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Abstract

Order-sorted feature (OSF) terms provide an adequate representation for objects as flexible
records. They are sorted, attributed, possibly nested, structures, ordered thanks to a subsort
ordering. Sort definitions offer the functionality of classes imposing structural constraints
on objects. These constraints involve variable sorting and equations among feature paths,
including self-reference. Formally, sort definitions may be seen as axioms forming an OSF
theory. OSF theory unification is the process of normalizing an OSF term, using sort-unfolding
to enforce structural constraints imposed on sorts by their definitions. It allows objects to
inherit, and thus abide by, constraints from their classes. A formal system is thus obtained
that logically models record objects with recursive class definitions accommodating multiple
inheritance. We show that OSF theory unification is undecidable in general. However, we
propose a set of confluent normalization rules which is complete for detecting inconsistency of
an object with respect to an OSF theory. These rules translate into an efficient algorithm using
structure-sharing and lazy constraint-checking. Furthermore, a subset consisting of all rules
but one is confluent and terminating. This yields a practical complete normalization strategy,
as well as an effective compilation scheme.

Résumé

Les termes `a traits età sortes ordonn´ees (TSO-termes) fournissent une repr´esentation ad´equate
pour des objets enregistrements flexibles. Ce sont des structures typ´ees, dot´ees d’attributs, qui
peuventêtre imbriquées, et qui sont ordonn´ees grâceà un ordre de sous-sortes. Des d´efinitions
de sortes correspondent `a des d´eclarations de classes imposant des contraintes sur la structure
des objets. Ces contraintes consistent en sortes de variables et des ´equations entre les chemins
d’accés de traits, y compris l’autor´eférence. Formellement, les d´efinitions de sortes peuvent
être vues comme des axiomes formant une TSO-th´eorie. L’unification modulo une TSO-th´eorie
consiste en un processus de normalisation d’un TSO-terme, utilisant le d´epliage de sortes pour
appliquer les contraintes structurelles impos´ees sur les sortes par leurs d´efinitions. Ceci permet
aux objets d’h´eriter les contraintes de leurs classes, et donc de les satisfaire. Nous obtenons
ainsi un syst`eme formel qui mod´elise logiquement des objets enregistrements, avec d´efinitions
de classes r´ecursives, et qui accommode l’h´eritage multiple. Nous montrons que l’unification
modulo une TSO-th´eorie est ind´ecidable en g´enéral. Cependant, nous proposons un ensemble
de règles de normalisation confluent qui est complet pour la d´etection d’objets incoh´erents
par rapport `a une TSO-th´eorie. Ces r`egles expriment un algorithme efficace qui utilise le
partage de structure et la v´erification paresseuse des contraintes. De plus, un sous-ensemble,
contenant toutes les r`egles sauf une, est confluent et Noetherien. Ceci fournit une strat´egie de
normalisation compl`ete et pratique, et un sch´ema effectif de compilation.
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Order-Sorted Feature Theory Unification 1

I think it fair to say that the preoccupation with language
among anthropologists includes a concern for expressivity
and style as well as lexicology and syntax... Grammatical
slips, or deviations from the idioms, can be detected by
everyone, even theilliterate—unless the “errors” belong
to a popular dialect, in which case they are not erroneous—
because some things are generally considered to be wrong
and some things cannot be said.

ROBERTDARNTON, The Great Cat Massacre

1 Synopsis

Before we develop the technical details of our method, it is important that we give the
reader an informal motivation, assuming no background. We also relate our work to others,
and outline the organization of the remainder of the paper.

1.1 Motivation of problem

In [3],  -terms were proposed as flexible record structures for logic programming. However,
 -terms are of wider interest. Since they are a generalization of first-order terms, and since
the latter are the pervasive data structures used by symbolic programming languages, whether
based on predicate or equational logic, or pattern-directed�-calculus, the more flexible -terms
offer an interesting alternative.

The easiest way to describe a -term is with an example. Here is a -term that may be used
to denote a generic person object:

P : person(name) id(first) string;
last) S : string);

age) 30;
spouse) person(name) id(last) S);

spouse) P)).

In words: a 30 year-old person who has a name in which the first and last parts are strings,
and whose spouse is a person sharing his or her last name, that latter person’s spouse being the
first person in question.

This expression looks like a record structure. Like a typical record, it has field names;i.e.,
the symbols on the left of). We call thesefeaturesymbols. In contrast with conventional
records, however, -terms can carry more information. Namely, the fields are attached tosort
symbols (e.g., person, id, string, 30, etc.). These sorts may indifferently denote individual
values (e.g., 30) or sets of values (e.g., person, string). In fact, values are assimilated
to singleton-denoting sorts. Sorts are partially ordered so as to reflect set inclusion;e.g.,
employee< personmeans that all employees are persons. Finally, sharing of structure can be
expressed withvariables(e.g., P andS). This sharing may be circular (e.g., P).

Clearly, a first-order term can be viewed as a particular -term. Namely, considering
only singleton sorts, a sort ordering reduced to syntactic equality, and numbers as features,
a term f(t1; . . .; tn) is the -term f (1) t1; . . .; n) tn). In fact,  -terms enjoy the same

Research Report No. 32 May 1993



2 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

powerful operations as first-order terms:matching(as, say, in term-rewriting systems, or ML
function definitions) andunification(as, say, in Prolog, or equational narrowing). This makes
them quite a more flexible data structure for symbolic programming since both operations
take into account the partial-order on sorts and extensibility with features. Therefore, they
can supplement first-order terms in a functional programming language or logic programming
language [3, 4]. In this manner, a form of single inheritance (matching) and multiple inheritance
(unification) is obtained cleanly and efficiently. Pattern-directed definition of functions or
predicates will indeed be inherited along the partial order of sorts (thesort hierarchy) thanks
to matching or unification.

In object-oriented programming, typically, objects do not enjoy the expressivity offered
by  -terms. On the other hand, they are made according to blueprints specified asclass
definitions. A class acts as a template, restricting the aspect of the objects that are its instances.
Our intention is to conceive such a convenience for -terms and, in so doing, expand the
capability of the constraining effect of classes on objects. We propose to achieve this using
sort definitions. A sort definition associates a -term structure to a sort. Intuitively, one
may then see a sort as anabbreviationof a more complex structure. Hence, a sort definition
specifies a template that an object of this sort must abide by, whenever it uses any part of the
structure appearing in the -term defining the sort.

For example, consider the -term:1

person(name) >(last) string);
spouse) >(spouse) >;

name) >(last) “smith” ))):

Without sort definitions, there is no reason to expect that this structure should be incomplete, or
inconsistent, as intended. Let us now define the sortpersonas an abbreviation of the structure:

P : person(name) id(first) string;
last) S : string);

spouse) person(name) id(last) S);
spouse) P)).

This definition of the sortpersonexpresses the expectation whereby, whenever apersonobject
has featuresnameandspouse, these should lead to objects of sortid andperson, respectively.
Moreover, if the featuresfirst andlast are present in the object indicated byname, then they
should be of sortstring. Also, if a personobject had sufficient structure as to involve feature
pathsname:last andspouse:name:last, then these two paths should lead to the same object.
And so on.

For example, with this sort definition, thepersonobject with last name“smith” above
should be made to comply with the definition template by beingnormalizedinto the term:2

X : person(name) id(last) N : “smith” );
spouse) person(spouse) X;

name) id(last) N))).

1The sort symbol> is the top of the partial order, the sort of all objects.
2In this example, it is assumed, of course, that“smith” <string.
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Order-Sorted Feature Theory Unification 3

Note that in our approach, we do not wish to enforce the explicit presence of the complete
generic structure of a sort’s definition in every object of that sort. Rather, we want to
enforce the minimal restrictions that will guarantee that every object of a given sort denotes
the largest possible set consistent with the sort’s definition. For instance, we could use
person(hobby) moviegoing) without worrying about violating the template forperson
since the featurehobbyis not constrained by the definition ofperson.

This lazy inheritance of structural constraints from the class template into an object’s
structure is invaluable for efficiency reasons. Indeed, if all the (possibly voluminous) template
structure of a sort were to be systematically expanded into an object of this sort that uses only
a tiny portion of it, space and time would be wasted. More importantly, lazy inheritance is a
way to ensure termination of consistency checking. For example, the sort definition ofperson
above is recursive, as it involves the sortpersonin its body. Completely expanding these sorts
into their templates would go on for ever.

An incidental benefit of sort-unfolding in the context of a sort semilattice is what we call
proof memoing. Namely, once the definition of a sort for a variableX has been unfolded, and
the attached constraints proven forX, this proof is automatically and efficiently recorded by the
expanded sort. The accumulation of proofs corresponds exactly to the greatest lower bound
operation. Besides the evident advantage of not having to repeat computations, this memoing
phenomenon accommodates expressions which otherwise would loop. Let us take a small
example to illustrate this point. Lists can be specified by declaringnil andconsto be subsorts of
the sortlist and by defining for the sortconsthe template -termcons(head) >; tail ) list).
Now, consider the expressionX : [1jX], the circular list containing the one element 1—i.e.,
desugared asX : cons(head) 1; tail ) X). Verifying thatX is a list, since it is thetail of a
cons, terminates immediately on the grounds thatX has already been memoized to be acons,
andcons< list. In contrast, the semantically equivalent Prolog program with two clauses:
list([]) andlist([HjT]) :– list(T) would make the goallist(X : [1jX]) loop.

1.2 Overview of our approach

In this paper we present a formal and practical solution for the problem of checking the
consistency of a -term object modulo a sort hierarchy of structural class templates. We
formalize the problem in first-order logic: objects as OSF constraint formulae, classes as
axioms defining an OSF theory, class inheritance as testing the satisfiability of an OSF
constraint in a model of the OSF theory. We call this problem OSF theory unification.

We give conditions for the existence of non-trivial models for OSF theories, and prove the
undecidability of the OSF theory unification problem. We also show thatfailureof OSF theory
unification (i.e., non-satisfiability of an OSF term modulo an OSF theory) is semi-decidable.
We propose a system of ten normalization rules that is complete for detecting incompatibility
of an object with respect to an OSF theory;i.e., checking non-satisfiability of a constraint
in a model of the axioms. This system specifies the third Turing-complete calculus used in
LIFE [2], besides the logical and the functional one.

As a calculus, the ten-rule system enjoys an interesting property of consisting of two
complementary rule subsets: a system of nine confluent and terminatingweak rules, and
one additionalstrongrule, whose addition to the other rules preserves confluence, but loses
termination. There are two great consequences of this property: (1) it yields a complete
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4 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

normalization strategy consisting of repeatedly normalizing a term first with the terminating
rules, and then apply, if at all necessary, the tenth rule; and (2) it provides a compilation scheme
for an OSF theory since all sort definitions of the theory can be normalized with respect to the
theory itself using the weak rules.

1.3 Relation to other work

Our system is unique in that it comes with a semantic foundation and constitutes the first
proven correct and complete, practical algorithm for the problem of unfolding sort definitions
in order-sorted feature structures.

The problem was first already addressed in [1]. A significant difference is that the method
was restricted to single inheritance and was non-lazy. Operationally, it amounted to a
breadth-first expansion of all sorts and was not very practical.

Concerning undecidability of OSF theory unification, a related, but different result was
proven by Gert Smolka in [13]. The undecidability of our problem uses explicitly the existence
of a model satisfying the sort definitions while this is overlooked in [13] (cf., also, Footnote 6).

As for unfolding sort definitions, we know of two other works, both relevant to computational
linguistics: that of Bob Carpenter and that of Martin Emele and R´emi Zajac. Bob Carpenter [6]
proposed a simple type-checking of a system of sort definitions for feature terms that are
essentially a variation of -terms. However, besides being purely operational, this system
is limited to the simple case where sort definitions specify sort constraints on features
alone, without feature compositions and, more importantly, without shared variables imposing
coreference constraints on feature paths. On the other hand, his formalism handles partial
features, while what we present works with total features. As it turns out, our system can be
made to handle partial features with the addition of one simple decidable rule whose effect is
to narrow the sort of a variable to intersect a feature’s domain when that feature is applied to it.
Therefore, the system described in [6] is a special case of what we present here. In the recent
book [7], Chapter 15 deals with “recursive type constraint systems” extending that of [1] to
be of the kind we study here. He gives a complete resolution method similar to Horn clause
resolution. That method differs from ours in that it is not lazy.

The work of Emele and Zajac on typed unification grammars [10] is actually quite close to
what we report here. Their work is an elaboration of [1], with the assumption that features
are partial. Their main contribution has been the study of clever algorithms to carry out type
unfolding efficiently. In [9], Martin Emele describes an implementation that shares many
insights with the method that we describe here. In particular, he uses structure-sharing to avoid
much copying overhead, and whenever copying must be done, it is done such that no redundant
copying is performed. However, his technique differs from ours, in that when copying is
done, all the defined features of a sort are brought into the formula where it appears. Most
importantly, Emele’s algorithm is not explained in formal terms, let alone proven correct. No
semantics is provided, and no clear delineation is made, as our rules do, between a maximal
decidable subset of cases and the complete normalization.

The functional programming community has been using variations on, and generalizations
of, an extensible record formalism pioneered by Luca Cardelli [5] and used to endow
polymorphically typed languages of the ML family with a form of multiple inheritance [14, 12].
Records are viewed as partial functions from field label symbols to values. Record types are
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Order-Sorted Feature Theory Unification 5

defined similarly as partial functions from labels to types. What corresponds to unification
in our formalism is rendered there as record concatenation. In contrast to our (possibly
circular) use of logical variables and unification, coreference constraints are not supported,
and self-reference is handled using a special fix-point functional abstraction. Subtyping in the
Cardelli style of records is checked using static inference rules that are essentially performing
the kind of verification done by Carpenter’s system [6], but made more complicated by the
presence of polymorphic function types. It is hence very hard to compare that trend of work
and ours because of these differences in the nature, restriction, and use of records.

1.4 Organization of paper

Section 2 presents our formalization of OSF theories and recounts essential facts about
them. Section 3, the crux of the paper, presents the OSF normalization system and its formal
properties. We have adjoined an appendix: Section A gives a detailed example of OSF
theory normalization, and Section B reintroduces the necessary OSF formalism concepts and
terminology that we need.

2 OSF Theories

2.1 OSF Formalism

Let us first recall very briefly a few OSF formalism notions and notation.3 We shall use a
set of sort symbolsS, equipped with partial order� and meet operation̂, together with a set
F of feature symbols. These two sets define an OSF signature and generate a set of OSF terms
with the following context-free rule:

t ::= X : s(`1 ) t; . . .; `n ) t)

whereX is a variable from a setV , s is a sort inS, and`i 2 F ; n � 0. The variableX is called
the term’s root variable, referred to asRoot(t) for such a termt. The sorts is called the term’s
root sort, or its principal sort. We shall refer to the sort of a variableV occurring in a -termt
asSortt(V), or simplySort(V) if the term is clear from the context.

An OSF constraint is one of (1)X : s, (2) X
:
= X0, or (3) X:`

:
= X0, whereX andX0 are

variables inV , s is a sort inS, and` is a feature inF . An OSF clause is a set of OSF constraints
(interpreted as their conjunction).

Any OSF termt is equivalently expressible as an OSF clause, denoted�(t), called its
dissolved form. We shall often confuse an OSF termt for its dissolved form, writingt where
we mean�(t). We will use a shorthand notation to express that a variableX is constrained by
an OSF termt. Namely, we denote byCt[X] the formulaX

:
= Root(t) & �(t) and byC9t [X]

the formula9Var(t) Ct[X].
Syntactically consistent OSF terms are said to be in normal form, and called -terms. They

comprise a set called	 . It is natural to extend� and^ from the sort signature to the set	 ,
where they realize matching and unification, respectively. Unification of OSF terms is done
thanks to a normalization procedure. The rules to normalize OSF terms are given in Figure 1.

3The reader who is not familiar with the OSF formalism as defined in [4] will find sufficient details in appendix
Section B. Please refer there if, although we tried to avoid it, a concept is used without having been previously
defined.

Research Report No. 32 May 1993



6 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

Sort Intersection:

(1)
� & X : s & X : s0

� & X : s^ s0

Inconsistent Sort:

(2)
� & X : ?

X : ?

Variable Elimination:

(3)
� & X

:
= X0

�[X0=X] & X
:
= X0

if X 6= X0 andX 2 Var(�)

Feature Decomposition:

(4)
� & X:`

:
= X0 & X:`

:
= X00

� & X:`
:
= X0 & X0

:
= X00

Figure 1: OSF Clause Normalization Rules

May 1993 Digital PRL



Order-Sorted Feature Theory Unification 7

2.2 Sort Definitions

As explained in the previous section, we may view a class template as a -term. Hence, to
define a sortsas a class is to associate to this sort a -term whose root sort iss. Informally, an
OSF theory is a set of sort definitions, each of which is a -term whose root sort is the name
of the class defined by that sort.

Formally, anOSF theoryis a function� : S 7! 	 such thatSort(Root(�(s))) = s for all
s 2 S and�(>) = >, �(?) = ?. The OSF theory� = 1IS which is the identity onS is
called theempty OSF theory.

An OSF theory� is order-consistentif it is monotonic;i.e., if 8s; s0 2 S; s� s0 ) �(s) �
�(s0). Recall that� is defined on -terms (see Definition 3 on Page 22) extending the
ordering on sorts.

We shall always assume the OSF theory� to be order-consistent. By setting�(s) =V
s�s0 �(s

0) if different from?, it is easily possible to normalize a non order-consistent theory
into an equivalent order-consistent one, if it exists.

Clearly, an OSF algebra is a logical first-order structureA interpreting sort symbols as
unary predicates,i.e., sets, and feature symbols as unary functions, and satisfying the axioms
specified by the sort hierarchy. Namely, for all sortss; s0; s00 such thats^s0 = s00, the following
axiom is valid inA:

Axiom[ŝ s0=s00 ] : 8X (X : s & X : s0 ! X : s00):

The name OSF theory is justified from the fact that the function� specifies a system of
axioms;i.e., for eachs2 S, the axiom:

Axiom[�(s)] : 8X
�
X : s $ C9�(s)(X)

�

expressing that an element in the sorts necessarily satisfies the constraints attached tos (the
constraints coming from the dissolved -term assigned tosby�). Note that�(s) contains the
constraintRoot(�(s)) : s. Thus, the equivalence($) in Axiom[�(s)] is, in fact, an implication
(!).

The class of all�-OSF algebras is the class of all OSF algebras such thatsA =
[[�(s)]]A . Thus,� specifies a first-order theory, namely through the system of all the axioms
Axiom[ŝ s0=s00] andAxiom[�(s)]. The notion of�-satisfiability refers to satisfiability in a�-OSF
algebra;i.e., in a logical first-order structure where the axioms above hold.

We will see next that such a structure actually exists (under the overall assumption that� is
order-consistent). We first define the OSF algebra	0 of possibly infinite OSF graphs.

An OSF graphg = (V;E) consists of nodes denoted by mutually distinct variables inV ,
i.e., V � V , and arcs between them,i.e., E � V � V . It has a distinguished node, its root,
from which all its other nodes are reachable. All nodes and arcs of an OSF graph are labeled.
Nodes are labeled with non-bottom sorts and arcs are labeled with feature symbols such that
the same feature may not be attributed to two distinct arcs coming from the same node.

The set of all OSF graphs forms an OSF algebra:
� the OSF graph denotation of a sorts is the set of all graphs whose root sort is equal to or

less thans;
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8 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

� applying the featurè to a graphg rooted inX is the maximal subgraph ofg rooted inX0

if g has an arc labeled̀between nodesX andX0; otherwise, it is a one-node arcless graph
whose node is a new distinct variableX`;g labeled with>.
We next define the (possibly infinite) OSF clausesUnfold(�) obtained from an OSF

clause� by unfolding all sort definitions. Formally,Unfold(�) =
S

n�0 Unfoldn(�), where
Unfold0(�) = � and:

Unfoldn+1(�) = Unfoldn(�) [ fC�(s)[X] j X : s2 Unfoldn(�)g:

We assume that the variables in the OSF constraints added toUnfoldn(�), Var(�(s)) are new
for each unfolded sort constraintX : s.

We define two formulae to be�-equivalentif they are equivalent modulo the axioms
specified by� and the sort hierarchy and modulo existential quantification of variables in only
either of the formulae. Thus,� andUnfold1(�), and evenUnfold(�), are�-equivalent. The
next lemma compares satisfiability of� andUnfold(�) in different structures.

Lemma 1 An OSF clause� is�-satisfiable if and only if Unfold(�) is satisfiable.

Proof: Every�-OSF algebra where� is satisfiable is in particular an OSF algebra whereUnfold(�)
is satisfiable. Vice versa, the domain of an OSF algebra whereUnfold(�) is satisfiable can be
“trimmed down” to the domain of a�-OSF algebra (by including only elements which are values of
the valuations which makeUnfold(�) hold true) such thatAxiom[�(s)] holds for every sorts which
occurs inUnfold(�), and� is satisfiable. Since� is order-consistent, the interpretation of the sorts
can be chosen as the restriction of the old interpretation to the new domain.

Definition 1 (Solved OSF Clauses) A (possibly infinite) OSF clause� is called solvedif,
for every variable X,� contains:
� at most one sort constraint of the form X: s, with? < s; and,
� at most one feature constraint of the form X:`

:
= X0 for each`;

� if X
:
= X0 2 �, then X does not appear in any other OSF constraint in�.

Lemma 2 A (possibly infinite) OSF clause� in solved form is satisfiable in	0, the OSF
algebra of possibly infinite OSF graphs.

Proof: Let X be a variable in� whereX is not on the left side of the symbol:= anywhere in�.
We define the valuation� on X as the graph(V;E) with the root nodeX, whereV =

S
n�0 Vn,

E =
S

n�0 En, V0 = fXg, E0 = ;, Vn+1 = Vn [ fZ j Y:`
:
= Z 2 � for someY 2 Vng, En+1 =

En [ f(Y;Z) j Y:`
:
= Z 2 � for someY 2 Vng. A nodeY is labeled bys if Y : s2 � for somes2 S,

and by> otherwise. An arc(Y;Z) is labeled bỳ if Y:`
:
= Z 2 �.

If X
:
= X0 2 �, then we set�(X) = �(X0). Clearly, every OSF constraint of� holds in	0 under the

valuation�.

Definition 2 (�-solved OSF Clauses) An OSF clause� is called�-solvedif the OSF clause
Unfold1(�), obtained by unfolding all sort definitionsonce, can be normalized into a solved
form which contains�, and no other constraints whose variables are those from�.
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Order-Sorted Feature Theory Unification 9

That is, if the solved form containsX : s, then eitherX : s2 � or X 62 Var(�). Similarly, if it
containsY

:
= X, then eitherY

:
= X 2 � or Y 62 Var(�); and if it containsX:`

:
= Y, then either

X:`
:
= Y 2 � or Y 62 Var(�).

Thus, the OSF clause� is�-solved if the OSF clause:

Unfold1(�) = � [
[

X:s2�

fC�(s)[X]g

can be transformed, by applications of Rule 4, into an OSF constraint�0 of the form
�0 = �[ �1 [�2 where�1 contains only equalities of the formY

:
= X whereX 2 Var(�) and

Y 62 Var(�) and�2 is an OSF constraint in solved form whose variables are new for�; i.e.,
Var(�) \ Var(�2) = ;.

The OSF theory� is well-formedif, for every s 2 S, the dissolved -term�(s) is in
�-solved form. From now on we are interested only in well-formed (and order-consistent)
OSF theories.

We introduce next the OSF algebra	�. The domain of	�, and the interpretation of the
features, are the ones of	0. If s2 S is a sort, then:

s	� = fg 2 D	0 j 	0; � j= Unfold(X : s); �(X) = gg:

In the special case of the empty theory,	� is the OSF graph algebra	0.
As in the case of OSF unification,i.e., of satisfiability of OSF clauses in OSF algebras,

it is sufficient to consider�-satisfiability in one particular�-OSF algebra, here	�. This
characterizes	� as canonical�-OSF algebra (meaning: any�-satisfiable OSF clause is
satisfiable in	�). It follows from the fact that one can easily construct a homomorphism from
any�-algebra into	� (and, thus,	� is weakly final(cf., [4]) in the category of all�-OSF
algebras).

Proposition 1 Given a well-formed order-consistent OSF theory�, a�-solved OSF clause
is satisfiable in	�. In particular,	� is a�-OSF algebra,i.e., a model of the axioms specified
by the sort hierarchyhS;�;^i and the OSF theory�.

Proof: Since, for each sorts2 S,�(s) is�-solved,Unfoldn(�) is�-solved, for alln. In particular,
for all n Unfoldn(�), and hence alsoUnfold(�), is�-equivalent to an OSF clause in solved form.
Thus, according to Lemma 2,Unfold(�) is satisfiable in	0, the OSF algebra of possibly infinite
OSF graphs. Say,Unfold(�) holds under the valuation�. Since all sort definitions inUnfold(�)
are unfolded, each graphg rooted in a node labeled by a sorts lies in the	�-denotation ofs; i.e.,
g 2 s	� (. . .� s	0). Thus,� is in particular a	�-valuation. That is,Unfold(�) and, hence� � �0,
are satisfiable in	� .

3 OSF Theory Unification

We next investigate the denotational and operational semantics of the inheritance mechanism
from a class template structure into an object instance. We call this mechanismOSF Theory
Unification since it is the solving of OSF clauses in the presence of an OSF theory. This
is a generalization of OSF unification, the solving of OSF clauses in the empty theory (cf.,
Figure 1).
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10 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

Formally, OSF Theory Unification is the procedure which�-solves an OSF clause�; i.e., it
transforms� into a�-equivalent OSF clause�0 which is either? or in �-solved form (and,
in this case, exhibits it).

We will show that such a procedure exists that transforms� successively until either? or a
�-solved form is obtained. If� is�-equivalent to?, then? is reachable in a finite number of
steps. Generally, however, there exists no such procedure that is always terminating. Indeed,
if such a procedure existed, then according to Proposition 1, there would be an algorithm
deciding whether an OSF constraint� is satisfiable in the�-OSF algebra	�. This, however,
is impossible as Theorem 1 will show.

Next, we will informally describe and motivate the effect of each rule. Before doing that
we need to define some additional notation. We will follow strict naming conventions for
variables in order to identify them. We shall useX’s for variables appearing in a formula being
normalized, and call theseglobal or formulavariables. We shall useY’s for variables in the
theory, and call theselocal or theoryvariables.

The theory variables appearing in a sort definition�(s) are all local to this definition
alone. Thus, without loss of generality, we shall assume distinct names for all variables
across sort definitions. More precisely,s 6= s0 ) Var(�(s)) \ Var(�(s0)) = ;. Let
Var(�) =

S
s2S Var(�(s)) denote the set of all theory variables.

We shall useZ’s for new global variables introduced into a formula being normalized.
Finally, the theory variable at the root of�(s), the definition of a sorts, will be identified as
Ys. We will denote byRoots(�) the set of all root theory variables. Local and global variables
are always assumed disjoint.

Two theory variablesY andY0 are said to bepath-compatible(notedY + Y0) if they lie on
the same occurrence path in the definitions where they occur. Formally,Y + Y0 if and only if
Occ(Y) \Occ(Y0) 6= ;.4

We will denote bỳ �(Y) the theory variableY0, if it exists, such that̀(Y) = Y0 in some
sort definition�(s).

Note thatRoots(�) is in bijection withS. In particular, the operation̂ onS can be defined
on Roots(�) asYs ^ Ys0 = Yŝ s0 . In fact, the operation̂ extends homomorphically to all
Var(�) by defining it inductively as follows:

Y1 ^ Y2 =

8><
>:

Yŝ s0 if Y1 = Ys andY2 = Ys0 ;
`�(Y01 ^ Y02) if Y1 + Y2 andYi = `�(Y0i ), for i = 1; 2;
Y? otherwise.

This operation is well-defined (1) because� is order-consistent, and (2) thanks to the fact that
path-compatible variables must lie at the end of a same feature path from their definitions’
roots and the meet (̂) is defined on root variables.

The normalization rules that perform OSF theory unification are given in Figures 2, 3, and 4
and are called OSF theory normalization rules.5 The rules in Figures 2 and 3 alone are called
the weak (OSF theory) normalization rules. As for plain OSF normalization, each rule
specifies a transformation of the pattern in the numerator into that of the denominator. While
the rules of Figure 1 transform OSF clauses, the new rules transformcontexted OSF clauses.

4See Section B for a definition ofOcc.
5A full example of sort-unfolding using these rules is detailed in appendix Section A.
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Order-Sorted Feature Theory Unification 11

Frame Allocation:

(0)
� ` X : s & �

�
S n

fXnYsg
o
` X : s & �

if XnYs0 =2 F, for anys0 2 S,
for all F 2 �

Sort Intersection:

(1)
�
S n

fXnYs0g [ F
o

` X : s & X : s0 & �

�
S n

fXnYŝ s0g [ F
o
` X : s^ s0 & �

Inconsistent Sort:

(2)
�
S n

fXnY?g [ F
o
` �

; ` ?

Variable Elimination:

(3)
� ` X

:
= X0 & �

� [X0=X] ` X
:
= X0 & �[X0=X]

if X 6= X0 andX 2 Var(� ) [ Var(�)

Feature Decomposition:

(4)
� ` X:`

:
= X0 & X:`

:
= X00 & �

� ` X:`
:
= X0 & X0

:
= X00 & �

Figure 2: Weak OSF Theory Normalization Rules—Empty Theory
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12 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

Feature Inheritance:

(5)
�
S n

fXnYg [ F
o

` X:`
:
= X0 & �

�
S n

fXnY;X0nY0g [ F
o
` X:`

:
= X0 & X0 : Sort(Y0) & �

if `�(Y) = Y0 andX0nY0 =2 F

Frame Merging:

(6)
�
S n

fXnYsg [ F; fXnYs0g [ F0
o
` �

�
S n

fXnYŝ s0g [ F [ F0
o

` �

Frame Reduction:

(7)
�
S n

fXnY;XnY0g [ F
o

` �

�
S n

fXn(Y^ Y0)g [ F
o
` �

if Y + Y0

Theory Coreference:

(8)
�
S n

fXnY;X0nYg [ F
o
` �

�
S n

fXnYg [ F
o

` X
:
= X0 & �

Figure 3: Weak OSF Theory Normalization Rules—Non-Empty Theory

Theory Feature Closure:

(9)
� ` �

� ` X:`
:
= Z & �

if XnY 2 F andXnY0 2 F0 for someF;F0 2 � ,
and both̀ �(Y), `�(Y0) exist
(Z is a new variable)

Figure 4: Strong OSF Theory Normalization Rule
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Order-Sorted Feature Theory Unification 13

A contexted clause is a formula of the form� ` � where� is an OSF clause and� , called the
context, is a set offrames. A frame is a set of pairs of variablesXnY (read “X stands forY”)
whereX 2 Var(�) andY 2 Var(�). We write simply� for ; ` �.

The rules proceed to normalize a formula from an originally empty context, creating at most
one frame per formula variable. These rules maintain frames so that there is exactly one root
theory variable per frame at any moment. The global variable in a frame that stands for the
root local variable is called the frame’sprincipal variable. Intuitively, one may think of a
context as a set of activation frames, each being a local environment for a variable occurring
in the formula�, the pairs indicating what global variables stand for what local variables.
Alternatively, one can think of a frame as the materialization of an object instance. Thus,
the rules must ensure that a global variable is eventually principal in at most one frame. In
addition, note that the rules will materialize only what is necessary to ensure that the instance
is consistent with the class definition.

Rule (0) simplyspawns a new frame for a global variable if none exists for it yet in the current
context. This is akin to creating an instance in object-oriented programming. Rules (1)–(4)
do exactly the same work as Rules (1)–(4) in Figure 1. The only difference is that they keep
track of the sort information in the context� using root theory variables. Rule (5) ensures that
whenever a feature is used in the formula it fits the constraints, if any, imposed on it by the
theory. Rule (6) recognizes that a global variable is principal in two frames and merges them.
This case arises from variable elimination and is that of two originally distinct global variables
that are later made to corefer. Rule (7) determines that the same global variable stands for two
distinct path-compatible local variables within the same frame. Therefore, the global variable
must stand for the common lower bound of these two local variables. Rule (8) enforces an
equation of paths as prescribed by the theory when it finds that two distinct global variables
stand for the same local variable in the same frame.

Rule (9) looks more complex than Rules (0)–(8). In fact, it simply completes the enforcing of
functionality of features. Functionality of a feature` means that ifX = X0 then`(X) = `(X0).
Rule (4) enforces feature functionality in the formula alone as` is applied at two occurrences
of the same variable in the formula. Rule (5) does the same for the case when one occurrence
is in the formula and the other is in the theory on the corresponding local variable. The only
case left is when it is found that, even though a global variable is not being applied a feature`

explicitly in the formula, it still may stand for two theory variables both being applied that very
feature`. We need to check whether the induced equality between the two theory variables
leads to an inconsistency. Therefore, a new global variable must be created and injected into
the formula as the result of applying` to that global variable. This is done by an application
of Rule (9). After that, Rule (5) will do the right thing, bridging the gap between the two local
variables using this new global variable. In fact, it guarantees the transitivity of congruence
of feature path equations as per the theory. It is this rule that may make the normalization
algorithm diverge on consistent formulae as there is, in general, no way to predict how deep
along a feature path an inconsistency might arise. This is indeed confirmed by the following
fact.6

6 A related, but different result can be found in [13] where well-formedness, order-consistency and theexistence
of one generic model of an OSF theory (there called a system a recursive sort equations) are not considered. In fact,
without Proposition 1, we do notknow whether there isanyOSF constraint which is satisfiable modulo a system
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14 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

Theorem 1 Given a well-formed order-consistent OSF theory�, the problem of the satisfia-
bility of an OSF constraint in the�-OSF algebra	� is generally undecidable.

Proof: We show that acompleteOSF Theory Unification algorithm is also a decision procedure for
the word problem for Thue systems of equations on strings [11]. Consider a finite alphabet� and
a finite setE � �? � �? of equations of words on�. The word problem that consists in deciding
whether two wordsw1 and w2 in �? are equal modulo the equations inE can be encoded as the
following OSF theory unification problem. Let us take for sortsS = f>; s; 0; 1;?g with 0 < s,
1 < s, and0^ 1 = ?, and for the featuresF = �. Let us define� such that�(s) is the -term
whose variables are all sorted withs and such that to each equationu = v in E corresponds one of
two occurrence paths from the root that meet in a common variable at their end.

Let us take an example to explicate this encoding. Consider the system of equationsE = fbc =
ed; ae= b; bd= deg. It is encoded as an OSF theory over the sorts ofS above and the set of features
F = fa; b; c; d; eg. The sort definitions are:

�(s) = s(b ) Y1 : s(c ) Y2 : s; d ) Y3 : s);
e) s(d ) Y2);
a) s(e) Y1);
d ) s(e) Y3)):

As for�(0) and�(1), they both inherit the exact same structure as�(s) except for the root sort since
Sort(Root(�(0))) = 0, andSort(Root(�(1))) = 1. Clearly,� is a well-formed and order-consistent
OSF theory.

Now, to decide whether an equalityw1 = w2 holds modulo the equations, it suffices to normalize the
OSF term consisting of just two non-coreferring occurrence pathsw1 andw2, and whose root sort is
sand all other sorts are> except for the tips of the two paths which are0 and1. If the normalization
algorithm is complete, then it will necessarily make the two paths corefer (and thus end with a sort
clash,i.e., normalize the dissolved -term to the equivalent OSF clause?) if and only if the equality
w1 = w2 holds. Otherwise,i.e., if and only if the equality does not hold, it will normalize the
dissolved -term to an equivalent�-solved OSF clause and, thus, exhibit its�-satisfiability.

For example, to decide whetherabc= demodulo the above equations, we need to check whether the
 -term:

s(a)>(b)>(c) 0));
d )>(e) 1))

(i.e., the OSF clause obtained by dissolving it) is not satisfiable modulo the OSF theory� given
above.

Lemma 3 If � is transformed into� ` �0 by the (strong) OSF theory normalization rules,
then� is�-equivalent to�0.

Proof: For a contexted formula� ` �, let us define the OSF clause:

[� ` �] = � [
[
fC�(s)[X] & Y1

:
= X1 & . . . & Yn

:
= Xng

of sort definitions. Thus, the result in [13] is on a test of satisfiability inall �-OSF algebras, and its proof has to
provide the construction of a particular one.
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Order-Sorted Feature Theory Unification 15

where the big union is taken over the framesfXnYs;X1nY1; . . .;XnnYng 2 � .

The variables inC�(s)[X] & Y1
:
= X1 & . . . & Yn

:
= Xn are taken new for each of these frames.

Clearly,� is�-equivalent to [� ` �].

If � ` � is transformed to� 0 ` �0 then [� ` �] is �-equivalent to [� 0 ` �0]. This can be verified
by inspection of each of the OSF theory normalization rules. For each application by one of these,
we will give corresponding�-equivalence transformations on [� ` �]. These will either consist of
addingC�(s)[X] (again, obtained by naming its variables apart), or of applications of one of the rules
of Figure 1. Since these are all equivalence transformations, [� ` �] is equivalent, and thus also
�-equivalent, to [� 0 ` �0].

Each application of Rule (0) of Figure 2 adds a framefXnYsg to the context of� ` �. The
corresponding transformation on the OSF clause [� ` �] consists of adding the OSF clauseC�(s)[X].
One hereby obtains a�-equivalent OSF clause.

Clearly, each step by application of Rule (i) of Figure 2 to� ` � corresponds to one step of
application of Rule (i) of Figure 1 to [� ` �], for i = 1; . . . ; 4. In case of Rule (1), ifs^ s0 is a strict
subsort ofs0, then, in addition,C�(ŝ s0)[X] has to be added.

An application of Rule (5) of Figure 3 to� ` � corresponds to one variable elimination step,
followed by one step of application of Rule (4) of Figure 1 (the feature constraintY:`

:
= Y0 is part of

�), followed by another variable elimination step to [� ` �].

An application of Rule (6) of Figure 3 to� ` � yielding � 0 ` �0 corresponds to two variable
elimination steps, followed by one step of application of Rule (1) of Figure 1 to [� ` �]. We add the
OSF clauseC�(ŝ s0)[X], hereby obtaining the�-equivalent OSF clause [� 0 ` �0].

An application of Rule (7) of Figure 3 corresponds to one variable elimination step, followed by one
step of application of Rule (4) of Figure 1 (the feature constraintsX0:`

:
= X andX0:`

:
= Y are part of

the derived OSF clause).

An application of Rule (8) of Figure 3 corresponds to several variable elimination steps.

Finally, an application of Rule (9) in Figure 4 adds a feature constraintX:`
:
= Z with a new variable

Z. Clearly, [� ` �] is �-equivalent to [� ` � & X:`
:
= Z].

Theorem 2 If � is transformed into the non-bottom normal form�N ` �N by the (strong) OSF
theory normalization rules, then�N is an OSF clause in�-solved form which is�-equivalent
to �.

In particular, because we assume� to be well-formed and order-consistent,� is, then,
�-satisfiable (e.g., in 	�). Of course, if� is transformed into�N = ?, then � is not
�-satisfiable.

Proof: It is easy to see that, if�N ` �N is in non-bottom normal form, then [�N ` �N] is in
solved form. Namely, otherwise one could apply an OSF clause normalization rule from Figure 1
to [�N ` �N]; this application could, in turn, be simulated by an application of an OSF theory
normalization rule from Figure 2–4. But this means exactly that�N is in�-solved form.

Theorem 3 The weak OSF theory normalization rules are terminating and confluent (modulo
a renaming of formula variables).
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16 Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein

Proof: The number of times a sort definition is unfolded (via Rule (0)) is limited by the number of
sort and of feature constraints in the OSF clause to be normalized. Let�0 is the OSF clause obtained
from� by doing all these unfoldings,i.e., by adding the OSF clausesC�(s)[X], obtained by dissolving
the corresponding -terms�(s) and naming its variables apart. Then, using the correspondence
from the proof of Theorem 2, each OSF theory weak normalization step on� can be simulated by an
OSF clause normalization step on�0. Then, Theorem 7 yields the statement.

Theorem 4 The weak OSF theory normalization rules normalize a formula in almost linear
time (in the size of the formula).

Proof: We use the simulation of OSF theory normalization by plain OSF clause normalization from
the preceding proof and the fact that OSF clause normalization is almost linear (the size of each
unfolded sort definition is assumed constant).

Theorem 5 If terminating, the (strong) OSF theory normalization rules are confluent (modulo
a renaming of formula variables).

Proof: If the (strong) OSF theory normalization is terminating, Rule (9) is applied only a finite
number of times. Each time, it adds a feature constraintX:`

:
= Z with a new variableZ. Let � be the

OSF clause of all these feature constraints. Then,� & � is transformed into the non-bottom normal
form�N ` �N by the weak OSF theory normalization rules only, and we can apply Theorem 3.

Theorem 6 (Completeness) If � is not�-satisfiable then� is reduced to? by the OSF
theory normalization rules.

Proof: Using Lemma 1, if� is not�-satisfiable, thenUnfold(�) is not satisfiable.

We use the fact (which is a consequence of the compactness theorem [8]) that, given a first-order
theoryT and a setW of open first-order formulae,T[ (9)W has a model if and only if, for every finite
subsetF of W, T [ (9)F has a model. Here,T is given by the axiomsAxiom[ŝ s0=s00 ] andAxiom[�(s)]

specifying the sort hierarchy and the OSF theory.

Thus, if a possibly infinite OSF clause is not satisfiable, then there exists a finite subset of it that is
not satisfiable. Now, if� is not�-satisfiable, then there exists an indexn such thatUnfoldn(�) is
not satisfiable. Let�0 be the minimal non-satisfiable extension of� with sort-unfoldings,i.e., with
additions of OSF clauses of the formC�(ŝ s0)[X].

According to Theorem 7, the finite OSF clause�0 is reduced to? using the OSF clause normalization
rules (1)–(4) of Figure 1. Now, every OSF clause normalization step can be simulated by an OSF
theory normalization step, under the correspondence described in the proof of Theorem 2. The only
difficulty is the application of the feature decomposition rule on two feature constraints which both
come from sort unfoldings,i.e., from added OSF clauses of the form�(�(s)). In this case, the
applicability of Rule (9) has to be shown. But if follows from the fact (Theorem 3) that the weak OSF
theory normalization are terminating. That is, after finitely many applications of Rules (0) to (8),
none of them is applicable, and, thus, Rule (9) is.

We have divided the normalization processes into two phases. The first phase, consisting
of the weak normalization rules, is guaranteed to terminate in almost linear time. If the first
phase ends with the clause still not in normal form then the second phase, one application
of the strong normalization rule, is performed. From these two phases we derive a complete
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Order-Sorted Feature Theory Unification 17

normalization strategy. Namely, the repeated application of phase one followed by phase two.
Note that if the process terminates, it terminates in phase one.

The fact that it is only Rule (9) that leads to undecidability gives us the ability to explore
what makes certain theories and queries non-terminating. For instance, a loose criterion for
a theory that guarantees that the normalization of all queries will terminate is that no two
variables have the same feature symbols. This is clear by looking at Rule (9)’s side conditions.
It is also clear that more complex, yet decidable, analysis can provide programmers using this
system with this guarantee.

Another benefit of the separation is that the terminating rules can be used to “compile” a
theory by using a partial evaluation technique. Namely, each sort definition can be normalized
with respect to the theory using the terminating rules only.

4 Conclusion

We have presented a formal system of record objects with recursive class definitions
accommodating multiple inheritance, and equational constraints among feature paths, including
self-reference. Although the problem of normalizing an object to fit class templates is
undecidable in general, we have proposed a complete and efficient set of rules to perform this
normalization whenever it may be done.

An interesting property of this OSF theory unification process is that it consists of a
terminating set of rules and an additional one which makes it complete. This property can be
used to explore the exact situations when the full set of rules will be guaranteed to terminate.

Appendix

A A Detailed Example

Let us takeS = f>; s; s1; s2; s3;?g ordered minimally such thats1 ^ s2 = s3 and define�
as:

�(s1) = Ys1 : s1(`1 ) Y1 : s)

�(s2) = Ys2 : s2(`2 ) Y2 : s)

�(s3) = Ys3 : s3(`1 ) Y3 : s(`) Y4 : s); `2 ) Y3)

�(s) = Ys : s(`) Y5 : s):

The path-compatibility relation is given byYs1 + Ys2, Y1 + Y3, Y2 + Y3, their symmetric
pairs, as well as all reflexive pairs. Therefore, the^ operation is given byYs1 ^ Ys2 = Ys3, as
well as yielding the lesser element of all comparable pairs, and givingY? otherwise.

Unifying the two -termst1 = s1(`1 ) s) and t2 = s2(`2 ) s) modulo theemptytheory
yields the -term (up to variable renaming):

t1 ^; t2 = s3(`1 ) s; `2 ) s):

However, with respect to the theory� above, it yields the -term (up to variable renaming):

t3 = t1 ^� t2 = s3(`1 ) X : s(`) s); `2 ) X)
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as illustrated by the following reduction trace.7

7In the derivation sequence that follows, the parts of a contexted formula that make up the redex of the rule to
applynextare highlighted byovershadowing.
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Order-Sorted Feature Theory Unification 19

From empty context and initial formula:

;

` X1 : s1 & X1:`1
:
= X01 & X2 : s2 & X2:`2

:
= X02 & X1

:
= X2

Frame Allocation [Rule (0)] yields:

f X1nYs1 g

` X1 : s1 & X1:`1
:
= X01 & X2 : s2 & X2:`2

:
= X02 & X1

:
= X2

Feature Inheritance [Rule (5)] yields:

fX1nYs1;X
0
1nY1g

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X2 : s2 & X2:`2

:
= X02 & X1

:
= X2

Frame Allocation [Rule (0)] yields:

fX1nYs1;X
0
1nY1g; fX01nYsg

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X2 : s2 & X2:`2

:
= X02 & X1

:
= X2

Frame Allocation [Rule (0)] yields:

fX1nYs1;X
0
1nY1g; fX01nYsg; f X2nYs2 g

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X2 : s2 & X2:`2

:
= X02 & X1

:
= X2

Feature Inheritance [Rule (5)] yields:

fX1nYs1;X
0
1nY1g; fX01nYsg; fX2nYs2;X

0
2nY2g

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X2 : s2 & X2:`2

:
= X02 & X02 : s

& X1
:
= X2

Frame Allocation [Rule (0)] yields:

fX1nYs1;X
0
1nY1g; fX01nYsg; fX2nYs2;X

0
2nY2g; fX02nYsg

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X2 : s2 & X2:`2

:
= X02 & X02 : s

& X1
:
= X2

Variable Elimination [Rule (3)] yields:

f X1nYs1 ;X
0
1nY1g; fX01nYsg; fX1nYs2;X

0
2nY2g; fX02nYsg

` X1 : s1 & X1:`1
:
= X01 & X01 : s & X1 : s2 & X1:`2

:
= X02 & X02 : s

& X1
:
= X2

Sort Intersection [Rule (1)] yields:

fX1nYs3;X
0
1nY1g ; fX01nYsg; fX1nYs2;X

0
2nY2g ; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Frame Merging [Rule (6)] yields:
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f X1nYs3 ;X
0
1nY1;X02nY2g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Feature Inheritance [Rule (5)] yields:

fX1nYs3;X
0
1nY3;X01nY1;X02nY2g; f X01nYs g; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X01 : s & X1:`2

:
= X02 & X02 : s

& X1
:
= X2

Sort Intersection [Rule (1)] yields:

fX1nYs3; X01nY3 ; X01nY1 ;X02nY2g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Frame Reduction [Rule (7)] yields:

f X1nYs3 ;X
0
1nY3;X02nY2g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Feature Inheritance [Rule (5)] yields:

fX1nYs3;X
0
1nY3;X02nY3;X02nY2g; fX01nYsg; f X02nYs g

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X02 : s

& X1
:
= X2

Sort Intersection [Rule (1)] yields:

fX1nYs3;X
0
1nY3; X02nY3 ; X02nY2 g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Frame Reduction [Rule (7)] yields:

fX1nYs3; X01nY3 ; X02nY3 g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

Theory Coreference [Rule (8)] yields:

fX1nYs3;X
0
1nY3g; fX01nYsg; fX02nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X02 & X02 : s & X1

:
= X2

& X01
:
= X02

Variable Elimination [Rule (3)] yields:

fX1nYs3;X
0
1nY3g; f X01nYs g; fX01nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01 : s & X1

:
= X2

& X01
:
= X02

Sort Intersection [Rule (1)] yields:
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fX1nYs3;X
0
1nY3g; fX01nYsg ; fX01nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X1

:
= X2 & X01

:
= X02

Frame Merging [Rule (6)] yields:

fX1nYs3; X01nY3 g; f X01nYs g

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X1

:
= X2 & X01

:
= X02

Theory Feature Closure [Rule (9)] yields:

fX1nYs3; X01nY3 g; fX01nYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01:`

:
= Z & X1

:
= X2

& X01
:
= X02

Feature Inheritance [Rule (5)] yields:

fX1nYs3;X
0
1nY3;ZnY4g; f X01nYs g

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01:`

:
= Z & Z : s

& X1
:
= X2 & X01

:
= X02

Feature Inheritance [Rule (5)] yields:

fX1nYs3;X
0
1nY3;ZnY4g; fX01nYs;ZnY5g

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01:`

:
= Z & Z : s

& Z : s & X1
:
= X2 & X01

:
= X02

Frame Allocation [Rule (0)] yields:

fX1nYs3;X
0
1nY3;ZnY4g; fX01nYs;ZnY5g; f ZnYs g

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01:`

:
= Z & Z : s

& Z : s & X1
:
= X2 & X01

:
= X02

Sort Intersection [Rule (1)] yields:

fX1nYs3;X
0
1nY3;ZnY4g; fX01nYs;ZnY5g; fZnYsg

` X1 : s3 & X1:`1
:
= X01 & X01 : s & X1:`2

:
= X01 & X01:`

:
= Z & Z : s

& X1
:
= X2 & X01

:
= X02

This is in (strong)�-normal form, yielding the -term (up to variable renaming):

t3 = t1 ^� t2 = s3(`1 ) X : s(`) s); `2 ) X):
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B OSF Formalism

B.1 OSF Algebras

An OSF Signatureis given byhS;�;^;Fi such that:
� S is a set ofsortscontaining the sorts> and?;
� � is a decidable partial order onS such that? is the least and> is the greatest element;
� hS;�;^i is a lower semi-lattice (s^ s0 is called the greatest common subsort ofsands0);
� F is a set offeature symbols.

Given an OSF signaturehS;�;^;Fi, anOSF algebrais a structure

A = hDA; (sA)s2S ; (`A)`2Fi

such that:
� DA is a non-empty set, called thedomainofA;
� for each sort symbols in S, sA is a subset of the domain; in particular,>A = DA and
?A = ;;

� (s^ s0)A = sA \ s0A for two sortssands0 in S;
� for each featurè in F , `A is a total unary function from the domain into the domain;i.e.,
`A : DA 7! DA.
An OSF homomorphism
 : A 7! B between two OSF algebrasA andB is a function


 : DA 7! DB such that:
� 
(`A(d)) = `B(
(d)) for all d 2 DA;
� 
(sA) � sB.

B.2 OSF Terms

An OSF term tis an expression of the form:

X : s(`1 ) t1; . . .; `n ) tn)

whereX is a variable inV , s is a sort inS , `1; . . .; `n are features inF , n � 0, t1; . . .; tn are
OSF terms, and whereV is a countably infinite set of variables.

Here is an example of an OSF term (call ittperson):

X : person(name) N : >(first) F : string);
name) M : id(last) S : string);
spouse) P : person(name) I : id(last) S : >);

spouse) X : >)).

We shall use a lighter notation, omitting variables that are not shared, and the sort of a
variable when it is>:

X : person(name) >(first) string);
name) id(last) S : string);
spouse) person(name) id(last) S);

spouse) X)).
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Given a termt = X : s(`1 ) t1; . . .; `n ) tn), the variableX is called itsroot variable
and sometimes referred to asRoot(t). The set of all variables occurring int is defined as
Var(t) = fRoot(t)g [

Sn
i=1 Var(ti).

Given a termt as above, an OSF interpretationA, and anA-valuation� : V 7! DA, the
denotationof t is given by:

[[ t]]A;� = f�(X)g \ sA \
\

1�i�n

(`Ai )
�1([[ ti ]]A;�):

Thus, for all possible valuations of the variables, [[t]]A =
S
�:V7!DA [[ t]]A;� :

A  -term(or OSF term in normal form) is of the form = X : s(`1 )  1; . . .; `n )  n)
where:
� there is at most one occurrence of a variableY in  such thatY is the root variable of a

non-trivial OSF term (i.e., different thanY : >);
� s is a non-bottom sort inS;
� `1; . . .; `n are pairwise distinct features inF , n� 0,
�  1; . . .;  n arenormalOSF terms.
We call	 the set of all -terms.

For example, the OSF term,

X : person(name) id(first) string;
last) S : string);

spouse) person(name) id(last) S);
spouse) X))

is a normal OSF term and denotes the same set astperson.

Definition 3 (OSF Term Subsumption) Let and 0 be two OSF terms. Then, �  0 (“  
is subsumedby 0”) if and only if, for all OSF algebrasA, [[ ]]A � [[ 0]]A.

Given a -term  , the sort of a variableV 2 Var( ) will sometimes be referred to as
Sort (V). Given a variableV 2 Var( ), anoccurrence pathof V in  is a string of features
obtained by concatenating all the features from the root leading to an occurrence ofV. We
call Occ (V) the set of all the occurrence paths ofV in  . For example, if is the -term
above, thenOcc (X) = f"; spouse:spouseg andOcc (S) = fname:last; spouse:name:lastg.
The subscript will often be omitted forSortandOccwhen the context is clear.

Here are a few facts about OSF terms.
� OSF terms generalize first-order terms.First-order terms form a special OSF algebra where

the sorts form a flat lattice and the features are (natural number) positions. Thus, the
first-order termf (t1; . . .; tn), is just the -term: f (1) t1; . . .; n) tn).

� All variables occurring in an OSF term are implicitly existentially quantified at the term’s
outset(assuming no further outer context). As a corollary, sorts are particular (basic) OSF
terms: indeed, [[X : s]]A = sA since

S
�:V7!DA(f�(X)g \ sA) = sA.

� An OSF term is the empty set in all interpretations if has an occurrence of a variable
sorted by the empty sort?.

� Dually, [[ ]]A = DA in all interpretationsA if all its variables occur only once in and
are sorted by>.
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X : person & X: name
:
= N & N : > & N : first

:
= F & F : string

& X: name
:= M & M : id & M: last

:= S & S : string
& X: spouse

:
= P & P : person & P : name

:
= I & I : id

& I : last
:
= S & S : >

& P : spouse
:
= X & X : >:

Figure 5: OSF clause form of OSF termtperson

� Features are total functions.If  = X : s(`1 )  1; . . .; `n )  n); andZ =2 Var( ), then
[[ ]]A = [[X : s(`1 )  1; . . .; `n )  n; ` ) Z : >)]]A for any feature symbol̀ 2 F and
any OSF interpretationA.

� Variables denote essentially an equality among attribute compositions.For example,
[[X : >(`1 ) Y : >; `2 ) Y : >)]]A = fd 2 DA j `A1 (d) = `A2 (d)g: This justifies our
referring to variables ascoreference tags.

B.3 OSF Clauses

A logical reading of an OSF term is immediate as its information content can be characterized
by a simple formula. For this purpose, we need a simple clausal language as follows.

An OSF constraintis one of (1)X : s, (2) X
:= X0, or (3) X:`

:= X0, whereX andX0 are
variables inV , s is a sort inS, and` is a feature inF . An OSF clauseis a set of OSF constraints
(to be interpreted as their conjunction).

GivenA is an OSF algebra, an OSF clause� is satisfiablein A, A; � j= �, if there exists a
valuation� : V 7! DA such that, for every OSF constraint�0 in �,A; � j= �0, where:
� A; � j= X : s if and only if �(X) 2 sA;
� A; � j= X

:
= Y if and only if �(X) = �(Y);

� A; � j= X:`
:
= Y if and only if `A(�(X)) = �(Y):

B.4 From OSF Terms to OSF Clauses

We can always associate with an OSF term = X : s(`1 )  1; . . .; `n )  n) a
corresponding OSF clause�( ) as follows:

�( ) = X : s & X:`1
:
= X01 & . . . & X:`n

:
= X0n

& �( 1) & . . . & �( n)

whereX01; . . .;X0n are the roots of 1; . . .;  n, respectively. We say that�( ) is obtained from
dissolvingthe OSF term . For example, the non-normal OSF termtpersonof Section B.2 is
dissolved into the OSF clause shown in Figure 5. It has been shown that the set-theoretic
denotation of an OSF term and the logical semantics of its dissolved form coincide exactly [4]:

[[ ]]A = f�(X) j � 2 Val(A); A; � j= C9 (X)g

whereC [X] is shorthand for the formulaX
:
= Root( ) & �( ), andC9 [X] abbreviates the

formula9Var( ) C [X].
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X : person & X: name
:
= N & N : id & N: first

:
= F & F : string

& N: last
:= S & S : string

& X: spouse
:
= P & P : person & P: name

:
= I & I : id

& I : last
:
= S

& P: spouse
:
= X:

Figure 6: Normal form of OSF clause of Figure 5

To lighten notation, we shall confuse an OSF term for its dissolved form, writing when
we actually mean�( ).

B.5 OSF Unification

Definition 4 (Solved OSF Constraints) An OSF clause� is called solvedif for every
variable X,� contains:
� at most one sort constraint of the form X: s, with? < s; and,
� at most one feature constraint of the form X:`

:
= X0 for each`;

� if X
:
= X0 2 �, then X does not appear anywhere else in�.

Given an OSF clause�, non-deterministically applying any applicable rule among the four
shown in Figure 1 until none apply will always terminate in a solved OSF clause. A rule
transforms the numerator into the denominator. The expression�[X=X0] stands for the formula
obtained from� after replacing all occurrences ofX0 by X. We also refer to any clause of the
form X : ? as theinconsistent clause.The following is immediate [4].

Theorem 7 (OSF Clause Normalization) The rules of Figure 1 are solution-preserving,
finite terminating, and confluent (modulo variable renaming). Furthermore, they always result
in a normal form that is either the inconsistent clause or an OSF clause in solved form.

For example, the normalization of the OSF clause in the last example leads to the solved
OSF clause which is the conjunction of the equality constraintM

:
= N and the OSF clause

shown in Figure 6. The rules of Figure 1 are all we need to perform the unification of two
OSF terms. Namely, two termst1 and t2 are OSF unifiable if and only if the normal form of
Root(t1)

:
= Root(t2) & t1 & t2 is not?.

An OSF clause� in solved form is always satisfiable in the OSF graph algebra	 introduced
next. As a consequence, the OSF normalization rules yield a decision procedure for the
satisfiability of OSF clauses.
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