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Abstract

A method is described for fitting the outline of hand-sketched pressure brushstrokes with
Bézier curves. It combines the brush-trajectory model, in which a stroke is generated by
dragging a brush along a given trajectory, with a fast curve fitting algorithm.

The method has been implemented for a vector-based drawing program in which the user
draws with a cordless pressure-sensitive stylus on a digitizing tablet. From the trajectory
followed by the stylus, its associated pressure data, and a specified brush, a stroke of variable
width is computed and displayed in real time.

First, the digitized trajectory is fitted, thus removing noise. Then, from polygonal approxi-
mations of the fitted trajectory and the brush outline, a polygonal approximation of the stroke
outline is computed. Working with polygonal approximations reduces computations to simple
geometric operations and greatly simplifies the treatment of dynamic, pressure-controlled
brushes. Last, the polygonal approximation of the stroke outline is fitted. The result is a
closed piecewise B´ezier curve approximating the brushstroke outline to within an arbitrary
error tolerance.

Several examples of hand-sketched drawings realized with this method are presented.

Résumé

Nous décrivons une m´ethode permettant d’obtenir le contour d’un trait d’´epaisseur variable
sous la forme d’une suite de courbes de B´ezier. Cette m´ethode combine le mod`ele brosse-
trajectoire, dans lequel un trait est g´enéré en balayant une brosse le long d’une trajectoire, avec
un algorithme de lissage rapide.

Nous avons implant´e cette m´ethode dans un programme de dessin vectoriel. Dans ce pro-
gramme, l’utilisateur dessine `a main levée sur une tablette `a digitaliser au moyen d’un stylo
sensible `a la pression.̀A partir de la trajectoire du stylo, des pressions qui lui sont associ´ees
et d’une brosse de forme donn´ee, le programme calcule et affiche en temps r´eel un trait
d’épaisseur variable.

Tout d’abord, la trajectoire num´erisée est liss´ee, réduisant ainsi son bruit d’´echantillonnage.
Dans une seconde ´etape, une approximation polygonale du contour du trait est calcul´ee à
partir des approximations polygonales respectives de la trajectoire liss´ee et du contour de la
brosse. Le fait de travailler `a partir des approximations polygonales r´eduit le calculà une suite
d’opérations g´eométriques simples, et facilite grandement le traitement des brosses dynaniques
dont la taille dépend de la pression. Enfin, l’approximation polygonale du contour du trait est
lisséeà son tour. Le r´esultat final est une suite de courbes de B´ezier, arbitrairement proche du
contour du trait ´epais.

Plusieurs dessins r´ealisés suivant cette m´ethode sont pr´esentés en exemple.
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Real Time Fitting of Pressure Brushstrokes 1

1 Introduction

Digitizing tablets with cordless pressure-sensitive styluses are attractive devices for programs
that require hand-sketched input, such as paint systems and illustrators. As the user draws on
the tablet, the pressure data associated with the trajectory followed by the stylus is used to
modify the width of the stroke, therefore simulating a brushstroke.

Existing methods for modeling brushstrokes fall into two classes: those which model some
brushstroke attributes at the pixel level and paint the result into a bitmap, and those which
model brushstroke outline and rely on scan-conversion for rendering. We refer to these classes
as “raster brushstroke” and “vector brushstroke” respectively.

The goal of our method is to achieve, in software, both real time performance and quality
graphics results for vector brushstrokes.

1.1 Raster brushstroke

The raster brushstroke approach is based on a digitization process called “brush extrusion”,
used mostly in paint programs, where a bitmaped brush is dragged along a trajectory, leaving
the image of the brushstroke. Hobby [?] shows how to compensate for the lack of uniform
width that happens with straightforward digitization. Whitted [?] describes a technique for
anti-aliased strokes using an unchanging textured brush. Paint systems using a pressure-
sensitive stylus use the pressure information to dynamically modify some parameters of a
circular brush such as its radius or color. Strassmann [?] refines the abstraction of a brushstroke
into components whose behavior interact to create the image. Guo [?] and Small [?] model
the physical process of ink diffusing into paper fibers in order to achieve realistic rendering
effects such as diffuse painting or watercolor.

Raster brushstroke methods are well adapted to real time sketching. This is not surprising
as brush extrusion is realized with the help of fast hardwired “bit-blit” operators. Paint
systems have taken advantage of this efficiency by incorporating pressure brushstrokes as
soon as reliable pressure-sensitive styluses became available. Furthermore, realistic models
of paintings have been developed which make brushstrokes more expressive and simulate real
paintings. However, raster brushstrokes present two major drawbacks: they are resolution-
dependent, and they cannot be edited. Resolution-dependence can be overcome by working at
the maximum resolution of all possible output images. In any case, individual strokes cannot
be easily, if at all, retouched nor edited.

1.2 Vector brushstroke

In the vector brushstroke approach, the stroke outline is computed from the brush outline and
the trajectory. For an elliptical brush and a cubic trajectory, Ghosh and Mudur [?] derive
an exact algebraic solution. When the brush is dynamic, no closed form can be obtained. In
order to solve the equations analytically for an approximation of the outline, the additional
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2 Thierry Pudet

hypothesis that brush pressure varies slowly compared to trajectory movements must be made.
Chua [?] uses cubic B´ezier curves to define calligraphic brushstrokes. The control points of
each curve of the outline are entered manually. Pham [?] computes the outline as a variable
offset approximation of a uniform cubic B-spline trajectory. Each offset knot of the outline
must be specified by the user of the system.

Existing vector brushstroke methods present opposite characteristics when compared to raster
brushstroke ones. They need heavier computations, which take place in software, and none of
them seem well adapted to real time sketching. Solving the equations of the outline analytically
is too slow and limited in the range of accessible shapes. Other methods require that the user
explicitly enters some mathematical parameters and are thus not suitable for sketching.

On the other hand, all these methods share two significant advantages of vector graphics:
resolution-independence and editing capabilities. Strokes can be created, scaled, rotated or
flipped very easily. Interactive retouching operations such as recomputing the stroke from
the same trajectory using a different brush or different pressure data are straightforward.
Moreover, the outline of the stroke isaccessible to the user and can be edited like any other
shape outline.

1.3 Real time vector brushstrokes

In the context of hand-sketched stroke input for which our method has been designed, real
time has the following meaning.

� While dragging the stylus on the tablet, the user sees on the screen a faithful real time
echo of the brushstroke, including the variations of width due to the pressure. This can
happen at any zoom factor.

� After the stylus is released, the echo is erased, then the brushstroke is fitted and displayed.
There must not be noticeable latency due to this computation.

The strategy is to keep the constructive brush-trajectory model but, unlike [?], compute only
an approximate analytical representation of the brushstroke outline through least squares curve
fitting.

In the next section the bottlenecks of existing least squares curve fitting techniques are
identified, and a fast algorithm that uses quintic B´ezier curves is proposed. Section 3 describes
the application of this algorithm to the construction of brushstrokes obtained with the brush-
trajectory model, and also shows how dynamic, pressure-controlled brushes are handled in this
context. Finally, Section 4 presents several hand-sketched drawings realized directly on the
tablet using our method, and discusses the results.

March 1993 Digital PRL



Real Time Fitting of Pressure Brushstrokes 3

2 Least squares curve fitting

Least squares curve fitting is a method used for finding an approximate analytical representation
of a zero-width digitized trajectory in terms of piecewise parametric polynomials. There are
many published methods [?, ?, ?, ?, ?]. Specialized techniques have been employed in design
systems for making digital typefaces [?, ?] and illustrations [?, ?].

These methods all have in common the use of cubic polynomials stitched together with some
kind of continuity constraints. Except for Plass and Stone [?], who try to produce a nearly
minimal number of segments and use a dynamic programming approach not designed for
interactive systems, all methods work by trying to fit a single cubic segment to the entire
trajectory. After evaluating the error distance, which is the maximum distance between the
fitted curve and the digitized trajectory, they stop if this error is less than some specified
tolerance, otherwise they divide the trajectory in two at the point of greatest error, and repeat
the procedure recursively on both parts until the entire trajectory has been fitted.

2.1 Bottleneck

As shown by Schneider in the cubic case [?], the constrained least squares machinery boils
down to solving a2� 2 linear system. However, the bottleneck of the algorithm is more in the
repeated evaluation of the error distance needed to decide when to stop the fit.

Given the digitized trajectorysi, i = 0; . . .; I, and its fitted curveS(t), 0 � t � 1, Plass and
Stone compute the error distanceD0 by first, finding the pointS(t̃i) of S(t) that lies closest to

samplesi, then computing the euclidean distance


si � S(t̃i)



, and finally taking the maximum

over I of those distances,i.e. D0 = max0<j<I



si � S(t̃i)



. For a cubic curve, findingS(t̃i)

requires that a fifth degree polynomial equation int be solved, using,e.g., Newton-Raphson
iteration [?].

If D0 exceeds the specified error tolerance, an iterative technique proposed by Plass and
Stone consists in computing a re-parametrization of the samples that will make a single cubic
segment fit a greater portion of the trajectory and therefore minimize the overall number
of curve segments of the piecewise approximation. To solve the corresponding equations,
Newton-Raphson iterations are again needed. The re-parametrization is performed iteratively
until no further improvement is detected. A serious drawback of this technique is the need to
evaluate the error distance at each step.

The experience of the author is that this algorithm performs well in minimizing the number
of curve segments and gives good interactive response time for fitting zero-width curves to
hand-sketched trajectories. However, in the context of brushstroke fitting, where not only the
digitized trajectory but also the outline is to be fitted, the re-parametrization cycle adds too
much of a burden.
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4 Thierry Pudet

2.2 Using higher order Bézier curves

d = 3

d = 5

d = 7

Figure 1: Higher curve degrees provide a comparatively more faithful least squares fit.

The obvious solution that suppresses the re-parametrization has the annoying consequence of
producing a piecewise approximation with too many small cubic segments [?]. This somehow
defeats the purpose of curve fitting regarding data compaction. To circumvent this problem,
our method raises the degree of the fitted curves. Using degreed > 3 present the following
two characteristics with respect to least squares curve fitting [?].

When the curves are to be fitted with G1 continuity constraints, that is, continuity of the unit
tangent vector at each joint [?], the constrained least squares system is a(2d� 4)� (2d� 4)
linear system which can be written in closed form. Solving such a system needsO(d3)

operations. Although in this case the ratio between the cubic case (d = 3) and the quintic case
(d = 5) is 2:7 in favor of the former, it is not a limitative factor compared to the error distance
computation.

The re-parametrization cycle is not needed. This is illustrated in Fig. 1 where a single curve
was successively fitted without re-parametrization to the same trajectory, keeping the error
tolerance constant, and raising the degree from 3 to 7. Only the casesd = 3, d = 5 and
d = 7 are shown but the effect is uniform: the higher the degree, the closer the curve to the
trajectory. Raising the degree has therefore the same effect as using the re-parametrization
cycle [?]. This experimental evidence can be explained by the fact that a quintic B´ezier curve
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Real Time Fitting of Pressure Brushstrokes 5

has 2 more control points than a cubic curve, and therefore more freedom to satisfy the same
constrained least squares equations. A direct consequence is that although it could still be
used to improve the fit as it does for cubics, the re-parametrization cycle can be eliminated
when using higher order curves. In practice, there is a balance to be found between raising the
degree of curves, the comparatively higher cost of solving the least squares system, and data
compaction. Experiments have shown that for doing brushstrokes, quintic curves represent a
good tradeoff.

2.3 Evaluating the error distance

Another characteristic of our algorithm is that it uses a different method to evaluate the error
distance. The computation is performed incrementally between a polygonal approximation of
the curve and the digitized trajectory, and a new termination test is employed.

Let �fit be the error tolerance of the fit. The termination test of [?] is D0 � �fit. We replace it
with the testD2 � �fit=2 as follows.

� The error distanceD0 = max0<i<I



si � S(t̃i)



 is replaced with the maximum distance

D1 between samplesi of normalized chord-length�i, and pointS(ti) having the same

arc-length�(ti), D1 = max0<i<I



si � S(ti)



, whereti is the parameter value such that

�(ti) = �i . By definition ofD0, D0 � D1.

The problem is now to findti . Formally,ti = ��1(�i). Instead of solving this equation
with numerical methods, we take advantage of the B´ezier representation. We compute a
polygonal approximation of curveS(t) to within a certain flatness�flat, using de Casteljau
midpoint subdivision [?, ?]. For efficiency, precomputed midpoint subdivision [?, ?]
and forward differencing [?, ?] can be used. The subdivision transforms the curveS(t)
into a polygonal approximationSk, k = 0; . . .;K. We also compute the normalized
chord-length�k of each pointSk.

Let Ski be the point having the same chord-length�i as samplesi. Since there are
only 2 consecutive pointsSk�1 andSk such that�k�1 � �i < �k, Ski can be linearly
interpolated between those 2 points,e.g.Ski = (1� u)Sk�1 + u Sk, whereu= �k��i

�k��k�1
.

� Let D2 = max0<i<I ksi � Skik, and impose�flat = �fit=2. The termination testD0 � �fit

is replaced withD2 � �fit=2.

By the triangular inequality,D1 � max0<i<I ksi � Skik + max0<i<I



Ski � S(ti)



 �

D2 + �flat. Thus, imposing�flat = �fit=2, and D2 � �fit=2 ensuresD1 � �fit, hence
D0 � �fit.

This method is not limited to quintic curves and can be applied to any parametric polynomial.
Its main thrust lies in the evaluation of the new termination testD2 � �fit=2. It can be done
incrementally in a very efficient way, by traversing the polygonal approximation and the
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6 Thierry Pudet

digitized trajectory in parallel, evaluating the intermediate distancesksi � Skik and stopping
as soon as the error tolerance is exceeded.

2.4 Curve fitting algorithm

1. Compute the chord-length parametrization for the samples of the digitized trajectory.

2. Estimate the direction of the tangent vectors at endpoints, using a local quadratic
interpolant [?].

3. Fit a quintic Bézier curve to the digitized trajectory.

4. Evaluate the goodness of the fit using the incremental technique explained in Section
2.3. If the fit is not faithful enough, divide the digitized trajectory in two pieces and
recurse from step 1.

The control flow of the recursive quintic curve fitting algorithm is similar to the one of
[?]. Since the tablet provides spatial filtering of the samples, this pre-processing step is not
mentioned here1. Quintic curve segments are then recursively fitted with no re-parametrization,
and stitched together withG1 continuity. Note that since the error distance is evaluated in a
lazy way, the digitized trajectory cannot be divided at the point of greatest error. Instead, it is
divided at midpoint.

Figure 2: Donald, after Walt Disney: 117 digitized trajectories, 224 quintic curves. Black
squares show curve endpoints.

1Other methods to remove noise such as Gaussian filtering [?] were tried but eventually not used. They modify
the initial samples, and even with no further fit, artists using our program found the filtered trajectories not faithful
enough.
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Real Time Fitting of Pressure Brushstrokes 7

This algorithm was programmed in C and its performance measured on a DECstation 5000/200
over a data base of cartoon characters drawn by professional artists. The tolerance was set to a
constant value of0:5 mm. Given the high bandwidth of the tablet (' 200pts/sec), depending
on the length of the trajectory, and also how rapidly the artist draws, a trajectory can be
composed of 20 to 200 samples. For Fig. 2, the mean number of samples per trajectory was
110, and the measured fitting time20ms on the average, allowing for real time sketching with
zero-width fitted strokes.

3 Brushstroke fitting

S b+

S b+

S

b
(1)

(t)

l(0)( )b τ

l( )b τ
l( )b τr(0)( )b τ

(t)( )b τ
(1)( )b τ

r

r

(a) (b)

Figure 3: The brush-trajectory model.

In the brush-trajectory model [?, ?], both brush angle and pressure can change dynamically
along the trajectory. Dynamic angles reflect more closely the behavior of real brushes used by
artists, but is somewhat more difficult to deal with. In this paper, only dynamic pressures are
considered.

We distinguish between rigid and dynamic brushes. Rigid brushes ignore pressure and keep a
constant size. Dynamic brushes respond to the pressure applied at their tip by changing their
size according to some elasticity factor. Rigid brushes are treated first, then dynamic ones. In
either case, the brush is assumed to have a convex shape. Non convex brushes are explored in
[?], but are computationally too expensive for real time sketching.

3.1 Rigid brushes

A stroke is built by sweeping a convex brush along a central trajectory. The shape of such a
stroke is mathematically defined as the envelope of the brush with respect to the trajectory [?].
Formally, if b is the closed outline of the brush andS the central trajectory, both continuous
and smooth, the envelope is defined as the sub-set ofS+ b such that the tangents to the brush
b and the trajectoryS at those points are parallel, Fig. 3(a).

When the brush and the trajectory are given in parametric formb(�) andS(t), 0 � � � 1,
0 � t � 1, this definition translates into a more analytical form. The parameter� describes the
outline ofeach brush instance whilet distinguishes among those instances along the trajectory.
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8 Thierry Pudet

The points of the envelope are solutions of the equation

S0(t) ^ b0(�) = 0 (1)

where the operator̂ denotes the cross product of two vectors, and0 the first derivative of a
vectorial function with respect to its variable.

For a convex brush translated at positionS(t), there can be only two pointsb(�l(t)) and
b(�r(t)), whose tangents are parallel toS0(t) and furthermore, those points must be located
on each side of the trajectory, Fig. 3(b). By convention,b(�l(t)) is the point to the left of the
trajectory andb(�r(t)) the point to its right. The set of points(b(�l(t)); 0 � t � 1) defines
the left border of the envelope, and symmetrically(b(�r(1� t)); 0 � t � 1) its right border.
Note that the right border is traversed with decreasing parametert.

Equation (1) is not solved globally. It is used instead for building the discrete envelope by only
solving it locally for � , i.e. at each position of the brush along the trajectory. Furthermore,
although Equation (1) could be solved locally for� using numerical methods, it is easier to
work directly with the discrete brush.

Given a digitized trajectory and a brush outline, brushstroke fitting works in 3 steps. First, the
digitized trajectory is fitted. Then, from polygonal approximations of the fitted trajectory and
the brush outline, both obtained through de Casteljau subdivision, a polygonal approximation
of the left and right borders of the envelope are computed. Last, those borders are fitted in turn
and put together with the starting and ending borders to obtain the brushstroke outline.

3.2 Getting discrete borders

(a): single
bjk

Sk-1

k+1S

(b): follow-brush

b
�k
j

Sk-1

k+1S

bjk

bj +1

+2

k

(c): shortcut

b

Sk-1

k+1S
jk

bj +1k

Figure 4: Computing the left discrete border of the envelope. Black squares materialize the
discrete envelope.

In what follows, we call
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Real Time Fitting of Pressure Brushstrokes 9

� discrete trajectory: the polygonalapproximation of the fitted trajectory, obtained through
de Casteljau subdivision.

� discrete brush: the polygonal approximation of the brush outline, obtained through de
Casteljau subdivision.

� left (resp. right) discrete border: the polygonal approximation of the left (resp. right)
border of the envelope, computed from the discrete trajectory and the discrete brush.

Once the brush and the trajectory are transformed into polygonal approximations, the notion
of tangent used in Equation (1) is no longer valid, and must be replaced with the discrete
equivalent offurthestpoint with respect to a direction. By an elementary theorem of differential
calculus, pointb(�l(t)) (resp.b(�r(t))) is also the point of the brush outline lying furthest
to the left (resp. right) of the straight line passing through, and tangential to the trajectory at,
pointS(t).

The left discrete border is computed from discrete trajectory(Sk; tk), k = 0; . . .;K, and
discrete brush(bj; tj), j = 0; . . .; J as follows.

For each discrete position Sk, k= 0; . . .;K,

� The center of the discrete brush is translated at positionSk.

� Let bjk be the point lying furthest to the left of line(Sk�1;Sk), andbjk+n the point lying
furthest to the left of line(Sk;Sk+1), Fig. 4.

1. If n = 0, bjk = bjk+n (case (a) of Fig. 4), then pointbjk is added to the discrete
border. In this case, there is only one discrete counterpart to pointb(�l(tk)).

2. Elsen > 0.

(a) The discrete brush being oriented either clockwise or counterclockwise, if
the triangleSk�1;Sk;Sk+1 turns the same way (case (b) of Fig. 4), then the
sequence ofn + 1 pointsbjk ; bjk+1; . . .; bjk+n is added to the discrete border.

(b) Else, the brush and the trajectory locally have opposite orientations, (case (c)
of Fig. 4). Only the 2 pointsbjk andbjk+n are added to the discrete border.
This means that instead of following the brush, a shortcut is taken between
those 2 points. The convexity of the brush guarantees that the shortcut will
not cross the brush boundary.
In addition, both points are marked as breakpoints. These marks will be
interpreted when the discrete border is fitted.

The right discrete border is obtained in a similar way, but traversing the discrete trajectory
downward fromSK to S0.

Thanks to brush convexity, the previous algorithm can be implemented in a very efficient way.
For any point on a convex outline, the furthest distance with respect to a given direction is
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10 Thierry Pudet

a function that increases from0 to a maximum value, then decreases again towards 0. The
implementation takes advantage of this property by starting the search for the next point of the
discrete border with the point of the discrete brush that was found at the previous step, going
next to its neighbor, and evaluating the distance until a local maximum is reached. Instead
of being proportional toK � J, as the above description would suggest, it makes the overall
process almost linear in the numberK of points in the discrete trajectory.

3.3 Fitting discrete borders

Applying the curve fitting algorithm of Section 2.4 to the left and right discrete borders in
sequence is straightforward. The only difference is that now, the breakpoints set at sampling
time to mark shortcuts are interpreted as discontinuities. Such points prevent the entire border
from being fitted at once. Instead, intermediate portions between two breakpoints are fitted
independently, with only positional continuity (C0) at the joints.

The situation at trajectory endpoints is somewhat different. The starting and ending borders of
the envelope need not be fitted since they are just portions of the brush outline. The starting
border is the portion of the brush outline going from the first pointb(�l(0)) of the left border
to the first pointb(�r(0)) of the right border, Fig. 3(b). Similarly, the ending border is the
portion of brush outline going fromb(�l(1)) to b(�r(1)). If the brush outline is given in
Bézier form, starting and ending borders are easily obtained through de Casteljau subdivision.

By definition, the fitted left border goes fromb(�l(0)) to b(�l(1)) and the fitted right border
from b(�r(1)) to b(�r(0)). Connecting starting border to left border to ending border to right
border in this order defines an approximate analytical representation of the brushstroke outline
to within a specified error tolerance.

The need to go from digitized trajectory to fitted trajectory then immediately back to discrete
trajectory, and to compute the discrete borders thereof, may seem unclear. A more direct
solution would be to get the discrete borders from the digitized trajectory. This was tried, but
because of the noise associated with the raw data, it did not give good results, especially when
small brushes were used. The digitized trajectory had therefore to be fitted first. If more than
spatial filtering is done at pre-processing time, this step may be omitted.

Fig. 5 shows the result of the algorithm for a rigid circular brush. Of course, the error tolerance
can always be set manually, but in most cases, a default value equal to some fraction of the
brush diameter (say 1/30) gives visually good results. In part (a) of Fig. 5, both the central
trajectory and the outline are stroked. In part (b), the outline is stroked and the curve endpoints
are shown. There are two breakpoints located on the right border of the envelope where the
central trajectory bends sharply. In part (c), the outline is filled, using the non-zero winding
rule. Note that the non-zero winding rule is mandatory for filling brushstrokes. The even-odd
rule would not do for strokes with self intersections. The reason is that, by construction, all
the points covered by the brush during the sweep, and defining the interior of the envelope,
have a non zero winding number.

Other examples presented in Fig. 6 are brushstrokes built with an elliptical brush held at
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Real Time Fitting of Pressure Brushstrokes 11

(a) (b) (c)

Figure 5: Brushstroke from a rigid circular brush.

0 degree. 30degrees.

Figure 6: Brushstrokes from the same elliptical rigid brush held at different angles.
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12 Thierry Pudet

different angles. Even with no pressure, a non circular brush always produces a stroke of
varying width. Here, the strokes were computed from the same trajectory.

3.4 Handling dynamic brushes

(a)

(b)

Figure 7: Brushstroke from a dynamic elliptical brush (a), and, for comparison, the stroke
obtained with the same but rigid brush (b).

A dynamic brush has an associated elasticitye. If no pressure is applied, the brush keeps
its natural size. For simplicity, pressure values are normalized between 0 (no pressure) and
1 (highest pressure). Given some pressurep, the brush dilates according toe and p. The
elasticity gives the maximum allowed dilatation with respect to the natural size. For instance,
a dynamic circular brush of initial diameter� can dilate to a circle of diametere�.

The brush always starts and finishes its travel along the trajectory with pressure 0 since at those
positions, the pressure-sensitive stylus has to be released. The corresponding brushstroke
therefore begins at positionS(t = 0) and finishes atS(t = 1) of the trajectory with the natural
size of the brush.

At intermediate positionsS(t), pressure valuesp(t) are converted into scaling factorss(t).
Each scaling transformation is centered at the center of the brush, and applies to the brush
outline. It is required thats(0) = s(1) = 1 (no scaling) and also that when the highest
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pressure is applied,s = e. The simplest model is to interpolate linearly betweenp(0) and
p(1), i.e. s(t) = 1� (1� e) p(t), but non linear variations are also possible. This definition
implies that a dynamic brush with elasticitye= 1 is, in fact, a rigid one.

However, the pressure valuep(t) at positionS(t) of the fitted trajectory is not knowna
priori . It is true that the stylus associates with each samplesi of the digitized trajectorya
pressure valuepi, but since the discrete borders are computed from thefitted trajectory, this
correspondence cannot be used directly.

The problem is then to map pressurespi to the fitted trajectory in a coherent way. To do
this, we associate to pressurepi the normalized chord-length�i of samplesi. This gives us a
discrete pressure profile(pi; �i) that we map to the fitted trajectoryS(t) through arc-length.
In fact, we have already solved the problem in Section 2.3 when computing the error distance.
The only difference is that here, pressure valuespi are substituted for samplessi.

Given a digitized trajectorysi, i = 0; . . .; I, associated pressure
valuepi , and corresponding fitted trajectoryS(t), 0� t � 1.

1. Compute normalize chord-lengths�i of samplessi, i =
0; . . .; I.

2. Compute the discrete trajectory(Sk; tk), k = 0; . . .;K of
S(t) through de Casteljau subdivision, and compute also
the normalized chord-lengths�k of pointsSk, k= 0; . . .;K.

3. For each pointSk, compute valuepik having the same
normalized chord-length�k asSk:

pik = (1� u)pi�1 + u pi;

u =
�i � �k

�i � �i�1
;

wherepi is the unique value of the pressure profile such
that�i�1 � �k < �i .

Figure 8: Mapping pressure profile to fitted trajectory.

This method still works even if the pressure data do not come from the stylus. In fact, any
polynomial functionf (t) can be mapped to the trajectoryS(t). All that is needed in this
case is an additional step of de Casteljau subdivision to get the corresponding polygonal
approximation.

An example of a pressure-controlled brushstroke is shown in Fig. 7. A dynamic elliptical
brush of elasticitye= 4 was used.
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4 Results

We have implemented the method in a prototype vector-based drawing program in which
the user draws with a cordless pressure-sensitive stylus on the tablet. The following brush
parameters can be set: width, height, angle, and elasticity. Brush sizes vary between1=10
mm and10 mm. There are two separate controls for setting tolerances: one is for the error
tolerancetolt for fitting the digitized trajectory, the other error tolerance (flatness)tolb for
approximating the brushstroke outline. The latter is typically smaller.

While drawing, the user gets a real time echo of the stroke displayed on the screen. For each
new samplesi, a polygonal approximation of the envelope of the brush with respect to the
straight line segment(si; si�1) is computed, using the technique described in Section 3. The
echo is displayed by painting the resulting overlapping polygons in sequence. This gives a
result equivalent to brush extrusion. No fitting is done at this stage. After the stylus is released,
the previous echo is erased, then the brushstroke is fitted and displayed.

Ultimately, the performance of curve fitting methods is tied to the number of samples of
the digitized trajectory. Not surprisingly, our algorithm can show poor performance for
exceptionally large trajectories (say> 800 samples). In practice, this is not often the case,
with the notable exception of the “roughs” drawn by cartoon cell animators before cleaning.
In such cases, the trick is to cut the digitized trajectory into several pieces and to fit them
successively. Because of the error distance computation, this is faster than fitting the whole
trajectory at once. Furthermore, the brush-trajectory model ensures that the same outline is
obtained in both cases. Although this trick was not implemented, the artists who realized the
drawings presented here could work on the tablet at their paper speed, without having to wait
or loosing data.

We have tried to exercise the algorithm and measure its performance on different styles of
drawings, including comic strips and cartoon cell design as well as cursive calligraphy. All
timings refer to a DECstation 5000/200. Each drawing is also shown full page in Appendix 6.
Outputs are done on a black-and-white laser printer at 300 dots per inch.

Elliptical brushes are most often used for calligraphy. In Fig. 9, the author used an elliptical
rigid brush of size90=10� 20=10 mm, settingtolt = 3=10 mm andtolb = 1=10 mm. The
character, whose real height is about25 cm, is built from a single digitized trajectory of231
samples, fitted with6 quintics in50 ms. The outline is composed of29 curves fitted in300
ms. With true calligraphers at work, such input may be used in font design software as a first
sketch to be tuned later on.

Elliptical brushes can also provide pleasing results for drawings. Fig. 10 was realized with a
very flat elliptical brush of size12=10� 1=10mm, oriented at60degrees, and with tolerances
tolt = 5=10 mm andtolb = 1=10 mm. There are88 digitized trajectories, and843 curves
accounting for the brushstrokes outlines. The total time for fitting all the strokes is7 s. On the
average, each brushstroke is fitted in less that80ms, allowing for real time hand-sketching.

Fig. 11 presents an example drawn with a dynamic circular brush. Unlike the previous
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Figure 9: Hand-drawn calligraphic E.

Figure 10: Boxing lobster.

Research Report No. 29 March 1993



16 Thierry Pudet

Figure 11: Iznogoud from Tabary.

Figure 12: Sans titre.
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examples, the artist changed the size of the brush and its elasticity in the middle of the drawing.
This is visible for the fat strokes of the nose. The moustache and the beard were done by
scribbling with the stylus. There are265digitized trajectories, and each brustroke is fitted in
about95ms on the average.

For Fig. 12, the artist used different circular brushes with different colors, which makes the
drawing look more like a (digital) painting rather than typical line art.[put serge.ps
back]

5 Conclusion

We have presented a method for fitting pressure brushstrokes. Our goal is to get real time
performance and quality visual results for graphics arts applications.

In order to define an approximate analytical representation of the brushstroke outline to within
an arbitrarily small error tolerance, we compute a polygonal approximation of the brushstroke
outline, to be fitted with quintic B´ezier curves. Working with polygonal approximations
greatly simplifies the treatment of dynamic, pressure-controlled brushes. We have developed
an incremental technique for evaluating the error distance in the termination test of the curve
fitting algorithm. Quintic curves are chosen as a compromise between time and space, but
cubic curves can also be used. This gives us a uniform, resolution-independent model of a
brushstroke for building hand-sketched vector drawings.

The method has been implemented in a program which was used by professional artists.
Several drawings are presented.

So far, we have not investigated the rendering aspect of vector brushstrokes. It is conceivable
that the techniques developed for realistic rendering of raster strokes could be adapted and used
through procedural rendering to give vector brushstrokes a comparable artistic expressiveness.
We are also interested in taking advantage of the the vector-based representation of the stroke
in order to achieve other effects.

6 Appendix

This section presents the drawings of Section 4 as well as some others, in fullpage output.
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