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Authors' Abstract

Vesta is a highly exible con�guration management system that supports large-

scale development. Vesta provides a repository of immutable objects and a

functional programming language for writing concise yet complete descriptions

of con�gurations.

A Vesta bridge is a set of related functions and data types provided by tool

builders to a Vesta environment. For instance, a C bridge might include a

function for compiling C sources and a function for linking compiled C sources

into executable images.

Vesta has supported development on a signi�cant scale. The Vesta prototype

included several low-aspiration bridges that encapsulated existing tools without

modi�cation; these bridges were straightforward to write. Vesta also included

one high-aspiration bridge, Vulcan, a compiler server based on abstract-syntax

trees. Vulcan gained both functionality and performance from its integration

with Vesta. Both types of bridge bene�ted from Vesta's single, uniform naming

facility that replaced ad hoc name spaces of traditional environments.

Bridges themselves are described and con�gured within Vesta. This allows

tool builders to provide consistent collections of tools, control their evolution,

and manage their installation using Vesta.

v



Contents

1 Introduction 1

2 Vesta background 4

2.1 System models, objects, and repositories : : : : : : : : : : : : : : 4

2.2 The language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.3 The evaluator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.4 System environment for the Vesta prototype : : : : : : : : : : : : 8

3 Bridge design goals 8

4 Bridge design overview 9

4.1 Process structure : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.2 How bridges extend the set of functions : : : : : : : : : : : : : : 11

4.3 How bridges extend the set of types : : : : : : : : : : : : : : : : 14

4.3.1 Opaques versus deriveds : : : : : : : : : : : : : : : : : : : 15

4.4 Versioning issues : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5 Bridges for existing tools 17

5.1 MM: A simple bridge : : : : : : : : : : : : : : : : : : : : : : : : : 17

5.1.1 MM$Compile function : : : : : : : : : : : : : : : : : : : : 17

5.1.2 Other MM functions : : : : : : : : : : : : : : : : : : : : : 20

5.2 C: an encapsulating bridge : : : : : : : : : : : : : : : : : : : : : : 21

5.2.1 C$Compile function : : : : : : : : : : : : : : : : : : : : : 21

5.2.2 Other C functions : : : : : : : : : : : : : : : : : : : : : : 23

5.3 Shell: a bridge for low-e�ort extensibility : : : : : : : : : : : : : 23

5.3.1 Shell$Sh function : : : : : : : : : : : : : : : : : : : : : : : 24

5.3.2 Shell$UnsafeSh function : : : : : : : : : : : : : : : : : : : 27

6 Vulcan: An advanced bridge 28

6.1 Vulcan bridge functions : : : : : : : : : : : : : : : : : : : : : : : 29

6.2 Vulcan's opaque values : : : : : : : : : : : : : : : : : : : : : : : : 31

6.3 More exible linking : : : : : : : : : : : : : : : : : : : : : : : : : 32

6.4 More e�cient linking : : : : : : : : : : : : : : : : : : : : : : : : : 33

6.5 Generics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

6.6 Servers, caching, and persistent storage : : : : : : : : : : : : : : 34

6.7 The debugger : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

6.8 Vulcan experience : : : : : : : : : : : : : : : : : : : : : : : : : : 37

7 Final comments 38

8 Acknowledgements 39

vi



1 INTRODUCTION 1

1 Introduction

Most successful software development environments include an extension mech-

anism for adding new tools. Extensibility allows an environment to evolve as

user requirements change and as new technology comes along.

This paper describes bridges, an extensibility mechanism of the Vesta con-

�guration management system. We make two main points about Vesta bridges.

First, bridges are a practical mechanism, allowing existing tools such as com-

pilers, linkers, and shells to be incorporated at low cost into the Vesta system.

Second, the bridge mechanism o�ers both improved performance and increased

functionality to new tools written speci�cally for Vesta.

Before introducing bridges we must introduce Vesta. Vesta represents our

attempt to build a con�guration management system that is highly exible and

extensible yet supports large scale software development. We were inspired

by the Unix system [Kernighan and Pike], a well-known software development

environment whose strength is its exibility and extensibility. We felt that three

aspects of Unix contribute to its strength:

� The Unix �le system makes no assumption about �le format, and its

hierarchical naming provides a rudimentary mechanism for large-grained

modularity, parameterization, and version control.

� Programmable shells such as sh, csh, and make provide low-overhead,

simple mechanisms for combining tools to solve speci�c problems.

� Unix tools are ordinary application programs that follow a few conventions

for the use of facilities like standard input/output streams, argument pass-

ing, search paths, and exit status.

The Unix system is widely used commercially, but it su�ers severe problems

as an environment for large-scale software development. The very exibility of

Unix is its Achilles heel|because Unix imposes so little structure, programmers

must rely on the disciplined use of conventions to keep a large system organized

and consistent.

Thus it is now commonplace to augment Unix with a con�guration man-

agement system. Typical con�guration management systems, however, enhance

Unix in only a single dimension by supplementing the �le system. In Vesta we

have augmented Unix in all three dimensions:

� Vesta supplements the Unix �le system with the Vesta repository, a hi-

erarchical, versioned store of immutable objects. Like Unix �les, Vesta

repository objects are uninterpreted byte sequences.

� Vesta programmers use a functional programming language to describe

software systems concisely yet completely, to a degree not possible with

other systems. The restriction to a functional language enables Vesta to

describe large software systems entirely in terms of source objects.
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� Vesta formalizes a common class of programming tools, functional tools,

with its notion of bridges.

A programming tool is functional if it computes a function of its inputs.

Nearly all existing tools used for mechanical software construction are func-

tional. For instance, a C compiler computes an object �le from a C source �le,

a collection of header �les, and a list of compiler switches; the content of the

resulting object �le is completely determined by the compiler and its inputs.

A Vesta system model, written in the Vesta language, describes a software

system that can be built using functional tools. For example, the system model

of an application program speci�es how to compute the application's executable

program image from a collection of source objects using functions such as a

compiler and a linker.

A Vesta bridge is a set of related functions and types provided by tool builders

to a Vesta environment. For instance, a C bridge might include a function for

compiling C sources, a function for making link libraries from collections of

compiled C sources, and a function for linking compiled C sources and libraries

into executable images.

Vesta is self-describing|the bridges themselves are described and con�gured

within the system. This allows tool builders to provide consistent collections of

tools, control their evolution, and manage their installation using Vesta.

Vesta has supported development on a signi�cant scale. Vesta was used for

one year to maintain and evolve a system of 1.4 million lines of code written

in several languages by more than 25 programmers; most of the code pre-dated

Vesta and was implemented using traditional Unix tools. The system included

a kernel, a remote procedure call facility, a distributed �le system, a window

system and user-interface toolkit, a text editor, a compiler and linker, and dozens

of other applications (including Vesta itself). Using Vesta, the system was

ported from VAX to R3000 machines and from SRC's experimental operating

system to OSF/1. We know of no other advanced con�guration management

system that has been used on this scale.

Here is a summary of what we learned about bridges from this experience:

� Vesta's bridge mechanism does provide practical extensibility at low cost

to tool builders. We incorporated existing tools such as compilers, link-

ers, and shells into bridges without modi�cation. We wrote a new bridge

speci�cally for use with Vesta; this bridge gave new and improved function-

ality and performance, compared with the conventional tools it replaced.

� Bridges bene�ted from being embedded in a real programming language

rather than the crippled description languages of systems like make. Vesta

provided bridges with a single, uniform naming facility that replaced the

ad hoc name spaces of traditional environments. Bridges also bene�ted

from the built-in data types of a programming language and from the

ability to de�ne new types.
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� While make-based environments often require language-speci�c tools to

compute dependency sets for correct incremental builds, Vesta freed our

bridges of this concern.

� The Vesta bridge abstraction addressed a major issue that is not dealt

with coherently in other con�guration management systems: the persis-

tent storage and versioning of tools. The ability to describe and con�gure

bridges using Vesta was extremely valuable as tools evolved.

The Vesta approach to tool integration and extensibility centers on its func-

tional language and immutable object store; tools integrate with Vesta by using

the language's name space and data types and by extending the language with

new functions and types. Most other research projects and recent commercial

products for large-scale con�guration management are based on a more data-

centric approach to tool integration and extensibility, using entity-relationship

or object-oriented databases. Quoting from a recent paper [Thomas]:

Over the past few years, there has been an evolution from the use

of �le systems as data repositories for [software engineering environ-

ments] to the use of data/object bases. PCTE's [object management

system] exempli�es this evolution. The additional richness of the

data models of these data/object bases allows explicit representa-

tion of relations between the objects manipulated in the [software

engineering environment], including dependency information of in-

terest for Con�guration Management.

We believe this data-centric approach to be a tarpit. Dependency informa-

tion can be expressed much more concisely, understandably, and maintainably

in a language, as in Vesta, than as a data structure. The value added by ex-

pressing source code in a richer data model is unclear, while the costs incurred

are immediately evident|the need to modify or replace a large set of tools that

were designed to use �les. Despite hundreds of man-years devoted to these data-

centric systems, they are only starting to progress beyond toy examples, and the

work to date has not addressed the hard details of issues like tool integration

for consistent building.

Here is how the remainder of the paper is organized. Bridges are an integral

part of the Vesta environment, so Section 2 of this paper provides necessary

background information on Vesta. Section 3 details the design goals for Vesta

bridges, and Section 4 describes our design to meet the goals.

Sections 5 and 6 illustrate the design space for bridges. Section 5 shows how

easy it is to incorporate existing tools into bridges. It introduces the idea of

encapsulating an existing tool to make a bridge, and illustrates a way to add a

new tool to Vesta without writing a new bridge. Section 6 describes the Vulcan

bridge, which is more highly integrated with Vesta than other bridges and gains

signi�cant advantages from the integration.
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In Section 7 we make some �nal comments on Vesta's range of application

and how our work on Vesta bridges relates to other research.

2 Vesta background

This section contains the information about Vesta that is necessary for a proper

understanding of the subsequent sections. We don't cover any topic in depth.

Two companion papers describe Vesta's repository [Chiu and Levin] and lan-

guage [Hanna and Levin], while a third paper explains how Vesta solves speci�c

problems in con�guration and release management [Levin and McJones].

2.1 System models, objects, and repositories

Vesta system models (or models, for short) describe software systems completely

yet concisely. A system model is complete because it names the speci�c version

of each source object that contributes to the system and it describes precisely

how the results (usually either libraries or executable program images) are gen-

erated from the source objects. Only information written in a model can a�ect

building; other information, such as header �les, libraries, and tools not con-

trolled by Vesta, cannot a�ect building. A system model is concise because

it is written in a programming language that supports functions and function

parameter defaulting.

Vesta formalizes the distinction between source and derived objects. A de-

rived object contains a result that Vesta has produced by executing a system

model. A source object contains something that Vesta cannot reproduce. For

instance, a source object may contain a source program typed by a user, or

it may contain an object code library imported from another organization. A

system model is a specialized type of source object. Internal to Vesta, both

source and derived objects are named with unique identi�ers (UIDs).

Vesta enforces the immutability of all source objects. Once a source object

has been created, it cannot be modi�ed. Instead, a new version can be created.

Because system models are complete and source objects (including system

models) are immutable, the execution of a system model is reproducible: it

always yields the same results. A derived object can always be reproduced from

source if necessary. Therefore Vesta can (and does) manage derived objects. In

this way Vesta solves the \repeatable build" problem.

A Vesta repository is essentially a container for source and derived objects.

Programmers share their work through one or more repositories.

A repository is accessible to Unix programs as a read-only �le system. For

instance, any Vesta UID can be converted to a valid (though obscure looking)

pathname. Source objects also have user-sensible pathnames that reect the

versioning of source objects in the repository.
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2.2 The language

As described in the introduction, programmers write system models (descrip-

tions) in the Vesta language; a bridge is a collection of functional tools that

are callable from the language. So an appreciation of bridges requires some

understanding of the language.

The Vesta language is functional|values are produced by repeated appli-

cation of functions. Vesta allows the naming of intermediate results, but does

not allow variable assignments or other side e�ects. The language contains

a small set of built-in functions, and programmers write new functions using

the FUNCTION construct. Tool builders provide additional functions by writing

bridges in traditional systems programming languages.

The language is dynamically typed: Each value carries a representation of

its type during the evaluation of expressions, and programs do not contain type

declarations. The prede�ned types are:

Boolean {TRUE or FALSE

Integer {an integer

Text {a sequence of bytes (often, but not always, ASCII text)

List {a LISP-style list

Binding {a mapping from identi�ers to values

Function {a function

Bridges can de�ne new types.

The language is also strongly typed: All built-in functions produce a special

ERROR value if passed an argument with an incorrect type. For instance, the

value of

PLUS(1, TRUE)

is ERROR.

Though the language is dynamically typed, it provides the same guarantees

of correctness as a statically typed language would. Static typing in a language

like Ada ensures that all type errors in a program are detected during the

construction of the program, before it ever executes. Vesta provides the same

guarantee|if the evaluation of a systemmodel succeeds, there are no type errors

in the program constructed by the evaluation.

Description of a complex system involves the manipulation of large sets of

named values. Vesta facilitates such manipulation by making naming environ-

ments �rst-class citizens called bindings. A binding is a set of name-value pairs

in which no name is repeated. Bindings are central to the expressiveness of the

language.

In the following example, the values of the two Vesta language expressions

are bindings, and the two bindings are equal:
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f opt_level = 3, debug = FALSE g

f debug = EQ(0, 1), opt_level = PLUS(1, 2) g

The language provides a number of built-in operators and functions for ma-

nipulating bindings and extracting component values. For example,

b$x

yields the value paired with the name x in the binding b. And

f b1, b2 g

yields the union of the two bindings b1 and b2.

The LET expression allows a binding to be opened as a name scope:

LET binding IN expression

The value of a LET is expression, evaluated in a naming environment in which

each name de�ned in binding is bound to its corresponding value. For instance,

the value of

LET f a = 1, b = 2 g IN PLUS(a, b)

is 3. LET is similar to Pascal's WITH, except that the binding can be the result

of evaluating an arbitrary expression:

LET Env_default() IN build(p, q, r)

In this case, the names contained in the binding may not be apparent froma local

inspection of the surrounding text. This unusual feature, naming environments

as �rst-class citizens, is crucial to the modularity and conciseness of system

models.

Another unusual feature of the Vesta language is implicit formal parameters.

The Vesta fragment

plus_x_y = FUNCTION ... IN PLUS(x, y)
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de�nes a function with no explicit formal parameters. The \..." in the function

de�nition means that names in the function de�nition that are not bound by an

enclosing LET (x and y in this example) should be considered formal parameters

and looked up in the function caller's environment. Thus the value of

LET f x = 1, y = 2 g IN plus_x_y()

is 3.

Implicit formals are a practical necessity for concise system models. Models

tend to be composed of highly parameterized sets of functions that deal with

thousands of names, and it wouldn't be practical to list all the functions' free

variables as explicit formals. (A companion paper [Levin and McJones] contains

several examples of real models.) Also, bridge functions need to access a large

and in�nitely varying set of implicit formal parameters. For example, when a

C compiler function is applied to a C source, it must get values for all headers

included directly or indirectly by the source. It would be impossible for the

compiler function's de�nition to list all these as formal parameters, since they

vary with the source. And it would be infeasible for programmers to bundle

the set of headers into a binding passed to the compiler, since that would make

models much, much larger.

2.3 The evaluator

The Vesta evaluator is an interpreter of system models (Vesta language pro-

grams). When interpreting a model the evaluator builds the software system

described by the model. An interpreter (rather than a compiler) is su�cient

because the expensive part of evaluating a system model is generally the calls

to bridge functions.

The evaluator performs caching of function calls. That is, when the evaluator

is preparing to call a function, it determines whether or not it has already called

the same function with the same actual parameters (both explicit and implicit).

If it has, it returns the result of the earlier call instead of performing the call

again. Vesta's use of a functional language makes caching simpler.

The evaluator's cache is persistent|it is stored on disk to survive restarts of

Vesta. The cache is also shared between users of a common repository. Persis-

tent, shared caches make it practical to describe large software systems entirely

in terms of source objects, instead of in terms of a few source objects and the

derived forms of imported libraries.

The Vesta evaluator's ability to support large descriptions expressed in terms

of source objects is a direct bene�t to all bridges, because it guarantees consis-

tent evaluation. In particular, Vesta bridges have no need for specialized tools

that compute dependency sets, as are often used in systems based on make (e.g.

imake's makedepend).
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2.4 System environment for the Vesta prototype

The Vesta prototype is written in Modula-2+ [Rovner]. A signi�cant bene�t

of using Modula-2+ is its well developed remote procedure call (RPC) facility,

which simpli�es the construction of programs that consist of communicating

processes. Vesta makes heavy use of Modula-2+ RPC's ability to marshall an

instance of an opaque reference type by creating a remote surrogate instance,

called a network reference.

The prototype is built on the Taos operating system [McJones and Swart]

and Echo �le system [Hisgen et al.]. Taos is a Unix variant that supports stan-

dard Unix applications while also providing threads and RPC support. Echo is

a distributed Unix �le system providing single-site consistency in spite of the

distributed implementation.

The prototype runs on Firey multiprocessor workstations [Thacker et al.],

which contain VAX processors.

3 Bridge design goals

The design of the Vesta bridge mechanism is motivated by the following goals.

We want the bridge mechanism to meet these goals directly when possible. In

other cases the bridge mechanism should help individual bridge writers meet

the goals.

� Language-integrated: A bridge function should present an interface that

exploits language facilities. For instance, rather than de�ning a Compile

function with a single parameter containing the compiler's command-line

options as a text string, it is better to de�ne the individual options as

separate parameters with appropriate data types like Boolean and Integer.

This way the Vesta language mechanisms for parameter defaulting will be

helpful to users of Compile. Similarly, bridges should take structured

values (lists and bindings) as parameters and return them as results when

appropriate.

� Unbounded: There should be no designed-in limits on the number of

bridges or on the number or complexity of functions provided by a sin-

gle bridge. Naturally, the capabilities of the machine Vesta runs on will

impose practical limits.

� Persistent: To give repeatable behavior, bridges must be stored persis-

tently and immutably.

� Versioned: To support evolution, bridges must be versioned. It must

be possible to introduce a new version of a bridge function that applies

to instances of types produced by earlier versions of the bridge, and to

produce new versions of bridge types that can only be manipulated by
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corresponding new versions of bridge functions. Vesta must support the

use of both old and new versions of a bridge in the same evaluation.

� Dynamically loaded: To ease evolution, bridges must be loaded dynami-

cally rather than statically bound into Vesta. This capability is especially

important to bridge developers. Dynamic unloading of bridges that have

been idle for a long time is desirable, to avoid having the environment

grow without bound.

� Concurrent: Vesta aims to serve a large number of concurrent users from

a given repository. Bridges must not introduce bottlenecks that limit the

number of users that a repository can support. In fact, bridges must

give the Vesta evaluator the exibility to compute bridge functions con-

currently for a single user, if the evaluator chooses to implement parallel

(and possibly distributed) evaluation.

� Functional: A bridge function must compute a true function of its input

parameters. For instance, environment variables and �le system state out-

side Vesta's repositories must not inuence the results of a bridge function.

� Multiple platforms: To allow system models to be as platform-independent

as possible, bridge functions should be parameterized by the target in-

struction set and operating system and should hide incidental di�erences

between platforms. A bridge must be capable of evolving to support new

target instruction sets and operating systems as necessary. The instruc-

tion set or operating system that is running a bridge should not a�ect the

signatures (i.e. the argument and result types) of bridge functions.

� High performance access to small values: To support Vesta's performance

goals, Vesta must store instances of both built-in types and bridge-de�ned

types in its persistent caches and retrieve such values e�ciently. The per-

formance requirements are not easy to characterize precisely, but storing

and retrieving Vesta values, including instances of bridge-de�ned types,

must be more e�cient than storing and accessing �les in a �le system. A

typical instance of a bridge-de�ned type would be a tiny �le, only a few

hundred bytes.

4 Bridge design overview

4.1 Process structure

Each Vesta user runs a process called the Vesta server. This process contains

a Vesta evaluator and code to access Vesta repositories. There is no repository

server per repository|instead, �le sharing is synchronized using the �le system.

(Nothing rules out doing it the other way.)
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Tool ToolTool

Vesta
Server

Bridge

Bridge

Bridge

File System

Figure 1: Vesta's process structure

Each Vesta bridge is implemented as a program. To start a bridge, Vesta

starts a Unix process running the corresponding program. The bridge process

communicates with the Vesta evaluator and the Vesta repository using remote

procedure calls.

Vesta tools provide user interfaces to the facilities of the Vesta repository

(check-in, check-out) and evaluator (build). The tools run as separate processes

that communicate with the Vesta server using RPC.

These initial design choices fully or partially address the �rst six goals enu-

merated in the previous section:

� Language-integrated: Because the bridge communicates with the evaluator

using RPC, it is straightforward to communicate complex typed values to

and from the bridge.

� Unbounded: Since the Vesta evaluator runs each bridge as a separate pro-

cess, the number of bridges is e�ectively unbounded.

� Persistent: Since bridges are programs, Vesta can store bridges using the

mechanisms it uses for storing programs in general. It follows that bridges

are stored as persistently as Vesta requires.

� Versioned: Since bridges are programs, Vesta's facilities aid in storing

multiple versions. Because the Vesta evaluator runs each bridge as a

separate process, it can run old and new bridge versions at the same time.
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� Dynamically loaded: The Vesta evaluator runs a bridge on demand by

starting a process. The evaluator and the bridge only need to agree on

their common RPC interfaces. Similarly, the Vesta evaluator is free to kill

o� bridge processes to implement dynamic unloading.

� Concurrent: Since a bridge process is associated with a user's Vesta server,

it is evident that bridges don't create any bottlenecks limiting the number

of concurrent users. The Vesta evaluator is free to start multiple bridge

processes in order to implement parallel or distributed evaluation.

An additional advantage of running each bridge as a separate process is the high

degree of isolation it provides. The crash of a defective bridge cannot bring down

a user's Vesta server.

4.2 How bridges extend the set of functions

The Vesta language includes BRIDGE, a built-in function that creates bridge

functions. BRIDGE takes a single executable program as a parameter. It starts

that program as a bridge process (if the program is not already running) and re-

turns a binding containing the functions and default parameter values exported

by the bridge.

That's the extent of Vesta's support for bridges at the language level. Vesta

also de�nes an RPC interface that bridges must export, and a separate RPC

interface for bridges to call. The remainder of this section is an overview of

these two interfaces as bridges use them to de�ne new functions. Section 4.3

deals with how bridges de�ne new types.

A bridge exports two procedures called by the evaluator via remote proce-

dure call. Here are the Modula-2+ signatures for these procedures:

PROCEDURE GetBinding(): List;

PROCEDURE Eval(

env: Environment;

function: Text

): Value;

As part of executing the BRIDGE primitive, the evaluator starts a bridge

process and then calls GetBinding in the RPC interface exported by the new

bridge process. GetBinding returns a list of name-value pairs. A value that

represents a bridge function encodes the signature of the function (i.e. the list of

named parameters and whether or not the function has implicit parameters) but

not the body|that's private to the bridge. Other values, such as integers and

booleans used as default parameter values, are passed across in their entirety.



4 BRIDGE DESIGN OVERVIEW 12

To call a bridge function, the evaluator calls Eval in the RPC interface

exported by the bridge process. The function parameter to Eval is the function

name returned by the initial call to GetBinding.

The evaluator exports several procedures to be called by bridges; the rest

of the procedures described in this section are all exported by the evaluator. A

bridge function invoked by Eval obtains its parameters by calling the evaluator's

Lookup procedure:

PROCEDURE Lookup(

env: Environment,

name: Text

): Value;

The Environment value is the same one the evaluator passed to Eval, and

the Text value is name of the parameter the bridge is looking up.

Lookup's result, of type Value, is a network reference that identi�es a value

stored in the evaluator. A Value can represent any Vesta language value:

Boolean, Integer, List, Binding, etc. A bridge is generally expecting a spe-

ci�c type for each of its parameters, and wants the actual value, not a handle.

So after performing a Lookup, the bridge calls the evaluator again to obtain a

speci�c type of value. If the Value does not have the expected type, the bridge

issues an error. Here are two typical examples of the type-speci�c procedures

available to the bridge:

PROCEDURE IntegerV(

v: Value

): INTEGER RAISES fWrongTypeg;

PROCEDURE ListV(

v: Value

): List (*of Value*) RAISES fWrongTypeg;

Similarly, if the bridge needs to construct a Value to return as the result of

a bridge function, it calls a type-speci�c constructor procedure in the evaluator:

PROCEDURE NewInteger(

int: INTEGER

): Value RAISES fg;
PROCEDURE NewList(

list: List (*of Value*)

): Value RAISES fg;
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We chose this technique for providing remote access to Vesta values on the

basis of its simplicity. The Modula-2+ RPC system does the hard work of

maintaining the correspondence between handles in the bridge and values in the

evaluator. The Modula-2+ RPC transport is very fast [Schroeder and Burrows],

so performance is acceptable even though it takes several RPCs per parameter.

With a slower RPC transport, it would be more important to minimize the

amount of communication; a di�erent remote interface to Vesta values would

need to be designed.

The Vesta types Integer and List just used as examples are representative

of how the evaluator interface supports most Vesta types, but the type Text is

special. For e�ciency reasons, the evaluator uses two representations for text

(byte sequence) values. The �rst text representation is simply a reference to a

sequence of bytes in the evaluator's memory. The second text representation is

the UID of a repository object (source or derived). The second representation

allows the evaluator to communicate a large text to a bridge e�ciently, by

sending its UID. This avoids the evaluator reading the object into memory and

copying the object's contents across the process boundary using RPC. For the

same reason, a bridge can return a large text to the evaluator more e�ciently

by passing the UID.

A bridge must be prepared for either text representation. So to read a

text-valued parameter, a bridge must �rst query the evaluator to determine the

representation, then call the appropriate procedure:

TYPE ValueClass =

(TextVC, UidForTextVC, (*others*))

PROCEDURE Class(

v: Value

): ValueClass RAISES fg;
PROCEDURE TextV(

v: Value

): Text RAISES fWrongTypeg;
PROCEDURE UidForTextV(

v: Value

): UID RAISES fWrongTypeg;

Given a UID, the bridge can obtain the bytes of the repository object by

calling a separate RPC interface to the repository, much like reading a Unix �le

using open and read system calls.

Having obtained its parameters, a bridge function is free to construct and

return any type of Vesta value. A common result type is Text, used for instance

to represent an object code �le produced by a compiler. Since these texts are

large, it makes sense to store them in the repository as derived objects.

To support a simple form of caching by bridges, derived objects are named

with unique identi�ers that a bridge computes. The name of a derived object



4 BRIDGE DESIGN OVERVIEW 14

produced by a bridge function encodes the function and all of the function's

parameters (plus the name of the function result if the function produces several

derived objects as results.) A bridge function can �rst compute the name of its

result object and check to see if it exists. If the object already exists, there is no

need to compute it again; the bridge function just converts the derived object's

UID to a Value and returns it. We call this technique repository caching because

it makes direct use of the repository as a cache.

A technical challenge in repository caching is how to encode a function and all

of its parameters into a �xed-length UID.We solve this problemwith �ngerprints

[Broder]. A �ngerprint is a �xed-length encoding of an arbitrary byte string.

Many distinct byte strings map to the same �ngerprint, but such an occurrence

is designed to be extremely uncommon. In the 96-bit �ngerprint implementation

used by Vesta, a rough estimate of the probability of collision is n2�m=295 where
n is number of byte strings considered and m their average length. We chose a

96-bit �ngerprint on the assumption that a function and its parameters could

be encoded in 210 bytes and that a repository would contain fewer than 224

derived objects. This puts the probability of �ngerprint collision at 2�37, which

is comparable to the undetected bit error rate of a typical computer network.

Using longer �ngerprints would allow for larger repositories.

The evaluator simpli�es repository caching for bridges by exporting a pro-

cedure that hides the details of how di�erent types of Vesta values are �nger-

printed:

PROCEDURE ToFingerprint(

v: Value

): Fingerprint RAISES fg;

4.3 How bridges extend the set of types

Just as bridges can extend the Vesta language with additional functions, they

can also extend the language with additional types. Each bridge de�nes exactly

one new type, which is opaque|only that bridge may create values of its type

and only that bridge's functions may operate on those values. Like lists and

bindings, opaque values may contain other Vesta values. The contents of an

opaque value are up to the bridge that created it. The bridge represents an

opaque value to Vesta as a varying-length string of bytes and varying-length

sequence of Vesta values.

Opaque bridge types o�er advantages over Vesta's built-in types in some

situations. Naturally these types o�er the advantage of information hiding.

In addition, they allow the bridge to represent its values e�ciently and con-

veniently. For example, suppose a bridge written in Modula-2+ wanted to

create values with four integer-valued components. It could use a Vesta binding

with four elements, or it could de�ne a Modula-2+ record with four �elds and
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store the binary representation of that record in an opaque value. Not only is

the opaque value's representation smaller (since it doesn't include the binding-

component names) but it is notationally more convenient and more e�cient

for the bridge implementation to access, using Modula's record accessors rather

than procedure calls to the evaluator interface described in Section 4.2. Section

6.1 discusses several applications of bridge opaque types.

To construct an opaque value, a bridge calls the Vesta evaluator:

PROCEDURE NewOpaque(

value: BridgeOpaque;

pickledRep: Text;

embeddedValues: List (* of Value *)

): Value;

The value parameter is a reference to the bridge's representation of the

opaque value. Its details are hidden from the evaluator|the BridgeOpaque type

is a network reference. The pickledRep and embeddedValues parameters are a

representation of the opaque value, for the evaluator to write into a persistent

value cache.

When the evaluator needs to construct an opaque value from its cached

representation (after a cache hit), the evaluator calls the bridge:

PROCEDURE Unpickle(

pickledRep: Text;

embeddedValues: List (* of Value *)

): BridgeOpaque;

This mechanism is designed to be incremental; unpickling one value does

not require unpickling all of its embedded values.

A bridge can e�ectively provide multiple opaque types by using a tagged

union in its pickled representation. For example, the �rst byte of the pickled

representation could be a tag that identi�es which of the unioned types this

value is, with the rest of the bytes following. Since the pickled representation

can have a varying number of uninterpreted bytes and a varying number of

Vesta values, providing multiple opaque types in this way doesn't waste any

space.

4.3.1 Opaques versus deriveds

Opaque values themselves are intended to be rather small, no more than a few

hundred bytes. To make larger values (thousands of bytes or more), the bridge

can write large sequences of bytes into a derived repository object and record

the UIDs of those objects in the opaque values.
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Why have both bridge opaque values and derived objects? Why not have

just one of the concepts?

Derived objects are much like traditional �les, so we know from experience

that they are a good way of representing a bulky compiler output such as object

code. As discussed in Section 4.2, it is much more e�cient to pass large texts

by reference to a repository object than by value. So derived objects appear to

be necessary.

Trying to use derived objects to represent the small data structures typically

represented with bridge opaque values would be hopelessly ine�cient. The

bridge cannot a�ord to perform a random disk read per opaque value. The

Vesta evaluator provides faster access to the opaque values produced by a single

function call by clustering them in the persistent function cache.

A functional di�erence between opaque values and derived objects is that

derived objects can be named and read outside of a system model's evaluation,

whereas Vesta values can only be accessed during an evaluation and cannot

otherwise be named. Thus a bridge that wants to record some information

for later use outside of an evaluation must write that information in a derived

object.

For example, a conventional debugger accesses its debugging information

outside of evaluation, so all the debugging information produced by the compiler

and linker must be written to derived objects. This is mildly unfortunate, since

some of that information may be duplicated in bridge opaque values.

An alternative design, relying entirely on bridge opaque values, might have

signi�cant advantages. The debugger would generate an appropriate Vesta ex-

pression at the start of a debugging session and then run in the context of

the expression's evaluation. This would allow the debugger to provide the user

with additional information. For example, in a program containing multiple in-

stances of some generic module, the debugger could name a particular module

instance by displaying the particular invocation of the compiler in the system

model that produced it. We did not implement this design because the high

start-up overhead of the �rst version of the Vesta evaluator made the approach

unattractive.

4.4 Versioning issues

The discussion to this point has suppressed some important details related to

versioning.

In the list returned by GetBinding (Section 4.2), each bridge function is

associated with a version string. This version string is the function's unique

identi�er. From Vesta's point of view, two bridge functions with the same

version string are the same function.

Control of function versioning is important because of Vesta's persistent

cache. Caches hold values previously computed by functions, including bridge

functions. A call of one bridge function will never get a cache hit on a value
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computed by a di�erent bridge function, even if all the function parameters are

identical.

Suppose that today's bridge �xes a bug in some function that caused yes-

terday's bridge to crash (as opposed to returning an incorrect value.) If the

bridge maintainer assigns the same version string to today's function as yester-

day's, then a call to today's function can bene�t from cache hits in cases where

yesterday's bridge worked.

If today's bridge �xes a bug in some function that caused yesterday's bridge

to returning an incorrect value, the bridge maintainer assigns a new version

string to the �xed function. This will force cache misses: ignoring values pro-

duced by yesterday's bridge and calling today's bridge.

As with bridge functions, it's important that a new version of a bridge be

able to access the opaque values produced by a previous version. We accomplish

this by having each bridge export to Vesta a bridge class, which is just a string

chosen by the bridge implementor identifying that bridge. The bridge class is

returned by the GetBinding function. The Vesta evaluator labels each opaque

value with the class of the bridge that produced it. If an implementor thinks

a new version of a bridge is compatible with an old version with respect to its

opaque types, he simply arranges for the new and old versions to export the

same bridge class. This mechanism ensures that the evaluator never passes an

opaque value to a bridge that isn't prepared for it.

5 Bridges for existing tools

5.1 MM: A simple bridge

The �rst bridge we wrote for Vesta was a bridge to our existing Modula-2+

compiler, mm, and its associated program construction tools. MM is a good

example of a simple bridge.

5.1.1 MM$Compile function

A simpli�ed Vesta function signature for the MM Compile function is:

Compile = FUNCTION

source (*Text*),

Env_inst_set (*Text*),

Env_platform (*Text*),

... (*interfaces*)

(*returns Binding*)

(We include parameter and result type information as comments; recall that

Vesta does not allow type declarations.)



5 BRIDGES FOR EXISTING TOOLS 18

Compile has three explicit parameters. source is the Modula-2+ source text

of the module to be compiled. Env inst set is the instruction set for which the

compiler should produce object code, e.g. \VAX" or \Alpha". Env platform is

the operating system for which the compiler should produce object code, e.g.

\Ultrix" or \OSF-1".

In addition to these explicit parameters, Compile has implicit parameters

represented by the \..." in the function signature. These implicit parameters

are the compiled Modula-2+ interfaces imported by source. For example, if

source says IMPORT Xxx, the Compile function obtains the value bound to

the identi�er Xxx.d in the scope where Compile was called. These parameters

cannot be named in the signature of Compile because they depend upon the

value of source.

In a typical call of Compile, only the source parameter is explicitly supplied:

MM$Compile(Hello.mod);

Here the source object Hello.mod is bound to Compile's �rst formal parameter

source. The Env inst set and Env platform parameters default to values

from the environment of the call. Values for these parameters are generally

established in one place in a model and never provided explicitly in a call of

Compile or other bridge functions.

The Compile function reads the module header of its source parameter to

determine the module type (interface or implementation) and name. If the

module header says DEFINITION MODULE Xxx, the Compile function returns a

binding of the form

f Xxx.d = <compiled interface> g

where the value <compiled interface> is a text containing the compiled version

of the de�nition module. By returning the compiled interface in a binding using

the \.d" naming convention, Compile makes it easy to supply the compiled

interface as an implicit parameter to other Compile calls.

If the header says IMPLEMENTATION MODULE Xxx, the Compile function re-

turns a binding of the form

f Xxx.o = <compiled implementation> g

where the value <compiled implementation> is a text containing the compiled

version of the implementation module. (The \.o" naming convention is inher-

ited from Unix.)

We presented a simpli�ed version of Compile above; the actual signature of

Compile is more complicated:
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Compile = FUNCTION

source (*Text*),

MM_enable_profiling (*Boolean*),

MM_checking (*Boolean*),

MM_loupe (*Boolean*),

MM_registers (*Integer*),

MM_assembly_code (*Boolean*),

MM_object_code (*Boolean*),

Env_inst_set (*Text*),

Env_platform (*Text*),

... (*returns Binding*)

The six additional parameters control individual compiler options. For in-

stance, if MM assembly code is TRUE, MM$Compile of IMPLEMENTATION MODULE

Xxx returns a binding that includes

f Xxx.s = <assembly code> g

where the value <assembly code> is a text containing assembly code produced

by the compiler. Each of the additional parameters corresponds to a command-

line switch of the mm compiler.

It is important to note how the MM bridge, like all Vesta bridges, uses Vesta's

naming facilities to simplify the programming environment. In a traditional

Unix environment, there are many di�erent name spaces that a programmer

must manage:

� pathnames for �les containing source and derived information;

� environment variables (e.g. search paths);

� macro variables in make�les;

� target names in make�les;

� C preprocessor symbols;

� globally exported names in source modules (e.g. an extern declaration in

C);

� linker symbols.

These name spaces overlap and interact in ad hoc ways, and the tools for man-

aging the name spaces are non-uniform and lacking in functionality. All the

name spaces (except for pathnames) are at, and surprising things may happen

if a program mistakenly rede�nes a name implicitly de�ned elsewhere.
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Vesta's name binding and scoping provide a single yet powerful mechanism

that bridges like MM use to replace the functionality of some of these disparate

name spaces. MM$Compile does not use search paths to �nd imported interfaces;

it uses Vesta naming. MM$Compile does not take parameters from environment

variables; it uses Vesta naming. Vesta naming replaces both macro variables

and target names found in make�les. As a result, a programmer can under-

stand and control Vesta and the MM bridge more easily and uniformly than the

corresponding Unix tools.

Converting the mm compiler into an implementation of MM$Compile is quite

straightforward.

First, change the compiler to accept all of its input parameters by calling

the evaluator's Lookup procedure. The compiler takes some of its inputs from

environment variables, some from the command line, and some by reading from

the �le system (locating the �le to read using search paths.) All of these di�erent

mechanisms are subsumed by Lookup.

Second, change the way the compiler produces results. The compiler writes

its results into repository derived objects rather than into the Unix �le system.

And the compiler constructs and returns a Vesta binding to give the derived

objects sensible names.

A third, optional, change is to perform repository caching of results. The

compiler computes the derived UID for one of its results by �ngerprinting an

S-expression containing the type of result (e.g. \object code" or \assembly

code"), the identity of the function (\compiler"), the version number of the

compiler (\3.2"), and all the parameters to the function (the �ngerprint of

the source object, the �ngerprints of the imported interfaces, the �ngerprinted

values of compiler options). Then the compiler looks for an existing derived

object with this UID in the repository. If all of the objects to be produced

by the Compile function already exist, the compiler returns them without any

more computing. If objects do not already exist, the compiler creates them,

performs the compilation, and writes the desired results.

5.1.2 Other MM functions

We won't describe the other functions of the MM bridge in detail, but we sum-

marize what they do:

� Bind: constructs a library from a list of objects.

� Prog: constructs an executable from a list of objects.

� RPCStubs: constructs RPC stub modules from a Modula-2+ interface.

� Bundle: constructs a Modula-2+ interface and implementation module

that bundles together a collection of text values. This allows programs

to link in arbitrary data, e.g. default values of program resources such as
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fonts and cursors. These data values are captured in the system model,

as required by the Vesta principle of complete descriptions.

The Bind and Prog functions take a parameter that is a list of object modules,

exploiting Vesta's support for lists. These two functions actually accept lists

of lists, to any depth of nesting, avoiding the need to atten lists when writing

models.

5.2 C: an encapsulating bridge

Often you want to build a bridge that incorporates an existing program without

modifying it. This is especially useful when you have the executable to the

program but don't have the source, or have the source but don't want to modify

it because you want the freedom to upgrade to the next version. We call a bridge

that operates in this way an encapsulating bridge, because it encapsulates an

existing tool.

We developed a technique for writing encapsulating bridges in our environ-

ment, and used it in writing our C bridge (among others).

5.2.1 C$Compile function

We'll illustrate a general technique for writing encapsulating bridges by the

example of our C bridge's Compile function, whose simpli�ed signature is similar

to that of MM$Compile:

Compile = FUNCTION

source (*Text*),

Env_inst_set (*Text*),

Env_platform (*Text*),

... (*headers*)

(*returns Text*)

Our C bridge encapsulates several Unix C compilers. A Unix C compiler

takes its parameters in three ways: through environment variables, on the com-

mand line, and through the �le system. It is easy enough to control the com-

piler's environment variables and command line; the design challenge for the

bridge is controlling the �les the compiler sees.

Since the Taos operating system implementors were just down the hall, we

worked out a small extension to Taos that gives Vesta the control it needs.

When a Taos parent process is creating a new child process, the parent can

associate a path map procedure with the child. Each time the child process or

any of its descendants makes a system call that involves a pathname, Taos calls

the parent's path map procedure, passing the pathname, the working directory,

and an indication of whether or not the child's system call can modify the state
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of the �le system. The parent's path map procedure returns a pathname for the

system call to use instead of the one speci�ed by the child.

Given this path map facility, the C bridge's Compile function works as fol-

lows. The C bridge starts a Unix C compiler as a child process with a path map

procedure. The details of this path map procedure are elaborate, but the basic

ideas are simple. The path map procedure allows the compiler to write �les in

its working directory (which is created by the bridge and used by one compiler

at a time) and in /tmp. The path map procedure allows the compiler to read

�les that it has previously written in its working directory and /tmp. The path

map procedure translates any other read (e.g. the read of an include �le or the

execution of a subprocess of the compiler) into a call of the evaluator's Lookup

procedure. The result of this Lookup should be a Text value. If the text is rep-

resented by a repository object, the path map procedure translates the UID of

this object into a pathname and returns it. Otherwise the path map procedure

creates a new �le in a private place, writes the text to the new �le, and returns

its pathname. When the compiler exits, the C bridge copies the result �les in

the working directory to derived objects in the Vesta repository. The C bridge

computes a name for the derived objects much as described previously for the

MM bridge.

The C bridge includes a cross-compilation capability. When Env inst set

is \R3000" the bridge can perform R3000 compilations for both the Ultrix and

OSF/1 operating systems. The cross-compilation is implemented transparently

to the Vesta user in the following low-tech fashion. First the C bridge runs the

C preprocessor locally, i.e. on the machine running the bridge, to produce a C

source �le with no includes. (The bridge takes care to use the default symbol

de�nitions of the target system in doing this preprocessing.) Then the bridge

selects an R3000 machine running the desired operating system. The bridge

runs the C compiler for that machine, using very basic protocols: telnet-style

remote execution (rsh) and ftp-style �le transfer (rcp).

A C bridge can perform repository caching just as the MM bridge does. How-

ever the bene�ts are much less because of the unstructured nature of the C

preprocessor's include facility. A Modula-2+ bridge can determine the imports

of a module by reading the module header, and can quickly compute the derived

object name. A C bridge has to do more work to determine the includes of a C

source, because include directives can occur anywhere within a C source. It is

di�cult to determine the included �les more e�ciently than the C preprocessor

does it. Therefore the C bridge always runs the C preprocessor. When the pre-

processor exits, the bridge can compute the name for the derived object to be

produced by the compiler, and short-circuit the compilation if the object exists.

But when compiling C programs that use large libraries, the majority of the

time can be spent in the C preprocessor reading headers. Therefore repository

caching is not highly e�ective in speeding up a C bridge. Our C bridge did not

bother with it.
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The Taos path map facility was a very cost-e�ective way for us to implement

encapsulating bridges; extending Taos took only a couple of person-days of

design and implementation. We could build encapsulating bridges on other

operating systems using di�erent techniques. Here are two possibilities:

� The C bridge could implement an NFS server [Sandberg] and constrain the

C compiler's �le accesses to be within this �le system using the chroot

system call.

� The Mach 3.0 system provides a general mechanism for trapping and rein-

terpreting system calls in the context of a user process [Black et al.]. This

mechanism could be used to emulate the path map facility.

Our encapsulating C bridge is 2500 lines of Modula-2+ code. About 2000 of

these lines are common to all of our encapsulating bridges; the remaining 500

lines are speci�c to C. So the e�ort of writing a new encapsulating bridge is

small.

The simple path map technique produces a function because the programs

we are encapsulating are well behaved. More elaborate techniques would be

required for less well behaved programs, such as a program that communicates

with a server via sockets. It is possible that encapsulation could get so compli-

cated that it would no longer be attractive.

5.2.2 Other C functions

Wewon't describe the other functions of the C bridge in detail, but we summarize

what they do:

� Preprocess: runs the C preprocessor.

� Prog: constructs an executable from a list of objects.

5.3 Shell: a bridge for low-e�ort extensibility

Bridges are not extremely di�cult to write, but are not extremely easy to write,

either. While writing a bridge to incorporate a new language translator is easy

enough, writing a bridge is certainly a heavyweight technique for adding a small

tool to Vesta.

The Shell bridge is a mechanism for adding new tools to Vesta with a

minimumof e�ort. Any tool that is easy to encapsulate (behaves like a function

that takes all its parameters through environment variables, the command line,

or the �le system) can be run from Vesta using the Shell bridge.
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5.3.1 Shell$Sh function

A simpli�ed signature of the Shell Sh function is:

Sh = FUNCTION

script (*Text*),

...

(*returns Binding*)

script contains commands to be executed by the programmable command

interpreter sh [Kernighan and Pike]. The �le system environment in which

script executes is quite di�erent from the norm.

script executes in a virtual working directory that contains every Text-

and Binding-valued name in the Vesta environment in which the Sh function

was called. script sees a text-valued name in this environment as a Unix

�le, and sees a binding-valued name as a subdirectory of its working directory.

This mapping is applied recursively, so a subdirectory contains subdirectories

if the corresponding binding contains bindings. If script tries to read a �le in

its working directory that corresponds to another type of Vesta value (e.g. a

number or a list) it receives a \�le not found" error.

script is allowed to write �les in its working directory and in /tmp (and in

subdirectories of these directories), but nowhere else. By writing in its working

directory, script does not alter the Vesta environment in which the Sh function

was called. script is allowed to read any �le it has written in a given call of

the Sh function, obtaining the results of the earlier write.

If script exits with error (non-zero) status, or writes to stderr, the Sh

function returns a Vesta evaluation error. Otherwise, the Sh function returns a

binding containing a name for each �le script wrote into its working directory,

plus the special name stdout bound to whatever script wrote to its standard

output stream. For example, the call

Shell$Sh("echo abc > x")

returns the binding

fx = "abc", stdout = ""g

script may construct subdirectories of its working directory, which the Sh

function returns as bindings. For example, the call

Shell$Sh(

"mkdir a; mkdir b; echo abc > a/x; echo hello")
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returns the binding

f a = f x = "abc" g, b = fg, stdout = "hello" g

These examples don't show how values are given to the names echo and

mkdir that occur in the scripts. It would violate Vesta's principle of complete

description to take these values from /bin. Therefore our standard environment

model [Levin and McJones] de�nes Shell Utils, a binding containing a set of

standard utility programs to run from shell scripts. Here are two ways of using

Shell Utils to complete the �rst example:

LET f Shell_Utils g IN Shell$Sh("echo abc > x")

Shell$Sh("Shell_Utils/echo abc > x")

The complete signature of the Shell Sh function is:

Sh = FUNCTION

script (*Text*),

Shell_argv (*List of Text*),

Shell_stdout_treatment (*Text*),

Shell_stderr_treatment (*Text*),

Shell_exit_on_error (*Boolean*),

Shell_verbose (*Boolean*),

Shell_echo (*Boolean*),

Shell_unset_var_is_error (*Boolean*),

...

(*returns Binding*)

In our oversimpli�ed version above we described the behavior of Sh with all

parameters but script bound to default values. The most interesting parame-

ters other than script in most Sh function calls are Shell stdout treatment

and Shell stderr treatment. These parameters give control over how the

bridge responds to output on stdout and stderr:

value meaning

\ignore" Output is discarded.

\feedback" Output is displayed in the Vesta user interface.

\feedbackError" Output is displayed in the Vesta user interface

and is treated as an error; that is, the call of Sh

returns ERROR.

\value" Output is returned as part of the result of the

function, bound to the name stdout or stderr

as appropriate.
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The bridge defaults stdout to \value" and stderr to \feedbackError." But

many programs write warning messages to stderr so Shell stderr treatment

= \feedback" is a common override.

The Sh function is implemented by encapsulating sh using the same tech-

niques described for the C bridge. Thus, the \virtual working directory" men-

tioned above is not actually constructed|it is emulated using the path map

facility.

The Shell bridge has been used heavily in Vesta models. We have observed

these common usage patterns:

� Running test programs. Some programmers construct test programs in

their models, and invoke them using the Shell bridge.

� Editing source code. Many situations demand mechanical editing of source

code via sed or a similar tool. For example, programmers overcome the

limitations of preprocessors (in our environment, the RPC stub generator)

by performing postprocessing of the generated source. And programmers

implement low-tech generic modules by writing a template module, then

instantiating it several times.

� Running small tools. The environment contains many tools that don't

have bridges of their own. Two examples are a document compiler that

translates a textual document description language into PostScript and a

font compiler that translates a text description of a font into a binary font

representation known to the window system. Programmers use the Shell

bridge to encapsulate these programs as Vesta functions so they can be

invoked from models.

In the process of converting SRC software from make�les to Vesta, we observed

an interesting phenomenon. For a given piece of functionality implemented as

a shell script (or lines of make actions), the Vesta version using Shell$Sh was

usually shorter by a signi�cant amount. This was true even counting the lines

of the model used to invoke the script via the Shell bridge. It seems that many

shell scripts are really trying to compute a function. Therefore facilities supplied

by Shell$Sh, such as automatic creation and destruction of a unique working

directory, reduce the length of shell script needed.

If the Shell bridge is so great, why isn't it the only encapsulating bridge

Vesta needs? An encapsulating bridge that's tailored to a speci�c task, like the

C bridge, has two advantages.

The �rst advantage of a tailored bridge is control over bridge versioning. As

described in Section 4.4, a bridge implementor has the freedom to produce a

new bridge that, from Vesta's point of view, computes the same function as a

previous version.

In practice, most changes to a bridge change the function it computes in

an upward compatible manner. For instance, �xing a bug that used to crash a
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bridge is upward compatible, as is improving a bridge error message. Without

control over bridge versioning, the Vesta evaluator cannot use a derived object

produced by an old bridge as the result of a call to an equivalent new bridge.

Programmers who run small tools using the Shell bridge comment on this

lack of control. For instance, our font compiler is a small Modula program that

seldom changes. But libraries the font compiler uses often change in upward-

compatible ways. Each time a library changes, the font compiler, being a tool

constructed by a Vesta model, changes from Vesta's point of view. So Vesta

recompiles all the fonts.

The second advantage of a tailored bridge is that it can deal more e�ectively

with tools that aren't as well behaved as we'd like.

Many programs access �les that are (1) located outside of their working

directories, (2) not /tmp �les, and (3) not determined by command line param-

eters or environment variables. The Shell bridge has di�culty running such

programs.

As a work-around to help run some existing programs, the Sh function trans-

lates a read from an absolute pathname `p' outside of the working directory and

/tmp into a read from the tail of `p' in the working directory. This rule is

not a panacea, but deals with programs that run standard tools using absolute

pathnames (such as /bin/echo.)

A signi�cant number of Unix tools are poorly behaved in other ways, such

as not setting exit status correctly or using stderr inconsistently. These tools

are clumsy to use through the Shell bridge.

The writer of an encapsulating bridge like the C bridge can develop ad hoc

solutions to deal with poorly behaved tools. For instance, a bridge can incor-

porate special cases in its path map procedure, knowing what pathnames to

expect and how to map them. The Shell bridge cannot be tailored in this way.

Given that it is signi�cantly easier to add a new tool to Vesta via the Shell

bridge than by writing a new encapsulating bridge, it appears that we should

extend Vesta and the Shell bridge to eliminate most objections to using the

Shell bridge. For instance, to address the �rst disadvantage of the Shell bridge

we could add a primitive Vesta function that takes a function f and a version

number v as parameters and produces a new function with version number v

that is otherwise identical to the function f.

5.3.2 Shell$UnsafeSh function

The UnsafeSh function has the same signature as the Sh function. The di�erence

between the two is that UnsafeSh permits non-functional behavior. UnsafeSh

permits script to perform reads and writes outside of its working directory and

/tmp.

There are two di�erent reasons for using UnsafeSh.

First, UnsafeSh gives you a shortcut for running a useful functional tool that

for some reason isn't easy to run using Sh. For instance, if the Shell Utils
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binding does not include values for nroff and tmac.an, it is tempting to write

something like

context.1.cat =

Shell$UnsafeSh(

"/usr/bin/nroff -man context.1")$stdout;

to produce the plain text form of a manpage. This use of the UnsafeSh loophole

isn't likely to do any damage, and allows you to proceed. Later, the keeper

of your local environment can enhance Shell Utils, and you can switch to

Shell$Sh.

Second, UnsafeSh allows you achieve non-functional behavior when that's

what you actually want. A common case is for computing a version string for

an application program (\Postcard 5.4.2 of February 13 1992"). Another

case is for copying text values from Vesta into the Unix �le system.

There is a downside to violating Vesta's assumption of functional behavior.

Since Vesta doesn't know that you are calling UnsafeSh to achieve a side-e�ect,

Vesta may optimize away the call using its cache. We considered adding a

mechanism to Vesta that would suppress caching the results of non-functional

functions, but we'd rather eliminate the use of these functions. For instance,

�le copying can be performed by the Vesta user interface after evaluation is

complete, rather than as part of evaluation.

6 Vulcan: An advanced bridge

The Vulcan bridge is the most ambitious bridge built to date. Vulcan is a

Modula-2+ programming environment with these design goals:

� Explore how Vesta helps (or hinders) the design of compilers, linkers,

debuggers, and other standard tools.

� Use permanently stored abstract-syntax trees (ASTs) as the basis for

the compiler, debugger, and many other tools that manipulate programs

within a large-scale programming environment.

� Provide fast turn-around (less than ten seconds) for small changes to very

large programs written by dozens of programmers, without sacri�cing ex-

ecution speed or the ability to fully debug any part of the program at any

time.

No commercial or large-scale prototype programming environment fully achieves

Vulcan's goals. In the end, neither did Vulcan. When work ended on Vulcan

we were successful in achieving the �rst goal (integration with Vesta), partially
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successful in achieving the second goal (using ASTs), but had hardly started on

the third goal (fast turn-around).

The side-e�ect-free Vesta language and Vesta's immutable-object repository

enabled Vulcan to use techniques that otherwise would be di�cult to implement

robustly:

� Vulcan's tools use the Vesta language's naming uniformly, presenting a

simpler interface to programmers and making the linker more exible,

simpler, and faster.

� The precise structure of compiled and linked programs is represented using

opaque values and ASTs, and that structure is available to other tools via

the Vesta language.

� The compiler, linker, and debugger are robustly implemented as a server

with in-memory caching of persistently stored ASTs.

� The programmer can always faithfully and quickly debug his entire pro-

gram.

6.1 Vulcan bridge functions

The Vulcan bridge uses Vesta's naming and opaques to a greater extent than the

other bridges. In Section 5.1.1 we pointed out how Vesta naming reduces the

number of name spaces a programmermustmanage; as we shall describe, Vulcan

takes this idea farther by using Vesta naming for linking libraries and programs.

Vulcan uses bridge opaques to faithfully represent the complete compile- and

link-time structures of programs and libraries. It makes these structures acces-

sible in the Vesta language via bridge functions, enabling the construction of

simple tools that navigate those structures.

Vulcan's Compile function uses the same naming conventions as MM$Compile.

When Compile is applied to a de�nition module (interface) named M that im-

ports interface I:

Compile(

"DEFINITION MODULE M; IMPORT I; END M." )

it requires an implicit argument I.d representing the result of compiling inter-

face I; Compile �nds I.d in the Vesta name scope enclosing the call to Compile.

The compilation of interface M yields a one-element binding that names the com-

piled interface M:

f M.d = <compiled interface> g
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The name of the binding element, M.d, is generated from the identi�er M in

the module's source. The value <compiled interface> is a bridge opaque value

with the following components:

� the name M

� a text containing the interface's source code

� a sequence of opaque values representing the imported compiled interfaces

� a text containing the interface's abstract-syntax tree (AST)

The interface's source code generally lives in a repository source object, and

the interface's AST is always written to a derived object, so these two texts are

almost always represented by their object UIDs.

When Compile is applied to an implementation module M with imported

interface I:

Compile(

"IMPLEMENTATION MODULE M; IMPORT I; END M." )

it requires two implicit arguments, M.d and I.d, representing the result of com-

piling interfaces M and I. The result of compilation is a binding that names the

compiled implementation for M:

f M.o = <compiled implementation> g

The value <compiled implementation> is a bridge opaque value with the

following components:

� the name M

� a text containing the implementation's source code

� a sequence of the opaque values representing the imported compiled in-

terfaces

� a text containing the implementation's abstract-syntax tree (AST)

� a text containing the code of the compiled implementation

The implementation'sAST and code are written to two separate derived objects.

The bridge opaque value packages them in a single, convenient bundle.

Now for linking. Vulcan makes a clean separation between binding and the

other functions that are normally provided by a linker. Binding the imported

interfaces of an object module is the process of identifying other modules that



6 VULCAN: AN ADVANCED BRIDGE 31

export interfaces matching the imports; binding produces a bound module. Sep-

arate functions take collections of bound modules and produce executables or

libraries (shared or unshared). This separation of concepts has several advan-

tages: It eliminates redundancy in the implementation, clari�es the semantics of

linking, and provides the option of hierarchical linking (linking within software

packages before linking at the library or application level) without sacri�cing

performance.

When Bind is applied to an object module M that imports interface I:

Bind( M.o )

it looks in the enclosing Vesta scope for an implicit argument I.i, which repre-

sents a bound implementation of I. The result is a binding:

f M.i = <bound implementation> g

where M.i represents a fully bound implementation of the interface exported

by M, with all of M's imports bound to other bound implementations. The

value <bound implementation> is a bridge opaque value with the following

components:

� the name M

� the opaque value of the compiled implementation of M

� a sequence of the opaque values representing the imported bound imple-

mentations

(For this discussion, we simpli�ed the description of Bind|the actual Bind is a

bit more complicated. It must deal with multiple interfaces exported by a single

implementation and with implementations that import each other.)

The Vulcan bridge exports many other functions; a complete description is

beyond the scope of this paper.

6.2 Vulcan's opaque values

The opaque values produced by Compile and Bind serve several purposes.

First, they enable the Vulcan bridge functions to type-check their arguments

reliably. Since only the Vulcan bridge can create Vulcan opaque values, the

bridge functions are assured that the contents of the values are well-formed.

Second, they encapsulate information needed by Bind in small, e�ciently

accessed units. Bind needs only the information stored in the opaque values

passed as arguments|it needn't read large derived objects containing ASTs or

object code.
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Third, they make it easy for Vulcan to implement utility functions such as

cross-referencers that analyze the structure of programs and libraries.

Finally, they allow Vesta programmers to access the structure of compiled

and bound programs from within the Vesta language. Vulcan provides a bridge

function, ToBinding, that discloses the contents of a Vulcan opaque value as a

binding containing all of the opaque's components. For example, if the value of

M.o is a compiled implementation, then

ToBinding( M.o )

returns a binding of the form:

fname = ``M'',

source = <a text containing M's source code>,

imports = <a list of opaque values representing

M's imported compiled interfaces>,

AST = <a text containing M's AST>,

objectCode = <a text containing M's object code>g

Using ToBinding, a Vesta programmer can write functions that navigate

the structure of compiled and linked programs. For example, we wrote an

\exception lint" that would check for unhandled exceptions in a program using

a global data-ow analysis. Exception lint was implemented as a Vesta function

that enumerated the ASTs in the program and then, using the Shell bridge,

invoked an AST tool that actually performed the data-ow analysis.

6.3 More exible linking

By using Vesta naming and opaque values to represent arguments and results

of Bind, Vulcan avoids the at name-space problems of traditional linkers. In

a traditional linker, the linker symbols are derived from (but not identical to)

the global identi�ers in the program source. The at name space makes it

di�cult to construct a program from source �les that contain duplicate names.

For example, a programmer might want to include two di�erent versions of a

module, or he might want to link with two libraries from di�erent vendors that

happen to have modules with the same name.

Continuing the example from Section 6.1, suppose that the programmer

wants to bind the import I of module M to a bound module that's called J. He

simply writes:

LET f I.i = J.i g IN Bind( M.o )
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Bind looks up the value of the identi�er I.i in its enclosing scope, and it

doesn't care if that value corresponds to a source module whose name is J. The

programmer has e�ectively renamed J within the scope of the LET.

Thus a programmer has complete control over which modules are bound to

which, and he can easily avoid arbitrary name conicts between modules. He

uses the single, simple language- and tool-independent naming of Vesta to e�ect

this control. (Compare this approach with that of C/Mesa, a special language

for con�guring collections of Mesa modules [Mitchell et al.].)

6.4 More e�cient linking

Using opaque values and Vesta name scopes not only provides the programmer

with more exible linking, but they also make the linker simpler and faster.

Vesta naming and opaques together replace the traditional linker symbol table.

All the information needed for binding is represented in the small opaque

values, and Vesta provides bridges with fast access to those values. Unlike a

traditional linker, Vulcan needn't read derived objects containing object code

during the binding phase of linking a program|Vulcan only reads the object

code at the very end of linking when it is actually producing an executable

or library. Traditional linkers either make multiple passes over the object �les

or read all the object �les into memory for random access; Vesta reads the

derived objects containing object code one at a time and appends them to the

executable.

6.5 Generics

Modules parameterized by their imported interfaces are easily implemented with

Vesta/Vulcan. An imported interface is essentially a formal parameter that is

instantiated to an actual parameter at compile/bind time.

For example, consider a list package that should be parameterized by the

element type of the list. The List module imports an interface Element:

DEFINITION MODULE List;

IMPORT Element;

TYPE T = POINTER TO

RECORD head: Element.T; tail: T; END;

The type List.T de�nes a linked list of elements of type Element.T.

To de�ne a list of integers, one merely de�nes an interface that provides a

type T:

DEFINITION MODULE Integer;

TYPE T = INTEGER;
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and passes the Integer module as an actual parameter to the compilation and

binding of the List module:

LET fElement.d = Integer.dg IN

LET fCompile( List.def );

Compile( List.mod )g IN

LET fElement.i = Integer.ig IN

Bind( List.o )

The List module could be instantiated with di�erent values of Element. Of

course, the details of compiling and binding the List package can be hidden

from clients by encapsulating them within a function that takes Element as a

parameter.

Generics are \free" in Vulcan, involving no change to the Modula-2+ lan-

guage or change to the tools. Once we decided that there shouldn't be a at

name space of modules and that Bind should get its arguments from the Vesta

name scope, then generics were automatically enabled. We have implemented

only a few examples of generic modules, so we have only limited experience with

their use, but the fact that they come for \free" is an indication of how simple

and powerful Vesta naming is for bridges that choose to take full advantage of

it.

We have more experience with another generics facility, Modula-3 generics

[Nelson]. Generic modules are implemented within the Modula-3 language as

compile time text substitution. Modula-3 generics are compatible with tra-

ditional Unix style linkers; the current Modula-3 implementation uses ld for

linking.

Users of Modula-3 generics report that managing the at name space of in-

stantiated modules is a big headache. Also, make provides no convenient method

of encapsulating the compilation of instantiated modules. These shortcomings

would be avoided in a Vulcan-like implementation of Modula-3 based on Vesta.

6.6 Servers, caching, and persistent storage

Using abstract-syntax trees (ASTs) as a framework for building compilers, de-

buggers, and other tools o�ers a number of advantages to the implementor of

a programming environment, but they present a major problem as well: ASTs

tend to be large, an order of magnitude larger than the corresponding source or

object code. Consequently, recent attempts to use ASTs have focused on stor-

ing the ASTs persistently and caching them in memory in a long-lived server

providing compilation and other services [Jordan]. Compared to a traditional

compiler, a compiler server that caches ASTs in memory can speed up compi-

lation quite a bit, by a factor of two or more for interface-based languages like

Modula or Ada. We expected similar speedups for other clients of ASTs.
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Similarly, recent fast turn-around systems based on incremental compilation

and linking use a server that retains state from past builds [Quong and Linton].

These attempts to use servers that cache persistently stored objects or retain

state from past builds su�er from a lack of con�guration management. In these

systems the inputs to a build are stored in mutable �les, so detecting what in-

puts have changed is either expensive (read the entire �le) or unreliable (check

the �le's modi�cation time). These systems may not record build dependencies

on environment variables or command-line options. make compares �le modi�-

cation times to decide when an existing object �le is valid for the current build;

this technique can accept an invalid object �le.

Using ASTs places a premium on consistency. ASTs are complicated struc-

tures with many cross links between them. Detecting inconsistencies and pro-

viding sensible diagnostics to users makes an AST implementation slower and

more complicated. Similarly, the data structures needed for incremental build-

ing tend to be fairly complicated and susceptible to corruption by inconsistent

building.

Vesta provides a simple, robust framework for implementing bridge servers

that cache persistently stored derived objects like ASTs. Vulcan is an example of

such a server. We know of no other programming environment that persistently

stores ASTs and shares them correctly between users and projects.

The Vesta framework helps in several ways. Vesta ensures consistent build-

ing, and the Vesta functions provided by a bridge (e.g. Compile) are by de�ni-

tion side-e�ect free, computing their results only from their inputs; i.e. Vesta

explicitly presents the bridge with the full compilation environment for each

application of Compile. Derived objects in the results are uniquely named by a

Vesta derived UID, and the UID encodes all the inputs that were used to com-

pute the derived object (as described for the MM bridge in Section 5.1.1). Thus,

an in-memory cache of derived objects can be keyed by their UIDs, enabling

the server and its cache to correctly service multiple builds by di�erent users,

even if those users are building the same software package with slightly di�erent

compilation parameters.

Vulcan stores each AST as a separate derived object. A cross link from one

AST to another, such as a link representing an imported interface, is represented

by the AST's UID. When an AST is read into the in-memory cache, the other

ASTs it references are read in only on demand when clients access particular

cross links.

To reduce the size of stored ASTs, Vulcan observed that many clients access

only small portions of an AST. In particular, a client such as a debugger tends

to access only the top level of the AST representing the top-level names in

a module, and it infrequently references the bodies of procedures. Similarly,

incremental compilation of a changed procedure need access only the top-level

scope of the module.

Since the procedure bodies of an AST were infrequently referenced after the

initial code generation, they weren't stored in the on-disk AST representation.
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When a client such as the debugger tried to access a procedure body, it would

be reconstructed on the y by recompiling just that procedure from the original

source object. Truncating the ASTs like this reduced their size by factors of

three or more, not only saving disk space but, more importantly, making ASTs

faster to write and read.

It would have been impossible to implement truncation correctly without

Vesta's guarantees of immutability and repeatable building. With Vesta, it

was a simple matter to record in an AST its source object's UID and all the

parameters to the compilation.

Vulcan fast turn-around based on incremental building was never fully de-

signed or implemented. But we would have relied on the same Vesta features

for persistently and correctly storing state from past builds. By de�nition, in-

cremental building relies on that past state, so ensuring its exact contents is

essential for correct incremental building, especially in the presence of multiple

users and projects sharing software packages.

6.7 The debugger

The Vulcan debugger continued and improved upon a theme of the Systems Re-

search Center: \You can always debug" [Redell]. On large, multi-programmer

systems projects, especially those involving operating systems or long-lived

servers, it's very important to be able to debug the system at any time. Bugs

in these large systems are often hard to reproduce and their detection often

requires collaboration of two or more programmers working on disparate parts

of the system.

In traditional environments, programmers often encounter older versions of

programs to which they no longer have sources, making debugging di�cult.

Even if they have saved the sources (say using rcs), they often aren't sure

which sources go with the program being debugged.

Further, programmers often strip large, imported libraries of their debugging

information before linking against them. Since the debugging information is

several times larger than the object code, and since the debugging information

is stored in the object code to ensure reliable access to it, linking with debugging

information is quite a bit slower. So programmers strip the libraries, guessing

that most bugs will occur in their own code and that they'll be more productive

with faster turn-around instead of whole-program debugging capability. This is

�ne if the libraries are stable and bug-free, but in a large, multi-person project,

that assumption is frequently false.

A primary requirement of the Vulcan debugger was that you can always

debug all parts of your program. Since debugging was part of the turn-around

cycle, we also wanted the invocation of the debugger to be fast. Thus we needed

new techniques for recording debugging information.

The Vulcan debugger is a teledebugger (i.e., a cross-address-space debugger)

[Redell] that lives in the Vulcan bridge process. The debugger accesses ASTs
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for all debugging information, and the debugger and bridge share the same

in-memory cache of ASTs. Our experience shows there is a fair amount of

locality of reference to ASTs not only between consecutive debugging sessions

but also between the compiler and the debugger|programmers tend to debug

code they've just modi�ed and vice versa. Caching ASTs in the server across

debugging sessions sped up invocation of the debugger.

Vulcan used another important technique for improving debugger perfor-

mance. Per-procedure debugging information, such as maps from procedure

o�sets to statements and local-variable locations, tends to be voluminous. These

maps often constitute more than half of all debugging information, especially

with sophisticated code generators that allow variables to live in more than one

register or stack location.

During normal compilation, Vulcan doesn't generate per-procedure debug-

ging information. When the debugger needs the information for a particular

procedure, it recompiles that one procedure and saves the information on the

in-memory AST. Since a compiler can process several hundred source lines per

second, the pauses for recompilation aren't usually noticed by the user.

Generating per-procedure information on the y saves time, since during

any one debugging session, only a small fraction of the debugging information

is ever accessed. The normal compile-link cycle doesn't generate or write the

information, and the debugger generates only what it needs on demand. (In

a traditional environment, link time is directly proportional to the size of the

object modules, so storing debugging information for every module slows down

the turn-around cycle by a factor of two or more.)

When constructing a program, the Vulcan linker generates another derived

object that maps program locations to their corresponding ASTs. The UID of

this map is written in the program executable, allowing the debugger to access

it. Vesta ensures there is no possibility of getting an incorrect map or AST for

the program.

Vulcan's approach wouldn't be feasible without a robust con�guration man-

agement system like Vesta. Vesta allows the debugging information (ASTs and

sources) to be stored separately from the program executable. In a traditional

environment, debugging information (other than source code) is stored with the

executable by the compiler and linker to ensure consistency with the program;

storing debugging information separately would increase the opportunities for

inconsistency, and programmers are more than a little touchy about incorrect

debugging information. Further, without the functional and immutable guar-

antees of Vesta, it would be very di�cult to generate correct per-procedure

debugging information on the y.

6.8 Vulcan experience

We committed a classic mistake in planning the Vesta and Vulcan research

projects. Vulcan started simultaneously with Vesta, long before Vesta was fully
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designed. As a result, the Vulcan implementors spent roughly half of their time

working on basic Vesta issues that weren't particular to Vulcan's goals.

Vulcan spent a lot of time re�ning the bridge interface, particularly the

treatment of bridge opaque values. Since a primary goal of Vulcan was to

handle very large programming projects, Vulcan ended up converting a large

amount of pre-existing Modula-2+ software into Vesta. Vulcan also explored

the mechanics of developing Vesta bridges within Vesta, such as writing bridge

models, bootstrapping, and cross compiling for di�erent architectures. Finally,

as the �rst client of Vesta, Vulcan helped debug it and analyze basic performance

problems.

As a result, Vulcan never completed the design and implementation of fast

turn-around. While Vulcan laid the basic framework of ASTs, fast linking, and

fast debugging, Vulcan barely started on incremental compilation and did only

part of the performance analysis and tuning of linking and debugging.

Vulcan built only a few prototype AST tools other than the compiler, de-

bugger, and prettyprinter. In particular, Vulcan only started to explore how to

make ASTs accessible to simple tools invoked from Vesta models.

We performed some performance measurements comparing the Vulcan bridge

to the MM bridge. Vulcan generally cut the elapsed time for building application

programs in half.

The Vulcan experience gave us con�dence that the Vesta bridge interface

is quite good for building a compile/link/debug server that caches persistent

objects. With help from the functionality provided by Vesta, Vulcan became real

enough to support dozens of users developing thousands of modules; projects

exploring similar territory have stopped short of supporting users [Fyfe et al.]

[Linton et al.]. Writing a caching bridge for an existing AST-based compiler

would be straightforward and would take only a minuscule fraction of the time

needed to write the compiler itself.

7 Final comments

Wehave discussed Vesta only as a con�guration management system for software

development. Vesta's conceptual framework is general enough to apply to other

domains, such as CAD and document production. In fact, we used Vesta to

manage the documentation for all Vesta-managed software. This was especially

convenient for programmer's documentation that included material extracted

mechanically from program text.

Section 4.1 described some implications of Vesta bridges being programs,

managed by Vesta. A companion paper on experience using Vesta to solve

speci�c problems in con�guration and release management [Levin and McJones]

explores the consequences of this decision more deeply.

The SEI's TCA project has recognized the need to manage con�gurations of

tools [Dart]. Vesta bridges address many of the issues to be addressed by TCA,
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including con�guration management, tool coexistence, tool evolution, and tool

installation.

In conclusion, our experience with Vesta has established two main points

about bridges. Existing tools such as compilers, linkers, and shells can be turned

into bridges at low cost, gaining signi�cant advantages. And new tools written

speci�cally for Vesta can provide improved performance and increased function-

ality by taking advantage of the Vesta framework.
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