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Abstract

We present accurate, low-level measurements of process preemption, interrupt handling and
memory system performance of a UNIX1 workstation.

To gather this data, we use PAMs (Programmable Active Memories). These are fast, general
purpose, bit-level programmable coprocessors based on field-programmable gate arrays. They
are mapped to part of the system address space and appear to the CPU as memory, much like
memory-mapped I/O devices.

PAMs are primarily aimed at computationally intensive problems, where wide, application
specific data-paths can offer large speedups over software. By contrast, in this application
we rely on the real-time, concurrent aspects of a PAM that is relatively modest in terms of
computational resources.

Starting with a simple 25 MHz counter, we describe a series of measurement devices built to
answer specific questions about low-level system performance. Many of the devices are active
in that they provoke the events they seek to measure. Our measurement techniques allow us to
construct histograms gradated in CPU clock cycles and cover: frequency and duration of user
process preemption, latency from interrupt to kernel handler, DMA throughput and latency,
and the effect of other system activity on DMA.

Résumé

Nous présentons les r´esultats de mesures de bas niveau des performances d’un poste de travail
UNIX. Pour obtenir ces donn´ees, nous utilisons une PAM (M´emoire Active Programmable).
Une PAM est un coprocesseur rapide universel, programmable au niveau du bit, utilisant la
technologie des FPGA (matrice de portes reprogrammable). La PAM est accessible depuis le
système hôteà travers le m´ecanisme d’adressage m´emoire.

Les PAM sont principalement utilis´ees comme acc´elérateurs mat´eriels d’algorithmes n´eces-
sitant de larges chemins de donn´ees. L’application d´ecrite dans ce rapport est quant `a elle
modeste en temps de calcul, mais exploite les propri´etés temps r´eels de la PAM.

Nous décrivons une suite de configurations de la PAM qui permettent de r´epondre `a des
questions pr´ecises d’analyse de performance(s) du syst`emeà bas niveau. La plupart de ces
configurations forment des syst`emes actifs, qui provoquent les ´evénements que l’on cherche `a
mesurer. Nos techniques nous permettent de d´eterminer la distributiontemporelle, `a la précision
d’un cycle machine, des ´evénements suivants: la fr´equence et la dur´ee des pr´eemptions de
processus; le temps de r´eponse du noyau `a une interruption; le temps de r´eaction et le d´ebit du
DMA (accès mémoire direct); et les effets du reste du syst`eme sur le performances du DMA.

1Unix is a registered Trademark of AT&T.
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Measuring System Performance with Reprogrammable Hardware 1

1 Introduction

In the design of high performance computer peripherals designers must pay attention not
only to the basic capabilities of the host hardware, but also to characteristics of the operating
system. Parameters such as time to service a device interrupt can fundamentally affect the
viability of a proposed design. To some extent such parameters can be determined by analytical
models or, in the case of interrupt latency, by simple expedients such as counting instructions
in the perceived critical path, but ultimately the most reliable method is measurement.

Unfortunately measuring activity at the lowest levels of computer systems can be extremely
difficult. For coarse grained high-level measurements a computer can often be turned on itself
and useful statistics can be accumulated by reference tolittle more than its own real-time clock.
In contrast, at lower levels, we find that, the phenomena under measure occur in far less time
than the resolution of standard real-time clock devices and involve system components like
the cache that are, by their very nature, not visible to the CPU. Recently we have seen much
progress in instrumentation of programs and even entire systems by code modification [3, 13],
but these methods can greatly perturb the objects being measured and the techniques are by no
means easy to implement. The alternative of adding purpose-built measurement hardware [4,
7] tends to be either inflexible, expensive, or both, and may rely on an underlying microcoded
implementation.

For the purpose of characterizing the performance of a few parts of the kernel, neither of
the above approaches seems justified in terms of the time and effort involved. Even adding a
high resolution clock is an excessive burden if new hardware must be built which will find no
further use once the measurements are made.

1.1 PAM Technology

PAM technology, introduced by J. Vuillemin [1], is based on a matrix of programmable
active bits. It permits the realization, through a downloadable bitstream, of synchronous logic
circuits comprising combinatorial logic and registers, each of the registers being updated on
each cycle of a global clock signal. The maximum clock speed for such a circuit is directly
determined by its critical combinatorial path, which varies from one circuit to another. When
implemented through field-programmable gate arrays such as the Xilinx 3000 series [14], it is
not difficult to realize circuits that operate at 25 to 30 MHz.

PAM stands for Programmable Active Memory. It is infinitely reprogrammable thanks to the
field-programmable gate arrays (FPGA) from which it is built. The rest of the acronym derives
from its role as a coprocessor occupying part of a host address space, receiving commands
and returning results in response to the address and data transactions the host directs towards
it. Being mapped directly into user and kernel address spaces, the PAM may be accessed very
cheaply from the CPU, making it suitable for the implementation of fine grain measurement
devices. Being reusable and easy to program makes it suitable for the implementation of
specialized single use devices.
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2 Mark Shand

PAMs are primarily aimed at computationally intensive problems, where wide, application
specific data-paths can offer great speedups over software [10]. By contrast, in measurement
applications we rely on the real-time, concurrent aspects of a PAM that is relatively modest
in terms of computational resources. In fact such a PAM is at our disposal—3mint. 3mint
is the interface module of DECPeRLe-1, our laboratory’s latest computationally oriented
PAM [2]. In normal operation 3mint programming is fixed, being loaded out of PROM, and
is used to control downloading of and access to DECPeRLe-1, a matrix of 23 Xilinx gate
arrays. However, 3mint too uses a Xilinx gate array, and by providing the ability to alter its
programming we obtain a small PAM connected directly to the system I/O channel.

1.2 TURBOchannel

The particular I/O channel in question is TURBOchannel [5]. TURBOchannel is a
synchronous, asymmetric I/O channel operating at 12.5 to 25 MHz. It connects onesystem
module containing CPU and memory to some number ofoption modules. TURBOchannel
supports two kinds of transaction: anI/O transactionin which the system module can read or
write an option module, and aDMA transactionin which an option module can read or write
the system module.

I/O transactions are relatively straightforward; they are issued in response to CPU memory
transactions to the region of the address space to which an option module is mapped. Writes
are allowed to proceed asynchronously and may be issued in one cycle; sustained throughput
to minimum latency option modules is one word every three cycles. Reads must stall the CPU
until the option responds. On the DECstation 5000/200 implementation of TURBOchannel
the stall is a minimum of 8 cycles. This asymmetry means that scattered I/O writes place a
much lighter burden on the CPU than I/O reads.

DMA transactions offer much higher bandwidth, being able to transfer multiple words
in a single transaction, each word taking one cycle. Ignoring startup overheads, a 25 MHz
TURBOchannel has a theoretical throughput of 100 megabytes/second. TURBOchannel DMA
uses physical addresses in its interactions with the system module. This greatly simplifies
the design of option modules, moving the burden of address translation to software. Under
Unix however, successive memory pages in a user’s virtual address space are not necessarily
physically contiguous. Performing large DMA transfers to non-contiguous 4 kilobyte pages of
user memory would require an address translation for every 1024 words transferred; roughly
once every 40�s. Determining address translations in a user process requires a call to the
operating system. These considerations lead naturally to questions of kernel performance.

1.3 Computer System Measurement with PAMs

We present a number of performance measures, each obtained with a specific reprogramming
of 3mint and appropriate driving software. The majority of these results are obtained on a
DECstation 5000/200 running Ultrix 4.2A with a 3mint board in TURBOchannel option
slot 2. In the case of interrupt latency measurements, results from a DECstation 5000/240
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Measuring System Performance with Reprogrammable Hardware 3

and a DECstation 5000/125 are provided for comparison. For our purposes, the important
characteristics of these three machines are as follows:

Model
CPU clock frequency

(MIPS R3000A)

Memory System and
TURBOchannel
clock frequency

DECstation 5000/240 40MHz 25MHz
DECstation 5000/200 25MHz 25MHz
DECstation 5000/125 25MHz 12.5MHz

While the results of the measurements are of interest in themselves we avoid detailed
analysis, instead choosing to focus on the range of techniques which this approach gives us.
This is the main contribution of the work.

2 Basic Measurement Devices

Our first experiments are based on passive devices that run concurrently with the CPU and
exploit the high bandwidth, low latency interface between the CPU and the PAM.

2.1 A Simple Timer

For the first measurements the gate array on 3mint is programmed to be a 32 bit counter
(based on [12]). It is clocked by the 25 MHz TURBOchannel clock (See Figure 1, TbC
in the figures refers to TURBOchannel). This counter runs freely, wrapping around to zero
periodically. This presents no problem provided we are only interested in measuring the
duration of events that last less than 232� 40ns; roughly 171 seconds.

A user process continually reads this counter from a tight loop. Whenever successive reads
differ by more than a threshold of a few tens of cycles the process supposes it has just resumed
after being preempted and records the duration of the preemption in a histogram. We present
two such histograms in Figure 2. The logarithmic scales used on both axes in this figure
allow the histograms to present several phenomena in data that ranges over several orders of
magnitude. The solid line show the execution of the measurement process on an otherwise
idle machine for a period of 30 minutes during which 474 973 preemptions were observed.
The dashed line shows execution with one competing compute bound process and is gathered
over the same period.

Summing the total number of preemptions recorded in the histogram, we observe that the
idle system records approximately 260 preemptions per second, that 65% last between 20�s
and 25�s and all but 5% take less than 100�s. Almost all of this activity can be explained by
the 3.906ms system clock on the DECstation 5000/200, generating 256 interrupts per second.
Such base level system activity consumes about 1.5% of the CPU.

The busy system shows a significant peak at one tenth of a second. This is the duration of

Research Report No. 19 August 1992
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1

TbC

Figure 1: A Simple Timer

the time slice normally given to the competing process.

2.2 Process Virtual and Real Timers

Adding to our previous design an additional counter that is stoppable and loadable, and
modifying the kernel to restore and save this second counter on context entry and exit provides a
high resolution timer that runs in process virtual time (see Figure 3). Instruction level profiling
systems such aspixie developed by MIPS2 Computer Systems [9] assume a perfect memory
model. Discrepancies between estimated cycle counts and actual counts obtained from a high
resolution timer running in process virtual time can point to memory bottlenecks caused by
cache or TLB misses [8]. Recognizing the importance of such measurement techniques, new
computer architectures such as Digital Equipment Corporation’s Alpha include cycle counters
as standard architectural features [6].

3 Active Measurement Devices

Only so much of the system can be observed by monitoring a passive device from user
mode. To measure interrupt latencies we need, in addition to cycle counters, a method of
provoking interrupt activity.

2MIPS is a Trademark of MIPS Computer Systems
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Figure 3: A Combined User Virtual and Real Timer
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6 Mark Shand

3.1 Raising Interrupts

3mint is a fully fledged TURBOchannel device, and therefore can raise interrupts. We
modify the simple timer to raise an interrupt each time bit 21 of the counter goes high—roughly
5 times a second. On the DECstation 5000/200, such interrupts cause the processor to trap
to thegeneral exception trapentry point. From there, kernel code interrogates various status
registers to discriminate the actual cause of the exception, eventually calling a device specific
interrupt handling routine. We modify the kernel to include a routine specific to our interrupt
raising design. On entry this routine stores the current time from 3mint and increments a count
of interrupts taken. The time value and interrupt count are held in memory that is shared with a
user process. By comparing the stored time to the next smaller time at which a bit 21 transition
could have occurred user code can determine the time from hardware interrupt to handler and
store this in a histogram. Provided this time is never greater than 200ms no ambiguity results
because no new interrupt will have occurred. Likewise we can determine the time taken from
handler back to user code by reference to the value recorded by the kernel and the current time
value.

With this experimental set-up, observations of cycle count histogram from hardware interrupt
to handler show some curious artifacts when viewed at single cycle resolution. The histogram
contains a series of large peaks, each followed by smaller peaks spread over about 10 cycles
(Figure 4).

0

100

200

300

400

500

600

700

280 300 320 340 360
cycles

Interrupt to Handler

Frequency vs cycle count

  (unsynchronized)

Figure 4: Portion of Histogram of Unsynchronized Interrupt Raising Design

Careful inspection of the inner loop of the user process that records interrupts reveals an
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inner loop of 8 instructions, one which issues an I/O read to the 3mint. The smaller trailing
peaks represent interrupts that are raised at some time during the 10 cycles that the processor
stalls during the I/O read. Since exception handling starts between one and ten cycles after the
interrupt is raised, these counts are spread in time. The large peak represents interrupts that are
issued during the other loop instructions when the processor can immediately start exception
handling.

We first modify the interrupt raising design toschedulean interrupt on the transition of bit
21 and issue it when it believes the processor is not currently performing or about to perform
an I/O read. It makes this deduction by observation of itsselect input and by knowledge of
the length of the loop that user code executes.

This new design eliminates most of the trailing peaks but still exhibits a secondary peak 5
cycles after the primary peak. This secondary peak was already apparent in the unsynchronized
interrupt raising design. Understanding its origin reveals some quite subtle aspects of the
DECstation 5000/200 memory system. This machine schedules adram refresh of 5 cycles
every 195 cycles. The shortest time from interrupt to handler that we are observing is roughly
280 cycles. Thus we expect one or twodram refreshes during execution of the code sequence
under test, with one refresh being slightly more common.

We further refine the interrupt raising design to raise an interrupt when the delay between
successive I/O reads is just longer than the minimum time around the inner loop of the
sampling program. Such longer delays occur when adram refresh occurs between two reads
of the timer. Thus the raising of interrupts is now synchronized withdram refresh and the
secondary 5 cycle delayed peak is eliminated from our histograms.

Since the design exists only to be used in conjunction with a single measuring program, such
extreme customization is not unreasonable. When the scheduled interrupt is finally issued,
the 3mint stores the current time in a dedicated register for later interrogation by the interrupt
handler. This design appears in Figure 5.

Synchronized interrupts show clear peaks in the histogram of interrupt to handler. In one
run, spanning one hour and processing 21 342 interrupts from 3mint, 35% took exactly 283
cycles. Data from this run appear in Figure 6. The figure exhibits marked peaks every 15
cycles starting at 283. Curiously, while all runs exhibit the same 15 cycle peaks, the detailed
structure varies. In the example cited the main peak is at 283 cycles with a secondary peak at
313 cycles, exactly 30 cycles later. In other runs the secondary peak may be 45 cycles later,
or, occasionally, the main peak may appear at 298 or 313 cycles.

We believe the peaks are cache artifacts. Their spacing correlates with the cache line load
latency of the DECstation 5000/200. The variation is caused by cache aliasing of the user
process code with kernel interrupt handling code, whereby different main memory locations
are mapped to the same cache location and compete to occupy it.

To demonstrate aliasing we run eight different tests. Each test executes a different 8
kilobyte block of instructions after each 3mint-generated interrupt is detected. The blocks of
instructions are organized to cover the entire 64 kilobyte direct mapped instruction cache of the
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Figure 5: Synchronized Interrupt Raising Design
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Figure 7: Cumulative histograms showing cache aliasing between user and kernel code

DECstation 5000/200. Cumulative histograms of number of cycles from interrupt to handler
appear in Figure 7. Execution of the instructions in block 6 results in considerably poorer
interrupt response indicating that this block of instructions aliases with many instructions on
the path from the kernel’s general exception trap entry point to the specific interrupt handler
for TURBOchannel option 2.

3.2 Monitoring Critical Regions

As a final test of the cache artifact hypothesis we develop a new 3mint design and kernel
instrumentation that permits us to record the entry time of each of the half dozen routines in
the path from the general exception trap entry point to the device specific interrupt handler.
This is sensitive code. At the trap entry point itself all but two processor registers contain
values from the process running at the time of the exception; values which must be saved
before these registers can be reused. In all the routines we must avoid adding extra overhead
that will perturb our measurements. Recalling that scattered I/O writes are much cheaper than
reads (Section 1.2) we add a small fifo to our 3mint interrupt raising design. On writes to a
region of its address space the 3mint now pushes the 29 low bits of the timer plus 3 bits from
the target address into this fifo. Writing to this fifo costs just two cycles and requires only one
free register—that in which the target address is loaded. When the interrupt handler is reached
the fifo contents are read and stored in the shared buffer for later analysis by a user process.
The new design appears in Figure 8.
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1
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Figure 8: Synchronized Interrupt Raising Design with Event Fifo

We place six probes in the path to the interrupt handler.

Except The earliest point at which we could add instructions after the exception entry point.

Vec1 The start of main interrupt vectoring routine. Called after setup of kernel stacks and
differentiation of interrupts from other exceptions.

Vec2 Before saving user state.

Vec3 After saving user state.

K1 First C language routine called. The beginning of interrupt type discrimination.

K2 Discrimination between different TURBOchannel options.

Pam 3mint specific interrupt handler where probe results are collected and saved.

Figure 9 shows results obtained with this design. The graphs are cumulative histograms.
A sharply rising curve turning abruptly to a flat plateau indicates that almost all observations
were of the same duration. A gently rising curve shows great variation among the observed
values. As we look further down the interrupt path the variations in cycle counts increases in
keeping with the predictions of our cache miss hypothesis. The early stages of the path are
shared by all exceptions and are therefore more likely to be in the cache.
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Figure 9: Cumulative Cycle Count Histograms of Steps in the Path to Interrupt Handler
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3.3 Summary of Interrupt Measurements

In 70% of cases TURBOchannel interrupts start to get service from their handler with 14�s.
Within 21�s, 98% have service. This variation appears to be due to cache misses. Much
longer delays sometimes occur and are almost certainly due to interrupts being masked while
other critical operations are performed. Delays of over 1ms have been observed.

Figure 11 shows cumulative histograms of DECstation 5000/200 interrupt latency under
four different workloads:

Idle Machine running a process with minimal cache requirements.

DBusy Machine running a process that fills the data cache.

IBusy Machine running a process that fills the instruction cache.

IDBusy Machine running a process that fills both data and instruction caches.

Figures 10 and 12 show these same measurements made on DECstation 5000/240 and
DECstation 5000/125. To facilitate easy visual comparison the scale of thecyclesaxis in
Figure 10 is chosen so that it covers the same period of real time as that used in Figures 11 and
12 in spite of the faster CPU of the DECstation 5000/240.

4 TURBOchannel DMA

Interrupts allow a TURBOchannel option to request service from the CPU. DMA allows the
option to work autonomously from the CPU. The rate at which such autonomous work can be
carried out is determined by DMA throughput and latency.

4.1 DMA Throughput

TURBOchannel limits DMA to relatively short bursts, thus simplifying the design of
the memory system and helping to ensure fair service even with fixed priority scheduling.
TURBOchannel guarantees to support DMA transfers of at least 64 words. The implementation
on the DECstation 5000/200 supports bursts of up to 128 words. There is a fixed overhead in
starting a DMA that is a amortized over the length of the transfer. With 3mint reprogrammed
to perform long sequences of DMA at a user specified block-length to contiguous memory, we
obtain the throughput results of Figure 13. Our design does not exercise DMA as aggressively
as it might, it waits 7 cycles between repeated requests, nevertheless for a block-length of 128
it achieves 91 megabytes/second for DMA writes and 86 megabytes/second for DMA reads,
against a theoretical 100 megabytes/second if overheads are ignored.

Running our DMA design continuously while using interactive applications, we find that
qualitatively the system remains quite useable even in the face of such heavy traffic. However,
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Figure 10: Cumulative histograms of interrupt latency for DECstation 5000/240
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Figure 11: Cumulative histograms of interrupt latency for DECstation 5000/200
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Figure 12: Cumulative histograms of interrupt latency for DECstation 5000/125
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Figure 13: DMA throughput vs. block-length

turning to considerations of large DMAs to non-contiguous user memory, we observe that, at
these rates, a 4096 byte DMA (the system page size) takes 45�s; about four times the interrupt
latency that we have measured and about one half the time to take and return from an interrupt.
It seems unlikely that the system will remain useable if interrupts are used to feed DMA on a
per page basis.

Instead 3mint, when programmed as the DECPeRLe-1 interface, uses a second level of
DMA to fetch successive physical page addresses from the system. This approach adds only
10 cycles in 1000 for each 4096 bytes transfer by DMA.

4.2 DMA Latency

In the previous design 3mint transferred counter values. We performed one final reprogram-
ming of 3mint making it an interface to a Videk high resolution digital camera [11], as shown
in Figure 14.

The Videk Camera outputs a 1.5 megabyte image at a fixed rate of 10 megabytes/second.
This data rate, while is well within the capabilities of TURBOchannel DMA, is difficult to
handle by other means on a DECstation 5000/200. Our 3mint design buffers camera output
and DMAs it directly into system memory. In fact the Xilinx 3000 series programmable gate
arrays are rather poor at implementing memory so we are only able to fit 12 words of buffering
in the design. Data arrives from the camera and is reformatted at the rate of one word ever
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Figure 14: Videk Camera Interface
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ten cycles. As a consequence, in order not to lose data, a DMA request must be granted once
every 120 cycles. When this is not the case, the design detects an overrun and inserts zero
valued pixels for the lost data. Usually the images are transferred reliably, but occasionally
the transfer suffers a burst of many overruns. To understand these overruns we investigate the
latencies in the granting of DMAs.

Reverting to our original DMA design we DMA the value of a free running counter into
system memory and record the time differences between the end and start of successive blocks
in a histogram. We run the test on systems under varying workloads. Generally DMAs are
granted after a very short delay. Occasionally the request experiences a delay of up to 200
cycles. Of all workloads measured, heavy ethernet traffic accentuates these long delays the
most. Figure 15 shows a histogram of measured DMA latency comparing an idle system with
one experiencing heavy ethernet traffic. There is a significant peak at 195 cycles. These delays
are caused when the DECstation 5000/200 ethernet subsystem blocks a CPU access while it is
accessing a shared buffer. They are eliminated entirely when the ethernet is disconnected.
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(Frequency on log scale)
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Figure 15: Histogram of DMA Latency under Different Workloads

Unfortunately on 3mint we are just a little short of the necessary storage to ensure lossless
buffering. Nevertheless, 3mint provides a workable interface to the Videk camera—a quite
unexpected application of the 3mint board. In Figure 16 we see the 3mint milliseconds before
it transferred the pixels of this image into the memory of a DECstation 5000/200.
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5 Conclusions

PAMs prove to be remarkably versatile at performing low-level system measurements.
These measurements would be very difficult to obtain by other means. They give unexpected
insights into the foundations of a computer system and the lowest levels of the operating
system.

In practical terms we have new data on interrupt handling under Unix and guidance in
developing a peripheral that will tax the limits of the DECstation 5000/200’s memory system.
And surprisingly we have a camera interface too.
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Figure 16: 3mint Taking its own Photo
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