
September 1, 1994

SRC
Research
Report 128a

A Library for Visualizing
Combinatorial Structures

Marc A. Najork and Marc H. Brown

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their properties in depth. This experience is useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

A Library for Visualizing
Combinatorial Structures

Marc A. Najork and Marc H. Brown

September 1, 1994

A preliminary version of this report will appear in the proceedings of the 1994
IEEE Visualization’94 conference, October 1994.

Color versions of Figures 1 and 3 appear in SRC Research Report 110.

cDigital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

This report describes ANIM3D, a 3D animation library targeted at visualizing com-
binatorial structures. In particular, we are interested in algorithm animation. Con-
structing a new view for an algorithm typically takes dozens of design iterations,
and can be very time-consuming. Our library eases the programmer’s burden by
providing high-level constructs for performing animations, and by offering an in-
terpretive environment that eliminates the need for recompilations. This report also
illustrates ANIM3D’s expressiveness by developing a 3D animation of Dijkstra’s
shortest-path algorithm in just 70 lines of code. An accompanying videotape shows
the library in use.

1 Background

Algorithm animation is concerned with visualizing the internal operations of a
running program in such a way that the user gains some understanding of the
workings of the algorithm. Due to lack of adequate hardware, early algorithm
animation systems were restricted to black-and-white animations at low frame
rates [6]. As hardware has improved, smooth motion [11, 15], color [1], and
sound [4] have been used to increase the level of expressiveness of the visualizations.

Constructing an enlightening visualization of an algorithm in action is a tricky
proposition, involving both the artistic and pedagogical skills of the animator. Most
successful views undergo dozens of design iterations. Based on our experiences in
the 1992 and 1993 SRC Algorithm Animation Festivals [2, 3] (20 SRC researchers
participated each year), we found that a high-level animation library, coupled with
an interpreted language, was instrumental in developing high-quality views [12].

A high-level animation library allows users to focus on what they want to
animate, without having to spend too much time on the how. An interpreted
language significantly shortens the time needed for each iteration in the design
cycle because users do not need to recompile the view after modifying its code. In
fact, in our algorithm animation system, users just need to hit the “run” button in
the control panel to see their changes in action.

In 1992, we began to explore how 3D graphics could be used to further increase
the expressiveness of visualizations [5]. We identified three fundamental uses of 3D
for algorithm visualization: Expressing fundamental information about structures
that are inherently two-dimensional; uniting multiple views of the underlying struc-
tures; and capturing a history of a two-dimensional view. Fig. 1 shows snapshots
of some of the 3D animations we developed.

We found that building enlightening 3D views is even harder than building good
2D views. One obvious reason is that we (and most people) are much less used to
designing in 3D than in 2D. But a more pragmatic problem was that our 3D software
infrastructure was quite impoverished: We used a small, object-oriented graphics
library for displaying static 3D scenes. This library (like the rest of our algorithm
animation system) was written in Modula-3 and used PEXlib as its underlying
graphics system. This architecture was limiting both in terms of turnaround time
and in terms of animation support. Therefore, drawing on our prior experience in
2D algorithm animation, we built ANIM3D, a 3D object-oriented animation library.

ANIM3D supports several window systems (X and Trestle [13]) and several
graphics systems (PEX and OpenGL). The base library is implemented in Modula-
3; clients can either directly call into this base library, or access it through Obliq [7],
an interpreted embedded language. Using ANIM3D, the size of a prototypical 3D

1

Figure 1: These snapshots are examples of the type of views for which ANIM3D is very well suited.
Each view requires from 50 to 200 lines of code to produce. The top-left snapshot shows a divide-
and-conquer algorithm for finding the closest pair of a set of points in the plane. The third dimension
is used here to show the recursive structure of the algorithm. The top-right snapshot shows a view
of Heapsort. Each element of the array is displayed as a stick whose length and color is proportional
to its value. With clever placement, the tree structure of the heap is visible from the front and the
array implementation of the tree is revealed from the side. The bottom-left snapshot shows a k-d tree,
for k = 2. When viewed from the top, the walls reveal how the plane has been partitioned by the
tree; when viewed from the front or side, we see the tree. The bottom-right snapshot shows a view
of Shakersort. The vertical sticks show the current values of elements in the array, and the plane of
“paint chips” underneath provides a history of the execution. The sticks stamp their color onto the
chips plane, which is pulled forward as the execution progresses.

2

animation (Dijkstra’s shortest-path algorithm) decreased from about 2000 lines of
Modula-3 to 70 lines of Obliq, and the part of the design cycle time devoted to
compiling, linking, and restarting the application from about 7 minutes to about 10
seconds of reloading by the Obliq interpreter (on a DECstation 5000/200).

Although ANIM3D was designed with algorithm animation in mind, it is a
general-purpose animation system. We believe it to be particularly well suited for
visualizing and animating combinatorial structures.

The remainder of this report is structured as follows. After presenting an
overview of ANIM3D, we show how to use the library to construct a simple anima-
tion. The animation is of a trivial solar system. We then build a 3D visualization
of Dijkstra’s algorithm for finding the shortest path in a graph. This animation can
also serve as an introduction to our methodology for animating algorithms. Finally,
we discuss how ANIM3D compares with other general-purpose animation systems
and with other algorithm animation systems.

2 An Overview of Anim3D

ANIM3D is built upon three basic concepts: graphical objects, properties, and
callbacks.

A graphical object, or “GO”, can be a geometric primitive such as a line,
polygon, sphere, or cone, a light source, a camera, or a group of other GOs.
Graphical objects form a directed acyclic graph; typically, the roots of the DAG are
the top-level windows, the internal nodes are groups of other GOs, and the leaves
are geometric primitives, lights, or cameras. The GO class hierarchy is as follows:

RootGO

OrthoCameraGO
PerspCameraGO

AmbientLightGO
VectorLightGO
PointLightGO
SpotLightGO

LineGO
MarkerGO

PolygonGO
BoxGO
SphereGO
ConeGO
CylinderGO
DiskGO
TorusGO

GroupGO

CameraGO

LightGO

NonSurfaceGO

SurfaceGO

GO

A property consists of two parts: a name and a value. Property names are
constants, such as “Surface Color” or “Sphere Radius.” Property values are objects

3

(in an object-orientedprogramming sense) representing colors, 3D points, reals, etc.
Because property values are objects, they are mutable and can be shared by several
GOs. In addition,property values are time-variant: the actual value encapsulated by
the property value depends on the current animation time, a system-wide resource.

Associated with each graphical object o is a property mapping, a partial function
from property names to property values. A property associated with o affects not
only the appearance of o, but also the appearance of all those descendants of o that
do not explicitly override the property.

Although it is legal to associate any property with any graphical object, the
property does not necessarily affect the object. For example, associating a “Sphere
Radius” property with an ambient light source does not affect the appearance or
behavior of the light. However, associating this property with a group g potentially
affects all spheres contained in g.

Graphical objects are reactive, that is, they can respond to events. We distin-
guish three different kinds of events: mouse events are triggered by pressing or
releasing mouse buttons, position events are triggered by moving the mouse, and
key events are triggered by pressing keyboard keys.

Events are handled by callbacks. There are three types of callbacks, corre-
sponding to the three kinds of events. Associated with each graphical object are
three callback stacks. The client can define or redefine the reactive behavior of a
graphical object by pushing a new callback onto the appropriate stack. The previous
behavior of the graphical object can easily be reestablished by popping the stack.

Consider a mouse event e that occurs within the extent of a top-level window
w. Associated withw is a RootGO r. The top callback on r’s mouse callback stack
will be invoked (if the callback stack is empty, the event will simply be dropped).
The callback might perform an action, such as starting to spin the scene, or it might
delegate the event to one of r’s children.

3 Using Anim3D

Both Modula-3 and Obliq support the concepts of modules and classes. (Obliq
is based on prototypes and delegation, not classes and inheritance; however, it is
expressive enough to simulate them.) For each kind of graphical object, there is
a Modula-3 module in ANIM3D. This module contains the class of the graphical
object, and a set of its associated functions and variables. For each Modula-3
module, there is a “wrapper” that makes it accessible as a module from Obliq.

The module GO contains the class of all graphical objects. There are various
methods associated with them: methods for defining, undefining, and accessing

4

Figure 2: The ANIM3D Solar System

5

properties in the property mapping of a graphical object, and methods for pushing
and popping the three callback stacks of the graphical object as well as for dispatch-
ing events to their top callback objects. In addition, there is one property named
GO Transform, which names the spatial transformation property and is meaning-
ful for all graphical objects. Unlike other properties, a transformation property
does not “override” other transformations that are closer to the root, but is rather
composed with them.

The module GroupGO contains the class of all graphical object groups, that
is, graphical objects that are used to group other graphical objects together. The
GroupGO class has methods for adding elements to a group and removing them
again. The module also contains a function New, which creates a new group and
returns it.

A 3D window is regarded as a special form of group, that contains all the objects
in a scene (we therefore call it the “root” of the scene), and has some additional
properties, such as the color of the background, whether depth cueing is in effect,
etc. Also associated with each window is the camera that is currently active, and
a “graphics base,” an abstraction of the underlying windows and graphics system.
Finally, the RootGOmodule contains functionsNew and NewStd. The latter creates
a new scene root object with reasonable default elements, callbacks, and properties
(a perspective camera, two white light sources, top-level reactive behavior that
allows the user to rotate and move the scene, and various surface properties).

Both PEX and OpenGL distinguish between lines and surfaces: surfaces are
affected by light sources, lines are not. There are a variety of properties common
to all surfaces: their color, transparency, reflectivity, shading model, and so on.
Although it is legal to attach these properties to non-surfaces, it will not affect
them. In order to emphasize that these properties are meaningful only for surfaces,
we provide a module SurfaceGO, which contains the superclass of all graphical
objects composed of surfaces, along with their related properties. We also provide
a NonSurfaceGO module for lines and markers.

The module SphereGO contains the class of spheres, which is a subclass of the
SurfaceGO class. In addition to the definition of the sphere class, SphereGO con-
tains a function New for creating new sphere objects, and property names Center
and Radius, which are used to identify the properties determining the center and
the radius of the sphere.

Here is a complete Obliq program to display a planet and its moon. The user
can control the camera using the mouse. This scene is displayed in the top-left
snapshot of Fig. 2.

6

let root = RootGO_NewStd();
let planet = SphereGO_New([0,0,0],1);
SurfaceGO_SetColor(planet,"lightblue");
root.add(planet);
let moon = SphereGO_New([3,0,0],0.5);
SurfaceGO_SetColor(moon,"offwhite");
root.add(moon);

Property values can be time-variant; that is, their value depends on the time of the
animation clock. Time-variant property values can either be unsynchronized or
synchronized.

An unsynchronized property value starts to change at the moment it is created,
and animates the graphical object o as long as it is attached to o. The animation does
not need to be triggered by any special command. For instance, unsynchronized
property values can be used to rotate the scene or some part of it for an indefinite
period of time.

Synchronized property values, on the other hand, are used to animate several
aspects of a scene in a coordinated fashion. Each synchronized property value is
“tied” to an animation handle, and many values can be tied to the same handle.
A synchronized property value object accepts animation requests, messages that
ask it to change its current value, beginning at some starting time and lasting for a
certain duration. When a client sends an animation request to a property value, the
request is not immediately satisfied, but instead stored in a request queue local to
the property value. Sending the message animate to an animation handle causes
all property values controlled by this handle to be animated in synchrony. The call
to animate returns when all animations are completed.

When added to the program above, the following few lines create a 25-second
animation. The planet rotates six times about its axis, while the moon revolves
once around the planet. In order to show the rotation better, we add a red torus
around the planet, aligned to the axis of rotation. See Fig. 2.

let torus = TorusGO_New([0,0,0],[1,0,0],1,0.1);
root.add(torus);
SurfaceGO_SetColor(torus,"red");
let ah = AnimHandle_New();
let planettransform = TransformProp_NewSync(ah);
planet.setProp(GO_Transform,planettransform);
torus.setProp(GO_Transform,planettransform);
let moontransform = TransformProp_NewSync(ah);
moon.setProp(GO_Transform,moontransform);
moontransform.getBeh().rotateY(2*PI,0,25);
planettransform.getBeh().rotateY(12*PI,0,25);
ah.animate();

7

Note that we chose to attach the same transformation property to both the torus
and the planet. Alternatively, we could have made a group containing both, and
attached the transformation property just to this group.

4 Case Study: Shortest-Path Algorithm Animation

This section contains a case study of using ANIM3D with the Zeus algorithm anima-
tion system [1] to develop an animation of Dijkstra’s shortest-path algorithm. We
first describe the algorithm, then sketch the desired visualization of the algorithm,
and finally, present the actual implementation of the animation.

4.1 The Algorithm

The single-source shortest-path problem can be stated as follows: given a directed
graph G = (V;E) with weighted edges, and a designated vertex s, called the
source, find the shortest path from s to all other vertices. The length of a path is
defined to be the sum of the weights of the edges along the path.

The following algorithm, due to Dijkstra [10], solves this problem (assuming
all edge weights are non-negative):

for all v 2 V do D(v) :=1

D(s) := 0; S := ;

while V n S 6= ; do
let u 2 V n S such that D(u) is minimal
S := S [fug

for all neighbors v of u do
D(v) := minfD(v); D(u) +W (u; v)g

endfor
endwhile

In this pseudo-code,D(v) is the distance from s to v, W (u; v) is the weight of the
edge from u to v, and S is the set of vertices that have been explored thus far. V nS
denotes those elements in V that are not also in S.

4.2 The Desired Visualization

An interesting 3D animation of this algorithm is shown in Fig. 3. The vertices of the
graph are displayed as white disks in the xy plane. Above each vertex v is a green
column representingD(v), the best distance from s to v known so far. Initially, the
columns above each vertex other than s will be infinitely (or at least quite) high.

8

Figure 3: These snapshots are from the animation of Dijkstra’s shortest-path algorithm described in
section 4. The top-left snapshot shows the data just before entering the main loop. The top-right
snapshot shows the algorithm about one-third complete. In the bottom-left snapshot, the algorithm
is about 2/3 complete, and the snapshot at the bottom-right shows the algorithm upon completion.

9

An edge from u to v with weight W (u; v) is shown by a white arrow which starts
at the column over u at height 0 and ends at the column over v at height W (u; v).

Whenever a vertex u is selected to be added toS, the color of the corresponding
disk changes from white to red. The addition D(u) + W (u; v) is animated by
highlighting the arrow corresponding to the edge (u; v) and lifting it to the top of
the column (i.e. raising it by D(u)). If D(u) +W (u; v) is smaller than D(v), the
end of the arrow will still touch the green column over D(v), otherwise, it will not.
In the former case, we shrink the column over v to heightD(u)+W (u; v) to reflect
the assignment of a new value to D(v), and color the arrow red, to indicate that it
became part of the shortest-path tree. Otherwise, the arrow simply disappears.

Upon completion, the 3D view shows a set of red arrows which form the
shortest-path tree, and a set of green columns which represent the best distance
D(v) from s to v.

4.3 Implementation of the Animation

In the Zeus framework, strategically important points of an algorithm are annotated
with procedure calls that generate “interesting events.” These events are reported to
the Zeus event manager, which in turn forwards them to all interested views. Each
view responds to interesting events by drawing appropriate images. The advantages
of this methodology are described elsewhere [6].

4.3.1 The Interesting Events

The interesting events for Dijkstra’s shortest-path algorithm (and many other
shortest-path algorithms) are as follows:

� addVertex(u,x,y,d) adds a vertex u (where u is an integer identifying
the vertex) to the graph. The vertex is shown at position (x; y) in the xy
plane. In addition, D(u) is declared to be d.

� selectVertex(u) indicates that u was added to S.

� addEdge(u,v,w) adds an edge from u to v with weight w to the graph.

� raiseEdge(u,v,d) visualizes the additionD(u) +W (u; v) by raising the
edge (u; v) by d (where the caller passes D(u) for d).

� lowerDist(u,d) indicates that D(u) gets lowered to d.

� promoteEdge(u,v) indicates that the edge (u; v) is part of the shortest-path
tree.

10

� demoteEdge(u,v) indicates that the edge (u; v) is not part of the shortest-
path tree.

In addition, we need another event for house keeping purposes:

� start(m) is called at the very beginning of an algorithm’s execution; it
initializes the view to hold up to m vertices and up to m2 edges.

4.3.2 Annotating the Algorithm

Here is an annotated version of the algorithm we showed in Section 4.1:

views.start(jV j)

for all v 2 V do D(v) :=1

D(s) := 0; S := ;

for all v 2 V do views.addVertex(v,vx,vy,D(v))

for all (u; v) 2 E do views.addEdge(u,v,W (u; v))

while V n S 6= ; do
let u 2 V n S such that D(u) is minimal
S := S [fug

views.selectVertex(u)

for all neighbors v of u do
views.raiseEdge(u,v,D(u))

if D(v) < D(u) +W (u; v) then
views.demoteEdge(u,v)

else
D(v) := D(u) +W (u; v)

views.promoteEdge(u,v)

views.lowerDist(v,D(v))

endif
endfor

endwhile

In this pseudo-code, views is the dispatcher provided by Zeus. The dispatcher will
notify all views the user has selected for the algorithm.

4.3.3 The View

A view is an object that has a method corresponding to each interesting event, and
a number of data fields. In this view, the data fields are as follows: a RootGO

object that contains all graphical objects of the scene, together with a camera and

11

light sources; arrays of graphical objects holding the disks (vertices), columns
(distances), arrows (graph edges), and shortest-path tree edges; and an “animation
handle” for triggering animations. This leads us to a skeletal view:

let view = {
scene => RootGO_NewStd(),
ah => AnimHandle_New(),
verts => ok, (* initialized by method start *)
dists => ok, (* initialized by method start *)
parent => ok, (* initialized by method start *)
edges => ok, (* initialized by method start *)
start => meth(self,m) ... end,
addVertex => meth(self,u,x,y) ... end,
selectVertex => meth(self,u) ... end,
addEdge => meth(self,u,v,w) ... end,
raiseEdge => meth(self,u,v,z) ... end,
lowerDist => meth(self,u,z) ... end,
promoteEdge => meth(self,u,v) ... end,
demoteEdge => meth(self,u,v) ... end

};

The Zeus system has a control panel that allows the user to select an algorithm
and attach any number of views to it. Whenever the user creates a new 3D view,
a new Obliq interpreter is started, and reads the view definition. The algorithm
and all views run in the same process, but in different threads; thread creation is
very light-weight. The expression above creates a new object view, and initializes
view.scene to be a RootGO, and view.ah to be an animation handle.

The remainder of this section fleshes out the eight methods of view, which
correspond to the eight interesting events:

12

� Thestartmethod is responsible for initializingview.verts,view.dists,
and view.parent to be arrays of size m, and view.edges to be an m�m

array. The elements of the newly created arrays are initialized to the dummy
value ok. Here is the code:

start => meth(self,m)
self.verts := array_new(m, ok);
self.dists := array_new(m, ok);
self.parent := array_new(m, ok);
self.edges := array2_new(m, m, ok);

end

� The addVertex method adds a new vertex to the view. Vertices are repre-
sented by white disks that lie in the xy plane. Above each vertex, we also
show a green column of height d, provided that d is greater than 0. The
location of the cylinder’s base is constant, while its top is controlled by an
animatable point property value.

addVertex => meth(self,u,x,y,d)
self.verts[u] := DiskGO_New([x,y,0], [0,0,1], 0.2);
self.scene.add(self.verts[u]);
if d > 0 then

let top = PointProp_NewSync(self.ah,[x,y,d]);
self.dists[u] := CylinderGO_New([x,y,0], top, 0.1);
SurfaceGO_SetColor(self.dists[u],"green");
self.scene.add(self.dists[u]);

end;
end

� The selectVertex method indicates that a vertex u has been added to the
set S by coloring u’s disk red:

selectVertex => meth(self,u)
SurfaceGO_SetColor(self.verts[u],"red");

end

13

� The addEdge method adds an edge (represented by an arrow) from vertex
u to vertex v. The arrow starts at the disk representing u, and ends at the
column over v at height w. An arrow is composed of a cone, a cylinder, and
two disks; its geometry is computed based on the “Center” property of the
disks representing the vertices to which it is attached. The following diagram
illustrates this relationship:

w

b a

c
e

And here is the code for the method:

addEdge => meth(self,u,v,w)
let a = DiskGO_GetCenter(self.verts[u]).get();
let b = DiskGO_GetCenter(self.verts[v]).get();
let c = Point3_Plus(b,[0,0,w]);
let d = Point3_Minus(c,a);
let e = Point3_Minus(c,Point3_Scale(d,0.4));
let grp = GroupGO_New();
grp.setProp(GO_Transform, TransformProp_NewSync(self.ah));
grp.add(DiskGO_New(a,d,0.1));
grp.add(CylinderGO_New(a,e,0.1));
grp.add(DiskGO_New(e,d,0.2));
grp.add(ConeGO_New(e,c,0.2));
self.edges[u][v] := grp;
self.scene.add(grp);

end

14

� TheraiseEdgemethod highlights the edge fromu to v by coloring it yellow,
and then lifting it up by z. The arrow is moved by sending a “translate”
request to its transformation property. The translation is controlled by the
animation handle self.ah, and shall take 2 seconds to complete. Calling
self.ah.animate() causes all animation requests controlled by self.ah
to be processed.

raiseEdge => meth(self,u,v,z)
SurfaceGO_SetColor(self.edges[u][v],"yellow");
let pv = GO_GetTransform(self.edges[u][v]);
pv.getBeh().translate(0,0,z,0,2);
self.ah.animate();

end

� The methodlowerDist indicates that the costD(u) of vertex u got lowered,
by shrinking the green cylinder representing D(u). This is done by sending
a linMoveTo (“move over a linear path to”) request to the “Point2” property
of the cylinder.

lowerDist => meth(self,u,z)
let pv = CylinderGO_GetPoint2(self.dists[u]);
let p = pv.get();
pv.getBeh().linMoveTo([p[0], p[1], z], 0, 2);
self.ah.animate();

end

� The method promoteEdge indicates that (u; v), the edge that is currently
highlighted, shall become part of the shortest-path tree. This is indicated
by coloring the edge red. If there already was a red edge leading to v, it is
removed from the view.

promoteEdge => meth(self,u,v)
SurfaceGO_SetColor(self.edges[u][v],"red");
if self.parent[v] isnot ok then

self.demoteEdge(self.parent[v],v);
end;
self.parent[v] := u;

end

15

� Finally, the method demoteEdge removes the edge (u; v) from the view:

demoteEdge => meth(self,u,v)
self.scene.remove(self.edges[u][v]);

end

This completes our example. The complete view is about 70 lines of code,compared
to the roughly 2000 lines of the PEXlib-based version that generated the animations
presented in [5]. This measure is fairly honest; we did not add any functionality
(such as a new class ArrowGO) to the base library in order to optimize this example.
Furthermore, turnaround time during the design of this view was limited only by
the design process per se (and our typing speed), whereas compiling a single file
and relinking with the Zeus system takes several minutes.

5 Related Work

There are two areas that have influenced ANIM3D: general-purpose 3D animation
libraries and algorithm animation systems that have been used for developing 3D
views.

The most closely related general-purpose animation library is OpenInven-
tor [17, 18], an object-oriented graphics library with a C++ API. OpenInventor,
like ANIM3D, represents a scene as a DAG of “nodes”. Geometric primitives,
cameras, lights, and groups are all special types of nodes. However, there are three
key differences between ANIM3D and OpenInventor:

� ANIM3D includes an embedded interpretive language, which is instrumental
for achieving fast turnaround and short design cycles.

� OpenInventor views properties (such as colors and transformations) as or-
dinary nodes in the scene DAG. This means that the order of nodes in a
group becomes important. In this respect, ANIM3D is more declarative than
OpenInventor: the order in which objects are added to a group does not
matter.

� In a number of aspects, OpenInventor requires the programmer to do more
work than ANIM3D requires. For example, OpenInventor clients have to
explicitly redraw a scene whereas ANIM3D uses a damage-repair model to
automatically redraw just those primitives that need to be redrawn.

16

Nonetheless, OpenInventor is a very impressive commercial product that greatly
simplifies 3D graphics. Many of the ideas of OpenInventor can be found in work
done at Brown University [16, 19].

There are three algorithm animation systems that have been used for developing
3D views, Pavane, Polka3D, and GASP.

In Pavane [8], the computational model is based on tuple-spaces and mappings
between them. Entering tuples into the “animation tuple space” has the side-effect
of updating the view. A small collection of 3D primitives are available (points,
lines, polygons, circles, and spheres), and the only animation primitives are to
change the positions of the primitives.

Polka3D [14], like Zeus, follows the BALSA model for animating algorithms.
Algorithms communicate with views using “interesting events,” and views draw on
the screen in response to the events. The graphics library is similar to ANIM3D in
goals and features, but it appears to be a bit slimmer and more focused on algorithm
animations. Unlike our system, views are not interpreted, so turnaround time is not
instantaneous.

The GASP [9] system is tuned for developing animations of computational
geometry algorithms involving three (and two) dimensions. Because a primary
goal of the system is to isolate the user from details of how the graphics is done, a
user is limited to choosing from among a collection of animation effects supplied by
the system. The viewing choices are typically stored in a separate “style” file that is
read by the system at runtime; thus, GASP provides rapid turnaround. However, it
does not provide the flexibility to develop arbitrary views with arbitrary animation
effects.

6 Conclusion

The first part of this report described ANIM3D, an object-oriented 3D animation li-
brary targeted at visualizing combinatorial structures, and in particular at animating
algorithms. The second part presented a case study showing how to use ANIM3D
within the Zeus algorithm animation system for producing a 3D visualization of a
graph-traversal algorithm.

ANIM3D is based on three concepts: scenes are described by DAGs of graph-
ical objects, time-variant property values are the basic animation mechanism, and
callbacks are the mechanism by which clients can specify reactive behavior. These
concepts provide a simple, yet powerful framework for building animations.

ANIM3D provides fast turnaround by incorporating an interpretive language that
allows the user to modify the code of a program even as it runs. Previous experience

17

has shown us that powerful animation facilities and fast turnaround time are crucial
for enabling non-expert users to construct new algorithm animations.

18

References

[1] Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-View
Editing. 1991 IEEE Workshop on Visual Languages (October 1991), 4–9.

[2] Marc H. Brown. The 1992 SRC Algorithm Animation Festival. 1993 IEEE
Symposium on Visual Languages (August 1993), 116–123.

[3] Marc H. Brown. The 1993 SRC Algorithm Animation Festival. Research
Report 126, Digital Equipment Corp., Systems Research Center, Palo Alto,
CA (1994).

[4] Marc H. Brown and John Hershberger. Color and Sound in Algorithm Ani-
mation. Computer, 25(12):52–63, December 1992.

[5] Marc H. Brown and Marc Najork. Algorithm Animation Using 3D Interac-
tive Graphics. ACM Symposium on User Interface Software and Technology
(November 1993), 93–100.

[6] Marc H. Brown and Robert Sedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177–186, July 1984.

[7] Luca Cardelli. Obliq: A language with distributed scope. Research Report
122, Digital Equipment Corp., Systems Research Center, Palo Alto, CA (June
1994).

[8] Gruia-Catalin Roman, Kenneth C. Cox, C. Donald Wilcox, and Jerome Y.
Plun. Pavane: A System for Declarative Visualization of Concurrent Com-
putations. Journal of Visual Languages and Computing, 3(2):161–193, June
1992.

[9] David Dobkin and Ayellet Tal. GASP—A System to Facilitate Animating
Geometric Algorithms. Technical Report, Department of Computer Science,
Princeton University, 1994.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[11] Robert A. Duisberg. Animated Graphical Interfaces Using Temporal Con-
straints. ACM CHI ’86 Conf. on Human Factors in Computing (April 1986),
131–136.

19

[12] Steven C. Glassman. A Turbo Environment for Producing Algorithm Anima-
tions. 1993 IEEE Symp. on Visual Languages (August 1993), 32–36.

[13] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Research
Report 68, Digital Equipment Corp., Systems Research Center, Palo Alto,
CA, December 1991.

[14] John T. Stasko and Joseph F. Wehrli. Three-Dimensional Computation Visu-
alization. 1993 IEEE Symposium on Visual Languages (August 1993), 100 –
107.

[15] John T. Stasko. TANGO: A Framework and System for Algorithm Animation.
Computer, 23(9):27–39, September 1990.

[16] Paul S. Strauss. BAGS: The Brown Animation Generation System. Technical
Report CS–88–22, Brown University, May 1988.

[17] Paul S. Strauss. IRIS Inventor, a 3D Graphics Toolkit. OOPSLA’93 Conf.
Proc., (September 1993), 192–200.

[18] Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit.
ACM Computer Graphics (SIGGRAPH ’92) (July 1992), 341–349.

[19] Robert C. Zeleznik et al. An Object-Oriented Framework for the Integration
of Interactive Animation Techniques. ACM Computer Graphics (SIGGRAPH
’91), (July 1991), 105–111.

20

