
September 1, 1994

SRC
Research

Report 127

TLA in Pictures

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenume

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Robert W. Taylor, Director

TLA in Pictures

Leslie Lamport

September 1, 1994

cDigital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

ii

Author's Abstract

Predicate-action diagrams, which are similar to standard state-transition

diagrams, are interpreted as formulas of TLA (the Temporal Logic of Ac-

tions). We explain how these diagrams can be used to describe aspects of a

speci�cation, even when the complete speci�cation cannot be written as a

diagram, and to illustrate proofs.

Contents

1 Introduction 1

2 TLA 2

3 Predicate-Action Diagrams 4

3.1 An Example : 4

3.2 A Formal Treatment : 10

3.2.1 De�nition : 10

3.2.2 Another Interpretation : : : : : : : : : : : : : : : : : : 10

3.3 Proving a Predicate-Action Diagram : : : : : : : : : : : : : : 11

4 Illustrating Proofs 12

4.1 Another Speci�cation : 12

4.2 An Illustrated Proof : 14

5 Conclusion 16

Index 19

1 Introduction

Pictures aid understanding. A simple owchart is easier to understand than

the equivalent programming-language text. However, complex pictures are

confusing. A large, spaghetti-like owchart is harder to understand than a

properly structured program text.

Pictures are inadequate for specifying complex systems, but they can

help us understand particular aspects of a system. For a picture to provide

more than an informal comment, there must be a formal connection between

the complete speci�cation and the picture. The assertion that the picture

is a correct description of (some aspect of) the system must be a precise

mathematical statement.

We use TLA (the Temporal Logic of Actions) to specify systems. In

TLA, a speci�cation is a logical formula describing all possible correct behav-

iors of the system. As an aid to understanding TLA formulas, we introduce

here a type of picture called a predicate-action diagram. These diagrams

are similar to the various kinds of state-transition diagrams that have been

used for years to describe systems, starting with Mealy and Moore ma-

chines [5, 6]. We relate these pictures to TLA speci�cations by interpreting

a predicate-action diagram as a TLA formula. A diagram denoting formula

D is a correct description of a system with speci�cation S i� (if and only

if) S implies D. We therefore provide a precise statement of what it means

for a diagram to describe a speci�cation.

We use predicate-action diagrams in three ways that we believe are new:

� To describe aspects of a speci�cation even when it is not feasible to

write the complete speci�cation as a diagram.

� To draw di�erent diagrams that provide complementary views of the

same system.

� To illustrate formal correctness proofs.

Section 2 is a brief review of TLA; a more leisurely introduction to TLA

appears in [3]. Section 3 describes predicate-action diagrams, using an n-

input Muller C-element as an example. It shows how diagrams are used to

describe aspects of a complete speci�cation, and to provide complementary

views of a system. Section 4 gives another example of how predicate-action

diagrams are used to describe a system, and shows how they are used to

illustrate a proof.

1

2 TLA

We now describe the syntax and semantics of TLA. The description is

illustrated with the formulas de�ned in Figure 1. (The symbol
�

= means

equals by de�nition.)

We assume an in�nite set of variables (such as x and y) and a class of

semantic values. Our variables are the exible variables of temporal logic.

TLA also includes the rigid variables of predicate logic, but we ignore them

here. The class of values includes numbers, strings, sets, and functions.

A state is an assignment of values to variables. A behavior is an in�nite

sequence of states. Semantically, a TLA formula is true or false of a behavior.

Syntactically, TLA formulas are built up from state functions using Boolean

operators (:, ^, _,) [implication], and � [equivalence]) and the operators
0 and 2, as described below. TLA also has a hiding operator 999999, which we

do not use here.

A state function is a nonBoolean expression built from variables, con-

stants, and constant operators. Semantically, it assigns a value to each

state|for example x + 1 assigns to state s one plus the value that s as-

signs to the variable x. A state predicate (often called just a predicate) is a

Boolean expression built from variables, constants, and constant operators

such as +. Semantically, it is true or false for a state|for example the

predicate Init� is true of state s i� s assigns the value zero to both x and y.

An action is a Boolean expression containing primed and unprimed vari-

ables. Semantically, an action is true or false of a pair of states, with primed

variables referring to the second state|for example, action M1 is true for

hs; ti i� the value that state t assigns to x equals one plus the value that

state s assigns to x, and the values assigned to y by states s and t are equal.

A pair of states satisfying an action A is called an A step. Thus, an M1

step is one that increments x by one and leaves y unchanged.

If f is a state function or state predicate, we write f 0 for the expression

Init�
�

= (x = 0) ^ (y = 0)

M1
�

= (x0 = x+ 1) ^ (y0 = y) M2
�

= (y0 = y + 1) ^ (x0 = x)

M
�

= M1 _M2

�
�

= Init� ^ 2[M]hx;yi ^ WFhx; yi(M1) ^ WFhx; yi(M2)

Figure 1: The TLA formula � describing a simple program that repeatedly

increments x or y.

2

obtained by priming all the variables of the f . For example (x+ 1)0 equals

x0 + 1, and Init0� equals (x0 = 0) ^ (y0 = 0). For an action A and a state

function v, we de�ne [A]v to equal A_ (v
0 = v), so a [A]v step is either an A

step or a step that leaves the value of v unchanged. Thus, a [M1]hx;yi step

is one that increments x by one and leaves y unchanged, or else leaves the

ordered pair hx; yi unchanged. Since a tuple is unchanged i� each component

is unchanged, a [M1]hx;yi step is one that increments x by one and leaves y

unchanged, or else leaves both x and y unchanged. We de�ne hAiv to equal

A^ (v0
6= v), so an hM1ihx;yi step is anM1 step that changes x or y. Since

anM1 step leaves y unchanged, an hM1ihx;yi step is a step that increments

x by 1, changes the value of x, and leaves y unchanged.

We say that an action A is enabled in state s i� there exists a state t

such that hs; ti is an A step. For example, M1 is enabled i� it is possible

to take a step that increments x by one, changes x, and leaves y unchanged.

Since x+1 6= x for any natural number x, action hM1ihx;yi is enabled in any

state in which x is a natural number. If 1 + 1 equals 1, then hM1ihx;yi is

not enabled in a state in which x equals 1.

A TLA formula is true or false of a behavior. A predicate is true of a

behavior i� it is true of the �rst state. An action is true of a behavior i� it is

true of the �rst pair of states. As usual in temporal logic, if F is a formula

then 2F is the formula meaning that F is always true. Thus, 2Init� is

true of a behavior i� x and y equal zero for every state in the behavior.

The formula 2[M]hx;yi is true of a behavior i� each step (pair of successive

states) of the behavior is a [M]hx;yi step.

Using 2 and \enabled" predicates, we can de�ne fairness operators WF

and SF. The weak fairness formula WFv(A) asserts of a behavior that there

are in�nitely many hAiv steps, or there are in�nitely many states in which

hAiv is not enabled. In other words, WFv(A) asserts that if hAiv becomes

enabled forever, then in�nitely many hAiv steps occur. The strong fairness

formula SFv(A) asserts that either there are in�nitely many hAiv steps, or

there are only �nitely many states in which hAiv is enabled. In other words,

SFv(A) asserts that if hAiv is enabled in�nitely often, then in�nitely many

hAiv steps occur.

The standard form of a TLA speci�cation is Init ^2[N]v^L, where Init

is a predicate, N is an action, v is a state function, and L is a conjunction

of fairness conditions. This formula asserts of a behavior that (i) Init is

true for the initial state, (ii) every step of the behavior is an N step or

leaves v unchanged, and (iii) L holds. Formula � of Figure 1 is in this form,

asserting that (i) initially x and y both equal zero, (ii) every step either in-

3

crements x by one and leaves y unchanged, increments y by one and leaves

x unchanged, or leaves both x and y unchanged, and (iii) the fairness con-

dition WFhx; yi(M1) ^WFhx; yi(M2) holds. Formula WFhx; yi(M1) asserts

that there are in�nitely many hM1ihx;yi steps or hM1ihx;yi is in�nitely often

not enabled. Since (i) and (ii) imply that x is always a natural number,

hM1ihx;yi is always enabled. Hence, WFhx; yi(M1) implies that there are in-

�nitely many hM1ihx;yi steps, so x is incremented in�nitely often. Similarly,

WFhx; yi(M2) implies that y is incremented in�nitely often. Putting this

all together, we see that � is true of a behavior i� (i) x and y are initially

zero, (ii) every step increments either x or y by one and leaves the other

unchanged or else leaves both x and y unchanged, and (iii) both x and y are

incremented in�nitely many times.

The formula Init^2[N]v is a safety property [2]. It describes what steps

are allowed, but it does not require anything to happen. (The formula is

satis�ed by a behavior satisfying the initial condition in which no variables

ever change.) Fairness conditions are used to specify that something must

happen.

3 Predicate-Action Diagrams

3.1 An Example

We take as an example a Muller C-element [4]. This is a circuit with n binary

inputs in[1]; : : : ; in[n] and one binary output out , as shown in Figure 2. As

the �gure indicates, we are considering the closed system consisting of the

C-element together with its environment. Initially, all the inputs and the

output are equal. The output becomes 0 when all the inputs are 0, and it

becomes 1 when all the inputs are 1. After an input changes, it must remain

stable until the output changes.

The behavior of a 2-input C-element and its environment is described

by the predicate-action diagram of Figure 3(a), where C is de�ned by

C(i; j; k)
�

= (in[1] = i)^ (in[2] = j)^ (out = k)

The short arrows, with no originating node, identify the nodes labeled

C(0; 0; 0) and C(1; 1; 1) as initial nodes. They indicate that the C-element

starts in a state satisfying C(0; 0; 0) or C(1; 1; 1). The arrows connecting

nodes indicate possible state transitions. For example, from a state satisfy-

ing C(1; 1; 1), it is possible for the system to go to a state satisfying either

4

E
n
v
i
r
o
n
m
e
n
t

C
-

E
l
e
m
e
n
t

in[1]

in[n]

out

-

-

.

.

.

�

��

-�

Figure 2: A Muller C-element.

C(0; 1; 1) or C(1; 0; 1). More precisely, these arrows indicate all steps in

which the triple hin[1]; in[2]; outi changes|that is, transitions in which at

least one of in[1], in[2], and out changes. Steps that change other variables|

for example, variables representing circuit elements inside the environment|

but leave hin[1]; in[2]; outi unchanged are also possible.

The predicate-action diagram of Figure 3(a) looks like a standard state-

transition diagram. However, we interpret it formally not as a conventional

state machine, but as the TLA formula of Figure 3(b).1 This formula has the

form Init ^
V
o
Fo, where Init is a state predicate and there is one conjunct

Fo for each node o. The predicate Init is C(0; 0; 0)_ C(1; 1; 1). Each Fo
describes the possible state changes starting from a state described by node

o. For example, the formula Fo for the node labeled C(1; 1; 0) is

2[C(1; 1; 0)) C(1; 1; 1)0]hin[1];in[2];outi

A predicate-action diagram represents a safety property; it does not include

any fairness conditions.

Figure 3(a) is a reasonable way to describe a 2-input C-element. How-

ever, the corresponding diagram for a 3-input C-element would be quite

complicated; and there is no way to draw such a diagram for an n-input

circuit. The general speci�cation is written directly as a TLA formula in

Figure 4. The array of inputs is represented formally by a variable in whose

value is a function with domain f1; : : : ; ng, where square brackets denote

function application. (Formally, n is a rigid variable|one whose value is

constant throughout a behavior.) We introduce two pieces of notation for

representing functions:

1A list of formulas bulleted by ^ or _ denotes their conjunction or disjunction.

5

(a) A predicate-action diagram.

C(0; 0; 0)
�
�

�

C(1; 0; 0)
�
�

�

C(0; 1; 0)
�
�

�

C(1; 1; 0)
�
�

�
 C(1; 1; 1)
�
�

�

C(0; 1; 1)
�
�

�

C(1; 0; 1)
�
�

�

C(0; 0; 1)
�
�

�

�
��

A
AU

A
AU

�
��

- �

��

-� �
��

A
AU

A
AU

�
��

@@R @@R

(b) The corresponding TLA formula.

^ C(0; 0; 0)_C(1; 1; 1)

^ 2[C(0; 0; 0)) C(1; 0; 0)0 _C(0; 1; 0)0]hin[1];in [2];outi

^ 2[C(1; 0; 0)) C(1; 1; 0)0]hin [1];in[2];outi
: : :

^ 2[C(0; 0; 1)) C(0; 0; 0)0]hin [1];in[2];outi

Figure 3: Predicate-Action diagram of hin[1]; in[2]; outi for a 2-input C-

element, and the corresponding TLA formula.

� [i 2 S 7! e(i)] denotes the function f with domain S such that f [i]

equals e(i) for every i in S.

� [f except ![i] = e] denotes the function g that is the same as f except

that g[i] equals e.

The formulas de�ned in Figure 4 have the following interpretation.

InitC A state predicate asserting that out is either 0 or 1, and that in is

the function with domain f1; : : : ; ng such that in[i] equals out for all

i in its domain.

Input(i) An action that is enabled i� in[i] equals out . It complements in[i],

leaves in[j] unchanged for j 6= i, and leaves out unchanged. (The

symbol i is a parameter.)

Output An action that is enabled i� all the in[i] are di�erent from out . It

complements out and leaves in unchanged.

Next An action that is the disjunction ofOutput and all the Input(i) actions,

6

InitC
�

= ^ out 2 f0; 1g
^ in = [i 2 f1; : : : ; ng 7! out]

Input (i)
�

= ^ in[i] = out

^ in
0 = [in except ![i] = 1� in[i]]

^ out
0 = out

Output
�

= ^ 8i 2 f1; : : : ; ng : in [i] 6= out

^ out
0 = 1� out

^ in
0 = in

Next
�

= Output _ 9 i 2 f1; : : : ; ng : Input (i)

�C

�

= InitC ^2[Next]hin;outi ^WFhin;outi(Output)

Figure 4: A TLA speci�cation of an n-input C-element.

for i 2 f1; : : : ; ng. Thus, a Next step is either an Output step or an

Input(i) step for some input line i.

�C A temporal formula that is the speci�cation of the C-element (together

with its environment). It asserts that (i) InitC holds initially, (ii) ev-

ery step is either a Next step or else leaves hin; outi unchanged, and

(iii) Output cannot be enabled forever without an Output step occur-

ring. The fairness condition (iii) requires the output to change if all

the inputs have; inputs are not required to change. (Since predicate-

action diagrams describe only safety properties, the fairness condition

is irrelevant to our discussion.)

The speci�cation �C is short and precise. However, it is not as reader-

friendly as a predicate-action diagram. We therefore use diagrams to help

explain the speci�cation, beginning with the predicate-action diagram of

Figure 5. It is a diagram of the state function hin[i]; outi, meaning that

it describes transitions that change hin[i]; outi. It is a diagram for the

formula �C , meaning that it represents a formula that is implied by �C .

The diagram shows the synchronization between the C-element's ith input

and its output.

We can draw many di�erent predicate-action diagrams for the same spec-

i�cation. Figure 6 shows another diagram of hin[i]; outi for �C . It is simpler

than the one in Figure 5, but it contains less information. It does not in-

dicate that the values of in[i] and out are always 0 or 1, and it does not

show which variable is changed by each transition. The latter information is

added in the diagram of Figure 7(a), where each transition is labeled with an

action. The label Input(i) on the left-to-right arrow indicates that a transi-

7

^ in[i] = 0
^ out =0

�
�

�
�

^ in[i] = 1
^ out = 0

�
�

�
�
^ in[i] =1
^ out =1

�
�

�
�

^ in[i] = 0
^ out = 1

�
�

�
�

� J

JĴ

�J

JJ]

- �

Figure 5: A predicate-action diagram of hin[i]; outi for the speci�cation �C

of an n-input C-element, where 1 � i � n.

in [i] = out

�
�

�
� in [i] 6= out

�
�

�
�-

j

Y

Figure 6: Another predicate-action diagram of hin[i]; outi for �C , where

1 � i � n.

tion from a state satisfying in[i] = out to a state satisfying in[i] 6= out is an

Input(i) step. This diagram represents the TLA formula of Figure 7(b).

Even more information is conveyed by a predicate-action diagram of

hin; outi, which also shows transitions that leave in[i] and out unchanged

but change in[j] for some j 6= i. Such a diagram is drawn in Figure 8(a).

Figure 8(b) gives the corresponding TLA formula.

There are innumerable predicate-action diagrams that can be drawn for

a speci�cation. Figure 9 shows yet another diagram for the C-element speci-

�cation �C . Since we are not relying on these diagrams as our speci�cation,

but simply to help explain the speci�cation, we can show as much or as

little information in them as we wish. We can draw multiple diagrams to

illustrate di�erent aspects of a system. Actual speci�cations are written as

TLA formulas, which are much more expressive than pictures.

8

(a) A predicate-action diagram of hin[i]; outi.

in [i] = out

�
�

�
� in [i] 6= out

�
�

�
�-

j

Y

Input(i)

Output

(b) The corresponding TLA formula.

^ in[i] = out

^ 2[(in [i] = out)) Input (i) ^ (in0[i] 6= out
0)]hin [i];outi

^ 2[(in [i] 6= out)) Output ^ (in0[i] = out
0)]hin [i];outi

Figure 7: A more informative predicate-action diagram of hin[i]; outi for

�C , and the corresponding TLA formula.

(a) A predicate-action diagram of hin; outi.

in [i] = out

�
�

�
� in [i] 6= out

�
�

�
�-

j

Y

Input(i)

Output

U

9 j 6= i : Input(j)

U

9 j 6= i : Input(j)

(b) The corresponding TLA formula.

^ in[i] = out

^ 2

�
(in [i] = out))

�
_ Input (i) ^ (in0[i] 6= out

0)
_ (9 j 6= i : Input (j)) ^ (in0[i] = out

0)

��
hin;outi

^ 2

�
(in [i] 6= out))

�
_ Output ^ (in0[i] = out

0)
_ (9 j 6= i : Input (j)) ^ (in0[i] 6= out

0)

��
hin;outi

Figure 8: A predicate-action diagram of hin; outi for �C , and the corre-

sponding TLA formula, where 1 � i � n.

9

in [i] = out

�
�

�
� in [i] 6= out

�
�

�
�-

j

Y

in0
[i] = 1� in[i]

out 0 = 1� out

U U

Figure 9: Yet another predicate-action diagram of hin; outi for �C .

3.2 A Formal Treatment

3.2.1 De�nition

We �rst de�ne precisely the TLA formula represented by a diagram. For-

mally, a predicate-action diagram consists of a directed graph, with a subset

of the nodes identi�ed as initial nodes, where each node is labeled by a state

predicate and each edge is labeled by an action. We assume a given diagram

of a state function v and introduce the following notation.

N The set of nodes.

I The set of initial nodes.

E(n) The set of edges originating at node n.

d(e) The destination node of edge e.

Pn The predicate labeling node n.

Ee The action labeling edge e.

The formula � represented by the diagram is de�ned as follows.

Init�
�

= 9n 2 I : Pn

An

�

= 9 e 2 E(n) : Ee ^ P 0
d(e)

�
�

= Init� ^ 8n 2 N : 2[Pn) An]v

When no explicit label is attached to an edge e, we take Ee to be true. When

no set of initial nodes is explicitly indicated, we take I to be N . With the

usual convention for quanti�cation over an empty set, An is de�ned to equal

false if there are no edges originating at node n.

3.2.2 Another Interpretation

Another possible interpretation of the predicate-action diagram is the for-

mula b�, de�ned by

b� �

= Init� ^ 2[9n 2 N : Pn ^ An]v

10

This is perhaps a more obvious interpretation|especially if the diagram is

viewed as a description of a next-state relation. We now show that � always

implies b�, and that the converse implication holds if the predicates labeling

the nodes are disjoint.

(A) � implies b�.
Proof : A simple invariance proof shows that � implies 2(9n 2 N : Pn).

We then have:

�
�

= Init� ^ 8n 2 N : 2[Pn) An]v

� Init� ^ 2([9n 2 N : Pn]v) ^ 8n 2 N : 2[Pn) An]v
[because � implies 2(9n 2 N : Pn)]

� Init� ^ 2[(9n 2 N : Pn) ^ 8n 2 N : (Pn) An)]v
[because 2 distributes over conjunction]

) Init� ^ 2[9n 2 N : Pn ^ An]v
[by propositional logic, since B) C implies 2[B]v) 2[C]v]

�

= b�
(B) If :(Pm ^ Pn) holds for all m, n in N with m 6= n, then b� implies �.

Proof : By propositional logic, the hypothesis implies

(9n 2 N : Pn ^ An)) (8n 2 N : Pn) An)

The result then follows from simple temporal reasoning, essentially by the

reverse of the string of equivalences and implication used to prove (A).

We usually label the nodes of a predicate-action diagram with disjoint

predicates, in which case (A) and (B) imply that the interpretations � andb� are equivalent. Diagrams with nondisjoint node labels may occasionally

be useful; � is the more convenient interpretation of such diagrams.

3.3 Proving a Predicate-Action Diagram

Saying that a diagram is a predicate-action diagram for a speci�cation �

asserts that � implies the formula � represented by the diagram. Formula

� will usually have the form Init� ^ 2[M]u ^ L, where L is a fairness

condition. Formula � equals Init� ^ 8n 2 N : 2[Pn) An]v. To prove

�) �, we prove:

1. Init�) Init�

11

2. Init� ^ 2[M]u) 2[Pn) An]v, for each node n.

The �rst condition is an assertion about predicates; it is generally easy to

prove. To prove the second condition, one usually �nds an invariant Inv such

that Init� ^ 2[M]u implies 2Inv , so � implies 2[M^ Inv]u. The second

condition is then proved by showing that [M^ Inv]u implies [Pn) An]v,

for each node n. Usually, u and v are tuples and every component of v is

a component of u, so u0 = u implies v0 = v. In this case, one need show

only thatM^ Inv implies [Pn) An]v, for each n. By de�nition of An, this

means proving

Pn ^M^ Inv) (9m 2 E(n) : Em ^ P 0
d(m)) _ (v0 = v)

for each node n. This formula asserts that an M step that starts with Pn
and Inv true and changes v is an Em step that ends in a state satisfying

Pd(m), for some edge m originating at node n.

4 Illustrating Proofs

In TLA, there is no distinction between a speci�cation and a property; they

are both formulas. Veri�cation means proving that one formula implies

another. A practical, relatively complete set of rules for proving such im-

plications is described in [3]. We show here how predicate-action diagrams

can be used to illustrate these proofs. We take as our example the same one

treated in [3], that the speci�cation 	 de�ned in Section 4.1 below implies

the speci�cation � de�ned in Section 2 above.

4.1 Another Speci�cation

We de�ne a TLA formula 	 describing a program with two processes, each

of which repeatedly loops through the sequence of operations P (sem); in-

crement ; V (sem), where one process increments x by one and the other

increments y by one. Here, P (sem) and V (sem) denote the usual operations

on a semaphore sem. To describe this program formally, we introduce a

variable pc that indicates the control state. Each process has three control

points, which we call \a", \b", and \g". (Quotes indicate string values.)

We motivate the de�nition of 	 with the three predicate-action diagrams

for 	 in Figure 10. In these diagrams, the predicate PC (p; q) asserts that

control is at p in process 1 and at q in process 2. Figure 10(a) shows how the

control state changes when the P (sem), V (sem), and increment actions are

12

(a)

PC (\a"; \a")

�
�

�
�

PC (\b"; \a")

�
�

�
�

PC (\a"; \b")

�
�

�
�

PC (\g"; \a")

�
�

�
�

PC (\a"; \g")

�
�

�
�

-x0 = x+ 1

��
���*P (sem)

�
�

�

R

V (sem)

-
y0

= y + 1

HHHHHjP (sem) �
��

�

V (sem)

-

(b)

PC (\a"; \a")

�
�

�
�

PC (\b"; \a")

�
�

�
�

PC (\a"; \b")

�
�

�
�

PC (\g"; \a")

�
�

�
�

PC (\a"; \g")

�
�

�
�

-�1

��
���*�1

�
�

�

R

1

-
�2

HHHHHj�2 �
��

�

2

-

(c)

sem = 1

�
�

�
� sem = 0

�
�

�
�-

j

Y

�1 _ �2

1 _ 2

U
�1 _ �2

Figure 10: Three predicate-action diagrams of hx; y; pc; semi for 	.

13

performed. Variables other than pc not mentioned in an edge label are left

unchanged by the indicated steps|for example, steps described by the edge

labeled x0 = x+ 1 leave y and sem unchanged|but this is not asserted by

the diagram. The next-state action N is written as the disjunction N1 _N2

of the next-state actions of each process; and each Ni is written as the

disjunction �i_�i_i. Figure 10(b) illustrates this decomposition. Finally,

the predicate-action diagram of Figure 10(c) describes how the semaphore

variable sem changes.

To write the speci�cation 	, we let pc be a function with domain f1; 2g,

with pc[i] indicating where control resides in process i. The formula PC (p; q)

can then be de�ned by

PC (p; q)
�

= (pc[1] = p) ^ (pc[2] = q)

The semaphore actions P and V are de�ned by

P (sem)
�

= ^ 0 < sem

^ sem0 = sem � 1

V (sem)
�

= sem0 = sem + 1

Missing from Figure 10 are a speci�cation of the initial values of x and y,

which we take to be zero, and a fairness condition. One could augment

predicate-action diagrams with some notation for indicating fairness condi-

tions. However, the conditions that are easy to represent with a diagram are

not expressive enough to describe the variety of fairness requirements that

arise in practice. The WF and SF formulas, which are expressive enough,

are not easy to represent graphically. So, we have not attempted to rep-

resent fairness in our diagrams. We take as the fairness condition for our

speci�cation 	 strong fairness on the next-state action Ni of each process.

The complete de�nition of 	 appears in Figure 11.

4.2 An Illustrated Proof

The proof of) � is broken into three parts:

1. Init) Init�

2. Init	 ^ 2[N]w) 2[M]hx;yi

3.)WFhx;yi(Mi), for i = 1; 2

14

Init	
�

= ^ pc = [i 2 f1; 2g 7! \a"]
^ (x = 0) ^ (y = 0)
^ sem = 1

�i
�

= ^ (pc[i] = \a") ^ (0 < sem)
^ pc

0 = [pc except ![i] = \b"]
^ sem

0 = sem � 1
^ hx; yi0 = hx; yi

i
�

= ^ pc[i] = \g"

^ pc
0 = [pc except ![i] = \a"]

^ sem
0 = sem + 1

^ hx; yi0 = hx; yi

�1
�

= ^ pc[1] = \b"

^ pc
0 = [pc except ![1] = \g"]

^ x0 = x+ 1
^ hy; semi0 = hy; semi

�2
�

= ^ pc[2] = \b"

^ pc
0 = [pc except ![2] = \g"]

^ y0 = y + 1
^ hx; semi0 = hx; semi

Ni

�

= �i _ �i _ i

N
�

= N1 _N2

w
�

= hx; y; sem; pci

	
�

= Init	 ^ 2[N]w ^ SFw(N1) ^ SFw(N2)

Figure 11: The speci�cation 	.

We illustrate the proofs of 2 and 3 with the predicate-action diagram of

hx; y; sem; pci for 	 in Figure 12, where Q is de�ned by

Q
i
(p; q)

�

= ^ PC (p; q)

^ sem = i

^ (x 2 Nat) ^ (y 2 Nat)

and Nat is the set of natural numbers.

First, we must show that the diagram in Figure 12 is a predicate-action

diagram for 	. This is easy; no invariant is needed. For example, the

condition to be proved for the node labeled Q0(\b"; \a") is that an N step

that starts with Q0(\b"; \a") true is anM1 step (one that increments x and

leaves y unchanged) that makes Q0(\g"; \a") true. This follows easily from

the de�nitions of Q and N , since an N step starting with PC (\b"; \a") true

must be a �1 step.

To prove condition 2, it su�ces to prove that every step allowed by the

diagram of Figure 12 is a [M]hx;yi step. The steps not shown explicitly

by the diagram are ones that leave w unchanged. Such steps leave hx; yi

unchanged, so they are [M]hx;yi steps. The actions labeling all the edges of

the diagram imply [M]hx;yi, so all the steps shown explicitly by the diagram

are also [M]hx;yi steps. This proves condition 2.

We now sketch the proof of condition 3. To proveWFhx;yi(Mi), it su�ces

to show that in�nitely many hMiihx;yi steps occur. We �rst observe that

each of the predicates labeling a node in the diagram implies that either

15

Q
1
(\a"; \a")

�
�

�
�

Q
0
(\b"; \a")

�
�

�
�

Q
0
(\a"; \b")

�
�

�
�

Q
0
(\g"; \a")

�
�

�
�

Q
0
(\a"; \g")

�
�

�
�

-M1

��
���*hx; yi0 = hx; yi

�
�

�

R

hx; yi0 = hx; yi

-
M2

HHHHHjhx; yi0 = hx; yi �
��

�

hx; yi0 = hx; yi

-

Figure 12: Another predicate-action diagram of hx; y; sem; pci for 	.

hN1iw or hN2iw is enabled. The fairness condition of 	 then implies that a

behavior cannot remain forever at any node, but must keep moving through

the diagram. Hence, the behavior must in�nitely often pass through the

Q1(\a"; \a") node. The predicate Q1(\a"; \a") implies that both hN1iw

and hN2iw are enabled. Hence, the fairness condition SFw(N1) ^ SFw(N2)

implies that in�nitely many hN1iw steps and in�nitely many hN2iw steps

must occur. Action hN1iw is enabled only in the three nodes of the top

loop. Taking in�nitely many hN1iw steps is therefore possible only by going

around the top loop in�nitely many times, which implies that in�nitely

many M1 steps occur, each starting in a state with Q0(\b"; \a"). Since

Q0(\b"; \a") implies x 2 Nat , an M1 step starting with Q0(\b"; \a") true

changes x, so it is an hM1ihx;yi step. Hence, in�nitely many hM1ihx;yi steps

occur. Similarly, taking in�nitely many hN2iw steps implies that in�nitely

many hM2ihx;yi steps occur. This completes the proof of condition 3.

Using the predicate-action diagram does not simplify the proof. If we

were to make the argument given above rigorous, we would go through

precisely the same steps as in the proof described in [3]. However, the

diagram does allow us to visualize the proof, which can help us to understand

it.

5 Conclusion

We have described three uses of diagrams that we believe are new:

16

� To describe particular aspects of a complex speci�cation with a sim-

ple diagram. An n-input C-element cannot be speci�ed with a simple

picture. However, we explained the speci�cation with diagrams de-

scribing the synchronization between the output and each individual

input.

� To provide complementary views of the same system. Diagrams (b)

and (c) of Figure 10 look quite di�erent, but they are diagrams for the

same speci�cation.

� To illustrate proofs. The disjunction of the predicates labeling the

nodes in Figure 12 equals the invariant I of the proof in Section 7.2

of [3]. The diagram provides a graphical representation of the invari-

ance proof.

TLA di�ers from traditional speci�cation methods in two important

ways. First, all TLA speci�cations are interpreted over the same set of

states. Instead of assigning values just to the variables that appear in the

speci�cation, a state assigns values to all of the in�nite number of variables

that can appear in any speci�cation. Second, TLA speci�cations are in-

variant under stuttering. A formula can neither require nor rule out �nite

sequences of steps that do not change any variables mentioned in the for-

mula. (The state-function subscripts in TLA formulas are there to guarantee

invariance under stuttering.)

These two di�erences lead to two major di�erences between traditional

state-transition diagrams and predicate-action diagrams. In traditional di-

agrams, each node represents a single state. Because states in TLA assign

values to an in�nite number of variables, it is impossible to describe a single

state with a formula. Any formula can specify the values of only a �nite

number of variables. To draw diagrams of TLA formulas, we let each node

represent a predicate, which describes a set of states. In traditional dia-

grams, every possible state change is indicated by an edge. Because TLA

formulas are invariant under stuttering, we draw diagrams of particular state

functions|usually tuples of variables.

TLA di�ers from most speci�cation methods because it is a logic. It

uses simple logical operations like implication and conjunction instead of

more complicated automata-based notions of simulation and composition [1].

Everything we have done with predicate-action diagrams can be done with

state-transition diagrams in any purely state-based formalism. However,

17

conventional formalisms must use some notion of homomorphism between

diagrams to describe what is expressed in TLA as logical implication.

Most formalisms employing state-transition diagrams are not purely

state-based, but use both states and events. Nodes represent states, and

edges describe input and output events. The meaning of a diagram is the

sequence of events it allows; the states are e�ectively hidden. In TLA, there

are only states, not events. Systems are described in terms of changes to

interface variables rather than in terms of interface events. Variables describ-

ing the internal state are hidden with the existential quanti�er 999999 described

in [3]. Changes to any variable, whether internal or interface, can be indi-

cated by node labels or edge labels. Hence, a purely state-based approach

like TLA allows more exibility in how diagrams are drawn than a method

based on states and events.

References

[1] Mart��n Abadi and Leslie Lamport. Conjoining speci�cations. Research

Report 118, Digital Equipment Corporation, Systems Research Center,

1993. To appear in ACM Transactions on Programming Languages and

Systems.

[2] Bowen Alpern and Fred B. Schneider. De�ning liveness. Information

Processing Letters, 21(4):181{185, October 1985.

[3] Leslie Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3):872{923, May 1994.

[4] Carver Mead and Lynn Conway. Introduction to VLSI Systems, chap-

ter 7. Addison-Wesley, Reading, Massachusetts, 1980.

[5] George H. Mealy. A method for synthesizing sequential circuits. Bell

System Technical Journal, 34(5):1045{1079, September 1955.

[6] Edward F. Moore. Gedanken-experiments on sequential machines. In

C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 129{

153. Princeton University Press, Princeton, New Jersey, 1956.

18

Index

�, 10b�, 10
�, 2

�C , 7

	, 12, 15

2, 2, 3
999999, 2

1, 3
0 (prime), 2

\: : :", 12
�

=, 2

�, 2

), 2

[: : :]:::, 3

h : : :i:::, 3

[: : : 7! : : :], 6

[: : : except : : :], 6

^ (list bulleted by), 5

_ (list bulleted by), 5

An, 10

action, 2

behavior, 2

C(i; j; k), 4

C-element, 4

d(: : :), 10

diagram, see predicate-action dia-

gram

E(: : :), 10

Ee, 10

enabled, 3

fairness, 3

strong, 3

weak, 3

exible variable, 2

I , 10

Init�, 10

M, 2

Mealy and Moore machines, 1

Muller C-element, 4

N , 10

N , 14, 15

P (: : :), 12, 14

Pn, 10

PC , 12, 14

pc, 12

predicate, 2

predicate-action diagram, 4{12

for a formula, 7

of a state function, 7

Q , 15

rigid variable, 2

safety, 4

sem, 12

SF, 3

spaghetti, 1

state, 2

state function, 2

state predicate, 2

step, 2

of a behavior, 3

strings, 2, 12

strong fairness, 3

temporal logic of actions, 1

19

TLA, 2{4

V (: : :), 12, 14

variable, 2

exible, 2

rigid, 2

weak fairness, 3

WF, 3

20

