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Abstract

We describe a formal design for a logical query language using -terms as data structures to
interact effectively and efficiently with a relational database. The structure of -terms provides
an adequate representation for so-called complex objects. They generalize conventional terms
used in logic programming: they are typed attributed structures, ordered thanks to a subtype
ordering. Unification of -terms is an effective means for integrating multiple inheritance and
partial information into a deduction process. We define a compact database representation for
 -terms, representing part of the subtyping relation in the database as well. We describe a
retrieval algorithm based on an abstract interpretation of the -term unification process and
prove its formal correctness. This algorithm is efficient in that it incrementally retrieves only
additional facts that are actually needed by a query, and never retrieves the same fact twice.

Résumé

Nous décrivons la conception formelle d’un langage de requˆetes logiques utilisant les -
termes comme structure de donn´ees pour interagir effectivement and efficacement avec une
base de donn´ees relationnelle. La structure des -termes fournit une repr´esentation ad´equate
pour les objets soi-disant complexes. Ils g´enéralisent les termes conventionnels utilis´es en
programmation logique: ce sont des structures typ´ees et attribu´ees, ordonn´ees grâceà un ordre
de sous-types. L’unification des -termes est un moyen effectif d’int´egrer héritage multiple
et information partielle dans un processus de d´eduction. Nous d´efinissons une repr´esentation
compacte en base de donn´ees pour les -termes, representant aussi une partie de l’ordre sur
les types dans la base de donn´ees. Nous d´ecrivons un algorithme d’extraction de donn´ees bas´e
sur l’interprétation abstraite de l’unification des -termes et prouvons sa correction formelle.
Cet algorithme est efficace en ce sens qu’il extraie de fa¸con incrémentale seuls les faits
supplémentaires qui sont n´ecéssaires `a une requˆete, et jamais deux fois le mˆeme fait.
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A Database Interface for Complex Objects 1

The difficulty lay in the form and economy of it, so to
dispose such a multitude of materials as not to make
a confused heap of incoherent parts but one consistent
whole.

EPHRAIM CHAMBERS, Cyclopaedia

1 Introduction

1.1 Motivation and contribution

The combination of logic programming languages and database systems has been a research
theme for the last decade in both logic programming and database communities. The interest
from a logic programming perspective came when the need was felt for manipulating large
sets of facts. Usually Prolog was coupled with a relational database. In [9], Ceriet al.provide
an excellent overview of work in this area. In the database community, it was felt that the logic
programming paradigm offers interesting opportunities as a database query language. This
resulted in logical query languages likeLDL [14] and NAIL! [13].

So-called complex objects have recently been studied for use in database systems [7, 8]. Much
of what has been proposed in those studies is derived from earlier work extending first-order
terms to -terms [1]. The latter notion has had a more direct application in programming
language design [4, 2, 6] than in database systems. Still, the functionality and naturalness
of deductive queries over -terms is a strong motivation for providing a logic programming
language using -terms with an effective means to access large volumes of data and knowledge
stored in a database (see [5] for a convincing example).

We propose a formal design for an effective coupling of such a language with a relational
database. For the purpose of our presentation and experimentation, we use the specific
language LIFE [2], but this implies no loss of generality. Indeed, although we formulate it
using -terms, our design is directly applicable to any logical query language with complex
objects represented as Prolog terms or as data structuresà la [7, 8], since all these models turn
out to be special cases of -terms. We present the theoretical view of our proposed database
support of that language and discuss the results. Our theoretical design was put into practice
as the basis of an experimental implementation [12].

Although our experiment may be categorized as providing database support to a logic
programming language, it goes beyond previous research in that it considers a language with
types and attributed terms, which can be arbitrarily nested, and provide multiple inheritance.
As will be shown, due to the specific characteristics of LIFE’s type system, our experiment
has yielded a form of database support that not only allows querying for facts, but also
posing abstract queries, that is, queries that ask for general knowledge as opposed to factual
knowledge.
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2 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

1.2 Organization of paper

Before we delve into technicalities, here is a brief introductory overview of the paper. Our
system is organized as sketched in Figure 1 and consists of three subsystems; namely, the

LIFE system
relational
databaseinter

face

-
�

query

data

Figure 1. Architecture of the system.

LIFE system, an interface written in LIFE, and an external relational database. The coupled
system is intended to represent the facts of LIFE in the database and to retrieve these facts,
when needed by the LIFE system.

Hence, the functionality of the interface is twofold. Firstly, it provides a compact database
representation for logical facts. As we shall see in Section 2, these facts are ordered by a
subsumption relation induced by a subtype ordering on functors. In Section 3, we propose to
group facts into what we callqualified segments, such that the subtype relationships involving
symbols in these facts are implicitly represented. We also compress segments before storage
in the database.

Secondly, for the retrieval of facts, we use atight coupling[15, 16], where facts are loaded
when needed by the LIFE system. In Section 4, we describe an abstraction of the unification
process, where qualified segments in the database are approximated by a set of generalizations,
calledqualifier. If facts from the database are requested, we use the qualifier and the current
goal, a term, to construct acandidate: a selection condition on the segment, retrieving all facts
that unify with this goal. In Section 5, we show that not all subtype relationships need be
stored in the LIFE-system, since some are implicitly represented in the database. In Section 6,
we optimize the retrieval process, by storing loaded facts in the internal database and retrieving
each fact only once. We conclude with Section 7, with a recapitulation of our work and a brief
overview of the perspectives it offers. No particular background is required to understand
the technical contents of this paper other than elementary discrete algebra, shreds of logic
programming, and basic notions of relational and deductive databases.

2 The facts of LIFE

LIFE (Logic, Inheritance, Functions, Equations) is a logic programming language extending
Prolog terms as described in [2, 4, 6]. The user can specify inclusion relationships between
functor symbols, thus enabling the direct representation and use of taxonomic information.
Thus, functors are called types and no longer differentiated from values. For example, we can
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A Database Interface for Complex Objects 3

state thatapplesis a subtype offood, so that a factlikes(mary; food), stating that mary likes
food, implies that mary likes apples as well.

To make use of a subtyping relation in a logic programming language, the unification operation
must be redefined. The subtyping relation generates a partial order on the set of all terms called
term subsumption. Unification of two terms computes theirgreatest lower bound(GLB) with
respect to term subsumption. Failure of unification is denoted by a special term: the symbol
? (“bottom” ).

For the purpose of our presentation, it will suffice to assume that a LIFE programP consists of
the specification of the subtype ordering, and logical rules in the form of Horn-clauses. The
essential point to keep in mind is that the literals making up a program’s clauses are -terms
rather than conventional Prolog terms. Hence, as is the case in deductive database languages,
the Horn clauses are separated into theextensionaldatabase (EDB)—i.e., the facts containing
no variables—and theintensionaldatabase (IDB)—the rest.

Our idea is to represent the (presumably numerous) facts of a LIFE program’s EDB as flat
relations to store in an external relational database. Then, designing an interface amounts to
defining an intermediate representation allowing to translate from facts of LIFE (i.e.,  -terms)
to database tuples and back. To be correct, a database retrieval algorithm responding to a LIFE
query through this interface must be sound (i.e., retrieveno irrelevanttuples) and complete
(i.e., retrieveall relevanttuples). Hence, the interface design and the correctness of retrieval
depend in some essential way on the formalization of -terms. This section is meant to give
all the preliminary formalities that we use, introducing basic and disjunctive -terms, type
signatures, subsumption, and related notions. From this point on, whenever we say “term” we
shall mean (possibly disjunctive) “ -term.”1

2.1 Terms

A basicterm is built out oftype symbolsandattribute labels. LetL be the set of all attribute
labels, andS the set of all type symbols, including> (“top” ) and? (“bottom” ).

Definition 1 (Basic term) Abasic termp is an expression of the form s(l1 ) p1; . . .; ln ) pn),
n � 0, where:

� s2 S is theroot symbolof p, denoted byroot(p).

� l1 . . .; ln 2 L are pairwise distinctattribute labels.

� p1; . . .; pn are terms: thesubtermsof p.

If n= 0, p is is said to beatomic, and simply written ass. Otherwise,p is said to beattributed.
The attribute-subterm list is unordered. A term with at least one occurrence of the symbol?

1More precisely, we shall mean -termswithout variablessince only EDB facts will be considered.
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4 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

is considered to be equal to the term?. We call	 be the set of all basic terms that can be
constructed from type symbols inS and labels inL.

Example 2.1 An example of a basic term is:

likes(who) mary;
born) date(day) 24;

month) january;
year) 1965);

what) apples):

The root symbol islikes; it has three subterms with attribute labelswho, bornandwhat. The
type symbols arelikes, mary, date, 24, january, 1965, andapples. The attribute labels are
who, born, day, month, year, andwhat.

We shall use a more convenient mathematical characterization of a basic term that is formally
equivalent to their syntactic representation of Definition 1. It sees a term as a mapping from a
set ofoccurrences(i.e., strings of labels in the free monoidL�) to S, assigning type symbols
to each of these occurrences.

Definition 2 (Occurrence) An occurrenceis a string formed by concatenating labels, sepa-
rated by ‘.’. The root label is denoted by the empty string". The set of all occurrencesL� is
inductively defined asL� := " j L:L�, where a:"= ":a = a for any occurrence a.

In what follows, every time we refer to termp, we mean the generic one in Definition 1.

Definition 3 (Occurrence domain) The set of occurrences actually appearing in a term p is
theoccurrence domain�p: the smallest subset ofL� for which:

� " 2 �p and

� l i:a 2 �p iff l i is the label in p denoting the subterm pi, and a2 �pi .

Definition 4 (Type function) To each term p there corresponds atype function p : L�

! S

which assigns a type symbol to each occurrence:

 p(a) =

8><
>:
> if a 62 �p

root(p) if a = "

 pi(a
0) if a = l i:a0
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A Database Interface for Complex Objects 5

Hence, a basic term is formally characterized as a pairp= h�p;  pi.

Example 2.2 Referring to the term in Example 2.1, the domain isf", who, born, born:day,
born:month, born:year, whatg. The type function is defined as: (") = likes;  (who) =
mary;  (born) = date;  (born:day) = 24, etc. Note that the type function returns the
>-symbol for any occurrence not in the occurrence domain, for example (day:what) = >.

2.2 A short terminological digression

For the sake of self-containment and to settle some terminology, we indulge in a brief
intermezzodefining a few general basic order-theoretic notions that we shall use in the rest of
this paper. All definitions in this short digression will refer to a partially-ordered set, orposet,
hS;�i.

Recall that a chain ofSis a totally ordered subset ofS. Let us also recall the notion ofcochain,
a dual of the more familiar notion of chain:

Definition 5 (Cochain) A cochainC of S is a subset of S where all distinct elements are
mutually incomparable. Formally, C� C \ � = 1C.2

The set of all cochains ofS is denote ascoc(S). The setcoc(S) is itself partially ordered as
follows.

Definition 6 (Cochain ordering) 8C1;C2 2 coc(S); C1 v C2 iff 8x1 2 C1; 9x2 2 C2 :
x1 � x2.

Note that the empty set; is a cochain. In particular, the empty set is theleastelement in
coc(S); that is,8C � S : ; v C.

Note also that singletons of elements ofS are cochains too. In fact, the cochain orderingv

coincides with� on singletons; namely,8x; x0 2 S : fxg v fx0g iff x � x0. For this reason,
an elementx of S may be identified with the singletonfxg. Hence, the cochain orderingv
is a “natural” extension of the base ordering� and so we shall use only one symbol(�)
indifferently on base elements or cochains ofSwithout risk of confusion.

It will be convenient to refer, for a given element ofS, to specific subsets of its upper bounds
or lower bounds. The following definitions introduce a few that we will use. In what follows,
x andx0 denote elements of such a setS.

Definition 7 (Ancestors) The set of ancestors of x is the setanc(x) of elements greater than,
or equal to x:

2Where1X = fhx; xijx 2 Xg is the identity relation onX.
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6 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

anc(x) = fx0 2 Sj x� x0g:

Definition 8 (Descendants) The set of descendants of x is the setdes(x) of elements smaller
than, or equal to x:

des(x) = fx0 2 Sj x0 � xg

GivenS0 � S, let dS0e (resp.,bS0c) denote the set of all its maximal (resp., minimal) elements.3

We defineparentsand children, as well asmaximal common lower boundsand minimal
common upper bounds, in terms of ancestors and descendants as follows.

Definition 9 (Parents and children) Theparentsof x are its immediate upper bounds; i.e.,
the minimal ancestors, excluding x itself:

par(x) = banc(x) n fxgc

Dually, thechildrenof x are its immediate lower bounds; i.e.,

chi(x) = ddes(x) n fxge

Definition 10 (Maximal common lower bounds) The set ofmaximal common lower bounds
of x and x0 is denoted as xu x0, and defined as:

xu x0 =
l
des(x) \ des(x0)

m
:

Definition 11 (Minimal common upper bounds) Dually, the set ofminimal common upper
boundsof s and s0 is denoted xt x0, and defined as:

xt x0 =
j
anc(x) \ anc(x0)

k
:

Note that all the sets introduced by the four previous definitions are cochains.

Finally, given two functionsf and f 0 from from a setA to a posethS;�i, we say thatf � f 0

whenever8a 2 A : f (a) � f 0(a).

This concludes our terminological digression. We now return to our topical considerations.

3To be well-defined, this requires thatSnot contain infinitely ascending (resp., descending) chain. So we shall
implicitly assume this. In fact, all the posets on which we will use these operations will be finite.
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A Database Interface for Complex Objects 7

2.3 Type signature

The set of type symbolsS comes with a subtype ordering�. The setS and the ordering form
a type signature, a poset� = hS;�i. We may assume the type signature to be fixed.

Definition 12 (Type signature) A type signature� is a posethS;�i, where:

� S is the set of type symbols, containingtop symbol> andbottom symbol?.

� � � S � S is a partial order—thesubtyping—onS such that8s2 S : ? � s� >.

Example 2.3 In all examples in this paper, we shall use a type signature consisting of a
setS = f>, ?, student, emp, mary, likes, food, apples, sweets, cookies, chocolateg and
subtyping relation the least ordering such thatapples� food, sweets� food, cookies�
sweetsandchocolate� sweets, expressing that apples and sweets are food, and cookies
and chocolate are sweets; and such thatmary� studentandmary� emp, expressing that
mary is both a student and an employee. This type signature will be referred to as� and is
depicted in Figure 2.

>

student emp likes food

mary apples sweets

cookies chocolate

?

�������

�
�

��

Q
Q
QQ

J
JJ












@
@@

�
��

@
@@

@
@
@
@
@

�
�
�
�
��

�
�

��

�������

Figure 2. The type signature�.

2.4 Term subsumption

The partial order� on type symbols extends to the set of all terms as follows:

Definition 13 (Basic term subsumption) Thebasic term subsumptionrelation� on the set
of all basic terms	 is defined as p� p0 iff p = ? or  p �  p0 .
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8 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

Example 2.4 The term:

p1 = likes(who) mary;what) apples)

is subsumed by the term:

p2 = likes(who) mary;what) food)

sinceapples� food. Termp1 is also subsumed by the term:

p3 = likes(who) mary)

since the type symbol is> for any occurrence that is not in the occurrence domain;i.e.,
 p1(what) = apples�  p3(what) = >. Thus any basic term is subsumed by> and
subsumes?.

Note sinceS is a subset of	 ,� coincides with� on it. Therefore,� can be seen as a “natural”
extension of the subtype ordering� and therefore we shall again use only one symbol(�)
indifferently on type symbols or basic terms without risk of confusion.

As expected, we now extend terms to cochains of terms.

Definition 14 (Disjunctive terms) A disjunctive termis a cochain of basic terms.

Term subsumption is naturally extended to disjunctive terms as the cochain ordering of basic
term subsumption. Hence, by “term” we now shall mean basic or possibly disjunctive term.

As usual, a singleton disjunctive termfpg is identified with the basic termp. In particular,
the singleton setf>g is identified with the basic term>. This is natural since they are both
greatest elements for term subsumption. Similarly,f?g is identified with the basic term?.
Again, this is natural since they are both least elements. However, the empty set; is also the
least element ofcoc(	), and hence we can identify all three:? = f?g= ;.

The following is a particular case of a more general result in [1].

Theorem 1 The posethcoc(	);�i is a lattice.4

4Recall that a latticeL is a poset where a unique greatest lower bound and a unique least upper bound both exist
in L for any finite non-empty subset ofL.

March 1993 Digital PRL



A Database Interface for Complex Objects 9

Proof: Greatest lower bounds are constructed as follows. For basic termsp andp0, the (possibly
disjunctive) termp^ p0 is the set of maximal elements of the set of all basic termsu = h�u;  ui such
that:

� �u = �p [�p0,

� 8a 2 �u :  u(a) 2  p(a) u  p0(a).

For (possibly singleton) disjunctive termsC;C0, it is given byC^ C0
= dfp^ p0 j p 2 C; p0 2 C0ge:

Dually, least upper bounds (LUB) are constructed as follows. For basic termsp andp0, the (possibly
disjunctive) termp_ p0 is the set of minimal elements of the set of all basic termsu = h�u;  ui such
that:

� �u = �p \�p0,

� 8a 2 �u :  u(a) 2  p(a) t  p0(a).

For (possibly singleton) disjunctive termsC;C0, it is given byC_ C0
= bfp_ p0 j p 2 C; p0 2 C0gc:

It is easy to verify that these operations are lattice operations with respect to term subsumption.

Note that if the type signature� is a lattice, then so is	 , and moreover, it is then a sublattice
of coc(	).

Example 2.5 The GLB of termsp1 and p2 in Example 2.4 isp1, sincep1 � p2. The
GLB of likes(who) student) andlikes(who) emp) is likes(who) mary). Their LUB
is likes(who) >). The GLB of atomic termsfoodandstudentis?; i.e., we cannot unify
these.

3 Representation in a database

We now discuss the storage of facts in an external relational database.

3.1 Qualified segments

In a relational database, identically formed objects are grouped together in a relation. We must
define a similar grouping on facts that we store in the external database. We must also find a
way to represent subtype information relevant to type symbols in these facts in the database
as well as there is no evident way to express subsumption in relational algebra. Therefore, if
a fact is stored in a database relation, it should imply that particular subtype relationships are
defined for symbols in this fact. Thus we should group facts with similar subtype relationships
for its symbols, for example symbols with the same parents or children or both. However,
there is a trade-off: the more subtype information is implicitly represented, the more database
relations are needed to store all facts.

We choose to group facts with thesame set of parentsfor all symbols at each given occurrence.
It turns out that this is a natural choice since sharing parents is the most immediatecommonality,
akin to values being of the same type. These sets are calledqualified segments:
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10 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

Definition 15 (Qualified segment) A qualified segment Q is a set of non-bottom facts such
that all facts have the same set of parents for the type symbol at each occurrence:

8f ; f 0 2 Q; 8a2 �f : par( f(a)) = par( f 0(a))

With some easy thinking, one can convince oneself that all facts inQ must necessarily be
identically formed. Indeed, the occurrence domain is the same for all facts in a qualified
segment, since parents are the same for symbols at each occurrence. For a qualified segment
Q, the common occurrence domain of all facts is denoted�Q.

For a programP, we can use multiple qualified segments to store part of the facts inP in the
database. We store each qualified segment in a separate database relation, and in the interface
we store a description of the contents of each segment, called thequalifier. A qualifier is a set
of terms, that are generalizations of all facts in the qualified segment:

Definition 16 (Qualifier) To a qualified segment Q corresponds aqualifier, denotedqua(Q),
which is the LUB of all facts in Q.

Example 3.1 Let us assume the two facts of LIFElikes(who) mary;what) sweets)
andlikes(who) mary;what) apples). Since both facts have the same parents for all type
symbols, we can represent them in a qualified segmentQ = flikes(who) mary;what)
sweets); likes(who) mary;what) apples)g. The qualifier isqua(Q) = likes(who)
mary;what) food).

An important remark is that the qualifier of a qualified segment is alway astrict generalizer of
all facts of the segment. This is a consequence of having grouped facts in the same qualified
segment if and only if the type symbols at all their occurrences shared the same parents.5

And thus, as we will see in Section 5, a qualifier and the terms in the corresponding segment,
implicitly represent subtype relationships.

3.2 Database relations

A relational database consists of database relations:

Definition 17 (Database relation) A database relationRT is a setfr1; r2; . . .; rmg; (m� 0)
of n-ary tuples(n � 1) and is identified by itsrelation name Rand a set ofattribute names
T = ft1; t2; . . .; tng. For a particular tuple r, the value of attribute t is denoted as r:t.

We store a qualified segmentQ in database relationRT by representing each fact inQ as a tuple
in RT. We represent factf as a tupler by flatteningthe fact;i.e., we define a bijective function

5More precisely, this is true if the qualified segment is not reduced to only one fact. But then, as we shall see,
there is no relation to store in the database.
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A Database Interface for Complex Objects 11

v—calledattribute function—that maps occurrences in the occurrence domain�f to attribute
names inT. Then, for each occurrencea 2 �f , we store type symbol f (a) in attributev(a)
in tupler.

This representation is sound, but it can be compressed by recognizing that for particular
occurrences in the occurrence domain, symbols are the same in all facts in the segment. For
example, the symbol at thewho occurrence in Example 3.1 ismary for all facts inQ. This
(possibly empty) set of occurrences is thefixed symbol set:

Definition 18 (Fixed symbol set) For qualified segment Q we define thefixed symbol set
DQ � �Q as:

DQ = fa 2 �Q j 8f ; f 0 2 Q :  f(a) =  f 0(a)g

Symbols at occurrences in the fixed occurrence setDQ are the same for all facts in qualified
segmentQ, hence, we do not have to store them in the database. We only store symbols at
occurrences not inDQ and use any basic term in the qualifier to represent the missing symbols.
Indeed, for each basic termq in the qualifier, the type symbol q(a) for each occurrencea in
the fixed symbol setDQ is their LUB and thus the same as the symbol at this occurrence for
all facts inQ.

The correspondence between qualified segmentQ and database relationRT is defined by a
data definition:

Definition 19 (Data definition) Given segment Q, the corresponding database relation RT is
defined by adata definitiongiven by the quadruplehqua(Q);R; v;DQi.

Data definitions are stored in the interface, thus enabling the representation of facts in segment
Q as tuples inRT. With each factf = h�f ;  f i 2 Q corresponds a unique tupler 2 RT, defined
by:

8t 2 T : r:t =  f (v�1(t))

Conversely, each database tupler 2 RT represents a factf = h�Q;  f i, where the type function
 f is defined as:

 f(a) =

8><
>:
> if a 62 �Q

 q(a) if a 2 DQ

r:v(a) otherwise

whereq 2 qua(Q).
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12 Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci

Example 3.2 The qualifier for qualified segmentQ from Example 2.3 isflikes(who)
mary;what) food)g, and the fixed symbol set isDQ = f";whog. If we representQ as a
database relationRT, we only need to store the symbols at occurrencewhat, so we need a
relation with a single column, sayT = ffoodnameg.

We define the attribute functionv as: v(what) = foodname. The representation ofQ as a
database relation isRT = fhsweetsi; happlesig.

Note, for the sake of consistency, that in the already mentioned degenerate case of a qualified
segment reduced to only one fact, all the information goes into the fixed address set and the
qualifier, leaving nothing to be stored in the external database.

4 Retrieval algorithm

For the retrieval of facts from the database, we use a tight coupling, where we load facts from
the database whenever needed by the inference engine. For a particular goalg, we load the
subsetQ[g] from segmentQ, containing all facts inQ that unify withg:

Q[g] = ff 2 Q j f ^ g 6= ?g

Qualified segmentQ is stored in the database, so we do not know its actual contents, hence
we cannot computeQ[g] by simply unifying all facts inQ with the goal. So, we need
another technique to computeQ[g], independent of the contents ofQ. We use anabstract
interpretation[11] of the inference process, where we use qualifiers instead of facts. In this
abstraction, unification of facts inQ with goalg is an operation on the qualifier and the goal,
resulting in a term—called thecandidate—which approximates the subset ofQ of all facts
unifiable withg. We describe the construction of candidates. First, we define theunifiable set
U(s), the set of all type symbols that unify with symbols; i.e., symbols for which the maximal
common subtype withs is non-bottom:

Definition 20 (Unifiable set) For a type symbol s inS, we define theunifiable setU(s) as:

U(s) = fs0 2 S j su s0 6= f?gg

A candidate is defined such that any fact in the qualified segment subsumed by a basic term in
the candidate, unifies with goalg:

Definition 21 (Candidate) Given a goal g, a basic term, thecandidateC is the set of all
maximal terms c= h�Q;  ci that can be constructed from a term q in the qualifierqua(Q)
that is unifiable with g, as follows.8a 2 �Q :
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 c(a)

(
= > if a 2 DQ, or q(a) �  g(a),

2 chi
�
 q(a)

�
\ U

�
 g(a)

�
otherwise.

Example 4.1 Assume the goalg1 = likes(what) cookies) and qualified segmentQ as
in Example 3.2. By Definition 21, we construct a candidateC1 = >(who) >;what)
sweets). For goalg2 = likes(who ) student;what ) food), we construct candidate
C2 = >(who) >;what) >). For goalg3 = likes(who) peter;what) apples), we
construct candidateC3 = ;.

Thus a candidate contains terms, identically formed to the facts in the segment, and consisting
of >-symbols and immediate subtypes of symbols in the qualifier;i.e., symbols that appear in
facts inQ. If candidateC is empty, the symbols in the terms in the qualifier and the goal do
not unify, then the qualified segment does not contain any facts that unify with the goal. We
have to prove that any factf in qualified segmentQ that unifies with goalg, is subsumed by a
basic termc in candidateC.

Theorem 2 A fact f in qualified segment Q unifies with goal g iff it is subsumed by a basic
term c in candidate C; namely,

f ^ g 6= ? , f � c

Proof: By Definition 13 and Theorem 1, we can rewrite the above to a condition on type symbols,
8a 2 L�:

 f (a) u  g(a) 6= f?g ,  f (a) �  c(a)

We first prove that if the maximal common subtype of two symbols f (a) and g(a) is non-bottom,
then we can construct a termc such that f (a) is smaller than the corresponding symbol c(a) in c.

Symbols f (a) and g(a) unify, so f (a) is in the unifiable setU( g(a)). Symbol q(a) is larger
than f (a), and thus unifies with g(a) as well:  g(a) 2 U( g(a)). So, by definition, c(a) is not
the symbol?. Assume that occurrencea is in the fixed occurrence setDQ. By definition, c(a) = >

and thus symbol f (a) is smaller than the symbol c(a) in c. Alternatively, if occurrencea is not in
the fixed symbol setDQ, symbol f (a) in fact f is a child of q(a). We also know that f (a) is in
U( g(a)), thus we can construct a termc where c(a) =  f (a). So we can construct a termc larger
than any factf that unifies with goalg.

We also prove that if factf in Q doesnot unify with goalg, we cannot construct a termc larger than
f . Factf and termg do not unify, so for at least one occurrencea, the maximal common subtype of
 f (a) and g(a) is the bottom symbol. We prove that, for this occurrence, we cannot construct a
candidatec with  f (a) �  c(a).

The symbol q(a) is a supertype of f (a). If q andg do not unify, the candidate is empty. Thus, it
does not subsume any fact. Ifq andg unify then q(a) is in U( g(a)), for all occurrencea in �Q.
Symbol g(a) cannot be a supertype of q(a), otherwise, g(a) would be a supertype of f (a) as
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well, and their maximal common subtype would be f (a). Moreover, occurrencea cannot be in the
fixed symbol setDQ, otherwise f (a) =  q(a), contradicting that q(a) is not in the unifiable set
U( g(a)). Hence, the symbol c(a) in c is not>.

If we can construct a termc larger thanf , symbol c(a) would be a child of q(a) and a member of
the unifiable setU( g(a)). Since occurrencea is not in the fixed occurrence set, f (a) is also a child
of  q(a). So the only child of q(a), larger than f (a), is f (a) itself. However, f (a) is not in the
unifiable setU( g(a)), so we cannot construct a termc, where c(a) 2 chi( q(a)) \U( g(a)), that
is larger than factf .

Corollary 1 If fact f is subsumed by a basic term c in candidate C, all symbols in c are either
the top symbol, or equal to the corresponding symbol in fact f .

Proof: Follows directly from the above proof, since c(a) is either>, or a child of the symbol q(a)
in the qualifier. For these symbols, occurrencea is not in the fixed occurrence set, thus symbol f (a)
in termf is also a child of q(a).

The corollary is important, since it states that we can computeQ[g] by a selection with the
candidates, where> is the wild card argument and non-top symbols are selection arguments.
With a candidateC for data definitionD = hF;RT; v;DQi, there corresponds a selection
conditionT[C] that is true for all elements of the setQ[g] and false for any other element ofQ:

T[C] = (T[c1]) or . . . or (T[cp])

whereC= fc1; . . .; cpg. For each termci we construct a selection condition:

T[ci ] =
�

v(a1) =  c(a1)
�

and . . .
and

�
v(an) =  c(an)

�

wherea1; . . .; an are the occurrences with non-top symbols in termci. We select the tuples
that represent facts inQ[g] with a simple SQL-query:

select t1; . . .; tn
from R
where T[C]

The retrieved tuples are then translated to facts, as stated in Section 3.2.

Example 4.2 For the candidateC1 of Example 4.1, we construct a selection condition
T[C1] = (v(what) =  c1(what)) = (foodname= sweets). The query is:
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select foodname
from R
where foodname= ’sweets’

and returns the tuplehsweetsi, which is transformed to the factlikes(who) mary;what)
sweets).

5 Reduced type signature

For the construction of candidates, we use type signature�. Part of the subtype relationships
are implicitly represented in the database, that is, foreach fact in a qualified segment, the
parents of all symbols at occurrences not in the fixed symbol setDQ are stored in the qualifier.
We do not store these ‘implicit’ subtype relationships in the LIFE system, but add them when
facts are loaded.

The remaining subtype relationships have to be stored in the LIFE system, since we have to
be able to reconstruct the entire type signature. However, part of the subtype relationships
implicitly stored in the database are needed to construct candidates. Thus we should either
retrieve these relationships at run-time from the database, or simply duplicate the necessary
relationships in the LIFE system, or use a combination of both techniques.

We will adopt the second strategy, which is simple, and probably non-optimal: we store
sufficient subtype relationships in the LIFE system to compute candidates for any goal and
qualifier in programP. We construct areduced type signature� 0 = hS

0;�0

i, whereS0

� S

and�0

� �.

Definition 22 (Reduced type signature) Thereduced type signature�0 = hS
0;�0

i is such
thatS0 is the subset ofS, where we may excludeleast sorts(parents of bottom) with a single
parent, stored in a database relation, and not in a term in a qualifier. Thereduced subtype
relation�0 is the subset of�, induced by the setS0 :

�
0 = � \ S

0

� S
0:

Example 5.1 The reduced type signature�0 is depicted in Figure 3. The least sorts
with a single parent are the symbolslikes;mary; apples; cookiesand chocolate. The
symbols in the database areapples and sweets. The symbols not in a qualifier are
student; emp; apples; sweets; cookiesandchocolate. Hence, the only symbol that is a least
sort, in a database relation and not in a qualifier isapples.

We have to prove that the reduced type signature is complete; that is, all subtype relationships
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Figure 3. Reduced type signature�0.

are represented either in the database or in the reduced type signature. Moreover, we have to
prove that we construct the same candidates with the reduced type signature.

Theorem 3 All subtype relationships are either represented in the LIFE system or implicitly
in the database.

Proof: Assume a subtype relations � s0 wheres is not inS0. By definition,s is a symbol in a
database relation, and not a symbol in a qualifier. So there is a symbols00 2 S0 at the corresponding
occurrence in the qualifier for this database relation, sos� s00 is a relation implied by this segment.
Sinces ands00 are inS0, s00 �0 s0. So we can reconstructs� s0, sinces� s00 ands00 �0 s0.

Now assume the relations � s0 wheres0 is not inS0. Since only least sorts are not stored inS0, s
must be the bottom symbol, and? � s0 is implicitly defined by the type signature for anys0 2 S.

Theorem 4 If we exchange� for �0, we construct the same candidates for a goal g and a
qualifierqua(Q).

Proof: To construct candidates, we compute the unifiable setU(s) for any symbols in the goal. We
defineU0

(s) as the set containing all symbols inS0 that unify withs2 S0, as defined by the subtype
relation�0. For the correct construction of candidates,U0

(s) should contain all symbols inU(s) that
are also inS0, that is:

8s; s0 2 S0 : s0 2 U0
(s) , s0 2 U(s)

Symbols0 is in U(s) if the maximal common subtype ofs ands0 is non-bottom. We prove that for
anys; s0 in S0, maximal common subtypessu s0 form a subset ofS0, and thus thats0 is in U0

(s) if s0

is in U(s). The setsu s0 is eitherfsg or fs0g, or a set of symbols, smaller than boths ands0. These

March 1993 Digital PRL



A Database Interface for Complex Objects 17

symbols are all inS0, since we excluded only symbols with a single parent, thus symbols that can
never be a maximal common subtype of two other symbols.

Moreover, ifsu s0 = f?g (i.e., s0 62 U(s)), thans0 is not in the unifiable setU0
(s) as well, since the

subtype relation�0 in the reduced type signature form a subset of the subtype relation�.

As can be seen in Example 5.1 and Figure 3, simply duplicating all necessary subtyping
information works fine for qualified segments containing a large number of facts with least
sort symbols (i.e., data typically found in databases), since these symbols are not stored in
the reduced type signature. However, we stress that the above solution is non-optimal, since
the reduced type signature� 0 contains more subtype information than actually needed. We
believe it is possible to further ‘strip-down’ the reduced type signature. We think of a technique
calledsegment guessing, where less subtype information is needed, and the retrieval algorithm
queries any database relation that might contain unifiable facts, based on available subtype
information.

6 Optimization

To reduce database interaction, we assert loaded facts in the internal LIFE database, instead
of retrieving the same facts over and over again. However, if we assert facts in the internal
database, we should retrieve each fact only once. Thus when querying the database for all
unifiable facts for goalgi in segmentQ, we should exclude all facts loaded fromQ for previous
goalsg1; . . .; gi�1.

As we stated in Section 4, we can describe each subsetQ[gi] with a selection conditionT[Ci ].
Thus we can exclude any subset with the negation of its selection condition. We select the
tuples from the database with an SQL-query:

select t1; . . .; tn
from R
where T[Ci ] and not (T[C1])

and . . .
and not (T[Ci�1])

The set of all candidates for previous goals forms anabstract cache, storing the results of
previous abstract computations;i.e., all constructed candidates. This is also known as the
caching of queries, as described by Ceriet al. in [10]. However, storing all these candidates is
expensive, and therefore we will shortly mention a few optimizations.

Instead of storing all previous candidates, we use a single set—calledlook-up setto represent
that part of the qualified segment that has been loaded:

Definition 23 (Look-up set) For a segment Q, we define thelook-up setL[i] as the set,
formed of the maximal terms in the union of candidates c1; . . .; ci.
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A look-up set is an equivalent, but more compact notation for a set of candidates, since any
term subsumed by another term, is removed. The SQL-query reduces to:

select t1; . . .; tn
from R
where T[Ci ] and not (L[i � 1])

Another optimization consists of posing only queries that might retrieve any tuples, that is, we
exclude queries with a contradicting selection condition. This occurs when the current query is
subsumed by a previous query, as described in [10]. The subsumption of queries is defined by
the subtype relation� on candidates. That is, all facts for goalgi have been loaded if any termc
in candidateCi is subsumed by some termc0 in the look-up set:8c 2 Ci ; 9c0 2 L[i�1] : c� c0.

A third optimization is the partial exclusion of previous queries. If we retrieve a set from the
database, we only need to exclude previously retrieved sets that overlap with the current set;
i.e., Q[gi] \Q[gj ] 6= ;.

We further like to mention that, since candidates are wild card selections, testing subsumption
and overlapping reduces to simple comparison operations on the respective type symbols.

7 Conclusion

We have overviewed a formal design for interfacing a logical query language with complex
objects to a relational database. Our system is an improvement on previous systems in that it
provides database storage for objects ordered thanks to a subtype hierarchy, representing part
of this hierarchy in the database as well. The representation of the objects is flexible; arbitrarily
nested objects can be represented in a maximally compressed format, where compressing and
decompressing is handled by the interface. The loading algorithm is quite efficient in that it
loads only objects actually needed by the LIFE system, and never loads the same object twice,
thus improving results in [10]. In addition, our design also improves on previous work by
providing for free the ability, intrinsic to -terms, to store and query partial information. For
example, if all facts in LIFE’s EDB stipulate that all students are happy, a query requesting to
list happy things will avoid itemizingin extensoall 12,452 tuples of students, giving only the
one tuple corresponding to theintensionalLIFE fact happy(student).

LIFE is an extension of logic programming: first-order logic programs are LIFE programs
with aflat type signature;i.e., all type symbols—except for> and? are incomparable. Hence,
the retrieval algorithm holds for languages using Prolog terms as objects as well.

Part of the system described in this paper has been implemented: the LIFE–WISDOM system
(LIFE With Inheritance Supported Data Object Management) implements a database interface
for an implementation of LIFE called wildLIFE [3], to an ORACLE relational database [12].
The current system implements both database retrieval and updates, but only for single
inheritance and facts consisting of least sorts.
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As for the future, we want to extend this approach to goals with variables. For example,
a goal such asname(X;X) must only unify with facts with identical arguments and should
generate database queries retrieving only tuples with identical values in columns. Then, we
may translate entire LIFE rules to complex join operations on the database. The translation of
recursive LIFE rules to extended relational algebra expressions must also be explored. Another
direction of research consists of weakening the restrictions for the reduced type signature, by
redefining qualified segments and using other search strategies, such assegment guessing.
Also, we may consider iterating our construction, building multiple levels of abstractions;i.e.,
the storage of qualifiers themselves inhigher-levelqualified segments.
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Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
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Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.
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