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Echo is an ambitious distributed file system. It was designed around a truly global name space. It
uses a coherent caching algorithm. It is fault tolerant. And it is real—it was the primary file system
for a large group of researchers. Its novel aspects include an extensible “junction” mechanism for
global naming; extensive write-behind with ordering semantics that allow applications to maintain
invariants without resorting to synchronous writes; and fault tolerance mechanisms that are highly
configurable and that tolerate network partitions. It was designed with the intention that its
performance could be as good as a local file system, while supporting large numbers of clients per
server. Its reliability was designed to be higher than other distributed file systems, and higher than
centralized systems. It was designed to work well in arbitrarily large networks.

CONTENTS

What and Why? ................................................................................................................... 1
Global Naming .................................................................................................................... 5
Global Access ...................................................................................................................... 9
Global Security .................................................................................................................. 13
Fault Tolerance .................................................................................................................. 14
How Well Did We Do?...................................................................................................... 20



© Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
non-profit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of the Systems
Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgement of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the Systems Research Center.
All rights reserved.



The Echo Distributed File System     •      1

WHAT AND WHY?

One of the holy grails of operating systems research is building a system that combines
the virtues of centralized time sharing systems with the virtues of distributed and personal
computer systems.  This grail is all the harder to grasp because researchers have different
views of what the virtues of the respective systems are and the environment in which
such a “best of both” system is to operate.

In 1988 we started the Echo project to capture the file system portion of this grail.
We thought of the Echo file system as a crucial first piece of a truly distributed system.
When we started Echo we had a particular view of the virtues of centralized and
distributed systems we were trying to capture. From the world of centralized systems, we
wanted to have:

• Easy sharing of data;

• Centralized administration;

• A simple failure model—either the system works or it doesn't.

From the worlds of distributed and personal systems we wanted:

• Fault tolerance—if one service is down, the user can access another, either
manually or automatically ;

• Scalability ;

• Proximity of computing power to the user.

In this section we outline what properties a file system has to have to achieve these
virtues.  The remainder of this paper describes how the Echo design and implementation
set out to realize these properties, and our experience with the resulting system.

A Distributed System Is Not Just  a Network of Computers

Computer networks are a low-level technology—they allow programs to transfer data and
control amongst the connected computers. A collection of computers inter-connected by a
network does not of itself constitute a distributed system. The collection becomes a
system only when the component parts co-operate sufficiently well that the collection
behaves as a coherent entity. It should appear coherent to the user, to the system
managers, and to the programmers.

We believe that to achieve this coherence, and hence to qualify as part of a
distributed system, a network-based file system must have the following properties.

• Global naming: It must be possible for a user or program on one computer to
utter a name for a file, with the assurance that that name will have the same
meaning to another user or program elsewhere in the same distributed system.
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The alternative to global naming is context-dependent naming. Most often, this
means that file names are interpreted relative to some per-host root (as in NFS1).
Sometimes too, the actual naming hierarchy is host-dependent (as in NFS, if
remote volumes are mounted in a host-dependent way). Without global naming,
users and programs must always be aware of the context in which a name is
meaningful. This notion of “context” removes the coherence from the system. A
program executing a distributed algorithm cannot use file names to communicate
amongst its parts; a program cannot use file names to communicate with itself
across time; users cannot effectively pass file names amongst themselves.

• Global access: The same files and directories must be accessible everywhere
throughout the system—independently of location—with the same operations
available on them. The performance, availability, and reliability of these
operations might vary depending on the location, but the semantics should not.
One way in which a file system can fail to provide global access is if the naming
hierarchy differs on a per-host basis (as in NFS), so that not all files are
accessible from all hosts. This restricts the location transparency of the
distributed system (e.g., when you are in Paris you might not be able to access
your files in New York). A more insidious failure to provide global access
occurs if the file system uses a non-coherent caching strategy (as in NFS),
whereby updates made to a file on one host are not necessarily visible to a
program on another host. This restricts the ease with which you can build
distributed algorithms—the application must take explicit steps to achieve the
coherence that the file system failed to provide.

• Global security: The security of the file system should be no worse than that of a
well-built time-sharing system. When your system uses a network, especially a
network that goes off-site, your system becomes vulnerable to all manner of
attacks from strangers. And even if the network is only inside your own
building, your system becomes more vulnerable when you allow the owner of
each workstation to control the installation and configuration of that
workstation’s system—taking the place of the trusted manager of your
centralized time-sharing system. The techniques for countering these threats are
now understood [1,5,12], but currently available distributed file systems (such as
NFS) do not apply these techniques.

Reaping the Benefits of Distributed Systems Technology

Networked computer systems have several natural advantages over centralized ones.
These include ease of growth (you can start small and grow without wasting your original
investment), autonomy of growth (small groups can make their own purchasing
decisions, instead of relying on centralized resources), and lifetime (you can upgrade

1 We need to use examples to make this discussion more concrete, and we’re mostly using NFS as
the “bad guy”. This choice is primarily because NFS is so well known, not because NFS is worse
than its competitors. Indeed, in many ways it’s better. But NFS provides no global naming, poor
global access and very little security. Despite its various desirable properties (notably its simplicity
and its pervasiveness), NFS falls far short of being an ideal distributed file system.
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incrementally to new versions of sub-systems or to replacements for existing sub-
systems). These benefits come naturally from adopting a network computer inter-connect,
although the file system designer still needs to take care to avoid losing them. But there
are two further benefits achievable in distributed systems, if the designer addresses them
explicitly:

• Fault tolerance: in a well-designed distributed system, you can provide the same
service from multiple computers, and you can do so in such a way that the
service remains available even if one (or more) of the computers fails, or even if
part  of the network fails.  This is not just an opportunity for doing  better than
centralized systems—it is essential if you are to do as well. Using multiple
computers increases the probability of one of them failing and preventing you
from getting your work done. Thus a good distributed file system must offer
fault  tolerance. It should be configurable to provide any desired level of
reliability (by replicating data) and of availability (by offering access to the data
through more than one computer).

• Scale: a well-designed network can grow very large (e.g. the Internet, with about
half a million registered names). With care, the distributed file system also can
be effectively unlimited in scale. But done badly, the file system will hit its scale
limits long before the network does. For example, you could design your file
system to use a proprietary service for its global naming. But this would prevent
you inter-connecting with the existing name services that are literally global (the
Internet’s Domain Name Service and ISO’s global X.500 name space). Or you
could rely on a security system that does not allow for differing levels of trust
across the naming hierarchy, or that requires too much manual intervention to
build a truly large system (e.g. Kerberos version 5 uses inter-realm  links to
achieve security across the untrusted Internet, but all these links must be
installed pairwise and manually). All aspects of the file system design are
affected by considerations of scale. There is no particular scale mechanism
described in this paper; rather, the need to scale well explains several of the
design decisions described in the following sections.

Summary: The Challenges Addressed by the Echo Project

The Echo project is an attempt to learn how to build a distributed file system meeting the
requirements we have outlined, and to actually build such a system—well enough to be
the dominant file system in daily use by a large and active group of researchers. In fact,
the Echo project has constructed a distributed file system with the following properties:

• Global Naming—while retaining global access, security, fault tolerance and
scalability.

• Global Access—despite the use of local caching, and in the face of fault
tolerance mechanisms.

• Global Security—as good as a time-sharing system, but with large scale and
geographic dispersion.
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• Fault Tolerance—while using local caches for performance, and accepting the
possibility of widely dispersed clients.

• Global Scale—but without global trust, and without compromising performance
or availability in the dominant local-area cases.

The remainder of this paper describes how Echo achieves this.  More details about many
of these topics are presented in three other Echo papers [10, 14, 23].

Assumptions

We made a few assumptions throughout this project. If you don’t agree with these
assumptions, you probably won’t like what we’ve produced.

• Good RPC: we have an RPC system that provides very good performance (about
2 milliseconds round-trip for simple calls, using 3 MIP processors) [22,24], and
has powerful features (most of the Modula-2 type system, plus additional
support for remote context handles, marshallable bindings, distributed garbage
collection, and authentication). All the communication with Echo servers uses
RPC exclusively.

• Fail-stop servers: we assume that our servers either give the correct answer, or
give no answer (or an exception). They never give a wrong answer. Of course,
this is an over-simplification. But any behavior that violates this assumption is
by definition a bug and gets fixed.  A correct server can measure intervals of
time with no more than a known error bound; however a correct server can have
arbitrary performance characteristics.

• Fail-stop media: our storage (disks) either return the data that we stored there, or
give an error (although the error might not be reported until you next try to read
the data). This assumption is very close to being true, we believe.

• Byzantine clients: the correctness of the service (i.e. the answers we give to
clients) is unaffected by incorrect clients (or incorrect operating systems on
client computers). An error on a client computer might at worst cause all clients
on that computer to get incorrect results, but it cannot cause incorrect results to
be given by Echo to clients on other computers. In other words, we intend that
however much a client or client computer malfunctions, it seems to clients on
other computers just as if that one computer was making strange but valid
operations. However, a malfunctioning client or client computer might cause
denial of service to others (e.g., by overloading the server, or by malicious
behavior in the cache token algorithm).

• Liveness: the service is correct independently of the liveness of the client
computers, the servers, or the network. But the liveness or performance of the
system can be affected by the liveness of all of these components.
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GLOBAL NAMING

Echo provides a global hierarchic name space: a tree of labelled arcs, with a single
common root. File names are paths through this naming tree. Each file name path consists
of a series of arcs. The arcs are looked up sequentially in directories, to yield further
directories, until the final arc yields the named object—either a directory or a file. In
addition, there are symbolic links: resolving an arc might lead to a specialized node that
contains another name, to be pre-pended to the remainder of the original path. All of this
is just the same as in a conventional centralized Unix system.

Unlike a centralized system, Echo’s name space is implemented by multiple
computers dispersed across the network. Unlike NFS, the Echo name space has a single
global root, world-wide. Unlike NFS, the meaning of an arc in the Echo name-space is
independent of the node on which the application using the name is running (mostly; see
later for the exceptions).

The Echo name space consists of volumes  glued together by junctions . An Echo
volume is just a sub-tree of the name space. Each volume resides on a single server (or a
set of replicated servers), although one server might implement many volumes. A
junction is a leaf in one volume, containing a description of the location and identity of a
further volume. During normal name resolution, if an arc leads to a junction the name
resolution mechanism notices this, interprets the junction’s data, contacts a new server for
the identified volume, and continues name resolution at the root of the identified volume.
The Echo notions of junctions and volumes are analogous to the mounting of file systems
in a centralized Unix system or in NFS. But in Echo there is an important difference. The
junction is a static object giving the identity of the child volume. All clients of the system
see the same volumes in the same places in the name space. Client programs and their
operating systems take no explicit “mounting” action; the volumes are always in their
places. (AFS version 4.0 is using a similar arrangement [17].)

Echo’s mechanism of volumes and junctions is open-ended. There are several
different classes of Echo volumes, with slightly differing semantics and properties. They
are all glued together with this one junction mechanism, transparently to clients. The
most important volume classes in Echo are the Echo name service and the Echo filestore.
There is also a volume class providing access to NFS file systems.

Figure 1 (overleaf) shows the overall structure of the parts of Echo dealing with
name resolution. When the client’s system wants to perform name resolution (e.g. when
the client application calls “open”), the system presents the name to the Echo file system
switch. The switch directs the call to a clerk , specialized to one class of volume (initially
the clerk for the global root volume). This clerk calls appropriate servers to access the
volume. If a server encounters a junction, it returns the junction data to the clerk, which
gives the data and the remainder of the path name to the switch. The switch examines the
junction to determine the volume class, and calls another (or the same) clerk to continue
the name resolution.
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Figure 1: The structure of Echo in a client computer

The global root volume in Echo has to provide world-wide service. So we chose a
world-wide name service: the Domain Name Service (DNS) provided in the Internet.
DNS provides a tree with essentially the properties just described. You resolve arcs and
get to nodes. It’s sufficiently open-ended that you can represent junctions (as text
resource records, for example).

Echo clients don’t actually communicate with DNS servers. Instead, the Echo name
servers provide surrogate access to data from DNS. When an Echo client wants to access
the root (DNS) volume, it uses the Echo name service clerk to talk to an Echo name
server. This server either returns cached data to the client, or talks to the real DNS servers
on the client’s behalf. Thus Echo clients need not understand how to locate and talk to
DNS servers—instead they use our RPC protocols to talk to Echo name servers. More
importantly, though, using the Echo name servers as intermediaries allows us to provide
better availability.

Since we’re relying entirely on global naming, our overall availability is limited to
the availability of the root volume. It would be unacceptable if failures in the high levels
of DNS caused failures for all Echo clients. To avoid this, the Echo name servers stash
[3] data from DNS in stable storage. If a client asks an Echo name server for data from
the root (DNS) volume, and the server’s cached data has expired, but the appropriate
DNS server is not available, the Echo name server returns its cached copy anyway. This
stash is long-term, persistent across restarts.
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Figure 2: Resolving an Echo global name

The Echo name servers implement a second class of volumes. We use these name
service volumes as the next level in our name space, immediately below the root volume.
We maintain these volumes using traditional techniques that provide high availability, but
low consistency [2,13]. The name service volumes are replicated. An enquiry can be
satisfied by any replica. An update can be made at any replica, and is committed there
before returning to the client. But the update propagates asynchronously to other replicas
of this volume. In principle this update propagation can take a long time, but in practice
updates almost always reach all the replicas in under one second.

Most of the files and directories in Echo are stored in a third class of volumes, the
Echo Filestore volumes. These behave more like a conventional file service. Although
they are replicated (to provide our fault tolerance), they provide tight consistency—all
clients see the same data all the time. These volumes use a scheme involving an elected
primary.  (The section on fault tolerance gives more details.) All enquiries are made at the
primary, as are all updates. The primary propagates updates to all available replicas
(necessarily a majority) before returning to the client.

To see how this works, consider figure 2. A client in a workstation wants to resolve
the path name “/-/com/dec/src/x/y/p/q”. The symbol “/-” means that the path starts at the
global root. The arcs “com/dec/src” are resolved in DNS,  much the same as you would
resolve the Domain name “src.dec.com”. But as described earlier, this step of the name
resolution is performed by an Echo name server and is cached and stashed. At this point
the name resolution encounters its first junction (defined by a Text resource record in
DNS), which describes a volume in the Echo name service. The client’s system proceeds
by contacting the appropriate Echo name server (one of several storing this volume), and
presenting a request to resolve “x/y/p/q” relative to this Echo name service volume
(specified by UID). The name server can resolve “x/y”, and returns the junction data
found there. This junction specifies an Echo filestore volume, so the client’s system uses
the Echo filestore clerk to contact the appropriate Echo file server, and asks to resolve
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“p/q” relative to the identified volume (specified by UID again). This resolution succeeds,
and the Echo file server performs whatever operation the client is requesting.

The preceding description ignores the effects of caching in the clerks. Each clerk
caches data from its servers; indeed, most names are resolved entirely from the clerks’
caches, without contacting any servers at all. The caching algorithms are discussed in
detail in a later section.

Why not just use DNS and abolish the Echo name service per se? While DNS is very
effective at naming hosts in a widespread network, it is too rudimentary to be the only
name service in a distributed system. There is no widely accepted update mechanism, no
plausible security mechanism, and only marginal support for enumeration. It really
doesn’t map very well into Unix file semantics. We use DNS at all only because of its
world-wide presence. It is essential as the top-level glue, but at the earliest opportunity,
we use a junction into our own name service—which does  map well into Unix semantics.

Why not just use the Echo filestore and abolish the Echo name service per se? The
higher level parts of the name space have quite different requirements from the lower
level parts. At the high level, the organization and contents of the name space change
quite rarely, and when they do change it is often because of some significant event or
upheaval—adding or removing a user, or re-organizing a department. At the lower levels,
the organization and contents are changing rapidly as users create, modify and delete
files. Further, the availability of the higher levels is more important—if the high level
names are unavailable, all the descendant volumes become unavailable too. There are no
known algorithms that simultaneously provide tight consistency guarantees and
extremely high availability. So we decided that at the higher levels we would use
traditional name service algorithms to maximize availability at the expense of
consistency, and at the low levels we would use the Echo filestore to provide tight
consistency at the expense of somewhat lower availability.

The different consistency guarantees provided by the different classes of volumes are
mostly invisible to our clients and users. For example, a user can apply the Unix “ls” and
“mkdir” commands equally well in an Echo name service volume and in an Echo filestore
volume. When a program is running on a single machine the looser consistency of the
name service is completely invisible unless a name server crashes. But if a distributed
algorithm is running on multiple computers and communicates with different name
service replicas the looser consistency can be visible. We have had examples of this
happening, and it is quite confusing. In each case, the programmer has agreed that he
should have been storing his data in the filestore instead; but the programmer remained
distressed by the occurrence.

Some of our names aren’t global names. We offer two alternatives. As with other
Unix-like systems, you can present names to be resolved relative to a per-process
working directory. But in addition, names can be relative to a per-process “local root”.
For example, the path name “/bin/gcc” is local-root-relative. The local root, “/” is chosen
when a user logs in, and is inherited when forking child processes. Of course, “/” actually
maps into some node in the single global naming tree; just the choice of which point is
process-dependent. This mechanism allows you to make group decisions, such as when to
upgrade to a new version of gcc. Since every process created by everyone in the group
uses the same local root, “/” , they all resolve “/bin/gcc” to the same file. But processes
belonging to outsiders, with other values of “/” might get a different compiler. Again,
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here we have deviated from our principles—not all names are actually global names,
because you don’t really want global naming all the time.

Notice that our notion of local roots is quite different from the multi-rooted name
space offered by systems such as NFS and AFS [17,21]. Our local root is just a pointer
into the global name space; the other systems are truly multi-rooted hierarchies.

The Echo junction mechanism is quite open-ended. The implementation of the name
resolution algorithm uses an object-oriented registration mechanism, so that additional
volume classes can be added. For example, we have a volume class that implements
“/dev”, and one that provides access to a specialized repository for our source control
system. Other possibilities that we have not yet explored include a volume class for
naming processes or jobs.

GLOBAL ACCESS

To provide uniform global access we must ensure that all clients see the same data,
regardless of where they are in the network. A modification made by one client must be
immediately visible to all other clients. The Echo file servers use a replication scheme
with tight consistency (described later), which satisfies this requirement. But if the file
system is to perform well it must cache information in the client computers. To provide
uniform global access these caches must be fully coherent.

Why use caches? One reason is to provide better service to the client, by avoiding
network delays. (Notice that you can avoid disk delays more simply by caching in the
server.) But another reason is probably more important. If data is cached extensively in
the client’s computer, the load on the server is reduced. In the limit, the server encounters
only new data—written by one client, then read at most once by others. This benefit
accrues even if the client cache is on a local disk, as in AFS [17]; although the client
might not notice performance improvement when compared to uncached use of a lightly
loaded server, the overall effect is that a server can handle many more clients.

The Echo filestore cache is implemented in main memory on the client. This is not
fundamental, it’s just an experiment. We could just as well place the cache in paged
virtual memory or in an explicit local-disk file system without affecting the rest of this
discussion. However it is important that the cache is large. Ideally it should contain the
client’s entire medium-term working set, so that the server is used only for reading or
writing new data. In practice today we use about 20 megabytes.

There are two major issues in the Echo filestore cache design: how to achieve
coherence, and what guarantees the write-behind mechanism should provide.

Caching for the Echo Filestore—Coherence

NFS uses a very simple coherence strategy for its client caches. Updates to directories are
write-through—they go synchronously to the server, and to disk. Updates to files are
write-behind, but are propagated to the server after the file is closed. This is an attractive
engineering compromise, very simple and quite efficient. But it can produce very
surprising results when executing a distributed algorithm involving shared files. And
there are frequent complaints about the delays caused by the synchronous directory
operations.
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Figure 3: Token traffic between two
clients and one server

The Sprite system provides a totally coherent cache [19]. Although updates to files
use write-behind, Sprite uses a token scheme so that if an application on another
computer wants to access a file that has dirty pages in a client cache, those pages are first
written back to the server for the other computer to access them. Sprite still uses write-
through for directory operations. AFS version 4.0 uses a similar scheme.

The Echo filestore uses a caching scheme quite similar to Sprite’s, but extended to
deal with directories and to cope with replicated servers; we also deal differently with
shared writing of files. Here is a simple outline of our scheme; we leave the more
complex refinements for a separate paper [14]. The Echo filestore servers manage
tokens , associated with each file. The servers issue these tokens to their clerks in the
client computers. To hold a clean  copy of data in its cache, a clerk must hold a read
token; to  hold a dirty copy, a write token. If any clerk holds a file's  write token, no other
clerk may hold read or write tokens on that  file; but if not, multiple clerks can hold read
tokens. (Note  that these tokens have nothing to do with file locks or with which  clients
have a file open; they are needed only when a client  actually reads or writes file data.)

Consider figure 3. If a client on WS1 wants to read a file, its clerk calls the server
FS1 and obtains a read token on the file. Thereafter, the clerk can cache pages from the
file. If WS2 also wants to read the file, it can get a read token at the same time. But if
instead WS2 wants to write the file, the server calls back to WS1 revoking its read token,
before granting a write token to WS2. Now WS1 has no access to the file, but WS2 can
cache pages it reads from the file, and can also hold dirty pages for the file—thereby
implementing write-behind. Finally, if WS1 again wants to read the file, the server calls
back to WS2 revoking its write token. On receiving this call, WS2 synchronously writes
any dirty pages back to the server, before returning from the revocation call. When this
call returns, the server returns the read token to WS1.

This scheme is very efficient for most usage,
although it behaves poorly if a single file is being
updated frequently by multiple computers. In this
“shared-write” case, Sprite decides not to cache
the file at all. Our approach has proved
satisfactory in our environment, where we run
mostly Unix-style  applications that do not make
use of shared writable files.

Notice that choosing files as the granularity of
the token is quite arbitrary. We could instead have
used a token per page, or issued tokens for byte
ranges. The per-file tokens require less data
structure, so they are immediately attractive. Per-
file tokens seem well matched to typical Unix
usage patterns for files—each file is read and
written in its entirety [18]. In some other systems
the access patterns are different, and issuing byte-
range tokens might be more important. There is
experience of this in other systems [4], and it is
planned for AFS 4.0.
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We use exactly the same scheme for
directories as for files. In this case we are less
convinced that per-file tokens are the right answer.
Our experience so far is leading us to consider
whether we should adopt a more complex token
scheme for directories, recognizing their specific
update patterns.

Now consider figure 4, which depicts a
similar situation except that the file is being stored
on a replicated server (details of replicated storage
come later). In the Echo filestore replication
scheme one replica is elected as primary and the
others are standbys. The token operations just
described are done by clerks calling the current
primary. When the primary fails and a new
primary is elected from the standbys, we need to
recover the state of the token algorithms. To
enable this, we dynamically replicate the token
state (in each server’s volatile storage). Whenever
a client acquires or releases a token, the primary
tells each standby (using a 2-millisecond RPC). So
after a fail-over, the new primary immediately has the token state.

One alternative algorithm would have been to recover the token state by calling the
clerks. We rejected this because of the vast load it would impose at recovery time, and
because of the delays if a client was unavailable at recovery time.

The final part of the token algorithm is recovery when clients crash (or become
inaccessible because of network partitions) while holding a token. We use timeouts to
handle this. Tokens are issued to clients as part of a “session” (one session per client-
server pair). The token is guaranteed to remain valid only as long as the session. The
session remains valid only for a few seconds, unless explicitly refreshed by the client’s
clerk. So if a client becomes detached by a network partition, within a few seconds the
server and the clerk both agree that the clerk’s tokens can be implicitly revoked. This
combination of tokens and timeouts is sometimes called a lease [6].

The server doesn’t actually revoke the tokens unless they conflict with a token
requested by another clerk—this allows us to ride through many transient network
partitions without reporting any errors. If a clerk has lost session and one of its clients
wants to access a file, the clerk must first contact the server to re-establish its right to
have the appropriate token. If the clerk cannot then contact the server it reports an error to
its client. Lost sessions also interact with the write-behind scheme—described the
following section. Notice that this scheme does not require synchronized clocks, only
clocks that agree within a known bounded error rate.

Caching for the Echo Filestore—Write-behind

The Echo filestore cache uses write-behind: when a client application creates, writes or
deletes a file, or updates a directory, the system call returns to the client before the
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operation is transferred to the server or committed to stable storage. We have deliberately
gone further than previous systems in using write-behind, as an experiment. For example,
both NFS and AFS use write-through for directories, using write-behind only for file
data. Our write-behind mechanisms are sufficient that a client application could create a
file, write to it, re-read it, and delete it, entirely within the client cache. The write-behind
mechanism could perform these operations without involving the server at all.

To make such elaborate write-behind useful to our application programmers, we
need to give them strong guarantees about what operations actually reach the server, and
in what order, so that the application can understand and control the states that it might
encounter after a crash and restart.

The guarantee we give is specified as a partial order on the writes and updates that
application programs make. We guarantee that the updates made to the filestore’s stable
storage will satisfy this partial order (i.e., although we might merge or eliminate
operations before they reach stable storage, any re-ordering we make will not violate this
partial order). For the purposes of defining the order, we consider any sequence of writes
to a single file that don’t alter the length of the file to be a single item; within such a
sequence the Echo filestore clerk and server can re-order arbitrarily—to increase
performance. Otherwise, for any particular file or directory, update operations involving
that directory reach stable storage in the same order that they were issued by the
applications. Since some operations can involve multiple files and directories, this defines
a partial order on all the operations requested by the applications. For example, a rename
operation affects up to four objects: the named object, its old directory, its new directory,
and the old occupant of its new directory entry. So a rename operation constrains the
write-behind order of all operations involving any of those four objects. Further, since our
cache is entirely coherent (see the previous sub-section), we can offer this ordering
guarantee across updates made by all applications in the entire system, world-wide.
Notice that we are constraining only the order in which operations affect stable storage;
Echo is still permitted to merge multiple client operations into a single stable storage
operation. For example, we use group commit in our disk updates. Notice too that
although we have the flexibility to adjust the order in which operations affect stable
storage, the caches are still fully coherent—all clients see the effects of the operations in
the order that clients requested them.

We give the applications two additional controls. The system  call fsync blocks until
all outstanding updates to a given file—and all updates that ordering rules guarantee will
precede them—have reached stable storage.  The new nonblocking system call forder
counts as an update to each of its (up to four)  arguments, although the update alters no
contents. The only effect of forder is to further constrain the overall partial order.

So far, our experience with this has been mostly satisfactory. Applications do indeed
use these ordering guarantees to maintain quite elaborate invariants on their stable
storage, and the guarantees do not overly constrain our update algorithms. The
applications use forder to maintain their invariants, without the need to resort to the much
less efficient fsync.

One part we are not yet sure about is how much we will gain from the extensive
write-behind capability. So far we have performed only minor optimizations on the write-
behind stream; for example, we have not yet eliminated temporary files from the server
traffic.
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We have observed one interesting tension in this scheme. With so much write-
behind, the queues of updates that haven’t yet reached stable storage can get quite long—
several minutes, if an application is issuing  file system updates in a tight loop. While this
is good for  reducing server peak loads by smoothing out the offered load, it is bad for
users who expect their work to be saved promptly on disk.  We have added a watchdog
mechanism to the clerk to reduce  the danger of losing large amounts of work. If the
write-behind queued up for a particular volume is more than five minutes old, the clerk
blocks all applications that request more updates on  that volume until the server catches
up. This watchdog never goes off in normal use, though we can trigger it with test
programs.

The most distressing problem in designing a cache that has write-behind is what
happens when a clerk loses its session (and its tokens) because of a network partition or
because of server failures not masked by our fault tolerance mechanisms. In this situation
the clerk has a queue of operations that it has accepted from clients, but that it cannot
commit to the servers’ stable storage. The clerk must decide what to do with the
operations, and how to report the failure to its clients. Notice that this problem does not
arise in centralized systems, because there the clients crash at the same time as the file
system.  We  are still unsure of the best way to report such failures—our  initial design
has not proved entirely satisfactory.  In it, when  a clerk loses its session on a volume, the
clerk invalidates all  application open files and working directories in that volume,  but
allows applications to reopen their files (and directories)  using absolute pathnames. This
scheme is meant to stop naive  applications from continuing to modify the volume under
the false  assumption that their previous modifications were successful,  yet allow
sophisticated applications to recover. But in practice  we have found both applications
that fail with confusing error  messages when they should recover (such as interactive
shells),  and applications that continue (using absolute pathnames) when  they should
quit. As a result we have explored some alternative  designs; we discuss this issue further
elsewhere [14].

Caching for the Echo Name Service

The name service cache is vastly simpler than the filestore cache, for two reasons. First,
updates are quite rare, so coherence is less important. Second, the servers do not provide
tight consistency for updates, so a little inconsistency in the caches won’t make matters
any worse. The name service clerk caches data from its servers for up to 30 seconds. An
enquiry will return cached data if the data is less than 30 seconds old, otherwise it will
ask the server and then update the cache. An update updates the cache on return from
updating the server. This very simple algorithm has been satisfactory—both in terms of
the answers given to clients, and in terms of reducing server load.

GLOBAL SECURITY

The Echo file system uses a distributed security facility that was developed as part of a
separate project at our research center and that is described in detail elsewhere [12].  So
this paper gives only a few highlights of Echo's security,  with emphasis on how they
address our requirements.
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All communication between Echo servers and their clerks is authenticated. In other
words, the clerk and server always know the identity of the principal making or receiving
an RPC call. These principals are identified by global names in the same name space as
we are using for file naming—rooted in the domain name service, with sub-trees
implemented in the Echo name servers and file servers.

All Echo objects—files, directories, volumes, and servers—are protected by access
control lists (ACL’s), which specify what principals may perform what operations on the
objects. An ACL is a set of names and access rights. The names in ACL’s can be
principals, or the names of other ACL's (“groups”) stored elsewhere in our global name
space.

The authentication and access control schemes will work even across a world-wide
distributed system. They provide for differing levels of trust at differing levels in the
name space, and secure cross-links to by-pass untrusted levels of the name space [5].

Our servers enforce the security of the objects they contain. They do not trust their
clerks. The clerks are responsible for multiplexing correctly amongst multiple principals
on the same computer.

This design sounds wonderful, but you may not be convinced it's implementable. To
become convinced, you need to read the  papers on our security system cited above.

FAULT TOLERANCE

It is important to distinguish two concepts: “reliability” and “availability”. Providing a
reliable system means that we will not lose or corrupt your data. Providing an available
system means that we will let you get at your data.

The basic technique for providing reliability is to replicate the data storage. In other
words, write all data to disk more than once. How many times more is a parameter,
selected by you based on the value of your data, the probability of disk errors, and the
cost of disks. Modern disk storage is very good. It is extremely unlikely that it will
corrupt data without reporting an error (i.e., it is fail-stop). It’s also highly likely to store
data correctly. Generally, having two copies of the data is sufficient—at that level, you’re
more likely to lose data through operator error or earthquake than through disk error.

The basic technique for providing availability is to replicate the storage access paths.
At the extreme, this implies replicating the disk drive too, since the disk itself is part of
the access path. But in reality, modern disk drives are a lot more reliable than computers,
and vastly more reliable than computer software. So if you want high availability, but you
are satisfied with single-disk reliability, it is attractive to replicate the server without
replicating the disks.

Fault Tolerance in the Echo Name Service

As mentioned earlier, the Echo name service achieves fault tolerance with techniques that
are by now traditional. The overall architecture is very much like that described in a
previous paper [15]. For each name service volume, there is a set of replicas. Each replica
uses disk storage for a complete copy of the volume. An enquiry can be made at any
replica, as can an update. Updates propagate asynchronously to all other replicas. A name
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Figure 5: Echo filestore configurations

service volume is available and reliable as long as one replica is running. There is nothing
new here.

Fault Tolerance in the Echo Filestore—Configurations and Elections

The Echo filestore is quite flexible in its provision of fault tolerance. Various parts of the
filestore can be configured to provide more or less reliability (by replicating disk
storage),and more or less availability (by replicating servers). The challenge here is to
provide these fault tolerance mechanisms while retaining our strong consistency
guarantees: that an update made by one client is immediately visible to any other client,
and that an update once committed is never undone. (From the client’s point of view,
“committed” is defined according the the write-behind rules I described earlier; but at the
server interface, each update operation commits before the operation returns to the calling
clerk.)

Volumes are grouped into boxes . Each box contains the entirety of some set of
volumes, with no other relationship required amongst the volumes. The allocation of
volumes to boxes is purely a managerial decision. The box is the unit of replication. Each
box is stored on one or more replicas, each of which occupies some number of physical
disks. Each box replica can be accessed by one or more servers.

Figure 5 shows the possible configurations. Configuration 1 is the minimal one:
neither the data nor the server is replicated. In configuration 2, we offer higher
availability by using dual-ported disk hardware so that two servers can access the same
disk. The servers use an election scheme (described later) to decide which is primary. The
primary does all disk accesses, until it crashes. In configuration 3 we provide high
reliability (without enhancing availability) by storing the data on two disks. On every
update, the server records the update on both disks before returning to the calling clerk
(and client). Configuration 4 is the combination of 2 and 3: it provides high availability
and high reliability. Again, the servers elect a primary, which performs all updates,
writing them to both disks.

Configurations 5 and 6 provide much the same level of availability and reliability as
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Figure 6: An election in the face of network partitions

configuration 4, but with different hardware. Instead of using dual-ported disks, the
primary must communicate with the second disk across the network. In configuration 5,
the second disk is accessible only through the second server, but even without it the
remaining server can provide service.

The algorithm for electing a primary amongst replicated servers is basically
straightforward, although the details get quite complicated. We use a majority voting
scheme: every disk replica gets one vote; whichever server gets a straight majority of the
votes is the primary. The votes belong to disks, and they are accumulated by servers. A
server can get the vote from a disk in various ways, depending on the configuration. In
the dual-ported configurations (2 and 4) a server gets the vote by persuading the dual-
porting hardware to give it ownership of the disk; or it allows the other server to get the
vote by disconnecting from the disk. In configuration 5 (disks directly connected to single
servers), the directly connected server controls where the disk’s vote goes. In
configuration 6 (disk servers on the network), the disk server hardware chooses where the
vote goes.

The typical configuration has exactly two servers with exactly two disk replicas. If
they are both connected and running, one will defer to the other (based on processor UID,
for example). But if the network is partitioned so that there is no communication between
the replicas and both are running, neither would get a majority. To avoid this we
configure the system with three votes: one cast by each disk replica, and one cast by a
bystander called a witness. The witness does not store files (at least, not for this box—in
practice the witness is a file server for some other box), it just casts a vote. In any single
network partition, the witness is accessible to one or the other server, so that server will
get 2 votes—a majority. If there are multiple network partitions it is possible that no
server will get a majority. In such a case no service will be provided.

Figure 6 shows an election in the face of network partitions. If there is a network
partition at point X, the witness will vote with server B, but if there is instead a network
partition at point Y the witness will give its casting vote to server A. If the network is
partitioned at both X and Y, neither A nor B will get a majority, and no service will be
provided.

There is  one important improvement to this algorithm. If the primary that gets
elected has an up to data copy of the token and session data structures, we will be able to
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provide uninterrupted service to our clients. Otherwise, the clerks will have lost their
tokens and might have to report failures to their clients. So in reality our election
algorithm biases the result toward a server that has this data.

Notice that this election just decides which server will be primary. We need a further
algorithm to decide which disk replicas contain “truth” data and to reconcile the replicas.
This is outlined in the next section.

Fault Tolerance in the Echo Filestore—Updates and Recovery

The Echo filestore uses a log (or journal) for recording updates on each box’s disk
storage. When a client’s clerk calls a server to make an update, the server verifies the
operation’s pre-conditions, updates the server’s volatile data structures, then writes a log
record on one of its disks. If the box is replicated, the log record is written on all replicas.
Then the server returns from the RPC call made by the clerk. When the clerk regains
control, it knows the update has been committed to disk. Asynchronously, the server
applies updates to their “home” location on its disks, and removes the update record from
the log. (Actually, if the update is a large data write—more than 4K bytes—the write is
made synchronously to the home location, with only a brief notation in the log.)

As an optimization, we have written our servers so that in the absence of crashes they
never need to read the log. We do this by ensuring that the server’s buffer pool contains
all the data affected by the log entries. This requires a substantial buffer pool in the
servers—we use about 80 megabytes shared between this function and normal caching of
pages to avoid disk reads—but the gains from never seeking or reading the logging disk
can be substantial.This also requires a substantial buffer pool in the servers—we use
about 80 megabytes (shared between this function and normal caching of pages to avoid
disk reads).

Other file system designers have explained the attractions of logging, which are
numerous [7]:

• Server throughput can be increased, because the log is written sequentially
without seeks; the seeks happen asynchronously when the server writes the
updates to their home locations, hopefully at a time of lower overall load.

• Server availability can be increased, because restarting from a log can be faster.
There is no need to have a program such as “fsck” verify file system invariants,
because each log entry by definition preserves the invariants.

• Server performance can be increased, because the server can use “group
commit”: write a single log record in one disk operation to describe multiple
client operations.

• Atomicity can be improved, giving stronger guarantees to clients: a single log
record, written in a single disk operation, can describe an update (such as
“rename”) that affects several parts of the file system simultaneously. Other
mechanisms can achieve this atomicity, but logging is by far the simplest.

But even without those advantages, the use of a log would be attractive because it
optimizes and simplifies our replication algorithms, in the following two ways.  (More



18     •      The Echo Distributed File System

information about the logging techniques used in Echo is presented in another paper
[10].)

In configurations 2, 4, and 6 described earlier, the primary server has direct access to
all disks, without communicating with the secondary server. Since the primary can write
those disks simultaneously, the performance penalty for replicating the data is slight. But
if the primary crashes, the secondary would need to read the entire log in order to
reconstruct the dynamic state that allows it to interpret the rest of the disks. This could
take many minutes, during which no service would be available. We can use log records
to accelerate this. After the primary has written the log record for an update (and returned
to the clerk) the primary can asynchronously forward the log record to the secondary. The
secondary can apply these forwarded log records to its dynamic state, so that its state
tracks the primary—but lagging by a few log records. So after a crash of the primary and
the subsequent fail-over, the new primary (old secondary) can recover the entire dynamic
state by reading and applying just those few log records. This substantially reduces fail-
over time.

The second way that logging helps replication is that the log can be used to reconcile
replicated disks. The basic idea here is simple. During recovery, all we need to do is
propagate log records from one replica to another, or discard log records on a replica, so
that the logs of all the currently available replicas become identical. The only complexity
is deciding which log records to keep. There are two constraints. First, we must keep all
log records corresponding to updates for which some clerk has been told that the update
was committed to stable storage. Second, if some replica recorded a log record then
crashed, and subsequent updates were made without considering this log record (because
this replica was not available), then this log record must be discarded.

A complete description of our recovery scheme would be too complicated for this
paper. The following description is a subset of the actual algorithm—it gets the correct
answer, but it omits several optimizations. These optimizations are essential if the system
is to perform well and have good availability characteristics. If you want more
information, read our research reports about the recovery algorithm [10] and about
availability [23]. These reports include the optimizations, together with more rationale
and an exploration of related work by other researchers.

Our recovery scheme is driven by epoch numbers; the algorithm ensures that these
are unique and monotonic increasing over the entire set of replicas of a box, for all time.
In the following description, “committed update” means an update for which some clerk
has been told that the update is safely stored in our stable storage.

Whenever a replica might have left the set of servers providing service for a box (e.g.
on a cold start or when one replica crashes) we stop offering service and take the
following steps:

1. Choose a primary to carry out steps 2 through 5.  In general this requires an
election as described earlier, but sometimes the previous primary still has a
majority of votes and no new election is needed.  Call the set of replicas that
voted for this primary the active replicas .  If at any time the primary is unable to
contact one of the active replicas to carry out a step, or an active replica‘s vote
times out, immediately stop and return to step 1.
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2. Choose a new epoch number E greater than any used previously by any previous
run of this step as follows:

a. Read the possibly chosen epoch previously recorded in the stable storage on
each of the active replicas

b. Let E be one greater than the largest value read.

c. Write E as possibly chosen epoch on each of the active replicas.

d. If we complete these steps without failure, E is chosen; otherwise we return
to step 1.

3. Reconcile the active replicas (described below).  After this step all the active
replicas contain identical data, apart from some optimizations described later.
This identical data contains all the committed updates.

4. Write E as the service epoch  on each of the active replicas.

5. Now we can offer service again, using the primary and active replicas
determined in step 1.

In step 3, the primary determines the latest service epoch recorded on any of the active
replicas. Call this epoch S. Then for each active replica R there are two possible states:

a. If R’s service epoch is equal to S, then R was an active replica in an epoch S that
got at least to step 4 of recovery—this is the common case. Therefore R was
reconciled in step 3 of that epoch, so it has all the committed updates performed
prior to epoch S.  Also, R has all the committed updates performed during S. But
R might also have some log records for updates that were in progress when
epoch S ended. Reconciliation is just a matter of applying these additional log
records to the other active replicas for epoch E, or removing them from R.

b. If R’s service epoch is less than S, then R was not active in the most recent
epoch, and thus might not have the most recent committed updates—this
happens if R was down while other replicas were providing service. Also, R
might have log records for uncommitted updates that were in progress the last
time R was active, but were discarded during a later reconciliation that R did not
participate in; these must be discarded. It's easy to see that at least one active
replica in step 3 must be in state (a), so at worst we can recover R by whole disk
copy from such a replica.

One important optimization to this algorithm is to allow for  adding a witness to make the
number of replicas odd. With small  changes to steps 3 and 4, some replicas can be
witnesses; they do not keep a copy of the replicated files and do not participate  in normal
service, but they do need some stable storage to record  epoch numbers for use in
recovery.

Another useful optimization affects replicas in state (b) during the recovery
algorithm. If a replica has been off line for a long time, the amount of updating needed to
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bring it up to date might be substantial, and could cause an unacceptable  delay in
offering service. So we mark such replicas as being  temporarily out of date, and offer
service using the other active  replicas. In effect, an out-of-date replica is demoted to the
status of a witness, then promoted again when it is brought up  to date.  This procedure
can reduce our availability (or even  reliability) if another replica fails before the out-of-
date  replica is updated, but in return we get faster recovery and thus better availability
when there is only one failure.

A third optimization—too complicated to explain here—is  to use a two-phase
process for moving to a new service epoch in  step 4.  This change speeds the recovery
algorithm in certain  cases by improving the handling of some uncommon failure patterns
that needlessly move replicas from state (a) to state (b) in the  basic algorithm.

The full algorithm is also complicated by the possibility of adding new replicas, or
destroying old ones.

There is a substantial literature on replication and recovery algorithms, but
surprisingly few of the results are suitable for replication in a distributed file system. One
similar algorithm has been described by Kazar [11]. Many of the other algorithms either
assume that network  partitions cannot occur (and can give incorrect results if they  do
occur), or rely on 2-phase commit algorithms  without exploring their failure behavior.

We repeat: the above is a much simplified description of our recovery algorithm. Out
other research reports [15,23] provide the details.

HOW WELL DID WE DO?

Echo was in full service within SRC from November 1990 until the summer of 1992. It
was the file system used by about 50 researchers for almost all their daily work—mail,
programming and entertainment. It contained about 25 gigabytes of data, using 50
gigabytes of disk (since we had configured all our volumes with two replicas). The
mechanism described for stashing data from DNS was not fully implemented—we didn’t
actually make calls on the DNS and didn’t actually store junctions there. Instead we have
manually stashed this information in the Echo name service.

The Echo filestore included a real backup system—so users stored real files in Echo.
Actually we had two backup systems. One was integrated into the replication mechanism,
and effectively worked as a replica that is almost always off-line. The “back-up
algorithm” was just the recovery algorithm. This meant that the information stored on the
backup tapes formed an instantaneous snapshot of some previous state of the volumes.
Our other backup system was “tar” tapes. While they didn’t form a snapshot, they were
insensitive to bugs that might have cropped up in the Echo implementation. All our users
are willing to believe we could get their files back from a tar tape, but it required a lot
more faith to believe we could get them back from an off-line replica.

Development on Echo stopped in early 1992 when the project to port Taos, the
operating system hosting Echo, to more modern hardware was canceled.  Functionally it
satisfied the requirements laid out in this paper. Work remained to be done if we were to
achieve appropriate levels of availability and performance.  Much of that work would
have required faster and more reliable hardware.  One of the design assumptions of Echo
was that computation was cheap relative to communication. Unfortunately computation
was not cheap enough in our environment of 3 MIPS processors connected with a 100
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Megabit-per-second switch-based network. Current and prospective environments
provide a more balanced picture: workstations at 100 MIPS, servers at 400 MIPS or
more, and networks at 160 or 1000 Megabits-per-second. In that sort of environment, the
Echo design would work well.

Even so, Echo's performance was comparable to a reasonable quality centralized
Unix implementation on similar hardware. Its performance was better than most NFS
implementations of the time—few of those could support 50 demanding users reading a
single volume.

Echo’s availability was reasonable, and was improving when we went out of service.
We made frequent use of the fail-over mechanisms to install new server versions, and to
debug servers; only the most observant clients noticed when we did that. When under
active development, the availability was limited by our recently introduced bugs. At other
times it was limited by a combination of flaky experimental hardware and inadequate
system management. The most difficult availability problem we experienced was load
control. Our servers had limited resources (128 megabytes of memory, 16 megabytes of
DMA address space) and it proved remarkably difficult to avoid crashes or deadlocks
caused by over-load. We got those problems under control, but we have little confidence
that an additional doubling of the user community would not cause additional problems.

Echo’s reliability was very good. Though during our period of service we had more
than 10 disk failures, none of them caused us to lose data. (However we once lost some
updates due to a software bug in the reconciliation code.)

The advent of global naming was very satisfactory. It was very pleasant to know that
you could log in to any workstation in the building and see the same files. We had
originally intended to integrate a remote site into the Echo name space, but this goal was
never realized.  Surely running over a wide area network would have caused some
changes to the timeouts on the caching protocols.

The caching worked out quite well. For example, all our users shared the same
repository of released code and programs. The caching was good enough that we handled
the load with a single server, even though each client workstation had the same
processing power as each of our file servers.

Our guarantees on write-behind order did indeed make it easy for applications to
maintain their invariants without resorting to excessive “fsync” or “sync” calls. On the
other hand, as discussed earlier we are still uncertain of the best design for reporting
write-behind failures.

We believe that the Echo design addresses many, but not all, of the problems of
scale. For example, it would probably be attractive to add some form of load-sharing for
reads—so that we could handle more clients of a single volume. A scheme of
automatically updated read-only replicas such as is included in AFS 4.0 would probably
be satisfactory [17]. We also believe that there is a place for higher-level replication
techniques to cover wide-areas, such as the siphon  mechanism that has been described
elsewhere [20]. This seems necessary because there is no design for tightly synchronized
data that performs well in the presence of high latency and low reliability connections.

Technology trends continue to favor systems based on the same assumptions as
Echo. Though the Echo implementation did not achieve everything we had planned for it,
we think that the Echo system embodies many of the principles and techniques that will
be pursued in future distributed file systems.
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