
119

How to Write a Long Formula

Leslie Lamport

December 25, 1993

Minor correction: January 18, 1994

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Robert W. Taylor, Director

How to Write a Long Formula

Leslie Lamport

December 25, 1993

Minor correction: January 18, 1994

cDigital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

ii

Author's Abstract

Standard mathematical notation works well for short formulas, but not for

the longer ones often written by computer scientists. Notations are proposed

to make one or two-page formulas easier to read and reason about.

Introduction

Mathematicians seldom write formulas longer than a dozen or so lines. Com-

puter scientists often write much longer formulas. For example, an invariant

of a concurrent algorithm can occupy more than a page, and the speci�ca-

tion of a real system can be a formula dozens or even hundreds of pages

long. Standard mathematical notation works well for short formulas, but

not for long ones. I propose a few simple notations for writing formulas of

up to a couple of pages. These notations can make formulas much easier to

read and reason about.

Formulas signi�cantly longer than two pages require hierarchical struc-

turing. Methods for structuring long programs can be used to structure

long formulas. Programs of less than a dozen or so pages can be adequately

structured with procedures; longer programs require some method of group-

ing procedures into modules. The de�nition is the mathematical analog of

the procedure. De�nitions su�ce for structuring formulas of up to about

a dozen pages. For longer formulas, some form of module structure is also

needed.

Any formula can be written with a hierarchy of de�nitions, each only a

few lines long. However, just as programs become hard to read if broken into

too many procedures, formulas are hard to read if broken into de�nitions

that are too small. In my experience, the best way to structure a long

formula is in terms of individual formulas of up to a page or two.

Writing Formulas

Consider the following de�nition, written with standard mathematical con-

ventions. (The examples come from the invariant of an unpublished cor-

rectness proof for a cache coherence algorithm; the reader is not expected

to understand them.)

memQLoc(a) �

(
\None" if Locs = ;

max(Locs) otherwise

where Locs � fi 2 f0 : : : jmemQj � 1g :

(memQ[i]:req:type = \Write")

^ (memQ[i]:req:adr = a) g

This de�nition is easy to read because it is short. However, suppose that

\None" and max(Locs) were replaced by much longer expressions. We would

then see that the \where" construct is bad because it forces us to read the

1

entire de�nition of memQLoc(a) before we learn what Locs is. A structure

that scales better to large formulas is

let Locs � fi 2 f0 : : : jmemQj � 1g :

(memQ[i]:req:type = \Write")

^ (memQ[i]:req:adr = a) g

in memQLoc(a) �

(
\None" if Locs = ;

max(Locs) otherwise

Suppose once again that \None" were replaced by a long expression e, per-

haps crossing onto the next page. The typographic di�culties posed by

the resulting large left brace are daunting. Simply removing the brace still

leaves us with the problem of where to put the condition Locs = ;. If it

goes after e, we have to read several lines before discovering the structure

of the de�nition. If it goes at the end of the �rst line, we read the Locs = ;

in the middle of reading e. A better notation is the if/then/else construct

used in programming languages.

let Locs � fi 2 f0 : : : jmemQj � 1g :

(memQ[i]:req:type = \Write")

^ (memQ[i]:req:adr = a) g

in memQLoc(a) � if Locs = ; then \None"

else max(Locs)

The if/then/else makes the structure immediately clear, even for long for-

mulas. The obvious analog of the case construct of programming languages

works for de�nitions with more than two alternatives. The customary closing

end (or �) is unnecessary, because we can use parentheses and indentation

to delimit the scope of an if or case.

The original version of the de�nition had an important feature that has

been lost in these transformations: we could see at once that it was a de�-

nition of memQLoc(a). One further change recovers this feature.

memQLoc(a) � let Locs � fi 2 f0 : : : jmemQj � 1g :

(memQ[i]:req:type = \Write")

^ (memQ[i]:req:adr = a) g

in if Locs = ; then \None"

else max(Locs)

The basic problem with the \if : : : otherwise" construct is shared by all

in�x operators: we discover the high-level structure only after reading to

2

the end of the �rst argument. Consider the following formula.

(8 c 2 CacheAddress :

cache[p; c] 2 ([[adr : Address; val : Value]] [f\Invalid"g))

^ ((request[p] 2 Request)

_ ((request[p] = \Ready") ^ (state[p] = \Idle")))

^ (response[p] 2 Value)

We have to read to the end of the second line, and count parentheses, before

learning that the formula is a conjunction. One possible solution is pre�x

notation, writing ^(A; B; C) instead of A ^B ^ C.

^ (8 c 2 CacheAddress :

cache[p; c] 2 ([[adr : Address; val : Value]] [f\Invalid"g);

_ (request[p] 2 Request;

^ (request[p] = \Ready";

state[p] = \Idle"));

response[p] 2 Value)

This formula is easy to read only because of the way it is indented. If one

needs indentation anyway, why not use it to eliminate the parentheses and

commas required by a pre�x notation? We write the formulaA1^A2^: : :^An
as the aligned list

^ A1

^ A2

: : :

^ An

and write disjunctions similarly. We can then use indentation to eliminate

parentheses, writing the formula above as

^ 8 c 2 CacheAddress :

cache[p; c] 2 ([[adr : Address; val : Value]][f\Invalid"g)

^ _ request[p] 2 Request

_ ^ request[p] = \Ready"

^ state[p] = \Idle"

^ response[p] 2 Value

We continue to use ^ and _ as in�x operators in subformulas. For example,

the second conjunct of this formula can also be written

^ _ request[p] 2 Request

_ (request[p] = \Ready") ^ (state[p] = \Idle")

3

The list convention for conjunction and disjunction can be used for other

associative operators, including addition and multiplication. However, it

does not work for the nonassociative boolean operator) (implies). I have

not found a good general method of writing A) B when A and B are long

formulas. When A and B are conjunctions or disjunctions, the format

^ A1

: : :

^ Am
) ^ B1

: : :

^ Bn

works fairly well if A1 ^ : : :^ Am is only a few lines long.

Writing conjunctions and disjunctions as lists lets us take full advantage

of indentation to eliminate parentheses. Indentation has meaning; shifting

an expression to the left or right changes the way a formula is parsed. It is

not hard to devise precise rules for parsing these two-dimensional formulas.

However, there is some question about what formulas should be allowed.

For example, should it be legal to write (A1 _ A2) ^ B as follows?

_ A1

_ A2

^ B

Answers to these questions will evolve as people use the notation.

Numbering Parts of Formulas

We don't just write formulas, we also reason about them. Reasoning about

a large formula requires a convenient way of referring to its components.

With the list convention, we can name individual conjuncts and disjuncts by

numbering them. The ith conjunct or disjunct of a formula named F is called

F:i. A universally quanti�ed formula can be viewed as a conjunction, where

the yth conjunct of 8 x : Q is Q[y=x], the formula obtained by substituting y

for x in Q. If F is the name of the formula 8 x : Q, then we take F (y) to be

the name of the formula Q[y=x]. A similar convention applies to existential

quanti�cation.

Figure 1 illustrates the use of these structuring and naming conven-

tions in a real example|the de�nition of an invariant I for a cache co-

herence algorithm. For simplicity, only the outermost three levels of con-

4

I � let cacheLocs(p; a) � fc 2 CacheAddress : ^ cache[p; c] 6= \Invalid"

^ cache[p; c]:adr = a g

inCache(p; a) � cacheLocs(p; a) 6= ;

memQLoc(a) � let Locs � fi 2 f0 : : : jmemQj � 1g :

^ memQ[i]:req:type = \Write"

^ memQ[i]:req:adr = a g

in if Locs = ; then \None"

else max(Locs)

memVal(a) � if memQLoc(a) = \None"

then mainMemory[a]

else memQ[memQLoc(a)]:req:val

in 1.^ 8 p 2 Process :

1.^ 8 a 2 Address :

1.^ #cacheLocs(p; a) � 1

2.^ inCache(p; a)) (cacheVal(p; a) = memVal(a))

3.^ mainMemory[a] 2 Value

2.^ 8 c 2 CacheAddress :

cache[p; c] 2 ([[adr : Address; val : Value]][f\Invalid"g)

3.^ a._ request[p] 2 Request

b._ ^ request[p] = \Ready"

^ state[p] = \Idle"

4.^ response [p] 2 Value

5.^ 1.^ state[p] 2 f\RdCache"; \MemWait";

\BusWait"; \WrDone"; \Idle"g

2.^ (state [p] = \RdCache")) ^ request[p]:type = \Read"

^ inCache(p; request[p]:adr)

3.^ (state [p] = \MemWait")

)^ :inCache(p; request[p]:adr)

^ #fi 2 f0 : : : jmemQj � 1g :

^ p = memQ[i]:proc

^ memQ[i]:req:type = \Read"g = 1

4.^ (state [p] = \BusWait") ^ (request[p]:type = \Read")

) :inCache(p; request[p]:adr)

5.^ (state [p] = \WrDone")) (request[p]:type = \Write")

2.^ memQ 2 SequenceOf ([[proc : Process ; req : Request]])

3.^ 8 i 2 f0 : : : jmemQj � 1g :

memQ[i]:req:type = \Read"

) 1.^ state[memQ[i]:proc] = \MemWait"

2.^ request[memQ[i]:proc] = memQ[i]:req

Figure 1: An invariant of a cache coherence algorithm.

5

juncts and disjuncts are labeled. (I like to label conjuncts with num-

bers and disjuncts with letters.) The naming convention implies that I:2

is the formula memQ 2 SequenceOf (: : :), and I:1(q).3.a is the formula

request[q] 2 Request.

Conclusion

The notations introduced here will be unfamiliar to most readers, and un-

familiar notation usually seems unnatural. I have used the notations for

several years, and I now �nd them indispensable. I urge the reader to

rewrite formula I of Figure 1 in conventional notation and compare it with

the original. Having to keep track of six or seven levels of parentheses reveals

the advantage of using indentation to eliminate parentheses.

6

