
7

The Siphon: Managing Distant
Replicated Repositories

Francis J. Prusker

Edward P. Wobber

May 91

Publication Notes

This report is a revised and extended version of the paper entitledThe Siphon: Managing
Distant Replicated Repositories, by the same authors, published in the Proceedings of the
IEEE Workshop on Management of Replicated Data (Nov. 1990).

Edward P. Wobber is with the Digital Systems Research Center, Palo Alto, California, USA.

c Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

The Siphon is intended to facilitate joint software development between groups working at
distant sites connected by low bandwidth communication lines. It gives users the image
of a single repository of individually manageable units, typically software or documentation
components. Users can lock and modify each unit, the result being propagated automatically
to all sites. The repository is replicated at each site, and possibly on multiple file servers for
greater availability and reliability. A Siphon has been in operational use since January 1989
between three Digital research laboratories. We presently share a 2.5 GB repository of source
code, libraries, documents, and executable files.

Résumé

Le Siphon facilite la coop´eration des ´equipes qui d´eveloppent du logiciel sur des sites distants
et connect´es par des lignes de communication `a faible débit. Le Siphon donne aux utilisateurs
l’image d’une bibliothèque unique de composants logiciels. Chaque composant peut ˆetre
individuellement verrouill´e et modifié, les modifications se propageant automatiquement aux
autres sites. La biblioth`eque est dupliqu´ee sur chaque site, avec ´eventuellement plusieurs
serveurs de fichiers par site pour am´eliorer la disponibilité et la fiabilité. Un Siphon est
opérationnel depuis Janvier 1989 entre trois laboratoires de recherche Digital. Ces laboratoires
partagent actuellement une biblioth`eque de 2,5 milliards d’octets, compos´ee de programmes
source, de librairies, de documents et de fichiers ex´ecutables.

iii

Keywords

Replicated data, software repository, wide area network, distributed software development,
file servers.

Acknowledgements

We are grateful to Mark Manasse, who first suggested the idea of on-line package sharing
with PRL; to Andrew Birrell, for his keen distributed systems insight; to Kathleen Milsted and
Greg Nelson for their comments on this paper; and to Patrick Baudelaire and Henri Gouraud
who pushed the idea of an automatic update tool between SRC and PRL.

iv

Contents

1 Background 1

2 User Model 1

3 Lock Management 2

4 Update Propagation 4

5 Sharing Software with the Siphon 6

6 Selective Sharing 7

7 Routing Updates 8

8 Implementation - Installation - Management 8

9 Future Work 9

10 Conclusions 10

References 11

v

The Siphon: Managing Distant Replicated Repositories 1

1 Background

Soon after its foundation, Digital’s Paris Research Laboratory (PRL) decided to use the
Topaz [3] software environment developed at the Systems Research Center (SRC) in Palo
Alto. This decision presented both labs with a unique opportunity to discover new techniques
to support software development over a wide-area network. A joint project was formed whose
goal was to present the image of a single shared software repository to researchers at both
sites, with a minimum of interactive delay due to transatlantic communications. This paper
describes the system, called theSiphon, that emerged from this effort.

2 User Model

The image evoked by the wordSiphonis quite intentional. The best way to view the system
is to imagine a set of replicas for a shared data repository which are fully connected, but by
narrow data paths. Updates can be made to any replica, but the result ultimately propagates to
the others at the maximum rate allowed by the connecting pathways.

The shared repository is divided into individually manageable units. These units define the
granularity of all write operations. For each there exists a mutual exclusion lock controlling the
creation of new content. A writer must first obtain the lock, then update the local replica, and
finally release the lock. A background daemon then propagates the update to remote replicas.
All updates are atomic: partial state is never visible, even when an update is in progress.

Reads from the repository are always satisfied at the local replica. Since operations involving
locks potentially require high latency network access, it is important that most reads be feasible
without locking. This seems perfectly adequate for applications like browsing software source
and obtaining load images. For these applications, repository reads amount to unmoderated
file system calls which don’t involve the Siphon.

When new content is written, it appears at the local replica immediately. However, distant
replicas are updated at a much slower pace: there is a propagation delay, ranging on average
from several minutes to several hours. Clients are aware of this: first, they know that repository
units can differ for a short time between replicas; second, a lock may only be obtained if
the local replica has the most recent content. Thus, acquiring the lock provides a strong
consistency guarantee for an individual repository unit. This is desirable since clients often
fetch data prior to modifying it and writing it back. No such guarantee applies to the repository
in general: replicas as a whole are never known to be completely consistent.

In the following, we distinguish lock operations from data movement. The idea is to require
synchronous inter-site access only during lock related operations, while update propagation
takes place in background.

Research Report No. 7 May 91

2 Francis J. Prusker and Edward P. Wobber

3 Lock Management

There is a separate lock database kept at each replica, but the lock information of each
repository unit is not replicated. Instead, it is managed at only one replica, usually the one
where the unit was first created. If a lock request to this unit is issued from another replica, the
request is redirected to the managing replica. This considerably simplifies the complexity of
the system at the cost of lock service availability during network partitions.

The lock manager for each repository unit manages a space of monotonically increasing
stamps (integers) and a lock governing the allocation of these stamps. Before updating the
content of any repository unit, the caller must first acquire the lock and get a new stamp. So,
for each unit, replicai controls:

S[i] the current stamp

The managing replica also controls:

SL the last allocated stamp

U the current lock owner,nil if unlocked

The system maintains the following invariants over each repository unit:

1. SL increases monotonically

2. S[i] increases monotonically for alli

3. SL � S[i] for all i

4. if U=nil thenSL=S[i] for somei

Users of the system perceive three basic primitives:lock, unlock, andship, which maintain
these invariants:

Lock (u: User; i: Replica) =
if U = nil and S[i] = SL then

U := u;
else Fail();
end;

The lock operation attempts to acquireU. If the caller’s replica (i) is not up-to-date, the
operation must fail since a pending update might take indefinitely long to arrive.

May 91 Digital PRL

The Siphon: Managing Distant Replicated Repositories 3

Ship (u: User; i: Replica) =
if u = U then

SL := SL + 1; s :=SL;
if Update(i)and s> S[i] then

S[i] := s;
else Fail();
end;

else Fail();
end;

Theshipoperation checks that the caller holds the lock and requests the allocation of a new
stamp. The caller’s replica is then updated with the new content and if all goes well, the
new stamp is written toS[i] . During the update operation, the lock can be broken andS[i]
andSL can change (this is why the temporary variables is necessary).Shipaccounts for the
possibility that the lock has been broken by checking that s> S[i] , (seebreakbelow). In the
event of failure (e.g. cancellation or crash),S[i] remains unchanged. Note thatshipmaintains
the monotonicity of stamps which ensures that invariants (1), (2) and (3) will always hold.

Unlock (u: User; i: Replica) =
if u = U and S[i] = SL then

U := nil;
else Fail();
end;

Theunlockoperation requires that the caller holds the lock and that the caller’s replica be
up-to-date. This maintains invariant (4). Notice that the lock may be reacquired prior to
update propagation as long asS[i]=SL.

In practice, we must be able to break locks: users can forget to unlock before going on
holidays; replicas with up-to-date content can be inaccessible for a long time; allocated stamps
can be orphaned by failed ship operations. Invariant (4) states that the lock cannot be released
until some replica possessesSL. Thus, we need a mechanism tobreakthe lock:

Break (i: Replica) =
if S[i] ≠ SL then

SL := SL + 1; S[i] := SL;
end;
U := nil;

Research Report No. 7 May 91

4 Francis J. Prusker and Edward P. Wobber

Here, we simply assert that the current content at the unlocking replicai is up-to-date. Note
thatbreakcan cause an update from another replica to be overwritten. Obviously, it must be
used with care!

4 Update Propagation

At each site, a background daemon, thesiphon server, is responsible for the propagation of
new content to other replicas. The algorithm for propagation of updates in the Siphon system
is quite similar to that used by Grapevine [5]: only eventual convergence is guaranteed and
more recent content always dominates. However, due to the intended application, our system
provides centralized control over stamps rather than deriving them from a clock.

Multiple sub-replicasare supported for availability and performance within a single site.
Each sub-replica is managed by a file server and contains a complete copy of the repository.
Thus a single replica is really composed of one lock server, several file servers (one for each
sub-replica), and one siphon server. The following scheme summarizes the architecture of the
various servers in the case of two sites:

get ship

user

lock server

siphon server

file servers

lock/unlock

Site A

lock server

siphon server

file servers

user

update request

updates

lock/unlock

Site B

lock/unlock

requests

data

get ship get ship get ship

update request

Figure 1: Siphon Architecture

May 91 Digital PRL

The Siphon: Managing Distant Replicated Repositories 5

Lock/unlock requests are directed to the lock server; get/ship operations are directed to file
servers; and the siphon server is responsible for data movement to and from other sites. Note
that data movement is always bi-directional.

What happens when a user ships new content? First, a specialized tool updates each local
sub-replica. To avoid unnecessary copying of data, only files whose timestamps or lengths
differ are copied. When at least one sub-replica has written the new content to stable storage,
S[i] can be updated at lock server. The lock server then requests the local siphon server to
update all distant replicas. The siphon server gets the data from a local file server and sends
it to remote sites. The siphon server at each remote site then ships the received data to its file
servers.

As stated above, data movement is asynchronous: the siphon server manages a queue of
pending updates to distant sites. We use a variety of techniques for making optimal use of
communications lines: file timestamps are maintained to avoid unnecessary copying of data,
data compression is used to double communications bandwidth, and received data is cached
in stable storage to avoid retransmission in the event of line failures or system crashes. In
addition, the Siphon uses the network topology to avoid copying twice the same data over the
same communication lines (see Routing Updates below).

Since many machines and connections are involved in the Siphon system, we devoted
special attention to the problems of crash recovery and data consistency:

� Lock server data is maintained in stable storage, using a snapshot and log technique [2].

� Since updates can cause temporary inconsistencies between sub-replicas and the lock
server, all actions are recorded in stable storage so that valid state can be recovered in
the event of a lock server crash.

� Each sub-replica checks periodically if it has the current content for each repository
unit, and tries to remain current by fetching more recent content. (Sub-replicas can miss
updates due to crashes and local network partitions.)

� The siphon server at each site periodically compares the local stamp of each repository
unit with those at other sites. If the local data is out-of-date, it asks a more current
replica for an update.

� A daemon computes fingerprints over the contents of each replica and checks that the
replicas actually do converge. The fingerprinter actually checks data as opposed to
stamps, so we learn quickly about bugs in our methods.

As with replicas, there is no guarantee that all sub-replicas will have consistent content at
any given time. There is a window of inconsistency due to propagation delay. Of course, this
interval is typically much larger between replicas than between sub-replicas.

Research Report No. 7 May 91

6 Francis J. Prusker and Edward P. Wobber

5 Sharing Software with the Siphon

In practice, each repository unit is a file system directory that we call apackage. Packages
are typically self-contained software or documentation components whichexport software
interfaces, libraries, executables, and documents for general use. Packages are usually
authored and maintained by an individual or a small number of people. Typical sizes range
from .01 to 40 MBytes. We have roughly 1000 such packages totaling 2.5 GBytes. Of this
total, about 40 MBytes of data propagate through the system per day.

Users modify packages following alock/get/modify/ship/unlockparadigm. The user first
locks and gets a copy of the package in a private directory. This is usually done through a
single command,getpackage, which locks the package and gets its content from an up-to-date
file server (an up-to-date file server must exist at local site, otherwise the lock couldn’t have
been acquired). Then, the user modifies and tests his private version of the package. Of
course, the “public” package stored in the repository is not changed during this phase. When
the user is satisfied with his changes, he uses theshippackagecommand to ship the new
package content from his private directory to the repository, publicizing it to all users at all
sites. Finally, the user unlocks the package, allowing other people to modify it. Note that this
is not a versioning system: old package content is destroyed and replaced by the new one.

Once the package has been distributed to a site, the Siphon provides an export facility
for making selected files available to end users. In most operating system environments,
the system management task of installing new software is typically performed by a small
set of authorized people. Often the same task needs to be performed on many different file
systems. This can be tedious and error prone, even when the systems to be updated are not
geographically distant. The Siphon export mechanism makes it possible for a non-privileged
user to install, in a single action, new software quickly and reliably over a large network.
Because the Siphon itself is reliable in the face of network failures, the export process is as
well.

When a user ships a package, he indicates in theshippackagecommand which files should
be exported, and, for each such file, the name of the directory to export it to. An export
directory is typically a well known location suitable for inclusion on a search path. For
example, an export directory containing executables could be included on a user’s command
shell search path. A compiler might search an ordered set of export directories in order to
locate an include file.

In practice, a symbolic link is written in the export directory toeach exported file, thereby
making it visible to end users. The Siphon then carries sufficient information to recreate each
export link at each replica. Thus, when a user at a site ships a package which exports an
executable, all users at all sites will soon see the new version of the executable. Beware of
errors!

This export mechanism is not mandatory: some packages don’t have exported files. One
could envision a siphon system without any exported files at all. But for our software devel-
opment environment, we found this automatic installation feature invaluable. Newly released

May 91 Digital PRL

The Siphon: Managing Distant Replicated Repositories 7

software interfaces and libraries can and do become available for sharing instantaneously. No
system administrator action is required. Moreover, the change is propagated around the world
in a reliable fashion. Of course, this requires a certain trust in the user community, since
a random user, 10,000 miles away, can change your computing environment! Although we
haven’t found it necessary, it would be simple to modify the Siphon system to restrict updates
to the repository with access control lists.

6 Selective Sharing

Presently, the package data base is huge. Since not all sites are interested in all packages, the
Siphon allows selective sharing of packages, thus making it possible to distribute different sets
of software to different sites. This selective sharing is provided at the level of groups of related
packages, calledsub-repositories. Sub-repositories are organized in a tree structure, which
reflects the file system structure used to store them: to each sub-repository there corresponds a
file system directory, which in turn contains the related packages directories. The relationship
between packages in a sub-repository can be of any kind (packages written in the same language,
targeted for the same system, or related to a given domain: graphics, mathematics, etc). For
example, we could have sub-repositories/proj/graphicsand/proj/maths(by convention,/proj
is the name of the global repository). If we also wish to distinguish between vax and mips
(DECstation) architectures, we could have/proj/graphics/vax, /proj/graphics/mips, etc.

Each sub-repository can be shared by all replicas, or by a subset, or by only one replica.
This multiple repository scheme also applies to sub-replicas. Thus, file server disk sizes can
be tuned according to their real use.

In order to minimize network traffic, the siphon server implementation sends a package
update only to sites sharing the package sub-repository. For this purpose, each siphon server
periodically interrogates the other sites in order to know which sub-repositories they share.

Selective sharing is not provided at the level of individual packages. There are several
reasons for this. First, we want system administrators to determine the sub-repository structure
and sharing, and let users choose sub-repositories for their packages. For users, choosing a sub-
repository for a package,i.e. finding a group of related packages, should be straightforward,
while finding which sites and which sub-replicas may be interested by a package can be
tedious. Second, site interests can change over time, new sites can be added, and we don’t
want to place on users the administrative burden of changing the sharing parameters of their
packages. Third, related packages are sometimes strongly dependent. For example, if an
application package depends upon a library in another package, it makes no sense to share
the first package without sharing the second. This kind of dependencies can be reflected with
sub-repositories, but not with individual package sharing.

Because of these “hidden” dependencies, defining a sub-repository structure is not at all
obvious, especially when starting with a flat packages structure, as in our case. It is easier if
the sub-repository structure is defined from the beginning.

Research Report No. 7 May 91

8 Francis J. Prusker and Edward P. Wobber

7 Routing Updates

Logically, all sites are fully connected: each site can send data to or receive data from any
other site. In practice, the Siphon uses direct connections only for lock operations, since lock
operation data is small and always targeted to one site only. For update data, this is not the
case: if we choose to send updates directly from the site that issues a ship to all other sites, we
could put an unnecessary load on the network. Suppose for example that sites A, B and C are
connected linearly: A - B - C and that an update has to be sent from A. If we send the update
directly to B and C, data will be uselessly copied twice on the A-B path, thereby slowing down
the transfer. Instead, the Siphon sends the update to B and asks B to forward it to C.

In order to do this, anupdate propagation routeis computed for each update. This route
is sent along with the update data. After receiving the update, the receiving site forwards it
according to this route. This route is computed from a weighted graph describing the physical
network, where nodes are sites and edges are physical communication lines, the weight of
each edge being inversely proportional to the bandwidth of the corresponding line. From this
graph, the Siphon computes the minimal cost path for each remote site, and merges these paths
to form the update route. This ensures that each communication line is used only once for the
same data.

In the current implementation, a site cannot forward a package if it doesn’t share it. Thus,
the update route for a package must avoid all uninterested sites. It is obtained by using a graph
derived from the complete graph above.

Routing of updates supposes knowledge about the network topology. This is easy when
using a private network of dedicated lines, but more difficult, sometimes impossible, when
using a general purpose network. In the latter case, we can of course assume that all sites are
physically connected and use a fully connected graph of equally weighted edges. But it is
worth trying to reflect at least part of the network topology in the graph to avoid unnecessary
data transfers.

Note that routes are fixed and cannot change according to the network load or in case of
network partitions. The latter case is handled differently. As stated before, the siphon server
at each site periodically compares the local stamp of each package with those at other sites. If
the package is out-of-date, the siphon server asks, after a certain delay, the nearest up-to-date
site to send an update. The delay is there to avoid unnecessary resend requests, since the
normal update propagation mechanism can take some time.

8 Implementation - Installation - Management

The Siphon system has been in operational use since January of 1989. It is implemented in
Modula 2+ [4] and runs under the SRC Topaz [3] environment and several UNIX1 variants.
All communications primitives are implemented as remote procedure calls [1] and have been

1UNIX is a trademark of AT&T Bell Laboratories

May 91 Digital PRL

The Siphon: Managing Distant Replicated Repositories 9

demonstrated to work using either IP or DECnet transport protocols. Currently, our slowest
network paths run at 56 Kbit/sec, with one transoceanic satellite hop.

In practice, the Siphon works pretty much automatically. There have been very few
operational problems although network partitions, in the form of broken overseas telecommu-
nications lines, have caused us considerable inconvenience. In our particular system, the most
important requirement for communications has turned out to be availability, not latency or
bandwidth. While 56 Kbit/sec seems slow in the context of modern networks, a third of this
bandwidth would have been adequate for our purposes.

The Siphon is managed through various kinds of administrative tools. Some tools give
statistics such as update frequency, line use, line throughput, effective bandwidth, etc. Some
tools are provided to deal with problems, for example, forcing immediate update of a replica or
sub-replica, changing an entry in the lock database. As stated above, we made very little use
of these emergency procedures. Other tools are intended for normal operations, for example,
creating/deleting a sub-repository, changing the sharing of a sub-repository, creating/deleting
replicas and sub-replicas.

All servers involved (siphon server, lock server, sub-replica servers) get their configuration
information from a unique file, which contains the name of local and remote servers, and the
graph describing the network topology. Creating or deleting a sub-replica is straightforward:
simply change the configuration file, without stopping the other sub-replicas or the siphon
server. Adding a replica is more cumbersome: recently, a third replica has been added to our
system. It took about two days. It was encouraging to find that this required no changes to the
existing implementation.

Installing a siphon system between a new set of sites is a relatively painless process, although
it can be slow if large amounts of data need to be moved. (To be frank, we haven’t worked
much in this area and there is room for improvement.) However, taking advantage of the
Siphon’s full functionality is more difficult since it affects many aspects of system organization
(directory structure, inter-machine replication, disk-space allocation). This is especially true
for the export file facility, which also impacts the programming methodology. However, in our
experience, the benefits in terms of system administration and added user functionality was
well worth the effort.

9 Future Work

It was initially our hope to treat source files and derived files differently in the shared
SRC-PRL repository. Derived files, which are often large, might well be regenerated rather
than copied in bulk. This proves difficult as long as there is no history of previous package
content. In our current system, modifications replace, rather than augment, the existing state.

Suppose, for example, that a package contains a critical system library and that a pending
update to this library contains an interface change. At the point the change is made, dependent
code requires at least recompilation and possibly source modification, so let’s suppose further

Research Report No. 7 May 91

10 Francis J. Prusker and Edward P. Wobber

that the software contained in all such packages can be quickly updated as well. Even if this
were practical, it would pose an additional problem in that update propagation must now be
subject to complex ordering constraints.

A Siphon-like system integrated with a conventional source control apparatus (e.g.RCS [6])
might provide version history, but would lack any coherent history about how packages
interact. Although rebuilding of derived files might be possible with the knowledge of which
versions of each package combine to form a complete system, it’s hard to see how this could
be made automatic.

A better solution would be to integrate the Siphon with a software development environment
that not only implements a revision history for each package but also maintains precise
information about the structure and dependencies inherent in all derived files. Such a system,
is currently being developed at SRC. This system will support repository replicas in much the
same way as does the existing Siphon. Since package versions will be immutable, even fewer
constraints exist on the structure and distribution of the lock database. The resulting system
should provide the power to fork development paths easily, and to rebuild arbitrary derived
files from scratch, at any participating replica.

10 Conclusions

We believe that the kind of loose consistency provided by the Siphon works well for
managing multi-site software development. Since modifications to single components are
often controlled by individuals or by small, co-resident groups, the percentage of lock
operations which are local to the managing replica is quite high. Nevertheless, in those cases
where off-site modification are required, the functionality is available so long as no network
partition exists. Moreover, the greatest benefit of the system comes in the form of low latency
read access at distant replicas. At these replicas, as long as a strong consistency guarantee
is not required, repository reads can perform at file system speed. Furthermore, new content
appears in an automatic and timely fashion and network partitions don’t constrain visibility of
previously propagated updates.

Our experience with the Siphon has been a positive one. It has enabled SRC and PRL to
achieve a much higher degree of synergy than would have been possible with conventional
tools. Researchers can collaborate on software artifacts with relative ease, and innovations
at either lab appear promptly at the other. The image of a single, shared repository has been
achieved.

May 91 Digital PRL

The Siphon: Managing Distant Replicated Repositories 11

References

1. Birrell, A.D. and B.J. Nelson. Implementing Remote Procedure Calls.ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984)

2. Birrell, A.D. et al. A Simple and Efficient Implementation for Small Databases.Proceedings
of the Eleventh Symposium on Operating System Principles, ACM, New York, (Nov. 1987)

3. McJones, P.R. and G.F. Swart. Evolving the UNIX System Interface to Support Multi-
threaded Programs. Research Report 21. Digital Systems Research Center. (Sept. 1987)

4. Rovner, P. Extending Modula-2 to Build Large, Integrated Systems.IEEE Software 3, 6
(Nov. 1986)

5. Schroeder, M.D. et al. Experience with Grapevine.ACM Trans. Comput. Syst. 2, 1 (Feb.
1984)

6. Tichy, W.F. Design, Implementation, and Evaluation of a Revision Control System.
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo,
(Sept. 1982)

Research Report No. 7 May 91

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line ishelp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server .

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-Claude
Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision Arith-
metic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May, 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 91.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May 1991.

Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
May 1991.

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming. Gert
Smolka. May 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. May 1991.

