
PARIS RESEARCH LABORATORY

d i g i t a l

December 1992

21

Giuseppe Longo
Kathleen Milsted
Sergei Soloviev

The Genericity Theorem
and the Notion of Parametricity

in the Polymorphic �-calculus

21

The Genericity Theorem
and the Notion of Parametricity
in the Polymorphic �-calculus

Giuseppe Longo

Kathleen Milsted

Sergei Soloviev

December 1992

Publication Notes

This work will be published in a special issue ofTheoretical Computer Scienceon Lambda
Calculus, in honor of Corrado B¨ohm’s 70th birthday. An extended abstract of this work also
appears in the Proceedings of the 8th Annual IEEE Symposium onLogic in Computer Science,
Montreal, Canada (June 20-23, 1993).

For further information, please contact Giuseppe Longo at LIENS(CNRS)-DMI, Ecole
Normale Sup´erieure, 45 rue d’Ulm, 75005 Paris, France. E-mail:longo@dmi.ens.fr

c Digital Equipment Corporation and Ecole Normale Supérieure 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by joint permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe
(Rueil-Malmaison, France) and of the Laboratoire d’Informatique of the Ecole Normale Sup´erieure
(Paris, France); an acknowledgement of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. All rights reserved.

ii

Abstract

In the polymorphic�-calculus, one may explicitly define functions that take a type as input and
return a term as output. This work focuses on how such functions depend on their input types.
Indeed, these functions are generally understood to have an essentially constant meaning on
input types. We show how the proof theory of the polymorphic�-calculus suggests a clear
syntactic description of this phenomenon. Namely, under a reasonable condition, we show that
if two polymorphic functions agree on an input type, then they are, in fact, the same function.
Equivalently, types aregenericinputs to polymorphic functions.

Résumé

Dans le�-calcul polymorphe, on peut explicitement d´efinir des fonctions qui prennent un
type comme argument et qui renvoient un terme comme r´esultat. Le but de ce travail est
de mieux comprendre la d´ependance de ces fonctions vis-`a-vis de leurs arguments types. En
effet, ces fonctions sont g´enéralement consid´erées comme ´etant essentiellement constantes par
rapport aux arguments types. Nous montrons que la th´eorie syntaxique du�-calcul polymorphe
suggère une description claire de ce ph´enomène : sous une condition raisonnable, si deux
fonctions polymorphes s’accordent sur un seul type, elles sont identiques. Autrement dit, les
types sont des argumentsgénériquesaux fonctions polymorphes.

iii

Keywords

Type theory; second-order lambda calculus; system F; parametric polymorphism; parametric-
ity; genericity.

Acknowledgements

We are greatly indebted to Pierre-Louis Curien who pointed out a fundamental error in a
preliminary version of this work, as well as the connection to Reynolds’s conditions. Thanks
also to Jean Gallier for many passionate discussions about system F, to Eugenio Moggi
and Roberto Di Cosmo for helpful comments and some early discussions on the Genericity
Theorem, and to Simone Martini and the referees for valuable suggestions about this paper.

Giuseppe Longo’s work was partially supported by a collaboration at Digital PRL. Sergei
Soloviev’s work was carried out at LIENS under a grant from the French Ministry for Research
and Technology.

iv

Contents

1 Introduction 1

2 System F 3

3 System Fc 5

4 Roadmap to the Proof of Genericity 6

5 Type and Term Generalizers 8

6 Weak Genericity of F-equality 14

7 Quasi-Genericity of C�-equality 15

8 Commutativity of C�-equality with Reduction 17

9 The Genericity Theorem 21

10 Models 23

References 26

v

The Genericity Theorem 1

1 Introduction

The use of types as explicit parameters, or variable types, is at the core of polymorphic
(functional) languages, and was introduced, in Logic, by Girard [Gir71] and, in Computer
Science, by Reynolds [Rey74]. The idea is that one may define formal functions that explicitly
depend on input types. In�-calculus notation, where capitalX; Y; ::: stand for type variables,
one may construct terms such as�X:M which may be fed a type as input and give a term as
output (in Logic jargon,�X:M is a second-order term in impredicative Type Theory).

Originating with remarks by Strachey [Str67], a distinction was introduced on how these
explicitly polymorphic functions should behave. Indeed, in computing, programs may depend
on types. Overloaded functions, for example, may call different code according to the input
type (or to the type of the input): + uses different code according to whether the addition is
performed on (the type of) reals or integers, say. This sort of dependency of terms on types,
known asad hocpolymorphism, is an expressive feature of some programming languages, in
particular when handled at run-time, and may suggest interesting and general formal systems
(see [CGL92], say).

According to Strachey (and Reynolds) then, “proper” polymorphism, as opposed to the ad
hoc variety, is the property that second-order terms have auniform dependency on input
types, or that their output terms do not “essentially” depend on input types. Note, though,
that the output terms of, say,�X:M applied to types� and� , i.e., (�X:M)� and (�X:M)� ,
need not live in the same type. The point then is to understand how core systems, such as
Girard-Reynolds system F [Gir71, Rey74] (also known as second-order�-calculus), realize
this uniform dependency property, known asparametricity, and compare terms possibly living
in different types; more generally, to understand the functional behavior of formal functions
such as�X:M .

A semantic criterion for parametricity was proposed by Reynolds [Rey83, MR91] as an
invariance property under relations between type values. In short, if a relation is given on type
parameters� and� , then (the interpretation of)�X:M , applied to (the meaning of)� and� ,
should send related elements of� and� to related elements in the types of the outputs. This
is known asrelational parametricity, and a syntactic treatment of it is given in [ACC93] and
in [PA93].

Another approach to parametricity was proposed by Bainbridge et al. [BFSS90]. Consider
�x : X:N . Is it the case that�x : X:N depends naturally onX , in the sense of natural
transformations of Category Theory? Indeed, natural transformations are the core means of
expressing uniformity on objects (as interpretation of types) in categories. Unfortunately,
natural transformations act on functors, whereas, in general categories, variable types are not
functors. The counterexample is straightforward: the map fromX to X ! X (the arrow
type) should be at once a covariant and contravariant functor. A partial solution, in the
context of the typed�-calculus, may be given by considering categories where maps are only
retractions (as in [Sco72, SP82, Gir86]) or isomorphisms (as in [DL89]). This is fine for
specific purposes, as in those papers, but does not describe the situation in the full generality

Research Report No. 21 December 1992

2 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

of a model theoretic approach. On the other hand, this issue of contra/covariant functors was
partly at the origin of relevant generalizations of the notion of functor in mathematics, for
example [EK66]; see also [Mac71]. In this line of work, Bainbridge et al. propose to interpret
terms as dinatural transformations, yet another elegant categorical notion derived from tensor
algebra and algebraic topology. The rub is that, in general, dinatural transformations do not
compose, while terms do; however, the interpretation works well (i.e., it is compositional)
on relevant models (see [BFSS90, FGSS88, GSS]), in particular on models of relational
parametricity as formalized in [PA93]. On essentially similar lines, Freyd suggested a novel
notion of structor in order to understand, categorically, the notion of uniformity inherent in
second-order�-terms.

These attempts suggested brand new constructions and relevant mathematics, but seem still
insufficient to fill the essential gap between the parametricity of second-order�-calculus and
the uniformity with respect to objects (and functors) as expressed by natural transformations in
Category Theory. This is probably one of the few mismatches (together with subtyping versus
subobjects) out of many deep connections between types and objects, terms and morphisms,
as summarized, say, in [AL91] and [LS86]. A survey and a classification of the various forms
of parametricity is proposed in [Lon93].

In this paper, we consider a weak extension of system F, suggested by the following simple
result of Girard in [Gir71]: given a type�, if one takes a termJ� such that, for any type� , J��
reduces to 1 if� = � , and reduces to 0 if� 6= � , then F+J� does not normalize. Since system
F normalizes,J� is not definable in F. The point here is that the polymorphic termJ� gives
essentially different output terms, which live in the same type, according to the (values of the)
input types. Then, a first point in our understanding of parametricity is that a polymorphic
term that gives outputs in the same type for all input types, must be constant. This is expressed
by the following equational scheme:

(Axiom C) M� = M� 0 for Γ `M : 8X:� and X =2 FV (�)

That is, if the outputs of a polymorphic termM , applied to any type, all live in the same
type, then these outputs are simply equal. Axiom C is not provable in F, but it is compatible
with F, that is, system F may be consistently extended with it. Indeed, a generalization of
Axiom C appears in the system F<: [CMMS91] which extends system F with subtyping; see
rule Eq appl2. In our view, the compatibility of Axiom C with system F is one thing to
be noted in order to understand parametricity. Moreover, all models that yield the dinatural
interpretation of terms in [BFSS90] realize Axiom C, as do PER models in realizability
topoi and Girard’s models over dI-domains and stable maps. From [ACC93] and [Has93],
it also turns out that Axiom C is realized by all models that satisfy Reynolds’s relational
parametricity condition [MR91]. A categorical characterization of models realizing Axiom C
will be outlined in Section 10.

Consider now Fc, the extension of system F with Axiom C. The main result of this paper is the
following theorem:

December 1992 Digital PRL

The Genericity Theorem 3

(Genericity Theorem) AssumeM andN live in the same type8X:�
If M� =Fc N� for some type� , then M =Fc N

The reader should notice where intended parentheses and existential quantification are located,
and also, that there is no restriction on�. The Genericity Theorem states the rather strong fact
that, in Fc, if two second-order terms coincide on an input type, then they are, in fact, the same
function. Or, equivalently, that each input type acts as agenericinput, as a variable. It also
says, in a sense, that there are “very few” polymorphic functions. Note that the Genericity
Theorem does not hold in F. Take, for example,x : 8X:� with X =2 FV (�), and consider
M � �X:x� and N � �X:xX; both of type8X:�. Then, M� =F N� butM andN are
not F-equal. Indeed, as pointed out by Furio Honsell and one of the referees, it is easy to show
that Fc is the least equational extension of F which yields the Genericity Theorem.

Observe finally that, although all models of relational parametricity realize Axiom C, it may
be shown that no such model realizes Genericity as an implication. This is a delicate issue,
hinted at in Section 10 and discussed extensively in [Lon93]. In the following sections, we
recall system F and introduce our syntactic conventions, describe system Fc, and prove the
Genericity Theorem.

2 System F

The language of system F consists oftypesand terms. A type is either a type variable, a
function type, or a polymorphic type, while a term is either a variable, an abstraction, an
application, a type abstraction, or a type application. Types and terms have the following
syntax:

Types � ::= X j � ! � j 8X:�

Terms M ::= x j �x :�:M j MN j �X:M j M�

We will use�, � , �, �, � for types andM , N for terms, while for variables, we will useX ,
Y , Z for type variables andx, y, z for term variables. Following the usual conventions for
minimizing parentheses, applications associate to the left,! associates to the right, and the
scope of8 and� extends as far to the right as possible. For any type or termP , the set of
its free (type and term) variables is defined as usual, and writtenFV (P). Capture-avoiding
type substitution and term substitution is also defined as usual on types and terms, and written
[�=X]P and [M=x]P , respectively.

Assignment of types to terms takes place relative to a set ofvariable declarations, where each
declaration assigns a unique type to a term variable. We will useΓ for a set of declarations,
and we writeΓ; x : � to extendΓ with a new declarationx : �, wherex must not occur in
Γ. The substitution of a type in a set of declarations, [�=X]Γ, is defined component-wise as
substitution into the type ofeach declaration inΓ.

Research Report No. 21 December 1992

4 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

A type assignmentis a meta-expression of the formΓ ` M : �, which asserts that termM
has, or lives in, type�, relative to the declarations inΓ. The following rules define valid type
assignments.

Type Assignment Rules

(declaration) Γ; x :� ` x : �

(!-intro)
Γ; x :� `M : �

Γ ` �x :�:M : � ! �
(!-elim)

Γ `M : � ! � Γ ` N : �
Γ `MN : �

�(8-intro)
Γ `M : �

Γ ` �X:M : 8X:�
(8-elim)

Γ `M : 8X:�
Γ `M� : [�=X]�

� forX not free in the type of
any free term variable inM

Note the restriction on the8-intro rule: without it, it would be possible to prove inconsistencies
such asx :Y ` x : Z. This restriction will show up frequently later.

Equality of terms is defined by the following schemes and rules:

Equational Schemes and Rules

(�1) (�x :�:M)N = [N=x]M (�2) (�X:M)� = [�=X]M

(�1) �x :�:Mx = M for x =2 FV (M) (�2) �X:MX = M for X =2 FV (M)

(�1)
M = N

�x :�:M = �x :�:N
(�2)

M = N

�X:M = �X:N

(app1)
M1 = M2 N1 = N2

M1N1 = M2N2
(app2)

M = N

M� = N�

(refl) M = M (sym)
M1 = M2

M2 = M1
(trans)

M1 = M2 M2 = M3

M1 = M3

We will use the symbol� for syntactic identity. For types,� = � is the same as� � � while,
for terms,M � N impliesM = N but not vice-versa.

Reduction of terms is defined as usual by the closure of the following rules:

(�1) (�x :�:M)N �!�1 [N=x]M (�2) (�X:M)� �!�2 [�=X]M
(�1) �x :�:Mx �!�1 M for x =2 FV (M) (�2) �X:MX �!�2 M for X =2 FV (M)

We will write�!F for the union of these reductions.

December 1992 Digital PRL

The Genericity Theorem 5

The following important properties hold for system F.

Unique Typing
A well-typed term lives in a unique type: ifΓ `M : � and Γ `M : � then � = � .

Strong Normalization
There are no infinite reduction sequences from well-typed terms.

Church-Rosser
If M �!F M1 and M �!F M2 then there exists anM0 such that M1 �!F M0 and
M2 �!F M0.

Equational Church-Rosser
If M1 = M2 then there exists anM0 such thatM1 �!F M0 and M2 �!F M0.

3 System Fc

System Fc is formed by adding the following equational scheme to system F:

(Axiom C) M� = M� 0 for Γ `M : 8X:� and X =2 FV (�)

That is, if the outputs of polymorphic functionM live in a type� that does not depend on
M ’s input type, then the outputs are equal, regardless of the input type. Or, equivalently,M is
constant.

Axiom C equates more terms than in system F. We will writeM =F N for F-equations, and
M =Fc N for Fc-equations. Clearly, Axiom C is not provable in system F. Takex : 8X:�
with X =2 FV (�), and apply Axiom C tox. This gives

x� =Fc x�

These two terms would be equated in system F only if� = �.

Since system Fc adds no new terms, types, typing rules, or reductions, it enjoys the same
non-equationalproperties as system F, such as unique typing of terms, as well as strong
normalization and the Church-Rosser property (relative to�!F). However, a number of
equationalproperties fail for Fc, in particular, the equational Church-Rosser property: for
example, even thoughx� =Fc x� above, there is no common term to which bothx� andx�
reduce.

In the proof of the Genericity Theorem, it will generally be more convenient to use a term
with a type substitution structure such as [�=X]M instead of a polymorphic applicationM� .
Thus, we may use the following formulation of Axiom C:

(Axiom C�) [�=X]M = [� 0=X]M for Γ `M : � and X =2 FV (Γ) [FV (�)

It is simple to prove that Axiom C and Axiom C� are equivalent. We give the proof to stress
the extra side-conditionX =2 FV (Γ) on Axiom C� and its relation to the side-condition on

Research Report No. 21 December 1992

6 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

8-introduction. These conditions will appear frequently in the later proofs. We will write
M =c N andM =c� N if M andN are equal by only applications of Axiom C and Axiom C�

respectively.

Remark: Axiom C� is equivalent to Axiom C.

Axiom C implies Axiom C�:
Assume thatΓ `M : � and X =2 FV (Γ) [FV (�).
SinceX =2 FV (Γ), thenX is not free in the type of any free term variable inM .
So, by8-intro, Γ ` �X:M : 8X:�. Also,X 62 FV (�).
Thus, by Axiom C and�2, [�=X]M =�2 (�X:M)� =c (�X:M)� 0 =�2 [� 0=X]M .

Axiom C� implies Axiom C:
Assume thatΓ `M : 8X:� and X =2 FV (�).
Let Z be a fresh variable. Then,Γ `MZ : � andZ is not free in any ofΓ;M; �.
Thus, by Axiom C�, M� � [�=Z](MZ) =c� [� 0=Z](MZ) � M� 0.

4 Roadmap to the Proof of Genericity

In this section, we outline the route to the proof of the Genericity Theorem:

AssumeM andN live in the same type8X:�
If M� =Fc N� for some type� , then M =Fc N

The hard part is to prove the following Main Lemma, which is a substitution formulation of
the Theorem:

AssumeM andN live in the same type�
If [�=X]M =Fc [�=X]N for some type� , then M =Fc N

The first remark to be made about the proof is that it is not an induction. The point is that
corresponding subterms of Fc-equal terms do not need to live in the same type. The following
example illustrates why.

Example: Assumex : 8Y:Y and z : 8Y1:8Y2:Y1! Y2.
LetX andZ be fresh type variables.
Then, Axiom C� can be applied to the termzZX(xZ) : X to obtain

z�X(x�) =Fc z�X(x�)

Note that subtermsz�X andz�X live in different types.

However, this example also provides a hint to the proof of Genericity. Observe that the
Fc-equality z�X(x�) =Fc z�X(x�) is obtained via the intermediate termzZX(xZ) to

December 1992 Digital PRL

The Genericity Theorem 7

which Axiom C� is applied. Furthermore,z�X(x�) andz�X(x�) are both instances of this
term, using type substitutions [�=Z] and [�=Z] respectively. Approximately then, the hint is
this: given two Fc-equal terms, construct a common term that can be instantiated to the two
terms by type substitutions, and to which Axiom C� can be applied.

The proof thus begins in Section 5 by developing the notion of ageneralizerfor second-order
terms. This is a novel idea for the polymorphic�-calculus, although it is, of course, related
to generalizers and anti-unifiers of first-order calculi. Given two second-order terms that are
identified by type substitutions, we construct a common term that can be instantiated, by type
substitutions, to the original terms. Similarly, we can construct a common type that can be
instantiated, by type substitutions, to two given types. Furthermore, if the two terms live in
two different types, then the generalizer of the terms lives in the generalizer of the types. Note
that this notion of generalizer usestypesubstitutions, not term substitutions (as is usual for
first-order terms).

In Section 6, we use generalizers to prove the followingWeak Genericitytheorem:

AssumeM andN live in the same type�
If [�=X]M =F [�=X]N for some type� , then M =Fc N

The weakness arises because an F-equality is used in the premise instead of an Fc-equality.
This theorem is used in the final result, and it marks an important halfway-point in the overall
proof.

The proof proceeds next with a property of C�-equality that we callQuasi-Genericity: if a term
has a type substitution structure (is of the form [�=X]M) and Axiom C� is applied to it, then
that exact type substitution structure is preserved, that is, the result is of the form [�=X]N ,
and, moreover,M =c� N . The proof of this also uses generalizers and is given in Section 7,
where we also give a counter-example to show that F-equality doesnot satisfy this property.
Using Quasi-Genericity, we are able to prove another weak version of Genericity, this time
with C�-equality in the premise instead of Fc-equality:

AssumeM andN live in the same type�
If [�=X]M =c� [�=X]N for some type� , then M =Fc N

Finally, in Section 9, we draw all the pieces together to prove the Main Lemma. This involves
examining the chain of F and C�-equalities [�=X]M =Fc [�=X]N . Unfortunately, F-equality
and C�-equality do not commute, but, in Section 8, we show that forward�1�2�1 reduction (but
not�2 reduction) commutes with C�-equality. Using this fact, the Church-Rosser property for
F-reductions, and Quasi-Genericity of C�-equality, we “push” the [�=X] substitution structure
from [�=X]M through the chain so that each node in the chain has the form [�=X]Mi for
someMi with M =Fc Mi. Finally, we use Weak Genericity of F and C�-equality to show that
the final node [�=X]N in the chain is such thatM =Fc N . This gives the Genericity result.

Research Report No. 21 December 1992

8 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

5 Type and Term Generalizers

In this section, we construct a notion ofgeneralizerfor types and terms. In short, a generalizer
of two types (terms) may be instantiated, using type substitutions, to the two types (terms),
under suitable conditions. Generalizers are used in later sections, where we show that, in the
case of term generalizers, the typing of the generalizer permits Axiom C� to be applied to it,
resulting in Fc-equality of the two terms.

As motivation, consider two termsM1 andM2 such that [�=X]M1 � [�=Y]M2. Then,
approximately, a generalizer ofM1 andM2, with respect to a fresh type variableZ, is a term
M0 such that, for suitable types�1; �2:

[�1=Z]M0 � M1

[�2=Z]M0 � M2

In other words, if two terms can be unified as above, then we construct a common “term
schema” which can be instantiated, by type substitutions, to both of them. This is an abstract
notion of a generalizer though, and the generalizers that we construct here require more details,
including an analysis of occurrences of� in � or � in � .

Definition: ink
If there arek � 0 occurrences of type� in type�, we will write � ink �.

Definition: Context
Let �; �; �0 be types and letX be a type variable. We say that�0 is anX-context for � in � if
[�=X] �0 = �.

If � ink � with k � 0, then, given freshX , there are 2k different X-contexts for� in �.
We will assume given an enumeration of these contexts, which we will write as�X1 ; . . .; �Xh
whereh = 2k. By convention, we take�X1 to be�. For example, if� = �, then there are two
X-contexts for� in �: �X1 = � and�X2 = X .

Substitution Convention
Let P1; P2 be either two terms, or two types, or two sets of variable declarations.
If [�=X]P1 � [�=Y]P2 for some types� and �, then we will assume, with no loss of
generality, that, by variable renaming,X andY are not free in� and�.

December 1992 Digital PRL

The Genericity Theorem 9

Definition: Generalizer
Let P1; P2 be either two terms, or two types, or two sets of variable declarations, such that
[�=X]P1 � [�=Y]P2 for some types� and�.

� Case:� ink � for k > 0.
Let h = 2k. Given fresh type variablesZ0; . . .; Zh, we say thatP0 is a Z0; . . .; Zh-
generalizerof P1 andP2 iff X andY are not free inP0 and

[X=Z0; �
X
1 =Z1; . . .; �Xh =Zh] P0 � P1

[�=Z0; Y =Z1; . . .; Y =Zh] P0 � P2

where�X1 ; . . .; �Xh are theX-contexts for� in �.

� Case:� ink � for k � 0 and the previous case does not apply.
Let h = 2k. Given fresh type variablesZ0; . . .; Zh, we say thatP0 is a Z0; . . .; Zh-
generalizerof P1 andP2 iff X andY are not free inP0 and

[�=Z0; X=Z1; . . .; X=Zh] P0 � P1

[Y =Z0; �
Y
1 =Z1; . . .; �Yh =Zh] P0 � P2

where�Y1 ; . . .; �Yh are theY -contexts for� in � .

Observe that, if� = �, then the first case of the definition applies, by� in1 �, giving

[X=Z0; �=Z1; X=Z2] P0 � P1

[�=Z0; Y =Z1; Y =Z2] P0 � P2

If � and� are unrelated (i.e., they do not occur in each other), then the second case applies, by
� in0 � :

[�=Z0; X=Z1] P0 � P1

[Y =Z0; �=Z1] P0 � P2

Indeed, no matter how� and� are related, only one case of the definition applies: for example,
one cannot have both� in0 � and� in0 � , nor both� in0 � and� ink �.

Lemma 5.1 (Type Generalization)
Let �1; �2 be two types such that[�=X]�1 = [�=Y]�2 for some types� and�. Assume thatk
is given either by� ink � for k > 0, or � ink � for k � 0 and not the previous case. Leth = 2k .
Given fresh type variablesZ0; . . .; Zh, there exists a type�0 that is aZ0; . . .; Zh-generalizer
of �1 and�2.

Proof: Let � = [�=X]�1 = [�=Y]�2 and perform the following markings:
� Mark in � those occurrences of� that derive from�1 by a [�=X] substitution.
� Mark in � those occurrences of� that derive from�2 by a [�=Y] substitution.
Consider first the case where� ink � for k > 0.
Observe that some of the marked�s may appear in a marked�.
Construct then�0 from � by the following procedure:

Research Report No. 21 December 1992

10 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

1. Replace byZ0 all marked�s that do not occur in a marked�.
2. Consider now a marked�, possibly containing marked�s.

Let �Xi be the correspondingX-context in� for the marked�s. (If there are no marked
�s, this will be�X1 � �). Replace the marked� byZi.

In the alternative case,� ink � for k � 0 and not the previous case, observe that some of
the marked�s may appear in a marked� . Then, apply the dual construction procedure,
where the roles of� and� in steps 1 and 2 are interchanged, and�Yi , theY -contexts for�
in � , are used instead of�Xi , theX-contexts for� in �.

In the following lemma, we show that, once fresh variablesZ0; . . .; Zh are fixed, then the
generalizer of two types is unique. This lemma makes explicit use of the substitution
convention, i.e., thatX; Y 62 FV (�) [FV (�), without which it would fail.

Lemma 5.2 (Uniqueness of Type Generalizer)
Let �1; �2 be two types such that[�=X]�1 = [�=Y]�2 for some types� and �. Assume
that k is given either by� ink � for k > 0, or � ink � for k � 0 and not the previous case.
Let h = 2k. Given fresh type variablesZ0; . . .; Zh, theZ0; . . .; Zh-generalizer of�1 and�2 is
unique.

Proof: Assume first that� ink � for k > 0.
Let �0 and�00 be twoZ0; . . .; Zh-generalizers of�1; �2. Then, by definition,

[X=Z0; �
X
1 =Z1; . . .; �Xh =Zh] �0 = �1 = [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] �00 (1)

[�=Z0; Y =Z1; . . .; Y =Zh] �0 = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00 (2)

with X andY not free in�0 or �00. We will show that�0 = �00 by induction on�0.
Subcase:Assume that�0 � Z0. Then, (1) and (2) become

X = �1 = [X=Z0; �
X
1 =Z1; . . .; �Xh =Zh] �00

� = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00
We now consider the possible choices for�00. Clearly,�00 cannot beX sinceX 62 FV (�00).
Nor can�00 be � since then, (1) becomesX = �1 = � but, by the substitution convention,
X 62 FV (�). Further,�00 cannot beZi for somei = 1 . . .h, because then (2) becomes
� = �2 = Y but, by the substitution convention again,Y 62 FV (�). The only choice is
�00 � Z0 = �0.

Subcase:Assume that�0 � Zi for somei = 1 . . .h. Then, (1) and (2) become
�Xi = �1 = [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] �00

Y = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00
First,�00 cannot beY sinceY 62 FV (�00). Furthermore,�00 cannot be�Xi since, fori = 1,
(2) becomesY = �2 = �X1 = � but, by the substitution convention,Y 62 FV (�), and, for
i = 2 . . .h, X 2 FV (�Xi) butX 62 FV (�00). Also,�00 cannot beZ0 since then, (2) becomes
Y = �2 = � but, by the substitution convention again,Y 62 FV (�). Similarly,�00 cannot be
Zj for somej = 1 . . .h andj 6= i since then, (1) becomes�Xi = �1 = �Xj but�Xi 6= �Xj for
i 6= j. The only choice is�00 � Zi = �0.

December 1992 Digital PRL

The Genericity Theorem 11

Subcase:Assume that�0 � Z 6= Zi for i = 0 . . .h. Then, (1) and (2) become
Z = �1 = [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] �00

Z = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00
SinceX andY are not free in�0, thenZ 6= X andZ 6= Y and, moreover,�00 cannot beZi
for anyi = 0 . . .h. The only choice is�00 � Z = �0.

Subcase:Assume that�0 � � ! �. Then, (1) and (2) become
[X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] (� ! �) = �1 = [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] �00

[�=Z0; Y =Z1; . . .; Y =Zh] (� ! �) = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00
Remark that�00 cannot beZi for anyi = 0 . . .h since, then, a! type would be on the left
of (1) and (2) but a type variable would be on the right (X in (1) andY in (2)). So,�00 must
be of the form�0 ! �0, with �; �0 and�; �0 satisfying equations similar to (1) and (2). By
induction,� = �0 and� = �0. Hence,�00 � �0 ! �0 = � ! � = �0.

Subcase:Assume that�0 � 8Z:�. Then, (1) and (2) become
[X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] (8Z:�0) = �1 = [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] �00

[�=Z0; Y =Z1; . . .; Y =Zh] (8Z:�0) = �2 = [�=Z0; Y =Z1; . . .; Y =Zh] �00
As with the previous case,�00 cannot beZi for anyi = 0 . . .h. So,�00 must be of the form
8Z:�0. By induction,� = �0. Hence,�00 � 8Z:�

0 = 8Z:� = �0.
Treat dually� ink � for k � 0 and not the previous case.

Lemma 5.3
Let �1; �2; �1; �2 be types such that[�=X]�1 = [�=Y]�2 and [�=X]�1 = [�=Y]�2. Assume
thatk is given either by� ink � for k > 0, or � ink � for k � 0 and not the previous case. Let
h = 2k. Given fresh type variablesZ0; . . .; Zh, let �0 and�0 be theZ0; . . .; Zh-generalizers
of �1; �2 and�1; �2, respectively. Then, for anyZ different fromZ0; . . .; Zh, [�0=Z]�0 is the
Z0; . . .; Zh-generalizer of[�1=Z]�1 and [�2=Z]�2.

Proof: by expanding�1; �2 and�1; �2 in terms of their generalizers.

Lemma 5.4 (Generalization of Declarations)
Let Γ1; Γ2 be two sets of declarations such that[�=X]Γ1 = [�=Y]Γ2. Assume thatk is given
either by� ink � for k > 0, or � ink � for k � 0 and not the previous case. Leth = 2k .
Given fresh type variablesZ0; . . .; Zh, there exists a set of declarationsΓ0 that is a unique
Z0; . . .; Zh-generalizer ofΓ1 andΓ2.

Proof: Since [�=X]Γ1 = [�=Y]Γ2, thenΓ1 andΓ2 must declare the same term variables.
Thus, we can assume thatΓ1 � x1 :�1

1; . . .; xn :�1
n and Γ2 � x1 :�2

1; . . .; xn :�2
n

with [�=X]�1
i = [�=Y]�2

i for i = 1 . . .n.
Furthermore, by assumption on [�=X]Γ1 = [�=Y]Γ2, the substitution convention applies
to each [�=X]�1

i = [�=Y]�2
i .

So, fori = 1 . . .n, construct the uniqueZ0; . . .; Zh-generalizer�0
i of �1

i and�2
i .

Then, Γ0 � x1 :�0
1; . . .; xn :�0

n is the uniqueZ0; . . .; Zh-generalizer ofΓ1 andΓ2.

Research Report No. 21 December 1992

12 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

The next theorem is the main result of this section. It constructs a well-typed generalizer
of two terms living in twodifferent types. Uniqueness of type generalizers turns out to be
essential in the proof (see the!-elim case). The point to note is not just that we can construct
a generalizer forM1 andM2, but that we can construct one that is well-typed, and that lives in
the type generalizer of the types ofM1 andM2.

Theorem 5.5 (Term Generalization)
Let Γ1 ` M1 : �1 and Γ2 ` M2 : �2 be such that [�=X]Γ1 = [�=Y]Γ2 and
[�=X]M1 � [�=Y]M2 for some types� and �. Assume thatk is given either by� ink �

for k > 0, or � ink � for k � 0 and not the previous case. Leth = 2k. Given fresh type
variablesZ0; . . .; Zh, there exist a set of declarationsΓ0, a termM0, and a type�0 that are
uniqueZ0; . . .; Zh-generalizers ofΓ1; Γ2; M1;M2; and �1; �2, respectively, and such that
Γ0 `M0 : �0.

Proof: ConstructΓ0;M0; �0 by induction on the derivation ofΓ1 `M1 : �1.
Observe first that [�=X]�1 = [�=Y]�2 since [�=X]M1 � [�=Y]M2 must live in a unique
type. Also, that by assumption on either [�=X]Γ1 = [�=Y]Γ2 or [�=X]M1 � [�=Y]M2,
the substitution convention applies givingX; Y 62 FV (�) [FV (�).
(In the proof, we will write just “generalizer” instead of “Z0; . . .; Zh-generalizer”).

Case:Assume thatΓ1 `M1 : �1 by a variable declaration inΓ1.
Then, M1 � x and x :�1 2 Γ1.
From the assumption [�=X]M1 � [�=Y]M2, we obtainM2 � x.
Furthermore, becauseΓ2 `M2 : �2, then x :�2 2 Γ2.
Take nowΓ0 to be the unique generalizer ofΓ1; Γ2 by Lemma 5.4,
and�0 to be the unique generalizer of�1; �2 by Type Generalization (Lemma 5.1).
Observe that, by construction,x :�0 2 Γ0, from which Γ0 ` x : �0.
Sincex is clearly the only generalizer ofM1 � x andM2 � x, takeM0 � x.

Case:Assume thatΓ1 `M1 : �1 is derived by!-intro.
Then, M1 � �x :�1:M

0

1 and �1 � �1! �1 with Γ1; x :�1 `M
0

1 : �1.
From [�=X]M1 � [�=Y]M2, we obtainM2 � �x :�2:M

0

2
with [�=X]�1 = [�=Y]�2 and [�=X]M 0

1 � [�=Y]M 0

2.
Furthermore, becauseΓ2 `M2 : �2, then �2 � �2 ! �2 and Γ2; x :�2 `M

0

2 : �2.
Consider nowΓ1; x :�1 `M

0

1 : �1 and Γ2; x :�2 `M
0

2 : �2.
By induction, there exist unique generalizers:Γ0

0 of (Γ1; x : �1); (Γ2; x : �2); M 0

0 of
M 0

1;M
0

2; and �0 of �1; �2, such thatΓ0

0 `M
0

0 : �0.
But, since generalizers of types and sets of declarations are unique, thenΓ0

0 must be
Γ0; x :�0 whereΓ0 and�0 are unique generalizers ofΓ1; Γ2 and�1; �2, respectively.
So, in fact, Γ0; x :�0 `M

0

0 : �0, from which, by!-intro, Γ0 ` �x :�0:M
0

0 : �0 ! �0.
Clearly, �x :�0:M

0

0 and �0! �0 are generalizers ofM1;M2 and �1; �2.
Moreover,�0 ! �0 is unique by the uniqueness of type generalizers, and�x : �0:M

0

0 is
unique because any other generalizer ofM1;M2 would be of the form�x :�00:M

00

0 giving
further generalizers,�00 andM 00

0 , of �1; �2 andM 0

1;M
0

2, which is impossible.
Hence, takeM0 � �x :�0:M

0

0 and �0 � �0! �0.

December 1992 Digital PRL

The Genericity Theorem 13

Case:Assume thatΓ1 `M1 : �1 is derived by!-elim.
Then, M1 �M 0

1N
0

1 with Γ1 `M
0

1 : �1! �1 and Γ1 ` N
0

1 : �1.
From [�=X]M1 � [�=Y]M2, we obtainM2 �M 0

2N
0

2
with [�=X]M 0

1 � [�=Y]M 0

2 and [�=X]N 0

1 � [�=Y]N 0

2.
Furthermore, becauseΓ2 `M2 : �2, then Γ2 `M

0

2 : �2! �2 and Γ2 ` N
0

2 : �2.
Consider nowΓ1 ` N

0

1 : �1 and Γ2 ` N
0

2 : �2.
By induction, there exist unique generalizers: ‘Γ0 of Γ1; Γ2; N 0

0 of N 0

1; N
0

2; and
�0 of �1; �2, such thatΓ0 ` N

0

0 : �0.
Consider alsoΓ1 `M

0

1 : �1! �1 and Γ2 `M
0

2 : �2! �2.
By induction, there exist unique generalizers:M 0

0 of M 0

1;M
0

2 and �0 of
�1! �1; �2! �2, such thatΓ0 `M

0

0 : �0.
But by the uniqueness of type generalizers,�0 must be�0! �0, where�0 and�0 are unique
generalizers of�1; �2 and�1; �2, respectively.
Thus, we haveΓ0 `M

0

0 : �0! �0 andΓ0 ` N
0

0 : �0. So, by!-elim, Γ0 `M
0

0N
0

0 : �0.
SinceM 0

0N
0

0 is clearly a generalizer ofM1;M2, with uniqueness proven as in the previous
case, takeM0 �M 0

0N
0

0.
Case:Assume thatΓ1 `M1 : �1 is derived by8-intro.

Then, M1 � �Z:M 0

1 and �1 � 8Z:�1 with Γ1 `M
0

1 : �1, andZ not free in the type of
any free term variable inM 0

1 (by the side-condition on8-intro).
From [�=X]M1 � [�=Y]M2, we obtainM2 � �Z:M 0

2 with [�=X]M 0

1 � [�=Y]M 0

2.
Furthermore, becauseΓ2 `M2 : �2, then �2 � 8Z:�2 and Γ2 `M

0

2 : �2

with Z not free in the type of any free term variable inM 0

2.
Consider nowΓ1 `M

0

1 : �1 and Γ2 `M
0

2 : �2.
By induction, there exist unique generalizers:Γ0 of Γ1; Γ2; M 0

0 of M 0

1;M
0

2; and
�0 of �1; �2, such thatΓ0 `M

0

0 : �0.
Observe now thatZ is not free in the type of any free term variable inM 0

0, since, by the
definition of generalizer,M 0

0 contains exactly the free term variables ofM 0

1;M
0

2.
Thus, we can apply8-intro to Γ0 `M

0

0 : �0 to obtain Γ0 ` �Z:M
0

0 : 8Z:�0.
Clearly, �Z:M 0

0 and 8Z:�0 are generalizers ofM1;M2 and�1; �2, respectively. Their
uniqueness follows as before. Hence, takeM0 � �Z:M 0

0 and �0 � 8Z:�0.
Case:Assume thatΓ1 `M1 : �1 is derived by8-elim.

Then, M1 �M 0

1�1 and �1 � [�1=Z]�1 with Γ1 `M
0

1 : 8Z:�1.
From [�=X]M1 � [�=Y]M2, we obtainM2 �M 0

2�2

with [�=X]M 0

1 � [�=Y]M 0

2 and [�=X]�1 = [�=Y]�2.
Furthermore, sinceΓ2 `M2 : �2, then Γ2 `M

0

2 : 8Z:�2 and �2 � [�2=Z]�2.
Consider nowΓ1 `M

0

1 : 8Z:�1 and Γ2 `M
0

2 : 8Z:�2.
By induction, there exist unique generalizers:Γ0 of Γ1; Γ2; M 0

0 of M 0

1;M
0

2; and�0 of
8Z:�1; 8Z:�2, such thatΓ0 `M

0

0 : �0.
By unicity of type generalizers,�0 � 8Z:�0, where�0 is the generalizer of�1; �2.
Thus, we haveΓ0 `M

0

0 : 8Z:�0, from which, by8-elim, Γ0 `M
0

0�0 : [�0=Z]�0

where�0 is the unique generalizer of�1; �2 by Type Generalization (Lemma 5.1).
Clearly, M 0

0�0 is a generalizer ofM1;M2, with uniqueness proven as before.
Furthermore, by Lemma 5.3, [�0=Z]�0 is the unique generalizer of�1 � [�1=Z]�1;

�2 � [�2=Z]�2. Hence, takeM0 �M 0

0�0 and �0 � [�0=Z]�0.

Research Report No. 21 December 1992

14 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

6 Weak Genericity of F-equality

In this section, we prove a weak form of Genericity that will be used in the final proof. The
weakness or asymmetry arises because =F is used in the premise instead of =Fc. Generalizers
are a key tool in the proof. We first need the following lemma about simultaneous substitutions.

Lemma 6.1
Given type�, if [�1=X1; . . .; �n=Xn] � = [�1=X1; . . .; �n=Xn] � and �i 6= �i for some
1 � i � n, thenXi is not free in�.

Proof: by induction on the structure of�. Note that the substitution convention is used to
assume thatX1; . . .; Xn are not free in�1; . . .; �n; �1; . . .�n.

Theorem 6.2 (Weak Genericity of F-equality)
Let Γ `M1;M2 : �. If [�=X]M1 =F [�=X]M2 for some type� , then M1 =Fc M2.

Proof: LetM 0

1 andM 0

2 be the normal forms ofM1 andM2.
Then, Γ `M 0

1;M
0

2 : � since normalization preserves typing.
Further, since reduction is type-substitutive1, and since type substitution preserves normal
forms, then, from [�=X]M1 =F [�=X]M2, we obtain [�=X]M 0

1 � [�=X]M 0

2.
We now apply Term Generalization to

[�=X]M 0

1 � [�=X]M 0

2 (3)

We are in the situation� = � so the first case of the definition of generalizer applies, i.e.
h = 1. Thus, choose fresh type variablesZ0; Z1; Z2.
By Term Generalization (Theorem 5.5), there exist uniqueZ0; Z1; Z2-generalizers:Γ0 of
Γ; Γ; M 0

0 of M 0

1;M
0

2; and�0 of �; �, such thatΓ0 `M
0

0 : �0.
By the definition of generalizer, we have
[X=Z0; �=Z1; X=Z2] Γ0 = Γ = [�=Z0; X=Z1; X=Z2] Γ0

[X=Z0; �=Z1; X=Z2] �0 = � = [�=Z0; X=Z1; X=Z2] �0
Now, by the substitution convention applied to (3),X 62 FV (�).
So, certainly,� 6= X . We can thus apply Lemma 6.1 to the above two equations to obtain
Z0 andZ1 not free inΓ0 and�0.
Hence, we can apply Axiom C� toM 0

0 for Z0; Z1 in the following:
M1 =F M 0

1 M 0

1 is the normal form ofM1

� [X=Z0; �=Z1; X=Z2] M 0

0 M 0

0 is the generalizer ofM 0

1;M
0

2
=Fc [�=Z0; X=Z1; X=Z2] M 0

0 by Axiom C�

� M 0

2 M 0

0 is the generalizer ofM 0

1;M
0

2
=F M2 M 0

2 is the normal form ofM2

1If M reduces toM 0 then [�=X]M reduces to [�=X]M 0 (cf. [Bar84, page 55]).

December 1992 Digital PRL

The Genericity Theorem 15

7 Quasi-Genericity of C�-equality

This section shows that applications of Axiom C� preserve the type substitution structure of
terms. That is, if Axiom C� is applied to a term of the form [�=X]M , then the result is a term
of the form [�=X]N with M =c� N . We call this propertyQuasi-Genericityof C�-equality
(since it resembles genericity), and the proof of this uses generalizers.

We will write M
1
=c� N if M andN are made equal by one application of Axiom C� only, and

M =c� N if Axiom C� is applied zero or more times. Clearly, ifM
1
=c� N , then the single

application of Axiom C� may have been made either to a proper subterm ofM , or to the entire
termM . Note, however, that an application of Axiom C� to a term cannot always be split into
applications to subterms, as the example of Section 4 shows.

Theorem 7.1 (Quasi-Genericity of C�-equality)
If [�=X]M =c� N 0 then there exists a termN such thatM =c� N and [�=X]N � N 0.

Proof: ConstructN by induction on the number of C�-applications in [�=X]M =c� N 0.
Clearly, if there are 0 applications, i.e., [�=X]M � N 0, then takeN �M .

We consider here only the case, [�=X]M
1
=c� N 0, as the inductive case is obvious by

transitivity.

Assume thus that [�=X]M
1
=c� N 0. Then, as remarked above, Axiom C� is applied either

to a proper subterm of [�=X]M , or to [�=X]M itself.
If Axiom C� is applied to a proper subterm of [�=X]M , the theorem is proven by
straightforward induction on the structure ofM .
Consider then the case when Axiom C� is applied to [�=X]M itself.
We assume, with no loss of generality, that, by variable renaming,X 62 FV (N 0).
Then, by the definition of Axiom C�, there exists a termM 0, types�; �0, and a type variable
Y , such that

[�=X]M � [�=Y]M 0
1
=c� [�0=Y]M 0 � N 0 (4)

where, forΓ `M : �, we haveΓ `M 0 : �0, andY not free inΓ nor�0.
Since Axiom C� is actually applied, thenY 2 FV (M 0) and, thus,X 62 FV (�0), elseX
would be free inN 0, against the assumption.
We now apply Term Generalization to [�=X]M � [�=Y]M 0.

Case:Assume that� ink � for k > 0.
Choose fresh type variablesZ0; . . .; Zh whereh = 2k.
By Term Generalization (Theorem 5.5), there exist uniqueZ0; . . .; Zh-generalizers:Γ0 of
Γ; Γ; M0 of M;M 0; and �0 of �; �0, such thatΓ0 `M0 : �0.
Observe now that, by the definition of generalizer, we have
Γ = [�=Z0; Y=Z1; . . .; Y=Zh] Γ0 and �0 = [�=Z0; Y=Z1; . . .; Y=Zh] �0

But since we also haveY not free inΓ or �0, thenZ1; . . .; Zh cannot be free inΓ0 or �0.
Hence, sinceΓ0 `M0 : �0, we can apply Axiom C� toM0 for the variablesZ1; . . .; Zh.

Research Report No. 21 December 1992

16 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

Thus, if we take
N � [X=Z0; �

0=Z1; . . .; �0=Zh] M0

we get the desired result, as
M � [X=Z0; �

X
1 =Z1; . . .; �Xh =Zh] M0 M0 is the generalizer ofM;M 0

=c� [X=Z0; �
0=Z1; . . .; �0=Zh] M0 by Axiom C�

� N
and
[�=X] N � [�=Z0; �

0=Z1; . . .; �0=Zh] M0 sinceX 62 FV (�0)
� [�0=Y] [�=Z0; Y=Z1; . . .; Y=Zh] M0 by rearranging substitutions
� [�0=Y] M 0 M0 is the generalizer ofM;M 0

� N 0 by (4)

Case:Assume that� ink � for k � 0 and the previous case does not apply.
Choose fresh type variablesZ0; . . .; Zh whereh = 2k.
By Term Generalization (Theorem 5.5), there exist uniqueZ0; . . .; Zh-generalizers:Γ0 of
Γ; Γ; M0 of M;M 0; and �0 of �; �0, such thatΓ0 `M0 : �0.
Observe now that, by the definition of generalizer,
we haveΓ = [Y=Z0; �=Z1; �

Y
2 =Z2; . . .; �Yh =Zh] Γ0

and �0 = [Y=Z0; �=Z1; �
Y
2 =Z2; . . .; �Yh =Zh] �0.

But, we also have thatY is not free inΓ or �0,
soZ0; Z2; . . .; Zh cannot be free inΓ0 or �0.
Hence, sinceΓ0 `M0 : �0, we can apply Axiom C� toM0 for Z0; Z2; . . .; Zh.
Let � 0i � [�0=Y]�Yi . Then, if we take

N � [�0=Z0; X=Z1; �
0

2=Z2; . . .; � 0h=Zh] M0

we get the desired result, as
M � [�=Z0; X=Z1; X=Z2; . . .; X=Zh] M0 M0 is the generalizer ofM;M 0

=c� [�0=Z0; X=Z1; �
0

2=Z2; . . .; � 0h=Zh] M0 by Axiom C�

� N

and
[�=X] N � [�0=Z0; �=Z1; �

0

2=Z2; . . .; � 0h=Zh] M0 sinceX 62 FV (�0)
� [�0=Y] [Y=Z0; �=Z1; �

Y
2 =Z2; . . .; �Yh =Zh] M0

by rearranging substitutions
� [�0=Y] M 0 M0 is the generalizer ofM;M 0

� N 0 by (4)

The next theorem is another weak form of Genericity, with C�-equality in the premise instead
of Fc-equality. Quasi-Genericity is used in the proof.

December 1992 Digital PRL

The Genericity Theorem 17

Theorem 7.2 (Weak-Genericity of C�-equality)
Let Γ `M1;M2 : �. If [�=X]M1 =c� [�=X]M2 for some type� , thenM1 =Fc M2.

Proof: Apply Quasi-Genericity of C�-equality (Theorem 7.1) to [�=X]M1 =c� [�=X]M2.
Thus, there exists a termN such thatM1 =Fc N and [�=X]N � [�=X]M2.
Observe that, sinceM1 =Fc N , thenN must live in�, the type ofM1 andM2.
Apply now Weak Genericity of F-equality (Theorem 6.2) to [�=X]N � [�=X]M2.
Then,N =Fc M2. Hence,M1 =Fc N =Fc M2.

Note that the property of preserving type substitution structure doesnot hold for F-equality.
Backward�2 reduction causes problems as witnessed by the following counter-example.
Assumex has type8Y:Y . TakeM � xX with � � �1 ! �2 andN 0 � (�Z:x(Z ! �2))�1.
Then,

[�=X]M � x(�1 ! �2) �2 � (�Z:x(Z ! �2))�1 � N 0

Now, since� � �1 ! �2 does not occur inN 0, then anyN such that [�=X]N � N 0 cannot
containX free. Thus,N � [�=X]N � N 0, andN has type� . But M has typeX . Hence,
M = N is impossible since they live in different types.

However, all forward reductions preserve type substitution structure, as does backward�2

reduction. Proofs of these are straightforward.

Fact 7.3
If [�=X]M �!F N 0 then there exists a termN such thatM �!F N and[�=X]N � N 0.

Fact 7.4
If [�=X]M �2 � N 0 then there exists a termN such thatM �2 � N and[�=X]N � N 0.

8 Commutativity of C�-equality with Reduction

This section describes the commutativity of C�-equality with reduction. It turns out that
C�-equality commutes with�1, �2, and�1 reductions butnot with �2 reduction. To see this
last point, takeM of type8Z:� with Z 62 FV (�), andX fresh. Then, because�X:M� does
not�2-reduce toM , we cannot complete the following diagram:

�X:MX =c �X:M�

?�2

M

Research Report No. 21 December 1992

18 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

We need the following lemma about the substitutivity of C�-equality.

Lemma 8.1 (Substitutivity of C�-equality)
If M1 =c� M2 andN1 =c� N2 then[N1=x]M1 =c� [N2=x]M2 and[�=X]M1 =c� [�=X]M2.

Proof: An easy induction on the structure ofM1.

We now prove that C�-equality commutes with�1�2�1 reduction, first for the one-step case,
then for the multi-step case. Note that, in the one-step case, a multi-step C�-equality completes
the commuting diagram.

Lemma 8.2 (One-Step Commutativity)

If M
1
=c� N

?�1�2�1

1

M 0

then there exists a termN 0 such that M
1
=c� N

?�1�2�1

1

M 0 =c� N 0

?�1�2�1

1

Proof: By case analysis ofM 1
�!�1�2�1 M

0 andM
1
=c� N .

Since�1�2�1 is substitutive, we can assume that the reduction is applied directly toM ,
ignoring the cases where it is applied to a subterm or superterm ofM .

Case:(�x :�:M1)M2
1
�!�1 [M2=x]M1.

Subcase:Assume that Axiom C� is applied toM1.

Then, M1
1
=c� N1 and (�x :�:M1)M2

1
=c� (�x :�:N1)M2.

Clearly, (�x :�:N1)M2
1
�!�1 [M2=x]N1.

And, by Lemma 8.1, [M2=x]M1 =c� [M2=x]N1.
Therefore, takeN 0 � [M2=x]N1.

Subcase:Assume that Axiom C� is applied toM2.

Then, M2
1
=c� N2 and (�x :�:M1)M2

1
=c� (�x :�:M1)N2.

Clearly, (�x :�:M1)N2
1
�!�1 [N2=x]M1.

And, by Lemma 8.1, [M2=x]M1 =c� [N2=x]M1.
Therefore, takeN 0 � [N2=x]M1.

Subcase:Assume that Axiom C� is applied to�x :�:M1.
Then, by the definition of Axiom C�, there exist�;N1; �; �

0; Y such that

�x :�:M1 � [�=Y] (�x :�:N1)
1
=c� [�0=Y] (�x :�:N1)

with � = [�=Y]� andM1 � [�=Y]N1,
andΓ ` �x :�:N1 : � ! �, andY not free inΓ or � ! �.
Clearly,Y is also not free in�. Hence,� = [�=Y]� = �.
Moreover,Y is not free in�, the type ofN1.
Therefore, Axiom C� is applied toM1 � [�=Y]N1, and that subcase applies.

December 1992 Digital PRL

The Genericity Theorem 19

Subcase:Assume that Axiom C� is applied to (�x :�:M1)M2.
Then, by the definition of Axiom C�, there exist�;N1; N2; �; �

0; Y such that

(�x :�:M1)M2 � [�=Y] ((�x :�:N1)N2)
1
=c� [�0=Y] ((�x :�:N1)N2)

with � = [�=Y]�, M1 � [�=Y]N1, M2 � [�=Y]N2,
andΓ ` (�x :�:N1)N2 : �, andY not free inΓ or �.
SinceΓ ` (�x :�:N1)N2 : �, thenΓ ` [N2=x]N1 : �.
Axiom C� can thus be applied to [N2=x]N1.
Hence, takeN 0 � [�0=Y][N2=x]N1, for then
[M2=x]M1 � [�=Y][N2=x]N1 sinceM1 � [�=Y]N1 andM2 � [�=Y]N2

=c� [�0=Y][N2=x]N1 by Axiom C�

and [�0=Y] ((�x :�:N1)N2)
1
�!�1 [�0=Y][N2=x]N1, since�1 is substitutive.

Case:(�X:M1)�
1
�!�2 [�=X] M1.

Subcase:Assume that Axiom C� is applied toM1.

Then,M1
1
=c� N1 and (�X:M1)�

1
=c� (�X:N1)�.

Clearly, (�X:N1)�
1
�!�2 [�=X]N1.

And, by Lemma 8.1, [�=X]M1 =c� [�=X]N1.
Therefore, takeN 0 � [�=X]N1.

Subcase:Assume that Axiom C� is applied to�X:M1.
Then, by the definition of Axiom C�, there existN1; �; �

0; Y such that

�X:M1 � [�=Y] (�X:N1)
1
=c� [�0=Y] (�X:N1)

with M1 � [�=Y]N1, andΓ ` �X:N1 : 8X:�, andY not free inΓ or 8X:�.
Clearly,Y is not free in�, the type ofN1.
Axiom C� is therefore applied toM1 � [�=Y]N1 and that subcase applies.

Subcase:Assume that Axiom C� is applied to (�X:M1)�.
Then, by the definition of Axiom C�, there existN1; �; �; �

0; Y such that

(�X:M1)� � [�=Y] ((�X:N1)�)
1
=c� [�0=Y] ((�X:N1)�)

with M1 � [�=Y]N1 and� = [�=Y]�,
andΓ ` (�X:N1)� : �, andY not free inΓ or �.
SinceΓ ` (�X:N1)� : �, thenΓ ` [�=X]N1 : �.
Axiom C� can thus be applied to [�=X]N1.
Hence, takeN 0 � [�0=Y][�=X]N1, for then
[�=X]M1 � [�=Y][�=X]N1 since� � [�=Y]� andM1 � [�=Y]N1

=c� [�0=Y][�=X]N1 by Axiom C�

and [�0=Y] ((�X:N1)�) 1
�!�2 [�0=Y][�=X]N1, since�2 is substitutive.

Case:�x :�:M1x
1
�!�1 M1 with x not free inM1.

Subcase:Assume that Axiom C� is applied toM1.

Then,M1
1
=c� N1 and�x :�:M1x

1
=c� �x :�:N1x.

Now, sincex is not free inM1 and since Axiom C� does not affect term variables,
thenx is also not free inN1. Thus,�x :�:N1x

1
�!�1 N1.

Therefore, takeN 0 � N1.

Research Report No. 21 December 1992

20 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

Subcase:Assume that Axiom C� is applied toM1x.
Then, by the definition of Axiom C�, there existN1; �; �

0; Y such that

M1x � [�=Y] (N1x)
1
=c� [�0=Y] (N1x)

with M1 = [�=Y]N1, andΓ; x :� ` N1x : �, andY not free inΓ; x :� or �.
Clearly,Y is also not free in�! �, the type ofN1.
Axiom C� is therefore applied toM1 � [�=Y]N1 and that subcase applies.

Subcase:Assume that Axiom C� is applied to�x :�:M1x.
Then, by the definition of Axiom C�, there exist�;N1; �; �

0; Y such that

�x :�:M1x � [�=Y] (�x :�:N1x)
1
=c� [�0=Y] (�x :�:N1x)

with � = [�=Y]� andM1 = [�=Y]N1,
andΓ ` �x :�:N1x : � ! �, andY not free inΓ or � ! �.
Y is therefore not free in�, so,� = [�=Y]� = �.
Also,Y is not free in�, the type ofN1x.
Axiom C� is thus applied toM1x � [�=Y](N1x), and that subcase applies.

Theorem 8.3 (Commutativity)

If M =c� N

?�1�2�1

M 0

then there exists a termN 0 such that M =c� N

?�1�2�1

M 0 =c� N 0

?�1�2�1

Proof: By decomposing the multi-step C�-equalities and�1�2�1-reductions into single steps,
and using One-Step Commutativity (Lemma 8.2) to complete the following diagram:

M
1
=c� N1

1
=c� . . .

1
=c� N

?�1�2�1

1

?�1�2�1

1

?�1�2�1

1

M 0

1
1
=c� N11

1
=c� . . .

1
=c� N1i . . .

?�1�2�1

1

?�1�2�1

1 ...

M 0

2
1
=c� . . .

1
=c� N2j

...
...

?�1�2�1

1

?�1�2�1

1

M 0 =c� =c� N 0

December 1992 Digital PRL

The Genericity Theorem 21

9 The Genericity Theorem

Finally, in this section, we prove the Main Lemma that leads to the Genericity Theorem. We
first need the following lemma:

Lemma 9.1 (�2-postponement)
If M �!F M 0 then there exists a termM 00 such thatM �!�1�2�1 M

00 �!�2 M
0.

Proof: Easy; see [BS93].

Lemma 9.2 (Main)
Let Γ `M;N : �. If [�=X]M =Fc [�=X]N for some type� , then M =Fc N .

Proof: Observe first that the chain of Fc-equalities from [�=X]M to [�=X]N can be written:

[�=X]M =F M 00

1 =c� M 00

2 =F M 00

3 =c� . . . =F M 00

n�1 =c� M 00

n =F [�=X]N

that is, as alternations of F-equalities and C�-equalities with the initial and final equalities
being F-equalities. These initial or final F-equalities may be just trivial syntactic identities
if, in fact, a C�-equality starts or ends the chain.

Case:The chain consists entirely of F-equalities, i.e., [�=X]M =F [�=X]N . Then, by Weak
Genericity of F-equality (Theorem 6.2), we have the resultM =Fc N .

Case:The chain consists entirely of C�-equalities, i.e., [�=X]M =c� [�=X]N . Then, by Weak
Genericity of C�-equality (Theorem 7.2),M =Fc N .

Case:There is at least one (non-trivial) C�-equality and one (non-trivial) F-equality. We
proceed with a series of transformations on the chain, starting with the first three links:

[�=X]M =F M 00

1 =c� M 00

2 =F M 00

3

First, as a consequence of the equational Church-Rosser property for F, transform the
F-equalities into reductions. Then, apply�2-postponement (Lemma 9.1) to the reduction
sequence fromM 00

1 . Thus, there exist termsM 0

1;M
0

3; N
0

1 such that:

[�=X]M
@
@
@
@
@
@
@@R

F

M 00

1 =c� M 00

2

�
�
�	

�1�2�1

M 0

1

�
�
�	

�2

N 0

1

@
@
@R

F

M 00

3

�
�
�	

F

M 0

3

Research Report No. 21 December 1992

22 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

Then, by Commutativity of C�-equality with�1�2�1 reduction (Theorem 8.3), there exists
M 0

2 such that

[�=X]M
@
@
@
@
@
@
@@R

F

M 00

1 =c� M 00

2

�
�
�	

�1�2�1

M 0

1 =c� M 0

2

�
�
�	

�2

N 0

1

�
�
�	

�1�2�1

@
@
@R

F

M 00

3

�
�
�	

F

M 0

3

The Church-Rosser property can then be used to complete the diamond betweenM 0

2 and
M 0

3:

[�=X]M
@
@
@
@
@
@
@@R

F

M 00

1 =c� M 00

2

�
�
�	

�1�2�1

M 0

1 =c� M 0

2

�
�
�	

�2

N 0

1

�
�
�	

�1�2�1

@
@
@R

F

@
@
@R

F

M 00

3

�
�
�	

F

M 0

3

�
�
�	

F

N 0

3

In this way, the original three links from [�=X]M toM 00

3 can be replaced by;

[�=X]M
@
@
@R

F

M 0

1 =c� M 0

2

�
�
�	

�2

N 0

1

@
@
@R

F

M 00

3

�
�
�	

F

N 0

3

Repeat this transformation down the rest of the chain by sets of three consecutive links of
the form� =F � =c� � =F � continuing withM 0

2 =F M 00

3 =c� M 00

4 =F M 00

5 . Note that
the first link of each set coincides with the last link of the previously modified set. At the
end, the transformed chain will look like:

[�=X]M
@
@
@R

F

M 0

1 =c� M 0

2

�
�
�	

�2

N 0

1

@
@
@R

F

. . . M 0

n�1 =c� M 0

n

�
�
�	

�2

@
@
@R

F

N 0

[�=X]N
�
�
�	

F

where each left-pointing arrow, except for the final one, consists of forward�2 reductions.
The final left-pointing arrow, and all the right-pointing ones, consist of forward�1�2�1�2

reductions.

December 1992 Digital PRL

The Genericity Theorem 23

From here on, we work with the transformed chain. Consider now the start of it:

[�=X]M
@
@
@R

F

M 0

1 =c� M 0

2

�
�
�	

�2

N 0

1

— By Fact 7.3, there existsN1 such thatN 0

1 � [�=X]N1 andM �!F N1.

— By Fact 7.4, there existsM1 such thatM 0

1 � [�=X]M1 andN1 �2 � M1.

— By Quasi-Genericity of C�-equality (Theorem 7.1), there existsM2 such that
M 0

2 � [�=X]M2 andM1 =c� M2.

Thus, we have

[�=X]M
@
@
@R

F

[�=X]M1 �M 0

1 =c� M 0

2 � [�=X]M2

�
�
�	

�2

N 0

1 � [�=X]N1

with M �!F N1 �2 � M1 =c� M2. Hence,M =Fc M2.

Now, iterate this process along the chain fromM 0

2 � [�=X]M2.
We thus “push” the type substitution [�=X] along the chain so that, eventually, forM 0

n,
the penultimate term of the chain, there exists a termMn such thatM 0

n � [�=X]Mn and
M =Fc Mn. Apply then Weak Genericity of F-equality (Theorem 6.2) to the last link
[�=X]Mn �M 0

n =F [�=X]N . This givesMn =Fc N .
SinceM =Fc Mn, thenM =Fc N as required.

Theorem 9.3 (Genericity)
Let Γ `M;N : 8X:�. If M� =Fc N� for some type� , thenM =Fc N .

Proof: Choose a fresh type variableZ.
Then,Γ `MZ; NZ : [Z=X]� and [�=Z](MZ) � M� =Fc N� � [�=Z](NZ)
Hence, applying the Main Lemma (Lemma 9.2),MZ =Fc NZ.
Observe thatZ fresh meansZ not free in the type of any free term variable inMZ orNZ.
So, by8-intro,�Z:MZ and�Z:NZ are well-typed terms (of type8Z:[Z=X]�).
Hence, by�2, �Z:MZ =Fc �Z:NZ, and, by�2, M =Fc N .

10 Models

In this section, we outline the validity of Axiom C in some relevant models. Details and
further references about the model theory of system F may be found in [AL91] or [Hyl]. The
reader may also see [LM91] for an introductory presentation of PER models and [GLT89]

Research Report No. 21 December 1992

24 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

or [CGW88] for models based on coherent spaces or dI-domains. These constructions provide
the main concrete paradigms for the general semantics of impredicative Type Theory and, by
this, they allow a more explicit understanding of the semantic problems we will mention at the
very end.

In short, in PER models, types are interpreted as partial equivalence relations (p.e.r.) on an
arbitrary (partial) combinatory algebra (D; :), that is, on a model of (partial) Combinatory
Logic. In other words, a type is a quotient of a subset ofD modulo an equivalence relation.
The terms of system F are interpreted as equivalence classes in these quotient sets. Given
d 2 D, call [d]A the equivalence class ofd in the p.e.r.A. Now, (D; :) yields a model of the
type free�-calculus (D; :; [[�]]), see [Bar84]. Set thener(M) for the term of system F with all
types erased (e.g.,er(�x :�:M�) = �x:er(M)) and consider [[er(M)]]� , i.e., the interpretation
in D, under term environment�, of the type-free termer(M). A result in [Mit86] (see
also [CL91]) shows that the meaning in the PER model of a term M of system F is given by
the equivalence class of the meaning of its erasure in the p.e.r. that interprets its type. More
formally, if environment�0 is obtained from� by forgetting type information,

[[Γ `M : �]] � = [[[er(M)]]�0][[�]]

It is then clear that PER models realize Axiom C: ifM� andM� 0 live in the same type�, then
their meanings are identical aser(M�) = er(M� 0).

As for dI-based models, we recall here only that these may be constructed over the category
of coherent spaces and stable maps, as in [Gir86], or over proper dI-domains as in [CGW88],
which we follow. Types then are dI-domains or, more precisely, in view of possibly free
type variables, they are maps over dI-domains. Indeed, they may be understood as functors
if one considers the subcategory DIL of dI-domains and just rigid embeddings as maps, as
in [CGW88]. (The impossibility of viewing types as functors, in general, was discussed in
the introduction, in view of the the (contra-) and (co-)variance of the! functor.) In short, let
F : DIL ! DIL be a functor. ThenΠF , the product functor meant to interpret impredicative
second-order types, is simply the collection of uniform families (tX), whereX ranges over
dI-domains, such thattX 2 F (X) andtX = F (f)RtY for any dI-domainY and any morphism
f from X to Y . Assume now that8X:� is such thatX is not free in�. This means that� is
interpreted by a constant functorF , with respect toX . ThenF (f)R = F (f) = id always. In
particular, takeY as the universal domain, i.e., any other may be rigidly embedded in it. Then,
for any uniform family (tX) and anyX , one hastX = tY in F (X). This is exactly the validity
of Axiom C in these models.

There are several ways to describe the general (categorical) semantics of system F. In order to
give a general meaning to Axiom C, we follow the presentation by internal categories given
in [AL91]. First, though, the na¨ıve, set-theoretic approach may guide our intuition. LetTp be
the collection of semantic types. A variable type is then a functionF : Tp! Tp. As usual, a
product indexed overTp is given by the set

ΠF = ff : Tp! [F j 8X 2 Tp f (X) 2 F (X)g

December 1992 Digital PRL

The Genericity Theorem 25

Then Axiom C corresponds to

if f 2 ΠF and9A 8B F (B) = A; then9a 2 A 8B f (B) = a

Or, also,ΠF andA are set-theoretically isomorphic, whenF is constantly equal to A. We
know though that classical Set Theory does not yield models of impredicative Type Theory.
However, models may be found as categories which are internal not to the category of sets
and functions, but to more “constructive” ones, which enjoy the fundamental adjunction (Adj)
below. Following [AL91], letc = (c0; c1) be a category internal to a Cartesian Closed Category
(ccc)E with all finite limits. Letcc0 be the category of internal functors. Then (E; c) yields a
model of system F ifc is an internal ccc and the (internal) product functorΠ : cc0 ! c exists
as the right adjoint of the (internal) diagonal functorK : c! cc0, i.e., the functor that to each
A associates the functorKA, which is constantA. In other words,

(Adj) cc0[K ;] �= c[;Π]

We claim that, among these models, exactly those which realize the following natural
isomorphism

(Const) cc0[K ;K] �= c[;]

are models of Axiom C. Indeed, by (Adj), (Const) implies, naturally inA;B,

c[B;Π(KA)] �= cc0[KB;KA] �= c[B;A]

This is equivalent, in these models, to the isomorphismΠ(KA) �= A, i.e., to the intuitive
set-theoretic meaning of Axiom C. A final remark: both the term model of system F, of course,
and the retraction models (see [AL91]) do not realize Axiom C.

The semantics of the Genericity Theorem raises some interesting issues. Observe that

(GEN) 9� M� = N�) M = N

is not an equation, but an implication between equations. Thus, a modelM of Fc does
not need to realize (GEN), in the sense that9� M� = N� may be true in the model but
M = N is false. For example, PER models and dI-domains do not realize (GEN). Consider
0; K : 8X:X ! (X ! X). Take then a type� which has at most one element, for instance
8X:X or 8X:X ! X . Then, in both classes of models,K� = 0� , but, of course,K 6= 0.
By generalizing this argument (see [Lon93]), models of relational parametricity also do not
realize (GEN). This lack (so far) of models of (GEN) is in spite of the many models of Fc and
the provability of the implication. Note that an understanding of the semantics is relevant, not
only for model-theoretic reasons, but also for the extensions of system F which are relevant in
practice. That is, actual polymorphic functional languages may be based on core calculi, plus
possibly more equation schemes. Thus, the investigation of which equational theories realize
(GEN), as an important property of polymorphic functions, is a further challenge.

Research Report No. 21 December 1992

26 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

References

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal Parametric Polymorphism. In
Proceedings of the 20th Symposium on Principles of Programming Languages,
Charleston, South Carolina (January 1993).

[AL91] A. Asperti and G. Longo.Categories, Types, and Structures: An Introduction to
Category Theory for the Working Computer Scientist. MIT Press (1991).

[BFSS90] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial Polymorphism.
Theoretical Computer Science, 70:35–64 (January 1990). Corrigendum in 71:431
(April 1990).

[Bar84] H.P. Barendregt.The Lambda Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics 103, North-Holland (1984). Revised edition.

[BS93] H.P. Barendregt and R. Statman.Typed Lambda Calculus with Applications. In
preparation.

[CL91] L. Cardelli and G. Longo. A Semantic Basis for Quest.Journal of Functional
Programming, 1:417–458 (April 1991).

[CMMS91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An Extension of System
F with Subtyping. InProceedings of the Conference on Theoretical Aspects of
Computer Software, Sendai, Japan (September 1991). Lecture Notes in Computer
Science 526, Springer-Verlag. Edited by T. Ito and R. Meyer.

[CGL92] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions
with Subtyping. In Proceedings of the Conference on LISP and Functional
Programming, San Francisco, California (July 1992). Extended abstract.

[CGW88] T. Coquand, C.A. Gunter, and G. Winskel. DI-Domains as a Model of Poly-
morphism. InProceedings of the 3rd Workshop on Mathematical Foundations of
Programming Language Semantics, New Orleans, Louisiana (April 1987). Lecture
Notes in Computer Science 298, Springer-Verlag. Edited by M. Main, A. Melton,
M. Mislove, and D. Schmidt.

[DL89] R. Di Cosmo and G. Longo. Constructively Equivalent Propositions and Isomor-
phisms of Objects (or Terms as Natural Transformations). InProceedings of the
Workshop on Logic for Computer Science, Berkeley, California (November 1989).
Mathematical Sciences Research Institute Publications 21, Springer-Verlag (1992).
Edited by Y.N. Moschovakis.

[EK66] S. Eilenberg and G.M. Kelly. A Generalization of the Functorial Calculus.Journal
of Algebra, 3:366–375 (1966).

December 1992 Digital PRL

The Genericity Theorem 27

[FGSS88] P.J. Freyd, J.-Y. Girard, A. Scedrov, and P.J. Scott. Semantic Parametricity in
Polymorphic Lambda-Calculus. InProceedings of the 3rd Symposium on Logic in
Computer Science, Edinburgh, Scotland (June 1988).

[Gir71] J.-Y. Girard. Une Extension de l’Interpretation Fonctionelle de G¨odelà l’Analyse
et son Application `a l’Elimination des Coupures dans l’Analyse et la Th´eorie des
Types. InProceedings of the 2nd Scandinavian Logic Symposium. North-Holland
(1971). Edited by J.F. Fenstad.

[Gir86] J.-Y. Girard. The System F of Variable Types, Fifteen Years Later.Theoretical
Computer Science, 45:159–192 (1986).

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7, Cambridge University Press (1989).

[GSS] J.-Y. Girard, A. Scedrov, and P.J. Scott. Normal Forms and Cut-Free Proofs as
Natural Transformations. InProceedings of the Workshop on Logic for Computer
Science, Berkeley, California (November 1989). Mathematical Sciences Research
Institute Publications 21, Springer-Verlag (1992). Edited by Y.N. Moschovakis.

[Has93] R. Hasegawa. Categorical Data Types in Parametric Polymorphism. To appear in
Mathematical Structures in Computer Science.

[Hyl] M. Hyland. A Small Complete Category.Annals of Pure and Applied Logic,
40:135–165 (1988).

[LS86] J. Lambek and P.J. Scott.Introduction to Higher Order Categorical Logic.
Cambridge Studies in Advanced Mathematics 7, Cambridge University Press
(1986).

[Lon93] G. Longo. Parametric and Type-Dependent Polymorphism. To appear inFunda-
menta Informatica.

[LM91] G. Longo and E. Moggi. Constructive Natural Deduction and its!-set Interpreta-
tion. Mathematical Structures in Computer Science, 1(2):215–253 (1991).

[MR91] Q. Ma and J.C. Reynolds. Types, Abstraction, and Parametric Polymorphism: Part
2. InProceedings of the Workshop on Mathematical Foundations of Programming
Language Semantics. Lecture Notes in Computer Science, Springer-Verlag (1991).
Edited by S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt.

[Mac71] S. Mac Lane.Categories for the Working Mathematician. Springer-Verlag (1971).

[Mit86] J.C. Mitchell. A Type Inference Approach to Reduction Properties and Semantics
of Polymorphic Expressions. InProceedings of the Conference on LISP and
Functional Programming(1986).

Research Report No. 21 December 1992

28 Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev

[PA93] G. Plotkin and M. Abadi. A Logic for Parametric Polymorphism. InProceedings
of the International Conference on Typed Lambda Calculi and Applications,
Utrecht, Netherlands (March 1993). Lecture Notes in Computer Science 664,
Springer-Verlag (1993). Edited by M. Bezem and J.F. Groote.

[Rey74] J.C. Reynolds. Towards a Theory of Type Structure. InProceedings of le Colloque
sur la Programmation. Lecture Notes in Computer Science 19, Springer-Verlag
(1974). Edited by B. Robinet.

[Rey83] J.C. Reynolds. Types, Abstraction and Parametric Polymorphism.Information
Processing, 83:513–523 (1983). North-Holland. Edited by R.E.A. Mason.

[Sco72] D. Scott. Continuous lattices.Toposes, Algebraic Geometry and Logic. Lecture
Notes in Mathematics 274, Springer-Verlag (1972). Edited by F.W. Lawvere.

[SP82] M. Smyth and G. Plotkin. The Category Theoretic Solution of Recursive Domain
Equations.SIAM Journal of Computing, 11:761–783 (1982).

[Str67] C. Strachey.Fundamental Concepts in Programming Languages.Unpublished
lecture notes from the International Summer School in Computer Programming,
Copenhagen, Denmark (August 1967).

December 1992 Digital PRL

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line ishelp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server .

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.y

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

yThis report is no longer available from PRL. A revised version has now appeared as a book: “Hassan A¨ıt-Kaci,
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”

Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution à la Résolution Numérique des Équations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. François Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic �-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. François Bourdoncle. January 1993.

Research Report 23: Dessin à main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. April 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérôme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Aı̈t-Kaci. March 1993.

Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective �-Calculus. Hassan Aı̈t-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Aı̈t-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

21
T

he
G

enericity
T

heorem
and

the
N

otion
ofP

aram
etricity

in
the

P
olym

orphic

�

-calculus
G

iuseppe
Longo,K

athleen
M

ilsted,and
S

ergeiS
oloviev

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

