of a set of locations in which data can be stored. By PRC we denote
the set of processors, by LOC we denote the set of locations, by DATA we denote
the set of data values. The set DATA includes instructions.

2.2 Actions

In the Alpha architecture the relevant actions for the interaction between the pro-
cessors and the memory are read and write actions, instruction fetches, and memory
and instruction barriers. The table given in Figure 1 lists the syntax of the actions
and introduces some useful selector functions.

However, we prefer to think about the execution of these actions not as one
atomic step but in terms of an interaction between the processors and the memory.
To execute an action, the processor issues a request (similarly to a procedure call in
a conventional programming language) and the memory responds to it by a mem-
ory response (similarly to a returned result for a procedure call). Following this
concept we decompose each of the actions into memory requests and memory re-
sponses. Processors issue memory requests and receive read response messages.
The memory receives memory requests and issues read response messages.

2

Action Syntax processor location data
Read action P:R(x,a) P x a
Write action P:W(x,a) P x a
Instruction fetch P:I(x,b) P x b
Memory barrier P:MB P − −
Instruction memory barrier P:IMB P − −

Figure 1: Table of memory actions and selector functions processor, location and
data

Action name Syntax Memory Request Response
Read action P:R(x,a) P:R?x P:R(x,a)
Write action P:W(x,a) P:W(x,a) −
Instruction fetch P:I(x,b) P:I?x P:I(x,b)
Memory barrier P:MB P:MB −
Instruction memory barrier P:IMB P:IMB −

Figure 2: Table of actions and their split into requests and responses

Let P be a processor, x be a location, and a be some data element. A memory
request is one of the following:

- a write request, represented by the action P:W(x,a);

- a read request, represented by the action P:R?x;

- a memory barrier request, represented by the action P:MB;

- an instruction fetch request, represented by the action P:I?x;

- or an instruction memory barrier request, represented by the action P:IMB.

By REQ we denote the set of memory requests.
The memory replies to a read memory request by a read response message. A

read response message is represented by P:R(x,a). The memory replies to an
instruction fetch memory request by an instruction fetch response message. An in-
struction fetch response message is represented byP:I(x,a). By RFR we denote
the set of read response and instruction fetch response messages.

The table given in Figure 2 summarizes the decomposition of actions into mem-
ory requests and responses to them. For write actions and barrier requests, responses
are not needed.

3

�

�

cv
- D

csPn
-

csP1
-

...

Pn

P1

crPn
-

crP1
-

ms ct
- mm cv �

�

Alpha AXP Architecture

Processors Memory

Figure 3: Data flow graph of the Alpha architecture

The decomposition of actions into requests and responses has a number of ad-
vantages. This way we are able to distinguish between the issue order of memory
requests, determined by the processors, the access order of memory requests, deter-
mined by the memory, and the reception order of the responses by the processors.
This allows us to model the scheduling discipline of memory access more explicitly
and modularize the model more effectively.

2.3 The Model of the Architecture

We model the Alpha architecture by a data flow model as given in Figure 3. In the
data flow model the processors and the memory are independent units that commu-
nicate asynchronously via message exchange. The processors are connected to the
memory by channels. The channels are denoted by cv, csP , crP , and ct where P
is a processor.

Each processor sends a stream of memory requests to the memory and receives
a stream of read response messages from the memory. In a computation of the Al-
pha architecture the behavior of each processor P ∈ PRC is modeled by a stream
processing function

fP : RFR ω → REQ ω

A stream processing function is a prefix continuous function on streams. A short
introduction to the mathematics of streams and stream processing functions is given
in appendix B. There we also introduce the notation we are using throughout the
paper for writing logical formulas for streams and stream processing functions.

4

In a computation a stream is associated with each of the channels cv, csP , crP ,
and ct . These streams will be denoted by Ecv, Ecs P , Ecr P , and Ect respectively.

The memory receives the streams of memory requests from the processors and
sends back in response a stream of read response messages. Mathematically the
memory is modeled by a stream processing function

md : (PRC → REQ ω)→ RFRω

Since each response message is labeled by the identifier of the processor that has
requested it, the stream of read response messages produced by the memory can
easily be split into individual streams of responses for each of the processors.

The Alpha architecture is modeled as follows: for every processor P we repre-
sent the history of messages exchanged between the processor and the memory by
the input stream Ecs P ∈ RFRω and the output stream Ecr P ∈ REQ ω of the processor.
Of course, the stream Ecr P is the result of the processor function fP applied to the
stream Ecs P of memory responses. This is expressed mathematically as:

Ecr P = fP (Ecs P)

By Ecr we denote the mapping that associates with each processor its request stream
produced by the processors in PRC . By Ecs we denote the mapping that associates
with each processor its response stream produced by memory for the processor in
PRC . Formally Ecr is a mapping that associates a stream of memory requests with
every processor:

Ecr : PRC → REQ ω

and Ecs is a mapping that associates the input stream of memory request responses
with every processor:

Ecs : PRC → RFR ω

We specify the history of messages between the memory and the processors by a
stream Ecv ∈ RFRω that represents the stream of all read request responses produced
by the memory. We do not assume any responses for write or barrier requests.

By the split component called D in the data flow graph given in Figure 3 we
obtain the input streams Ecs P for each of the processors from Ecv.

In the functional approach, a distributed system is modeled by associating a set
of monotonic stream-processing functions with each component. An instance of
the behavior of the system, a computation, is obtained as follows: for each compo-
nent one function is chosen out of the set of stream processing functions modelling
that component. By these functions we associate a stream with each channel that
connects the components. These streams are determined as the least fixpoint for

5

the functions associated with each of the components. In the case of the scheduler,
the choice of the function representing the behavior of the scheduler is constrained
by specific properties of the streams that form the fixpoints. This modelling tech-
nique, where there is a dependency between the selected behavior function and its
actual input stream, is called “input choice specification” and is described in detail
in [Broy 93].

Causality is a decisive notion in information processing and message passing
systems. It imposes a “physical law” on the flow of information. Roughly speaking,
we understand by the phrase “action a is causal for action b” that b cannot take place
before a has happened. In distributed systems that consist of a set of components
that exchange messages via channels between the components, we distinguish two
forms of causality:

• component causality: a component cannot issue an output message before it
has received the input required for computing the content of the output mes-
sages. This form of causality between input and output for a component is
captured in the functional model by the monotonicity constraint.

• information exchange causality: a message is not received before it has been
sent. This is captured in the functional model by the least fixpoint principle
for the recursive stream equations for the channels.

These two forms of causality are an integral part of the functional system model.
They are the basis for ruling out “causal loops”.

3 The Memory Architecture

We formalize the requirements for the behavior of the memory by characterizing
the relation between its input streams and its output stream. The requirements for
the memory fall into the following two categories:

• Proper memory access scheduling: the memory requests of the individual
processors are rescheduled and merged; the scheduling is restricted with re-
spect to memory barriers and memory instruction barriers as well as read and
write requests for the same location.

• Read/write consistency: in response to read requests, those data elements are
sent that have been written by the most recent write requests for that location
in the access stream.

6

Both requirements are described in [AARM 92] in a semiformal way that does not
provide explicit answers to a number of critical questions. For instance, it is not
clear whether so-called causal loops are implicitly excluded. Certainly they are not
explicitly excluded in [AARM 92]. We shall come back to the issue of causal loops
after we have introduced the mathematical model.

To keep the model simple and to achieve a good separation of concerns, we de-
compose the function md modeling the behavior of the memory into two prefix con-
tinuous stream processing functions, the memory scheduler

ms : (PRC → REQω)→ REQ ω

which takes care of the proper memory access scheduling and determines the access
stream and thus the access order, and the memory manager

mm : REQ ω → RFR ω

which models read/write consistency (see Figure 3). The function md then is simply
obtained by composing ms and mm. Mathematically we specify the result stream
of the function md for all the streams of memory requests r : PRC → REQ ω by
the following equation:

md(r) = mm(ms(r))

Precise specifications of the functions ms and mm are given in the following sec-
tion.

As shown in the data flow diagram given in Figure 3, we specify the history
of messages between the memory scheduler and the memory service by an access
stream

Ect ∈ REQ ω

and the history of messages between the memory service and the processors by a
stream of read and instruction fetch response messages

Ecv ∈ RFR ω

The stream Ect denotes sequence of scheduled requests for the memory and deter-
mines the outcome of the function ms. Mathematically, this is expressed by the
following equation:

Ect = ms(Ecr)

The stream Ect denotes the access order of the memory requests.
The stream Ecv denotes the outcome of the function mm. Mathematically, this

is expressed by the equation:
Ecv = mm(Ect)

7

1st ↓ \ 2nd→ P:I?x P:R?x P:W(x,b) P:MB P:IMB
P:I?x < < < <

P:R?x < < < <

P:W(x,a) < < < <

P:MB < < < <

P:IMB < < < < <

Figure 4: Table of relations between requests in the issue order and the access order

¿From the stream Ecv the input streams Ecs P ∈ RFR ω of memory responses for the
individual processors P ∈ PRC can easily be computed.

3.1 Scheduling the Memory Requests

We give the specification for the function ms by the relation between the streams
Ecr P and Ect . The function ms merges and reschedules its input streams. This merge
and rearrangement follows the rules described in [AARM 92]. In this section we
formalize these rules.

The table given by Figure 4 is taken from [AARM 92]. It shows the reordering
restrictions that are imposed by the issue streams Ecr P onto the access stream Ect .
The table expresses the following requirement in terms of the mathematical model:
for every pair of memory requests c1, c2 for process P for which we have c1 < c2

in the table in Figure 4, their relative order in the issue stream Ecr P and in access
stream Ect coincide. Mathematically we write

c1 < c2 ⇒ [c1 < c2] in [Ecr P , Ect]

Here (for arbitrary streams r, t) the proposition

[c1 < c2] in [r, t]

stands for the following two conditions: condition (1) expresses that all requests c1

and c2 in r are eventually scheduled in t , and only requests that have been issued are
scheduled. Its formalization is rather straightforward. Every memory request c in
each of the issue streams r also appears in the access stream t . Since all requests are
labeled by the processors, all elements in issue streams of different processors are
distinct. Mathematically expressed condition (1) reads as follows (for the definition
of the filter function “x |M ” see the appendix B):

r |{ci } = t |{ci } f or i ∈ {1, 2}

8

Condition (2) expresses that the requests c1 compared to the requests c2 may not
come later in the stream t than in stream r . In other words, the scheduler may not
move the requests c2 to the left over the requests c1 to obtain the substream of the
requests c1 and c2 in t from that in r . Mathematically expressed, condition (2) reads
as follows:

∀k ∈ IN : hk(r)|{c1} v hk(t)|{c1}

where
hk(s) = (s|{c1,c2})[1 : k]

Here we use the following notation. For a stream s we denote by s[1 : k] the first k
elements of the stream. If a stream s has less than k elements then s[1 : k] = s.

The relationship between the issue streams and the access stream as formalized
above has the following consequence: for every set M of requests of the processor
P that are all pairwise in the<-relation, the substreams of the requests in M in the
issue streams and the access stream are identical. Mathematically expressed:

(∀c, d ∈ M : c < d ∨ d < c)⇒ Ecr P |M = Ect |M
This can be shown for finite streams Ecr P and Ect by induction on the length of the
stream Ect . For infinite streams it follows by the continuity of the function that filters
out a substream.

Based on the notation introduced above, we can now formulate the correctness
requirement of the scheduling function. We decompose the requirements for the
scheduler into the safety and liveness properties. In a first step we give just the
safety property. It is represented by a simple predicate characterizing the set of
scheduling functions that are correct with respect to safety. The liveness condition
for the function ms is not a simple predicate on ms, but depends also on the partic-
ular request streams in the data flow model. A function

ms : (PRC → REQω)→ REQ ω

is called a safe scheduling function if for all request streams r ∈ (PRC → REQ ω)

for which rP contains only requests issued by processor P we have

∃t ∈ REQ ω : ms(r) v t ∧
∀c1, c2, P : c1 < c2 ⇒ [c1 < c2] in [rP , t]

This requirement is a safety condition for the scheduler. It expresses that the re-
quests are in a proper relationship, if they are scheduled at all. It does not express
the liveness property that all requests are eventually scheduled. The liveness con-
dition for the scheduler is not a simple predicate on ms, but depends also on the

9

particular request streams in the data flow model. It will therefore be added as a
constraint for the scheduler functions ms with respect to the stream Ecr in the net-
work modeling the Alpha architecture in section 5 where we summarize the model.

3.2 Responding to the Scheduled Memory Requests

The behavior of the memory manager is represented by the function mm, which ex-
ecutes the memory requests in the order produced by the memory request scheduler
ms. Its specification is rather simple. In response to each read request the memory
manager sends the data element that has been written by the most recently executed
write request. According to the rescheduling of requests, the execution order is not
necessarily identical to the issue order.

We ignore here the possibilitythat the memory may be initializedby other means
than memory write requests. Explicit initializationcan easily be included, however.

For our mathematical model, we express read/write consistency by the follow-
ing formula: for all streams u, w ∈ REQ ∗, s ∈ REQ ω we assume:

(u_w)|RI = 〈〉 ∧w|W (x) = 〈〉
⇒

mm(u_Q:W(x,a)_w_P:R?x_s) = P:R(x,a)_mm(u_Q:W(x,a)_w_s)
∧

mm(u_Q:W(x,a)_w_P:I?x_s) = P:I(x,a)_mm(u_Q:W(x,a)_w_s)

where W (x) is the set of all write requests for location x :

W (x) = {P:W(x,a) ∈ REQ : P ∈ PRC ∧ a ∈ DATA }

and RI is the set of all the read requests and instruction fetch requests:

RI = {P:R?x : P ∈ PRC ∧ x ∈ LOC } ∪ {P:I?x : P ∈ PRC ∧ x ∈ LOC }

The stream Ecv is the result of applying the memory function mm to the stream Ect of
memory requests.

Ecv = mm(Ect)

The stream Ecv of read request and instruction fetch responses produced by the mem-
ory manager mm can easily be decomposed into one memory request response
stream Ecs P for each processor P . We specify:

Ecs P = DP(Ecv) where ∀v : DP(v) = v|R(P)

10

where the set R(P) of read request responses of the processor P is specified as fol-
lows:

R(P) = {e ∈ RFR : processor(e) = P}
Of course, there are other ways to decompose the memory function md. For in-
stance, we may introduce a merge function that interleaves all streams of read re-
quests produced by the processors in a stream of read requests. Using this merge
function we can then either introduce for each processor an individual memory
scheduler that reschedules all memory requests before they are merged, or merge
all streams of read requests produced by the processors in a stream of read requests
and then do the memory scheduling by rescheduling this stream.

4 The Processors

The behavior of a processor is modeled by a prefix continuous stream processing
function. In this section we show only schematically how we model the instruction
cycle of an Alpha processor by such a function.

A processor has a local state that consists of all the entries in its registers and
maybe additional information. The set of states of a processor is denoted by PRC-
State. Initially, a processor starts from an initial state by issuing a finite sequence
of memory requests.

Whenever a processor receives a memory request response, it changes its local
state and issues a finite (possibly empty) sequence of memory requests. For formal-
izing this behavior of a processor, we introduce the following two functions:

mr : PRCState × RFR → REQ ∗

sc : PRCState × RFR → PRCState

The function mr yields the sequence of memory requests issued by the processor
in a state when receiving a memory response. The function sc yields the successor
state of the processor. The behavior of the processor P is defined by the function
fP . We specify this function by the following equation:

fP (s) = init_exec(σP , s)

where σP is the initial state of the processor P , init is the initial sequence of mem-
ory requests, and exec is the function

exec : PRCState × RFR ω → REQ ω

11

specified by
exec(σ, c_s) = mr(σ, c)_exec(sc(σ, c), s)

Of course, a processor P issues only memory requests labeled by P .
We do not give a more detailed description of the individual instructions and

their execution here. We come back to this issue in section 6.

5 Summary of the Model

In this section we summarize the functional model of the Alpha architecture as a
reminder for the readers.

As indicated in Figure 3, we assume that the streams Ecr P , Ecs P and Ect are the
least fixpoints of the following equations:

Ecr P = fP (Ecs P) for all processors P ∈ PRC
Ecs P = Ecv|R(P) for all processors P ∈ PRC
Ecv = mm(ms(Ecr))

where for all processors P ∈ PRC the function fP and also the functions mm and
ms are stream processing functions. This means in particular that they are prefix
continuous. The function fP is assumed to be a processor behavior. The function
ms is required to be a safe scheduling function. The function mm fulfills the fol-
lowing requirement: for all streams u, w ∈ REQ ∗, s ∈ REQ ω:

u_w|RI = 〈〉 ∧w|W (x) = 〈〉
⇒

mm(u_Q:W(x,a)_w_P:R?x_s) = P:R(x,a)_mm(u_Q:W(x,a)_w_s)
∧

mm(u_Q:W(x,a)_w_P:I?x_s) = P:I(x,a)_mm(u_Q:R(x,a)_w_s)

For the function ms we require the following liveness condition: every request c is
eventually scheduled, mathematically expressed:

Ecr P |{c} = ms(Ecr P)|{c}
This is a liveness condition that restricts the choice of the scheduling function ms
in addition to the safety properties required for ms making sure that all requests are
eventually scheduled.

The prefix monotonicity requirement for the functions models the causality
within the processors and thus the causality within their programs. The least fix-
point property of the streams described by the recursive equations models the causal-
ity between the sending and receiving of messages. If either of these requirements
is dropped, then causal loops are no longer excluded.

12

6 The Model at Work

In this section we start with a short analysis of the functional model and then show
how it can be used to formalize further properties of the processors and their exe-
cution of instruction streams.

6.1 Mathematics of the Model

The model given in the previous sections is based on the following mathematical
concepts:

• prefix continuous stream processing functions,

• recursive stream equations and least fixpoint interpretations for them,

• liveness constraints for the scheduling function.

These concepts are well suited as a mathematical basis for data flow models. Hard-
ware systems can also be understood as data flow systems. A large number of ex-
amples have demonstrated that the concepts work well for both.

The purpose and benefits of mathematical or formal models for information
processing systems are manifold:

• Mathematical system models provide a consistent and precise description of
the properties of a system, but nevertheless give freedom by leaving certain
aspects deliberately unspecified; we speak of underspecification.

• In the process of deriving mathematical system models from informal de-
scriptions, flaws, inaccuracies and omissions can be detected and clarified.

• Mathematical system models provide a reference basis for understanding and
discussion.

• Mathematical system models provide a basis for a formal reasoning about a
system, by which specific properties can be derived (and therefore verified).

• Mathematical system models provide a precise requirement specification for
implementations by hardware or software systems.

The functional model given for the Alpha AXP architecture exhibits a number of
typical properties. For instance, every response in the response stream is triggered
by a request. This property is formalized by the following definition.

13

Definition 1 (Feasible Response Streams) A response stream s ∈ RFR ω is called
feasible for a processor with behavior fP , if all the instances of responses in s are
triggered by requests in the request streams fP (s). A response stream s is triggered
by the request stream fP (s), if every prefix s̃ of the stream s contains for every in-
stance of a read request and every instance of an instruction fetch request in fP (s̃)
at most one corresponding response. Mathematically expressed, a stream s is a fea-
sible response stream for the behavior fP of processor P , if for all its prefixes s̃ v s
the following two conditions are fulfilled:

#s̃|{P:R?x} ≤ # fP (s̃)|R(x)
and

#s̃|{P:I?x} ≤ # fP (s̃)|I (x)
where

R(x) = {P:R(x,a) : a ∈ DATA }
I (x) = {P:I(x,a) : a ∈ DATA }

We then write:
fP ↪→P s

If the inequalities above are strengthened to equalities for s̃ = s, then the stream s
is called a complete and feasible response stream for the processor behavior fP .

2

It is a straightforward exercise to show that in our model for the Alpha architec-
ture according to the definition of the memory device for every processor P , every
stream Ecs P is a feasible response stream for fP .

6.2 Causal Loops

In this subsection we study the problem of causal loops. It is widely accepted that
there is a natural causality flow in information processing systems. More techni-
cally speaking, a particular message value cannot be sent by an interactive message
passing system before all values on which it depends have been received.

In the Alpha architecture there are two kinds of processing units, the processors
and the memory. The principle of causality can be applied to both of them. A pro-
cessor cannot issue a memory write request before it receives the data to be written.
The memory cannot respond to a read request before it receives the memory write
request that supplies that data.

14

To make our discussion more concrete, let us look at a simple example. We as-
sume that the processors P and Q execute the following two little programs. We use
some pidgin assembler language here which has the two commands LD (for load)
and ST (for store) only and works with the local registers of the processors. The
registers are denoted by R1, R2, etc. Consider for the processor P the following
program

LD R1 x
ST R1 y

and for the processor Q the following program

LD R2 y
ST R2 x

Let us assume that initially the value 0 is stored both in location x and in location
y.

Of course, we may expect that, independent of the scheduling, the effect of ex-
ecuting these programs is that both the locations x and y invariantly have the value
0. Now let us consider the following access stream

P:R?x Q:R?y P:W(y,1) Q:W(x,2)

and the corresponding response stream:

P:R(x,2) Q:R(y,1)

This sequence of actions is certainly read/write consistent (only values are read that
have been written before). It also fulfills all the requirements of memory access
scheduling. So one may argue that it is a feasible access stream according to what
is required in [AARM 92] for the memory. However, if we consider in addition
the processor functions fP and fQ , we realize that this access order violates the
causality requirements of the processors. For the processor P the write request can
be issued only after the response to the read request has been received.

One may argue whether the paradoxical behavior of the causal loop as demon-
strated above is actually admitted or not by the [AARM 92]. Such an exegesis is not
very productive, however. As soon as one assumes a proper causality flow for the
processors, causal loops are ruled out anyway. We claim that to any realistic pro-
cessor, whatever advanced concepts it includes, the law of causality flow applies.
Therefore, for any hardware, causal loops are excluded.

15

6.3 Sequential Execution of Processors

We do not want go into the definition of all the details of the execution of particular
instructions in the Alpha AXP architecture. We therefore introduce as a reference
for the behavior of the processors the behavior of a processor with a conservative
sequential execution strategy. Such a behavior is obtained, if the processor sequen-
tially executes the classical instruction cycle. This cycle first fetches the instruction
indicated by the program counter, then computes the operand address and reads the
operand from the memory or writes a value into the memory or issues a barrier re-
quest and then starts the cycle again.

This sequential execution strategy corresponds in our model to a particular stream
processing function for the processors P ∈ PRC which we denote by

f seq
P : RFR ω → REQ ω

This function will be used as a point of reference for formalizing the correctness of
the behaviors of processors with a nonsequential execution strategy in the follow-
ing.

6.4 Speeding Up Executions

In a most conservative implementation every processor issues just one memory re-
quest, then waits until it gets the response to this request, and only then issues the
next request. This is the behavior represented by the function f seq

P .
In contrast to this conservative sequential behavior, a more aggressive processor

may send several memory requests before it receives some of the responses from
the memory. This can lead to a speed-up in the interaction between the memory and
the processor. We call such behavior, where several requests can be issued before
a response is received, issuing lookahead requests.

We distinguish between the following strategies of processors in issuing looka-
head requests.

If a processor issues only memory requests whose responses are certainly needed
for the execution, we speak of issuing conservative lookahead requests. In this
case, any missing response from the memory will eventually bring the processor
to a waiting state.

A lookahead request processor may even issue memory read requests or instruc-
tion fetch requests whose responses it might not need. We call this strategy issuing
speculative lookahead requests. It may lead to a considerable speed-up in accesses
to the memory. The price is that some requests may be processed that turn out to

16

be unnecessary. Clearly speculative write requests are not a safe concept and not
considered therefore.

A further optimization can be obtained in cases where it can be recognized in
advance that responses to certain read and instruction fetch requests that appear in
the strictly sequential behavior are irrelevant for the further course of computation.
Such requests need not even be issued. We call this shortcut optimization. One
may argue that in a well–written program such irrelevant requests should not occur.
However, even when doing multiplication of two values read from the memory, one
of the values may turn out to be not relevant, if the other one is zero.

Shortcut optimization leads to a more radical change in the behavior of pro-
cessors than lookahead optimizations. Responses to read and instruction fetch re-
quests are generally needed by a processor to get the information (instructions and
operands) required to continue its execution. Moreover, the arrival of responses is
used to trigger further requests. This is most obvious in the conservative sequential
behavior. The processor issues a request only when the response to the request is-
sued previously has been received. So there is a causal relation between responses
and the following requests. In lookahead optimizations, read and instruction fetch
requests are issued earlier and more of them may be issued, but at least all the re-
quests that appear in the nonoptimized behavior are eventually issued. Write re-
quests and barrier requests are issued before the corresponding responses are re-
ceived only as long as there are no actual data dependencies. In shortcut optimiza-
tions fewer requests may be issued by avoiding ones whose responses would be
irrelevant. This may change the causality flow of a processor more radically.

It is one of the basic ideas of the Alpha AXP architecture that processors may
issue lookahead memory requests, in order to speed up the general execution by
parallelizing the memory accesses. In the following section we give a definition
of the properties required for a processor to make sure that the replacement of a
sequential processor by a processor with lookahead and shortcut optimizations does
not change the effects of the executed programs as long as the program runs without
any access to shared memory.

6.5 Optimizations of Processor Behavior

In this section we define the concept of valid optimization of the behavior of proces-
sors. Not all read request responses in a response stream coming from the memory
are actually needed for further computation by the processor. Some read requests
may serve only lookahead purposes and the responses to those might turn out to be
obsolete after they have been requested. Similarly, certain responses may be irrel-
evant, since the transmitted values do not really influence the further computation.

17

For instance, if a value of a location is requested from the memory and later the
transmitted value is multiplied by 0, its value is certainly not relevant. Of course,
in practice it is very difficult to determine whether a response is relevant, since ir-
relevant responses may even trigger further read requests that lead to responses that
turn out to be irrelevant, too. Optimized processors nevertheless may make use of
the fact that a response is irrelevant. In this case a response might even not be re-
quested.

Request streams have two effects on the memory: write requests change the
state of the memory locations and therefore can be effectively observed by other
processors, read and instruction fetch requests trigger responses by the memory and
this way allow the processor to observe the current state of locations. Memory and
instruction barrier requests restrict the memory access order. So it is not important
for the effect of a request stream on the memory, how many barrier requests are
created, but only how they restrict the access order. This leads us to the following
definition.

Definition 2 (Feasible Schedulings of Memory Request Streams) For a request
stream r1 ∈ REQ ω of processor P ∈ PRC we call a request stream r2 ∈
(REQ “{P:MB,P:IMB})ω a feasible scheduling for the stream r1, if there exists a
stream r0 ∈ REQ ω such that for all requests c1, c2 ∈ REQ we have:

c1 < c2 ⇒ [c1 < c2] in [r1, r0]

and
r2 = r0|M where M = REQ “{P:MB,P:IMB}

2

For the correctness of optimizations it is decisive to identify under which conditions
two request streams have the same effects for the memory such that they lead to the
same set of possible observations by the processors. We may change the behavior
of a processor such that it issues a different request stream as long as this is ob-
servably equivalent to the previous request stream. Along these lines we define the
effective equivalence of request streams. The memory barrier and the instruction
fetch barrier requests restrict only the rescheduling of the memory requests. Two
request streams of a processor P are considered to be effectively equivalent, if they
lead to the same effects and therefore can be called observation equivalent.

In the following definition, we do not require that effectively equivalent request
streams have exactly the same substreams of barrier requests. We just require that
they have the same read, instructionfetch and write requests and they include barrier
requests that impose the same scheduling restrictions for them.

18

Definition 3 (Effective Equivalence of Memory Request Streams) Two
request streams r1, r2 ∈ REQ ω are called effectively equivalent for processor P ,
if their sets of feasible schedulings coincide. We write then r1

e∼ r2.

2

To have a basis to speak about the substreams of relevant and irrelevant responses,
we use the concept of the decomposition of streams.

Definition 4 (Decomposition of Streams) For an arbitrary stream s ∈ Mω two
streams s1 and s2 are called a decomposition of s, if the stream s can be split into
the substreams s1 and s2. Mathematically expressed, if there exists an oracle β ∈
{1, 2}∞ such that for i ∈ {1, 2}

si = disi (s, β)

where the functions disi : Mω × {1, 2}ω→ Mω are specified by

disi (m
_s, i_β) = m_disi (s, β)

and
i 6= j ⇒ disi (m

_s, j_β) = disi(s, β)
2

Based on this definition we can now define when for a processor a behavior is a
lookahead optimization and when it is a shortcut optimization of another behavior.

Definition 5 (Lookahead Optimization) We consider the two behavior functions

f1, f2 : RFR ω → REQ ω

for the processor P . The behavior f2 is called a lookahead optimization of f1, if,
for every response stream s2 ∈ RFR ω that is feasible for f2, the following condi-
tion holds: there is a decomposition of s2 into a response stream s1 ∈ RFR ω and a
response stream u1 such that s1 is a feasible response stream for f1 and the request
streams f1(s1) and f2(s2) are effectively equivalent.

2

Note that by the definition above, the processor with behavior f2 is a refinement of
the processor with behavior f1 since every behavior that f2 shows is an optimized
behavior of a behavior of f1.

Shortcut optimizations are more difficult to define. In a shortcut optimizations
certain requests are not issued. This can be done if the effects achieved that way are
equivalent to a behavior of the architecture for the nonoptimized issue stream.

19

Definition 6 (Shortcut Refinement of Issue Streams) We define a relation

e
;: REQ ω × REQ ω

that defines the allowed shortcut optimizations. We give axiomatic rules:

(∀c1, c2 : c1 < c2 ⇒ [c1 < c2] in [r1, r2])⇒ r1
e
; r2

r1
e
; r2 ∧ r2

e
; r3 → r1

e
; r3

r_1 MB_MB_r2
e
; r_1 MB_r2

r_1 P:W(x,a)_P:W(x,b)_r2
e
; r_1 P:W(x,b)_r2

r_1 P:R?x_r2
e
; r_1 r2

2

This definition essentially expresses that in a shortcut optimization we may leave
out superfluous write requests, read requests and memory barriers. Of course, a read
request may not be left out if the requested value is needed by the processor.

Definition 7 (Shortcut Optimization) Let us consider the two behavior functions

f1, f2 : RFR ω → REQ ω

for the processor P . The behavior f2 is called a shortcut optimization of f1, if, for
every response stream s2 ∈ RFRω that is feasible for f2, the following condition
holds: there exists a response stream s1 that is feasible for f1 such that f1(s1)

e
;

f (s2).

2

The definition essentially says that in a lookahead optimization, for every response
stream feasible for f2 we can find a response stream for f1 such that the response
streams coincide after we get rid of some irrelevant responses for f2 and the remain-
ing requests are effectively equivalent.

A shortcut optimization can lead to a processor behavior with a quite differ-
ent processor causality. This allows sophisticated optimizations where certain re-
quests and the corresponding responses are recognized as unnecessary and therefore
avoided even though they are relevant in the control flow of f1, since there they trig-
ger further relevant requests.

Conservative sequential execution is very restricted. In every state of the pro-
cessor, the number of issued read and instruction fetch requests is at most one larger

20

than the number of received responses. Mathematically, for a processor P with the
behavior function f seq

P the following property holds:

s̃ v Ecs P ⇒ s̃ = Ecs P ∨ 1+ #s̃ = # f seq
P (s̃)|RI

where RI is the set of read and instruction fetch requests. To get a less restricted
behavior, we allow that certain requests are issued earlier. We extend the notion of
processor correctness by shortcut and lookahead optimization. Based on the con-
cept of sequential behavior and optimization, we can now define a notion of cor-
rectness of processor functions.

Definition 8 (Correct Processor Function) A processor P with processor func-
tion

fP : RFR ω → REQ ω

is called correct, if it is a shortcut optimization of a lookahead optimization of f seq
P .

2

Based on this definition, it is possible to prove that the observable behavior of the
Alpha AXP architecture does not depend on the particular choice of the processor
functions as long as all of the functions are correct.

Theorem 1 (Scheduling Robustness) When all processors P ∈ PRC execute the
sequential behavior represented by f seq

P , the access stream is effectively equivalent
to the access stream obtained, as long as all processor functions are correct,

- the processors do not share any memory, and instruction fetch locations and

- write locations are disjoint

Sketch of Proof: Since every processor function is correct, we can assume a re-
sponse stream sP and a request stream rP corresponding to a lookahead optimiza-
tion for the response stream sseq

P and the request stream rseq
P that we obtain for the

sequential behavior such that the following holds: we can decompose the response
stream sP and the request stream rP on one hand into substreams of the response
stream Ecs P and the request stream Ecr P that we obtain for the considered behav-
ior. On the other hand, we can decompose the response stream sP and the request
stream rP into substreams of the response stream sseq

P and the request stream rseq
P

that we obtain for the sequential behavior. Hence the request streams rseq
P and re-

quest streams Ecr P are effectively equivalent.

21

2

The theorem shows that, although different scheduling strategies can be used as well
as different strategies for read and instruction fetch lookahead, as long as shared
memory is not used and no writes occur to locations that occur in instruction fetch
requests, the produced sequences of memory states for each of the processors coin-
cide.

6.6 Assumptions about Executions

We have given only a very schematic description of the behavior of the processors,
so far. In this section, we introduce a fundamental assumption about the behavior
of processors. In a first definition, we introduce the notion of the equivalence of
response streams.

Definition 9 (Equivalence of Response Streams) Two memory response streams
s1, s2 ∈ RFR are called equivalent and we write:

s1 ∼ s2

if read response messages and instruction fetch response messages for the same lo-
cations are identical and in the same order: mathematically expressed, if for all lo-
cations x , the following proposition holds:

s1|L(x) = s2|L(x)
where

L(x) = {P:R(x,a) : a ∈ DATA } ∪ {P:I(x,a) : a ∈ DATA }
2

Based on the notion of equivalence of response streams, we next define what it
means that a processor is robust against reorderings of its response stream.

Definition 10 (Response Delay Robustness) For a processor P , a processor func-
tion

fP : RFR ω → REQ ω

is called response delay robust if, for all short cut optimizations g of fP and all
response streams s1 and s2 that are feasible for fP and for which s1 ∼ s2 holds, we
have:

g(s1)
e∼ g(s2)

22

2

This leads to the following basic assumption about the behavior of processors:

• Assumption: Response Delay Robustness: for every processor P , its behav-
ior function f P is response delay robust.

Response delay robustness makes sure that the behavior of a processor does not
critically depend on the order in which its memory requests are executed, as long
as the scheduling constraints are fulfilled.

Let us next briefly analyze how significant the requirement is that the streams
Ecs P , Ecr P , Ect, Ecv are least fixpoints. To answer this question, we also ask whether
there exist solutions to the recursive equations for these streams that are not least
fixpoints.

To be able to answer this question we need a further assumption, however. We
did not say anything about the behavior of a processor in the case where it gets a re-
sponse for which it did not send a request. We may assume, however, that a proces-
sor that has terminated its execution and comes to a halt does not issue any further
requests even when it receives further (unrequested) responses.

Definition 11 (Response Satisfaction Property) A processor P with the behavior
function fP fulfills the response satisfaction property if, for all response streams
s ∈ RFR , the following proposition is fulfilled:

fP ↪→P s ∧ s complete for fP ∧ s v s̃ ⇒ fP (s) = fP (s̃)

This proposition expresses that the processor P with behavior fP does not issue fur-
ther memory requests after all its requests have been satisfied even if it gets further
memory responses that it has not requested.

2

By assuming the response satisfaction property for all processors, we can prove that
all fixpoints of the recursive equations are unique.

Theorem 2 (Uniqueness of Fixpoints) Let us assume the response satisfaction
property for all processors. If the streams Ecs P , Ecr P , Ect, Ecv are fixpoints of the defin-
ing equations and fulfill the constraints, then they are least fixpoints.

Proof: Assume the streams Ecs P , Ecr P , Ect, Ecv fulfill the equations and constraints
listed in section 5, but are not necessarily least fixpoints of the equations. Assume

23

further that the streams s̃P, r̃P , t̃, ṽ also fulfill the equations and constraints for the
same functions fP ,ms,md and furthermore:

s̃P v Ecs P ∧ r̃P v Ecr P ∧ t̃ v Ect ∧ ṽ v Ecv
The streams Ecs P are feasible responses for the streams fP . Formally expressed,
we have fP ↪→P Ecs P and Ecs P is complete for fP . According to the satisfaction
property of the processors from s̃P v Ecs P and fP ↪→P Ecs P we may conclude
r̃P = Ecr P . By straightforward equational reasoning we obtain

t̃ = Ect ∧ ṽ = Ecv ∧ s̃P = Ecs P

This shows that every set of streams that fulfills both the equations and the con-
straints is a least fixpoint as long as we assume the response satisfaction property
for all processors.

2

This theorem is of some importance for proofs about the execution of Alpha pro-
grams using the functional model. It indicates that in proofs we do not have to rely
on least fixpoint properties, but we may just work with fixpoint properties. Hence
we can work with purely equational reasoning.

The theorem does not say that there is only one fixpoint, it says that there is
only one fixpoint for each feasible scheduler function ms. Due to the underspeci-
fication in the scheduler, there are many different scheduler functions ms that may
have different fixpoints.

7 Locking

In order to synchronize programs properly, we need more sophisticated concepts
than the ones treated so far. For the Alpha architecture load locked instructions and
store conditional instructions are available. So far we have not said anything about
locking. In this section, we briefly show how loads with locks and conditional stores
can be treated in our model.

7.1 Extension of the Model to Locking

A locked load action is represented by P:K(x,a). Roughly speaking, a locked
load is a read action that in addition sets a lock flag. A following conditional store
succeeds, only if the lock flag is set. A lock flag is also cleared, if a write request is
executed for the location for which the lock flag was set. A successful conditional
store request is a write request.

24

Action name Syntax Memory Request Response
Load locked P:K(x,a) P:K?x P:R(x,a)
Store conditional successfully P:S(x,a) P:S(x,a) P:S(x,L)
Store conditional failed P:S(x,a) P:S(x,a) P:S(x,O)
Store conditional failed P:S(x,O) P:S(x,O) P:S(x,O)

Figure 5: Table actions for locking and their split into requests and responses

Conditional stores can be successful or they may fail. A successful conditional
store action is represented byP:S(x,a). A failed conditional store action is repre-
sented by P:S(x,O). A memory request issued by the processor P for executing
a locked read on location x is represented by P:K?x. A memory request issued
by the processor P for executing a successful conditional store is represented by
P:S(x,a). A memory request issued by the processor P for executing a failed
conditional store is represented by P:S(x,O).

It looks strange that a processor can issue a request for a failing store action,
but this is used to model the following situation. Let us assume that the instruction
stream contains a conditional store instruction. When the processor executes this
instruction, the failure of the corresponding conditional store may depend on the
situation inside the processor. Then the processor issues an instruction store request
that is condemned to failure.

Memory requests issued by the processor P for executing locked read or con-
ditional store instructions both require responses. A response to a memory request
issued by the processor P for executing a locked read on location x is represented
by P:R(x,a). A response to a memory request issued by the processor P for ex-
ecuting a conditional store is represented by P:S(x,L), if it was successful. A
memory request issued by the processor P for executing a conditional store is rep-
resented by the response message P:S(x,O), if it failed.

The table given in Figure 5 shows these additional actions and their decompo-
sition into memory requests and responses to them.

Let us assume from now on that the sets of requests REQ and responses RFR
also contain these additional requests and responses. A load locked request behaves
like a read request, but in addition may interfere with the execution of conditional
store requests. The conditional store request is like a write but, since it may fail its
failure or success needs to be indicated to the processor. With respect to the memory
scheduling there is no difference between locked load and read or between condi-
tional store and write. There is a difference, however, with respect to the read/write
consistency.

25

For convenience, when writing the specification, we use an additional artificial
request message with syntax P:K!x. It stands for locked loads in the access stream
that have been executed already. The execution of a locked load request P:K?x in
the access stream leads to a read response P:R(x,a) with the most recent written
value a. In the access stream, the marker P:K!x indicates the position in the access
stream, in which the lock has been executed. All other locks of processor P get
cleared.

In our mathematical model, we express read/write consistency for locked loads
by the following formula: for all streams u, w ∈ REQ ∗, s ∈ REQ ω we assume:

(u_w)|RI S K = 〈〉 ∧w|W (x) = 〈〉 ∧w|N OL(P) = w̃ ∧ u|N OL(P) = ũ
⇒

mm(u_Q:W(x,a)_w_P:K?x_s) =
P:R(x,a)_mm(ũ_Q:W(x,a)_w̃_P:K!x_s)

where W (x) is the set of all the write requests for location x :

W (x) = {P:W(x,a) ∈ REQ : P ∈ PRC ∧ a ∈ DATA }
and N O L(P) is the set of all the requests different from lock markers for processor
P :

N O L(P) = REQ “{P:K!x ∈ REQ : x ∈ LOC }
and RI S K is the set of all requests that require responses, namely the set of all the
read requests, instruction fetch requests, store conditional requests, and load locked
requests:

RI S K = {P:R?x ∈ REQ : P ∈ PRC ∧ x ∈ LOC } ∪
{P:I?x ∈ REQ : P ∈ PRC ∧ x ∈ LOC } ∪
{P:K?x ∈ REQ : P ∈ PRC ∧ x ∈ LOC } ∪
{P:S(x,a) ∈ REQ : P ∈ PRC ∧ x ∈ LOC ∧ a ∈ DATA ∪ {O}}

This shows that a locked load request is processed like a read request, but after ex-
ecution a marker is kept indicating the place in the access stream where the lock
occurred.

A conditional store on location y is successful if it is marked as successful by the
issuing processor P and if there is an executed lock P:K!x in the access stream and
there are no writes to the location x between this lock and the conditional store in
the access stream. The success of a conditional store is expressed by the following
formula (with a ∈ DATA):

(u_w)|RI S K = 〈〉 ∧w|W (x) = 〈〉 ∧w|K (P) = 〈〉 ∧ u|N OL(P) = ũ
⇒

mm(u_P:K!x_w_P:S(y,a)_s) = P:S(y,L)_mm(ũ_w_P:W(y,a)_s)

26

where K (P) is the set of all the lock markers for the process P :

K (P) = {P:K!x ∈ REQ : x ∈ LOC }

and W (x) is the set of all the write requests to location x as specified above.
A conditional store to location x fails if there is a write to location x between

the last locked load and the execution of the store request.

(u_w)|RI S K = 〈〉 ∧w|W (x) 6= 〈〉 ∧w|K (P) = 〈〉 ∧ u|N OL(P) = ũ
⇒

mm(u_P:K!x_w_P:S(y,a)_s) = P:S(y,O)_mm(ũ_w_s)

A conditional store also fails if there is no lock marker that was issued by the pro-
cessor still valid.

u|RI S K = 〈〉 ∧ u|K (P) = 〈〉
⇒

mm(u_P:S(x,a)_s) = P:S(y,O)_mm(u_s)

The failure of a conditional store request marked as failing is expressed by the fol-
lowing formula:

u|RI S K = 〈〉 ∧ u|N OL(P) = ũ
⇒

mm(u_P:S(x,O)_s) = P:S(x,O)_mm(ũ_s)

Whether a conditional store request issued by a processor is marked as condemned
to failure or as successful if not interfered with by another processor is left unspec-
ified. In [AARM 92], page (I) 4-9, this is called unpredictable. In the functional
model of a processor, it is part of the specification of the behavior of the proces-
sor to describe under which conditions a conditional store request is condemned to
failure or as successful. In the mathematical model these conditions can also be left
unspecified, and thus unpredictable. However, more sophisticated fairness condi-
tions can also be formulated.

7.2 Analysis of a Simple Locking Discipline

In this section we show how a simple mutual exclusion scheme does work with the
described memory scheduling discipline.

We consider the following mutual exclusion scheme as given in [AARM 92],
page (I) 5-6. Every processor executes the following program, before it gets into

27

its critical phase:

try again : LDL R1 x
< modify y >

STC R1 x
B E Q R1 no store
...

no store : B R try again

Our specification allows us to conclude that the store conditional request can be suc-
cessful only if it is issued as successful by the processor, and if in the access stream
there is no write to location x between the load locked and the store conditional.
The specification of the memory function allows us to prove that according to these
facts this simple protocol works.

8 Conclusion

The purpose of this report is to give a mathematical model of the Alpha shared mem-
ory system. It provides a consistent description of the Alpha shared system and of
the locking rules as given in [AARM 92]. It is, of course, still a simplification, since
it does not consider interrupts or exceptions.

It is nevertheless helpful for analyzing some of the properties of the Alpha ar-
chitecture and the programs that run on it. It moreover clarifies some issues not
treated explicitly in [AARM 92] such as the treatment of causal loops.

This report also shows the usefulness and flexibility of functional system mod-
els. It demonstrates that functional system specifications can be used to describe
system architectures and properties thereof of considerable complexity.

Acknowledgement: This work was mainly carried out during my stay at DIGITAL
Systems Research Center in April 1993. The excellent working environment and
stimulating discussions with the colleagues at SRC, in particular Jim Horning, Yuan
Yu, and Jim Saxe are gratefully acknowledged. I thank Jim Horning for his careful
reading of a version of the manuscript and his most useful comments.

A Appendix: A More Liberal Scheduling Concept

In the model given so far we have a coherent memory in the sense that all processors
make observations that are consistent with the assumption of a sequential global

28

memory. Therefore, if two locations x and y that are initially 1 are updated to 2,
then it is impossible that one process receives the response stream

R(y,2) R(x,1) R(x,2)

as reaction to its request stream

R?y MB R?x MB R?x

and the other process obtains

R(x,2) R(y,1) R(y,2)

as reaction to its request stream

R?x MB R?y MB R?y

This is excluded by the assumption of consistent updates of a global memory lead-
ing to serializability for the access stream.

We model a more liberal memory scheduling for the Alpha architecture by a
data flow model as given in Figure 6. In this data flow model the memory is dis-
tributed. Every processor has its own copy of the memory. The processors are con-
nected to their memory by channels. The channels are denoted by csP , crP , and ctP

where P denotes the corresponding processor.
Each processor sends a stream of memory requests to the scheduler and receives

a stream of read response messages from its memory. In a computation of the Al-
pha architecture, the behavior of each processor P ∈ PRC and the function mm
are modeled as before. In a computation, a stream is associated with each of the
channels csP , crP , and ctP . These streams will be denoted by Ecs P , Ecr P , and Ect P

respectively.
We formalize the requirements for the behavior of the scheduler component by

a function
ms : (PRC → REQ ω)→ (PRC → REQ ω)

which models the proper memory access scheduling and determines the access
streams and thus the access orderings and the memory service

mm : REQ ω → RFR ω

which models read/write consistency. The function md then is simply obtained by
composing ms and mm.

29

�
�

�

�

csPn
-

csP1
-

...

Pn

P1

crPn
-

crP1
-

ms

ctPn
-

ctP1
-

...

mm

mm

cvPn

cvP1

�
�

�

�

Alpha AXP Architecture

Processors Memory

Figure 6: Data flow graph of the Alpha architecture

We give the specification for the function ms by the relation between the streams
Ecr P and Ect P . The function ms merges and reschedules its input streams.

Two streams s1 and s2 are called consistent and we write

s1 1 s2

if
s1 v s2 ∨ s2 v s1

For the function ms we require the following safety conditions:

• for all locations x the access streams are consistent for all processors P and
Q:

ms(r)P |W (x) 1 ms(r)Q |W (x)

where

W (x) = {P:W(x,a) ∈ REQ : P ∈ PRC ∧ a ∈ DATA }

• for each processor P , the restriction of the access order with respect to the
issue order is obeyed in its access stream; for all r ∈ (PRC → REQ ω) we
have

∃t ∈ REQ ω : ms(r)P v t ∧
∀c1, c2 ∈ R(P) : c1 < c2 ⇒ [c1 < c2] in [rP , t]

where
R(P) = {c ∈ REQ : processor(c) = P}

30

• for each processor P in its access stream ms(r)P only read requests for P
occur.

For the scheduler we require the following liveness condition: for any pair of mem-
ory requests c1, c2 of processor P for which we have c1 < c2 in the table given in
section 3, their relative order in the issue stream Ecr P and in access stream ms(Ecr)
coincide. Expressed mathematically the liveness condition is

c1 < c2 ⇒ [c1 < c2] in [Ecr P ,ms(Ecr)P]

This is a liveness condition that restricts the choice of the scheduling function ms
in addition to the safety properties required for ms making sure that all requests are
eventually scheduled.

B Appendix: Mathematical Basis

A stream represents a communication history for a channel. A stream of messages
over a given message set M is a finite or infinite sequence of messages. We define

Mω =d f M∗ ∪ M∞

We briefly repeat the concepts from the theory of streams that are used in the spec-
ifications. More comprehensive explanations can be found in [Broy 90].

• By x_y we denote the result of concatenating two streams x and y. We as-
sume that x_y = x , if x is infinite.

• By 〈〉 we denote the empty stream.

• By f t (x) we denote the first element in a stream; if the stream x is empty, it
is undefined.

• By rt (x)we denote the stream obtained from x by dropping its first element;
if the stream x is empty, the resulting stream is empty.

• If a stream x is a prefix of a stream y, we write x v y. The relationv is called
prefix order. It is formally specified by

x v y ≡d f ∃z ∈ Mω : x_z = y

31

The behavior of deterministic interactive systems with n input channels and m out-
put channels is modeled by (n,m)-ary stream processing functions

f : (Mω)n → (Mω)m

We use some notions from domain and fixpoint theory that are briefly listed:

• A stream processing function is called prefix monotonic, if for all tuples of
streams x , y ∈ (Mω)n we have

x v y ⇒ f (x) v f (y)

• By tS we denote a least upper bound of a set S, if it exists.

• A set S is called directed, if for any pair of elements x and y in S there exists
an upper bound in S.

• A stream processing function f is called prefix continuous if f is prefix
monotonic and for every directed set S ⊆ Mω we have:

f (tS) = t{ f (x) : x ∈ S}

• A partially ordered set is called complete if every directed set has a least upper
bound.

The set of streams and the set of tuples of streams are complete. Note that every
directed set of streams has a least upper bound.

In specifications we use the filter function in infix notation. Let S be an arbitrary
subset of the set M and x ∈ Mω be a stream over M . We specify:

(m_x)|S = x |M0 ⇐ ¬(m ∈ S)

(m_x)|S = m_(x |M0)⇐ m ∈ S

〈〉|M0 = 〈〉
Furthermore we use the function

: Mω → IN ∪ {∞}

that yields the length of a stream. It is specified by (for m ∈ M):

#〈〉 = 0

32

#(m_x) = 1+ #x

We model the behavior of interactive components by sets of continuous (and there-
fore by definition also monotonic) stream processing functions. Monotonicity mod-
els causality between input and output. Continuity models the fact that for every
behavior the systems reaction to infinite input can be predicted from the reactions
of the component to all finite prefixes of this input1. Monotonicity reflects the fact
that in an interactive system previous output cannot be changed when further in-
put arrives. The empty stream represents the information “further communication
unspecified”.

A specification describes a set of stream processing functions that represent the
behaviors of the specified systems. If this set is empty, the specification is called
inconsistent. If the set contains exactly one element, then the specification is called
determined. If this set has more then one element, then the specification is called un-
derdetermined and we also speak of underspecification. An underdetermined spec-
ification can also be used to describe hardware or software units that are nondeter-
ministic. An executable system description is called nondeterministic, if it is un-
derdetermined. Then the underspecification in the description of the behaviors of
a nondeterministic system allows nondeterministic choices carried out during the
execution of the system. In the functional modeling of interactive systems there is
no difference in principle between underspecification and the operational notion of
nondeterminism. In particular, it does not make any difference in such a framework
whether these nondeterministic choices are taken before the execution starts or step
by step during the execution.

1This does not exclude the specification of more elaborate liveness properties including fairness.
Note, fairness is, in general, a property that has to do with “fair” choices between an infinite number
of behaviors.

33

References

[AARM 92] R.L. Sites (ed.): Alpha Architecture Reference Manual.
DIGITAL Press 1992

[Attiya, Friedmann 94] H. Attiya, R. Friedmann: Programming Alpha Based
Multiprocessors the Easy Way. Unpublished Manuscript.

[Broy 90] M. Broy: Functional Specification of Time Sensitive
Communicating Systems. REX Workshop. In: J. W. de
Bakker, W.-P. de Roever, G. Rozenberg (eds.): Step-
wise Refinement of Distributed Systems. Lecture Notes
in Computer Science 430, Springer 1990, 153-179

[Broy 93] M. Broy: Functional Specification of Time-Sensitive
Communicating Systems. In: ACM Transactions on
Software Engineering and Methodology 2:1, 1993, 1-46

[Shasha, Smir 88] D. Shasha, M. Smir: Efficient and Correct Execution of
Parallel Programs that Share Memory. In: ACM Trans-
actions on Programming Languages and Systems. 10:2,
1988, 282–312.

34

