Constructive Logics. Part I: A Tutorial
on Proof Systems and Typed A-Calculi

Jean Gallier

May 1991

Publication Notes

This work was done while the author was on sabbatical leave from the University of
Pennsylvania at Digital PRL.

(© Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

Abstract

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed A-calculi, and linear logic. The emergence in the past ten years of a coherent field
of research often named “logic and computation” has had two major (and related) effects:
firstly, it has rocked vigorously the world of mathematical logic; secondly, it has created
a new computer science discipline, which spans from what is traditionally called theory of
computation, to programming language design. Remarkably, this new body of work relies
heavily on some “old” concepts found in mathematical logic, like natural deduction, sequent
calculus, andi-calculus (but often viewed in a different light), and also on some newer
concepts. Thus, it may be quite a challenge to become initiated to this new body of work (but
the situation is improving, there are now some excellent texts on this subject matter). This
paper attempts to provide a coherent and hopefully “gentle” initiation to this new body of
work. We have attempted to cover the basic material on natural deduction, sequent calculus,
and typedXi-calculus, but also to provide an introduction to Girard’s linear logic, one of the
most exciting developments in logic these past five years. The first part of these notes gives
an exposition of background material (with the exception of the Girard-translation of classical
logic into intuitionistic logic, which is new). The second part is devoted to linear logic and
proof nets.

Résumé

Le but de cet article est de donner unegantation dléments de logigue constructive,
de lambda calcul tyg, et de logique lieaire. Lémergence, ces dix deen€s anaés, d’'un
domaine cobfent de recherche souvent agpébgique et calcul” a eu deux effets majeurs
(et concommitents): tout d’abord, elle a dynaenle”monde de la logique maimatique;
deuxeémement, elle a eée une nouvelle discipline d’informatique, discipline quetsiid
depuis ce qu’on appelle traditionellement la&dhie de la calculabilit@a la conception des
langages de programmation. Remarquablement, ce corps de connaissances repose en grande
partie sur certains “vieux” concepts de logique neatiatique, tel que laatluction naturelle, le
calcul des sguents, et l&.-calcul (mais souvent vus avec une optiqueatdfite), et d'autres
concepts plus nouveaux. Il est donc assez difficile de s’inétiee nouveau domaine de
recherche (mais la situation s’estealiniée depuis I'apparition d’excellents livres sur ce sujet).
Cet article essaye degsénter “en douceur” et dedar) colerente ce corps de travaux. Nous
avons essay de couvrir des sujets classiques tels queddudtion naturelle, le calcul des
séquents, et le-calcul typg, mais aussi de donner une introductéiota logique lirgaire de
Girard, un des evelopements en logique les plus interessants de ces cin@@aranaés.
Dans une prenere partie nous psentons les bases (eéxception de la traduction de Girard
de la logique classique en logique intuitionniste, qui est nouvelle). La logigeait:ét les
réseaux de preuves sont testdans la deugime partie.

Keywords

Natural deduction, lambda calculus, sequent calculus, linear logic.

Acknowledgements

| wish to thank Hassan #rKaci, Andreas Podelski, and Asader Siarez, for their comments.

Special thanks to Kathleen Milsted, Marcin Skubiszewski, and Jean-Christophe Patat, for
proofreading earlier versions very carefully.

Contents

[—

(o2 TN 6 2 R - N O0 B\

9

10 A Proof-Term Calculus for

Introduction

Natural Deduction and Simply-Typed A-Calculus
Adding Conjunction, Negation, and Disjunction
Gentzen’s Sequent Calculi

Definition of the Transformation N from G; to ;
Definition of the Transformation G from A; to G;
First-Order Quantifiers

Gentzen'’s Cut Elimination Theorem

The Gentzen Systems L7 and LK

gj,/\,V,D,D,J_,cut
P

11 Cut Elimination in LK (and LJ)

12 Reductions of Classical to Intuitionistic Logic

References

10

14

22

25

33

41

45

47

63

80

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 1

1 Introduction

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typedA-calculi, and linear logic. During the last fifteen years, a significant amount of research
in the areas of programming language theory, automated deduction, and more generally logic
and computation, has relied heavily on concepts and results found in the fields of constructive
logics and typedi-calculi. However, there are very few comprehensive and introductory
presentations of constructive logics and typecalculi for noninitiated researchers, and many
people find it quite frustrating to become acquainted to this type of research. Our motivation
in writing this paper is to help fill this gap. We have attempted to cover the basic material on
natural deduction, sequent calculus, and typethlculus, but also to provide an introduction
to Girard’s linear logic [7], one of the most exciting developments in logic these past five
years. As a consequence, we discovered that the amount of background material necessary for
a good understanding of linear logic was quite extensive, and we found it convenient to break
this paper into two parts. The first part gives an exposition of background material (with the
exception of the Girard-translation of classical logic into intuitionistic logic, which is new [9]).
The second part is devoted to linear logic and proof nets.

In our presentation of background material, we have tried to motivate the introduction of
various concepts by showing that they are indispensable to achieve certain natural goals. For
pedagogical reasons, it seems that it is best to begin with proof systems in natural deduction
style (originally due to Gentzen [3] and thoroughly investigated by Prawitz [14] in the sixties).
This way, it is fairly natural to introduce the distinction between intuitionistic and classical
logic. By adopting a description of natural deduction in terms of judgements, as opposed to
the tagged trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding
of proofs as certain typettterms, and to the correspondence between proof normalization and
B-conversion (the&€urry/Howard isomorphisriil0]). Sequent calculi can be motivated by the
desire to obtain more “symmetric” systems, but also systems in which proof search is easier to
perform (due to the subformula property). At first, the cut rule is totally unnecessary and even
undesirable, since we are trying to design systems as deterministic as possible. We then show
how every proof in the sequent calculgg)(can be converted into a natural deduction proof
(in ;). In order to provide a transformation in the other direction, we introduce the cut rule.
But then, we observe that there is a mismatch, since we have a transforivatihn— A;
on cut-free proofs, whered@ N; — G maps to proofs possibly with cuts. The mismatch
is resolved by Gentzen’s fundamental elimination theoremmwhich in turn singles out the
crucial role played by theontraction rule Indeed, the contraction rule plays a crucial role
in the proof of the cut elimination theorem, and furthermore it cannot be dispensed with in
intuitionistic logic (with some exceptions, as shown by some recent work of Lincoln, Scedrov,
and Shankar [12]). We are thus setting the stage for linear logic, in which contraction (and
weakening) are dealt with in a very subtle way. We then investigate a number of sequent
calculi that allow us to prove the decidability of provability in propositional classical logic
and in propositional intuitionistic logic. The cut elimination theorem is proved in full for the
Gentzen systeriC using Tait’s induction measure [18], and some twists due to Girard [8]. We
conclude with a fairly extensive discussion of the reduction of classical logic to intuitionistic

Research Report No. 8 May 1991

2 Jean Gallier

logic. Besides the standard translations due ¢d&,"Gentzen, and Kolmogorov, we present
an improved translation due to Girard [9] (based on the notion of polarity of a formula).

2 Natural Deduction and Simply-Typed A-Calculus

We first consider a syntactic variant of the natural deduction system for implicational
propositions due to Gentzen [3] and Prawitz [14].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving a
proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction,
certain packets of assumptions can be “closed”, or “discharged”. A proof is a deduction
such that all the assumptions have been discharged. In order to formalize the concept of a
deduction, one faces the problem of describing rigorously the process of discharging packets
of assumptions. The difficulty is that one is allowed to discharge any number of occurrences
of the same proposition in a single step, and this requires some form of tagging mechanism.
At least two forms of tagging techniques have been used.

e The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree
whose nodes are labeled with propositions. One is allowed to tag any set of occurrences
of some proposition with a natural number, which also tags the inference that triggers the
simultaneous discharge of all the occurrences tagged by that number.

e The second solution consists in keeping a record of all undischarged assumptions at every
stage of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions
of the forml + A, calledsequentswhere A is a proposition, and is a record of all
undischarged assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human’s point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt
the second solution. It is convenient to tag packets of assumptions with labels, in order to
discharge the propositions in these packets in a single step. We use variables for the labels,
and a packet consisting of occurrences of the proposiias written asz: A. Thus, in a
sequent ~ A, the expression is any finite set of the forme1: A1, ..., 2m: Am, Where the
z; are pairwise distinct (but thg; need not be distinct). Giveln = z1: A1, ..., Zm: Ay, the
notationl, z: A is only well defined whem 7 z; for all 7, 1 < ¢ < m, in which case it denotes
the sete1: Ay, ..., zm: Am, 2. A. We have the following axioms and inference rules.

Definition 1 The axioms and inference rules of the systég (minimal implicational logic)
are listed below:

Me:Ar A
Mez:Av B (>-intro)
- -i
r''-A>B >

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 3

NrN-A>DB T A

D-elim
N~ B ()

In an application of the rulex{-intro), we say that the propositioA which appears as a
hypothesis of the deduction discharged(or closed. It is important to note that the ability
to label packets consisting of occurrences of the same proposition with different labels is
essential, in order to be able to have control over which groups of packets of assumptions are
discharged simultaneously. Equivalently, we could avoid tagging packets of assumptions with
variables if we assumed that in a sequent C, the expression, also called aontext is a
multisetof propositions. The following two examples illustrate this point.

Example 2.1 Let
Fr=z:A>(BD2C),y:AD B,z A.

r-A>(B>C0C) M- A - A>B Mr— A
- B>C B
. AD(BDC),yAD B,z AvC
. ADBDOC) ,yyADB+ADC
z2ADBD>C)-(ADB)D(ADC(O)
(ADBDOC)D((ADB)D(ADCQ))

In the above example, two occurrencesdofire discharged simultaneously. Compare with
the example below where these occurrences are discharged in two separate steps.

Example 2.2 Let
Fr=2:AD>(BDC),y:AD B,21: A, 220 A.

r-A>(B>C0C) M- A - A>B Mr— A
- B>C B
2. AD(BDC),y>AD B,21:A,22. A C
2. AD(BDC),yADB,z1:A+ADC
z2AD(BDC)z:A-(ADB)D(ADC)
z21:1A- (ADBDC)D((ADB)D(ADQO))

|—AD((AD(BDC))D((ADB)D(ADC)))

Research Report No. 8 May 1991

4 Jean Gallier

For the sake of comparison, we show what these two natural deductions look like in the
system of Gentzen and Prawitz, where packets of assumptions discharged in the same inference
are tagged with a natural number. Example 2.1 corresponds to the following tree:

Example 2.3

(AD (B >CQC)° Al (AD B)? Al
B>C B
C

ADC
AD>DB)D>AD0O)
(ADBDC)D((ADB)D(ADCQO))

and Example 2.2 to the following tree:

Example 2.4

(AD (B >CQC)° Al (AD B)? A*
B>C B
C

ADC
AD>DB)D>AD0O)
(ADBDC)D((ADB)D(ADCQO))

AD((AD(BDC’))D((ADB)D(ADC)))

It is clear that a context (the in a sequenf + A) is used to tag packets of assumptions
and to record the time at which they are discharged. From now on, we stick to the presentation
of natural deduction using sequents.

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example:

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 5

D,
MNez:Av B Dy
- A>DB M~ A

N~ B

Intuitively, it should be possible to construct a deductionfer B from the two deductions
D1 andD, without using at all the hypothesis A. This is indeed the case. If we look closely
at the deductio®4, from the shape of the inference rules, assumptions are never created, and
the leaves must be labeled with expressions of thefary z: A,y: C+ Corl", A, z: Av A,
wherey Z . We can form a new deduction fbn— B as follows: inD1, wherever a leaf of the
form [, A, z: A+ A occurs, replace it by the deduction obtained frimby addingA to the
premise of each sequenti. Actually, one should be careful to first make a fresh copppf
by renaming all the variables so that clashes with variabl@¥ iare avoided. Finally, delete
the assumptioe: A from the premise of every sequent in the resulting proof. The resulting
deduction is obtained by a kind of substitution and may be denot&d [@%,/z], with some
minor abuse of notation. Note that the assumptiong occurring in the leaves of the form
Az A, y: Cv+ C were never used anyway. This illustrates the fact that not all assumptions
are necessarily used. This will not be the case in linear logic [7]. Also, the same assumption
may be used more than once, as we can see intkaifm) rule. Again, this will not be the
case in linear logic, where every assumption is used exactly once, unless specified otherwise
by an explicit mechanism. The step which consists in transforming the above redundant proof
figure into the deductio®4[D-/z] is called areduction ster normalization step

We now show that the simply-typekicalculus provides a natural notation for proofs in
natural deduction, and th@tconversion corresponds naturally to proof normalization. The
trick is to annotate inference rules with terms corresponding to the deductions being built, by
placing these terms on the righthand side of the sequent, so that the conclusion of a sequent
appears to be the “type of its proof”. This way, inference rules have a reading as “type-
checking rules”. This discovery due to Curry and Howard is known a<Ctirey/Howard
isomorphismor formulae-as-types principlle0]. Furthermore, and this is the deepest aspect
of the Curry/Howard isomorphism, proof normalization corresponds to term reduction in the
A-calculus associated with the proof system.

Definition 2 The type-checking rules of thecalculusA- (simply-typecdk-calculus) are listed
below:

Mo Avz: A
Me:Av M: B
M- (Az:A.M):ADB
N-M:ADB T~ N:A
N~ (MN):B

(abstraction)

(application)

Research Report No. 8 May 1991

6 Jean Gallier

Now, sequents are of the form+ M: A, wherelM is a simply-typed\-term representing
a deduction ofA from the assumptions ih. Such sequents are also caljadgementsandl
is called aype assignmerdr context

The example of redundancy is now written as follows:

Me:Av M: B
M- (Az:A.M):ADB N~ N: A
N~ (Az: A.M)N: B

Now, D is incorporated in the deduction as the tedfy and D, is incorporated in the
deduction as the teriV. The great bonus of this representation is BgtD, /] corresponds
to M[N/z], the result of performing A-reduction step onXg: A. M)N.

Thus, the simply-typed-calculus arises as a natural way to encode natural deduction proofs,
and g-reduction corresponds to proof normalization. The correspondence between proof
normalization and term reduction is the deepest and most fruitful aspect of the Curry/Howard
isomorphism. Indeed, using this correspondence, results about the simplyAtgadclilus
can be translated in terms of natural deduction proofs, a very nice property.

When we deal with the calculus’, rather than using, we usually use-, and thus, the
calculus is denoted as™. In order to avoid ambiguities, the delimiter used to separate the
lefthand side from the righthand side of a judgenient A1: A will be >, so that judgements
are writtenag > M: A.

3 Adding Conjunction, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of
the simply-typedi-calculus. As far as proof normalization is concerned, conjunction does
not cause any problem, but as we will see, negation and disjunction are more problematic. In
order to add negation, we add the new constagfalse) to the language, and define negation
- A as an abbreviation fod D L.

Definition 3 The axioms and inference rules of the sys.t‘ﬁe’ﬁ1A’V’L (intuitionistic proposi-
tional logic) are listed below:

Me:Ar A
oAy B (D-intro)
- A>B

M- A>B T A
- B

(>-elim)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 7

N-A B .
————— (A-intro)
- AAB
- AAB . - AAB .
— (A-elim) —— (A-elim)
M~ A N~ B
N A . M~ B .
——— (v-intro)) ———— (v-intro)
N~ Av B - Av B
Fr'-AvB TlNz:Av-C T,y.BvC)
(v-elim)
M- cC
ML .
— (L-elim)
M- A

Minimal propositional logicV,2»"V+1 is obtained by dropping the ¢elim) rule. In order to
obtain the system aflassical propositional logicdenotedV2>"+V++, we add taV2"V+L the
following inference rule corresponding to the principle of proof by contradictiyncontrg
(also calledeductio ad absurduim

Mae:—-Aw1

by-contr
N~ A (by 3

Several useful remarks should be made.

(1) In classical propositional logio\(?+"+V+1), the rule

M1 .
— (L-elim)
M- A

can be derived, since if we have a deductior of 1, then for any arbitraryd we have a
deductionz: = A, + L, and thus a deduction 6f+ A by applying the Ijy-contrg rule.

(2) The propositiond > -- A is derivable inA2V+L, but the reverse implication
-= A D Ais not derivable, even in;?"V. On the other hands~ A O A is derivable in
A/CD,/\,V,J_:

. Ay A A . Ay Ar - A
. Ay AL
(by-contrg
. A A
F-—ADA

Research Report No. 8 May 1991

8 Jean Gallier

(3) Using the py-contrg inference rule together witln(-elim) and {/-intro), we can prove
AV Af(thatis, A DL1) Vv A). Let

M=z:(AD>L)VvA) DLy A

We have the following proof for4 D 1) v A.

N~ A

M- ((A>L)vA) DL I'-(ADL)VA
z.(ADL)VA) DL,y Av1L
z.(ADL)VA) Dl ADL

z.(ADL)VA) DI+ (ADL)VA)DL z.(ADL)VA) DI (ADL)VA
z.(ADL)V A) Dlw1 (by-contr3
—(ADL)VA

The typed A-calculus A~ corresponding to/\/f”\’v’L is given in the following
definition.

Definition 4 The typed\-calculusA—** is defined by the following rules.
Mo Avz A

Mez:A>M: B
M>Az:A.M):A— B

(abstraction)

lr-M:A—- B IpN:A
N>(MN):B

(application)

Nr-=M:A Te-N:B
Mr>-(M,N):Ax B

(pairing)

l>-M:Ax B L Nl>-M:Ax B o
——— (projection) —— (projection)
F>7r1(M):A F>7r2(M):B

MN-M:A L N-M:B L
_ (injection) _ (injection)
M-inl (M):A+B Msinr (M):A+B

N>P:A+B T,z:AcM:.C T,y.B>N:C
I>case (P, Az: A.M,Ay:B.N):.C

(by-cases)

M- M: L

T (L-elim)
> Aa(M): A

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 9

A syntactic variant ofcase (P, Az: A. M, Ay: B. N) often found in the litterature is
case P of inl (z:A) = M | inr (y:B) = N, or evencase P of inl (z) =
M |inr (y) = N, and thefy-caseprule can be written as

N>P:A+B T,z:AcM:.C T,y.B>N:C

: _ (by-casep
>(case Pofinl (z:A)= M |inr (y:B)= N):C

We also have the following reduction rules.

Definition 5 The reduction rules of the systexmr>**L are listed below:

(Az: A. M)N — M[N/z],
(M, N)) — M,
mo((M,N)) — N,
case (inl (P),Az: A.M,\y: B.N) — M[P/z], or
caseinl (P)ofinl (z:A)= M |inr (y:B)= N — M[P/z],
case (inr (P),Az: A.M,\y:B.N) — N[P/y], or
caseinr (P)ofinl (z:A)= M |inr (y:B)= N — N[P/y],
Aaop(M)N — Ap(M),
T1(Daxs(M)) — La(M),
(D axs(M)) — Ap(M),
case (A4+5(P),Az: A. M,\y: B. N) — Ac(P),
Aa(AL (M) — Aa(M).

Alternatively, as suggested by Amsuder $iarez, we could replace the rules éase by the
rules

case (inl (P),M,N) — MP,

case (inr (P),M,N) — NP,
case (Aa+(P), M,N) — A¢c(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up te-renaming. This result was first proved by Prawitz [15]

for the systentv;>""*.

Theorem 1 (Church-Rosser property, Prawitz (1971)) Reduction inA=>**L (specified
in Definition 5) is confluent. Equivalently, conversiomin "+ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martf{lL3] using a form of
parallel reduction (see also Stenlund [16]).

Research Report No. 8 May 1991

10 Jean Gallier

Theorem 2 (Strong normalization property, Prawitz (1971)) Reductionim\=*" (asin
Definition 5) is strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [17], [19], as done in Girard [5]
(1971), [6] (1972) (see also Gallier [2]).

If one looks at the rules of the systelqﬁ?”\’\”L (or A=>%%4), one notices a number of
unpleasant features:

(1) There is arasymmetnjpetween the lefthand side and the righthand side of a sequent (or
judgement): the righthand side must consist of a single formula, but the lefthand side
may have any finite number of assumptions. This is typical of intuitionistic logic, but it
is also a defect.

(2) Negation is very badly handled, only in an indirect fashion.

(3) The (-intro) rule and the -elim) rule are global rules requiring the discharge of
assumptions.

(4) Worse of all, the \{-elim) rule contains the parasitic formufawhich has nothing to do
with the disjunction being eliminated.

Finally, note that it is quite difficult to search for proofs in such a system. Gentzen’s sequent
systems remedy some of these problems.

4 Gentzen’s Sequent Calculi

The main idea is that now, a sequdnt— A consists of two finite multiset and A
of formulae, and that rather than having introduction and elimination rules, we have rules
introducing a connective on the left or on the right of a sequent. A first version of such a
system for classical propositional logic is given next. In these fukasdA stand for possibly
empty finite multisets of propositions.

Definition 6 The axioms and inference rules of the sysgetfV:~ for classical propositional
logic are given below.

ATHAA
AATHA N=AA A .
—— (contrac left) —— (contrac right)
ATrA MN=AA
A B, T+ A A left NrN-AA T AB A right
_— : 1
AANB,T+A () r-AAANB (A:1ight)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 11

AlTT-A BT A N-AAB .
(v: left) ————— (V:right)
AV B,T+ A r-A AV B
N-AA BT A (> left) AT+ AB (>: right)
. e —— . n
ADB,T+A > r'-AADB -9
MN-AA AT+ A .
— (—:left) ———— (~:right)
“A A M= A-A

Note the perfect symmetry of the left and right rules. If one wants to deal with the extended
language containing alsb, one needs to add the axiom

1, A

One might be puzzled and even concerned about the presence of the contraction rule.
Indeed, one might wonder whether the presence of this rule will not cause provability to be
undecidable. This would certainly be quite bad, since we are only dealing with propositions!
Fortunately, it can be shown that the contraction rule is redundant for classical propositional
logic. But then, why include it in the first place? The main reason is that it cannot be
dispensed with in intuitionistic logic, or in the case of quantified formulae. (Recent results
of Lincoln, Scedrov, and Shankar [12], show that in the case of propositional intuitionistic
restricted to implications, it is possible to formulate a contraction-free system which easily
yields the decidability of provability). Since we would like to view intuitionistic logic as a
subsystem of classical logic, we cannot eliminate the contraction rule from the presentation of
classical systems. Another important reason is that the contraction rule plays an important role
in cut elimination. Although it is possible to hide it by dealing with sequents viewed as pairs
of sets rather than multisets, we prefer to deal with it explicitly. Finally, the contraction rule
plays a crucial role in linear logic, and in the understanding of the correspondence between
proofs and computations, in particular strict versus lazy evaluation.

In order to obtain a system for intuitionistic logic, we restrict the righthand side of a sequent
to consist ofat most one formulaWe also modify the %: left) rule and the ¥: right) rule
which splits into two rules. Thecontrac right) rule disappears, and it is also necessary to add
a rule of weakening on the right, to mimic the-glim) rule.

Definition 7 The axioms and inference rules of the sysgeti™""~ for intuitionistic proposi-
tional logic are given below.
ATHA
M-

o (weakeningright)

A AT A

(contrac left)
ATrA

Research Report No. 8 May 1991

12 Jean Gallier

A B, T+ A '-A '-B .
2 (Arleft) ————— " (A:right)
ANB, T+ A - AAB
AlTT-A B,T+A
(V: left)
AV B, TrA
VA4 right - V: right
_— g _— g
- Av B (ght) - Av B (ght)
N-A B,T+A (>: left) AT+ (>: right)
ADB T+ A ' r'-ADB -"9
A ey AT Girighy
SATE Fe-4 o9

In the above rules) contains at most one formula. If one wants to deal with the extended
language containing alsb, one simply needs to add the axiom

1, A,

whereA contains at most one formula. If we choose the language restricted to formulae over
A, D, V, and L, then negatiom A is viewed as an abbreviation far O 1. Such a system can
be simplified a little bit if we observe that the axiom I v A implies that the rule

M1
M- A

is derivable. Indeed, assume that we have the axigm+ A. If ' + L is provable, since no
inference rule applies ta, the leaf nodes of this proof must be of the forfn- L. Thus, we
must havel [T ’, in which casd™’ ~ A is an axiom. Thus, we obtain a prooflof- A. We
can also prove that the converse almost holds. Sinder L is an axiom, using the rule

4,1
1, A

we see thatl,I' + A is provable. The reason why this is not exactly the converse is that
L,T + is not provable in this system. This suggests to consider sequents of th€ ferzh
where A consistexactly of a single formulaln this case, the axiom, I ~ A is equivalent

to the rule

TEL (L right)
M- A M9

We have the following system.

Definition 8 The axioms and inference rules of the sysgeti"* for intuitionistic proposi-
tional logic are given below.
ATHA

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 13

TEL L right
| Mg
A ATvC
————— (contrac left)
ATwC
A BT+ C - A '8 .
o Y (anleft) ————— (A:right)
AANB, T+ C - AAB
ATw-C B,TvC
(v: left)
AVB,TwC
"EA right "m B right)
- AV B -n9 - Av B "9
- A B,T+C (o: left) AT+ B (5: right)
ADBTT+C ' r-A>B "9

There is a close relationship between the natural deduction syétefn”* and the Gentzen
systemg?”"V"*. In fact, there is a procedur¥ for translating every proof ig;""** into
a deduction inN""*. The procedureV has the remarkable property th&f(M) is a
deduction in normal form for every prodf. Since there are deductions. 2Vl that are
not in normal form, the functioW is not surjective. The situation can be repaired by adding
a new rule tag?”™"*, thecut rule Then, there is a procedusé mapping every proof in
G>"™V* to a deduction inv;"'*, and a procedur@ mapping every deduction it>"""¥*
to a proof ing? Ve,

In order to close the loop, we would need to show that every progfifi’"~“* can be
transformed into a proof igf’A’V’L, that is, a cut-free proof. It is an extremely interesting
and deep fact that the systeg?””"* and the systeng?""*¥"" are indeed equivalent.
This fundamental result known as tbet elimination theorenwvas first proved by Gentzen in
1935 [3]. The proof actually gives an algorithm for converting a proof with cuts into a cut-free
proof. The main difficulty is to prove that this algorithm terminates. Gentzen used a fairly
complex induction measure which was later simplified by Tait [18].

The contraction rule plays a crucial role in the proof of this theorem, and it is therefore natural
to believe that this rule cannot be dispensed with. This is indeed true for the intuitionistic
systemg;”"™V"* (but it can be dispensed with in the classical sysgghf-V:1). If we delete
the contraction rule from the systegiy”""""* (or G?*V'™), certain formulae are no longer
provable. For example; - (P v = P) is provable ing?>"""”, but it is impossible to build
a cut-free proof for it without usingcontrac left). Indeed, the only way to build a cut-free
proof for =— (P v = P) without using ¢ontrac left) is to proceed as follows:

Research Report No. 8 May 1991

14 Jean Gallier

-PVv-P
—|(P\/—|P)I—
I——|—|(P\/—|P)

Since the only rules that could yield a cut-free prooiof’ v -~ P are the {¢: right) rules
and neither- P nor+ - P is provable, itis clear that there is no cut-free proofoP v - P.

However,- -— (P v - P) is provable ing?"¥"", as shown by the following proof (the

same example can be worked ougif”"*):
Example 4.1
Pv P
P+ PV-P
P,~(PV-P)r

—|(P\/—|P)I——|P
A(PV-aP)rPv-aP
A(PV~aP),~(PV-P)+r

(contrac left)

—|(P\/—|P)I—
I——|—|(P\/—|P)

Nevertheless, it is possible to formulate a cut-free sysgdgi”™"" which is equivalent

to g2V, Such a system due to Kleene [11] has no contraction rule, and the premise of
every sequent can be interpreted as a set as opposed to a mukiseniResults of Lincoln,
Scedrov, and Shankar [12], show that in the case of propositional intuitionistic logic restricted
to implications, it is possible to formulate a contraction-free system which easily yields the
decidability of provability).

5 Definition of the Transformation N from G; to N;

The purpose of this section is to give a proceddfenapping every proof ig”"""* to

a deduction in/\/f’A’V’l. The procedureV is defined by induction on the structure of proof
trees and requires some preliminary definitions.

Definition 9 A proof treell with root nodd” + C is denoted as

M
M~ C

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 15

and similarly a deductio® with root nodel” + C is denoted as

D
M- cC

A proof treell whose last inference is

'~ B
A D

is denoted as
My
M- B
A D

wherell; is the immediate subproof 6f whose root i” + B, and a proof tred1 whose last
inference is

- B I'C
Av D
is denoted as
My AP
'~ B MN-¢C
Av D

wherell; and I, are the immediate subproofs bf whose roots ard” + B andl + C
respectively. The same notation applies to deductions.

Given a proof treé€l with root nodd + C,

M
M~ cC

N vyields a deductiow/ () of C from the set of assumptions,

N()
MMwC

wherel " is obtained from the multis€t. However, one has to exercise some care in defining
" so thatV is indeed a function. This can be achieved as follows. We can assume that we
have a fixed total ordex, on the set of all propositions so that they can be enumerated as
Py, P>, ..., and afixed total ordet,, on the set of all variables so that they can be enumerated
asey, ro, ...

Research Report No. 8 May 1991

16 Jean Gallier

Definition 10 Given a multisef’ = Ay, ..., A,, since{4q,...,4,} = {PF;,,..., Pi,} where
P, <, P, <, ...<, P, (WherePy, P, . ., is the enumeration of all propositions and where
ij = i;4+1 iS possible sinc€ is a multiset), we defineé* aslr* = z1: P; , ..., 2z, B;,.

We will also need the following concepts and notation.

Definition 11 Given a deduction

D
M- cC

the deduction obtained by adding the additional assumptotsthe lefthand side of every
sequent oD isdenoted aA+D, and itis only well defined provided thddm(')ndom@) = O
for every sequerlt’ + A occurring inD. Similarly, given a sequential proof

M
M= A

we define the prodk + 1 by adding/\ to the lefthand side of every sequenfiofand we define
the prooff1 + © by adding® to the righthand side of every sequenfbf

We also need a systematic way of renaming the variables in a deduction.

Definition 12 Given a deductio® with root nodeA + C the deductiorD’ obtained fronD
by rectification is defined inductively as follows:

If D consists of the single nodg: A1, ..., ym: Am + C, define the total ordek on the
contextA = y1: A1, ..., Ym: A, as follows:

') . A; <pAJ" or
it A; <yt A; iff {Ai:Aj and y; <, y;.

The order< onyi: Ay, ..., ¥m: Ay defines the permutationsuch that
Yo(1)' Ao(1) < Yo 2): Ao@) < -+ < Yo(m-1)" Aom—1) < Yo(m): Ae(m)-

Let A" = &1 Ag(1), . . ., m: Ao@m), and defineD’ asA' + C. The permutatior induces a
bijection betweeqz, ..., z,} and{y1,...,yn}, Namelyz; — y,).

If D is of the form

D,
1. Al,yzl Az, e Yme Am — B

yzZAz,...,ymZAml— A1 DB

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 17

by induction, we have the rectified deduction
D1
1. Aa(l), sy Tjo1t Aq(j_l), z;: Al, Zj+1: Aq(j+1), ey Tt Aa(m) + B
wherez; corresponds t@; in the bijection betweefz1,...,z,} and {y1,...,y,} (in fact,

j = o71(1) sinceA; = A,(;)). Then, apply the substitutide,, /z;, 2;/zj+1, . . . Tm-1/Zm]
to the deductiorD!, and form the deduction

Dilem/2j, 2/ 241, - - > Tm—1/Tm]
1. Aa(l), sy Tjo1t Aq(j_l), Tm- Al, z;: Aa(j+1), RN Je Aa(m) + B
T Aa(l), A Aq(j_l), z;: Aq(j+1), R Aa(m) - Al OB

The other inference rules do not modify the lefthand side of sequent®’asdbtained by
rectifying the immediate subtree(s)Df

Note that for any deductio® with root nodey;: A1, ...,ym: Am + C, the rectified
deductionD’ has for its root node the sequértit C, wherel * is obtained from the multiset
= A4,..., A, asin Definition 10.

The procedurgV is defined by induction on the structure of the proof free
e An axioml', A+ A is mapped to the deductioh (4)* ~ A.

e A proof 1 of the form

M1
M- A

is mapped to the deduction
N (1)
M1
Me A

e A proof 1 of the form

AA T+ B
AT+ B

Research Report No. 8 May 1991

18 Jean Gallier

is mapped to a deduction as follows. First nigpto the deductiooh'(M1)

N (M)
. A,y AT "+ B

Next, replace every occurrence af:“A, y: A" in N'(M1) by “z: A” where z is a new variable
not occurring inV(My), and finally rectify the resulting tree.

e A proof of the form

My M2
| N~ B
- AAB
is mapped to the deduction
N (1) N(M2)
Mr A M+~ B
M~ AAB
e A proof of the form
My
A B, TwC
ANB,TwC

is mapped to a deduction obtained as follows. First, Mapo A (1)
N (1)
z. A,y B, C
Next, replace every leaf of the form A, y: B, A, "+ A in N (1) by the subtree

zZZANB,AT*+ ANB
ZZANB,AT - A

and every leaf of the form: A, y: B, A, + B in N(M1) by the subtree

zZZANB,AT*+ ANB
z2AANB,AT"+ B

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 19

where z is new, replace #: A,y: B” by “z: A A B” in every antecedent of the rdsug
deduction, and rectify this last tree.

¢ A proof I of the form

AT+ B
r-AD>DB

is mapped to the deduction
N (1)
z.A,T" B
M~ A>B

¢ A proof I of the form

M1 M
M- A B,I'-C
ADB,T-C

is mapped to a deduction as follows. First mi&pandl; to deductionsV (1)
N (1)
Me A
andN (My)
N ()
z. B, C
Next, form the deductio®

z2AD B+N(My)
z2ADB,["-ADB zZZADB, T '+ A
z2ADB,T*+ B

and modifyN (M) as follows: replace every leaf of the fomn B, A, "+ B by the deduction
obtained fromA + D by replacing %: B” by “z: A D B” in the lefthand side of every sequent.
Finally, rectify this last deduction.

Research Report No. 8 May 1991

20 Jean Gallier

e A proof of the form

My
T4
- Av B

is mapped to the deduction
N (1)
Me A
MM+~ AV B

and similarly for the other case of the:(right) rule.

e A proof of the form
My M2
ATwC B,I'vC
AVB,TwC

is mapped to a deduction as follows. First nigpandrl; to deductionsV (1)

N (M)
. AT C
andN/ (MMy)
N (M)
y. B, "+ C
Next, form the deduction
z.AV B+ N(My) 22 AV B+ N(My)
z2AVB,T"+ AVB Z2AVB,z. AT v C z2AV B,y:B,T"+ C

zZZAVB,T'w+C

and rectify this last tree.

This concludes the definition of the proceduve Note that the contraction rule can be
stated in the system of natural deduction as follows:

z. A,y AT+ B
z.A,Tv Blz/z, z/y]

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi 21

wherez is a new variable. The following remarkable property\bfs easily shown.

Lemma 1 (Gentzen (1935), Prawitz (1965)) For every prooffl in G2V, N (M) is a
deduction in normal form (iv,>""%).

Since there are deductions """ that are not in normal form, the functiod is not
surjective. Itis interesting to observe that the funcids not injective either. What happens
is thatg?"™"* is more sequential thav,>"""""*, in the sense that the order of application
of inferences is strictly recorded. Hence, two proofﬁjﬁ’\’v’L of the same sequent may
differ for bureaucratic reasons: independent inferences are applied in different orders. In
NPV these differences disappear. The following example illustrates this point. The
sequent- (P A P') D ((Q A Q") D (P A Q)) has the following two sequential proofs

P, P,Q,Q'v P P, P,Q,Q'vQ
P,P'.Q,Q'v PAQ
PAP.Q,Q'vPAQ
PAP,QANQ'v+PAQ

PAP' = (QAQ)D(PAQ)
H(PAP)D((QAQ)D(PAQ))

and

P, P,Q,Q'v P P, P,Q,Q'vQ
P,P'.Q,Q'v PAQ
PP ,ONQ v PAQ
PAP,QANQ'v+PAQ
PAP' = (QAQ)D(PAQ)
H(PAP)D((QAQ)D(PAQ))

Both proofs are mapped to the deduction

. P\NP,y:QANQ'v+ PA P . PANPLy:QANQ'+QANQ’
. PANP,y.QANQ' v+ P .PANPLy:QAQ v Q
. PANP,y.QANQ' v~ PAQ
z.PAP-QAQ)D(PAQ)
H(PAP)D((@QAQ)D(PAQ))

Research Report No. 8 May 1991

22 Jean Gallier

6 Definition of the Transformation G from N to G;

We now show that if we add a new rule, the cut rule, to the systéfy¥"*, then we can
define a proceduré mapping every deduction it;>""¥"* to a proof ing;" <,

Definition 13 The systeng;"V** is obtained from the systegy""""* by adding the
following rule, known as the cut rule:

NrN-A4 ATlw+C
r=C

(cut)

The systeng2:"V-1eut is obtained frong2>"V>+ by adding the following rule, also known
as the cutrule:
M= A,A AT+ A

cut
M= A (cut)

Next, we define the procedu@ mapping every deduction in/;"¥'* to a proof in

g2V The procedurd is defined by induction on the structure of deduction trees.
Given a deduction treB of C' from the assumptiors,

D
M- cC

G yields a prooiG (D) of the sequent — + C
g(D)
e C

wherel ™ is the multisetds, ..., A, obtained from the context = z1: A1, ..., 2, A, by
erasingey, . . ., ¢,, Wherezq, .. ., &, are pairwise distinct.

e The deductior, z: A+ A is mapped to the axiofi—, A+ A.
¢ A deductionD of the form

M1
M- A

is mapped to the proof

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed A-Calculi

23

G(D1)
ML
MM A
¢ A deductionD of the form
Ds Dy
| '~ B
- AAB
is mapped to the proof
G(D1) G(D2)
MM A B
MM~ AAB
¢ A deductionD of the form
D,
- AAB
N~ 4
is mapped to the proof
G(D1) AB,TT+ A
M+ AAB AANB, T+ A
(cuy)
M A
and similarly for the symmetric rule.
¢ A deductionD of the form
Ds
z. A, B
- A>B
is mapped to the proof
G(D1)
AT+ B
MM~ ADB

Research Report No. 8

May 1991

24 Jean Gallier

¢ A deductionD of the form

Ds Dy
- A>B |
N~ B
is mapped to the proof
G(D2)
G(D,) MM A B, "+ B
r~~A>DB ADB,I"+B
(cuy)
B
¢ A deductionD of the form
D,
_ed
- AV B
is mapped to the proof
G(D1)
M A
MM~ AV B

and similar