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Abstract

The essential part of abstract interpretation is to build a machine-representable abstract domain
expressing interesting properties about the possible states reached by a program at run-time.
Many techniques have been developed which assume that one knows in advance the class of
properties that are of interest. There are cases however when there are no a priori indications
about the “best” abstract properties to use. We introduce a new framework that enables non-
unique representations of abstract program properties to be used, and expose a method, called
dynamic partitioning, that allows the dynamic determination of interesting abstract domains
using data structures built over simpler domains. Finally, we show how dynamic partitioning
can be used to compute non-trivial approximations of functions over infinite domains and give
an application to the computation of minimal function graphs.

Résumé

L'une des principales difficudts de l'interpetation abstraite consisteconstruire un domaine
abstrait, repeSentable en machine, qui permette d’exprimer un ensemble deqtéepuiffisant

a ddcrire de mamgre pecise I'ensemble destats dans lequel peut se trouver un programme
lorsqu’il est exécui. De nombreuse techniques d'intefation abstraite ordté ddvelop@es

a partir de I'hypotlese que la classe des “bonnes” prefiis est, ds le dfpart, bien identiéé.
Cependant, dans de nombreux cas, il n'y a aucune indication a priori guantérét relatif

des difErentes classes de pragiés envisageables. Nouspentons ici une nouvelleatiiode,
appe€e partitionnement dynamique, qui autorise ddedmination dynamique des “bonnes”
propriétés par |'utilisation de structures de daadonstruitea partir d'approximations simples
du domaine concret. Nous montrons en particulier comment des approximations finies et non
triviales de fonctions sur des domaines infinis peuwtrd €alcutes de mamire automatique,

et nous donnons une application au calcul des graphes fonctionnels minimaux.
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Abstract Interpretation by Dynamic Partitioning 1

1 Introduction

Abstract interpretation, as defined in Cousot [2, 4, 6], provides a general framework aimed
at computingnvariance propertiesf programs. These properties describe the run-time states
that can be reached from a set oftisl statesP, by means of a transition function over
the subsets of the set of run-time stafesvhich defines the operational semantics of a given
program. Whem is continuous over the lattic®(S5), C), the invariant I= N 7"(Fo) is
also the least fixed point Ifg) of the function® = AP.(P, U 7(P)). In most cases however,

S is infinite, and methods must be developed to determine a safe and finitely represented
approximation of this least fixed point. Patrick and Radhia Cousot introduced the notion of
Galois connectiond, ) as a general tool for building such approximate frameworks. The
abstractiorfunctiona maps a set of statéato an elemenP? of a finitely represented abstract
(approximate) latticeR#(S), C) whereas theoncretizatiorfunctiony maps an abstract state
P*1to0 a set of states, called itseaning Then, by defining a safe approximatid of @, i.e.,

a function such thab”* J a o ® o v, one can determine an approximate invari&nt lIfp(d*)

which is a safe approximation of I, i.ex(1%) D I.

However, when the approximate lattice is of infinite height, the iterative computation of the
approximate invariant may not finitely converge, and speedup techniques, such as widening
and narrowing, must be used to determine a safe approximatidnBat in many cases, there
is not even a clear indication about how to builgadandfinitely representedbstract lattice.

This happens when there is no indication about what the least fixed point will “look like”,
and therefore no advance knowledge of the properties that should be expressed in the abstract
lattice P#(S) to precisely describe the invariant |. Differently stated, there is a gap between
the exact lattice®(S) and the abstract lattices that one aamriori build or think about.

This is true in particular when functions over infinite domains are approximated. Moreover,
most implementations of abstract interpretation have to deal with the problem of testing the
equivalence of the data structures used to represent lattice elements (i.e., testing the equality
of their meaning). This test is often very costly and difficult to implement, as with the abstract
interpretation of functional or logic programs for instance, and it would be desirable to design

a framework that avoids such a test.

The aim of this paper is to discuss a technique, which wedyalbmic partitioningthat
can be used to compute non-trivial, safe approximations of program invariants in the above
cases, by dynamically selecting interesting and finitely represented abstract properties without
having to test the equality of their meaning.

We shall first recall, in section 2, the classical definition of a widening operator, and then
describe, in section 3, a framework that generalizes the classical lattice-oriented framework
to cases where no Galois connection can be defined and where testing the equivalence of
data structures can be avoided by using properly generalized widening operators over general
partial orders. We shall then discuss in section 4 several classical situations in interprocedural
abstract interpretation and show how our technique can be applied in each case. We will show
in particular how non-trivial approximations of functional fixed points can be computed by
using our framework and an adequate data structure. Finally, we shall give in section 5 two

Research Report No. 18 March 1992



2 Francois Bourdoncle

practical applications and show how dynamic partitioning can be used to effectively compute
non-trivial, safe approximations of minimal function graphs.

2 Widening operators

The Galois connection approach described above is perfectly adequate when the abstract
lattice P#(S) is of finite height since the iterative computation of the least fixed poin®éf
over P#(S) will necessarily converge in a finite amount of time. However, some interesting
program properties, such as the range of integer variables, are expressed in a lattice of infinite
height. Even if the integer variables were bounded, choosing for instancéw—, ..., w*},
w™ = =21 ot = 2w~l _ 1 the interval latticd (Z) is still of height2¥, and fixed point
computations may in theory require up to the same number of iterations. A speedup technique
has been proposed in Cousot [2] that uses so callddning operatorgo transform infinite
iterative computations into finite but approximated ones. So let us suppose for instance that
one has a program functidwop defined in ML as follows:

fun Loop 1 = if i < 100 then
Loop (i + 1)

else

i

Suppose now that one wants to compute the values returngddpyfor a set ofinput data
specifications Loop being recursive, this computation may require computing the value
returned byLoop for arguments that were not present in the initial data set. Therefore, the
goal of an interprocedural abstract interpretation framework will be to determinmithiimal
function graphdescribing the minimal information abolbop needed to compute its value

for every argument in the original specification. This notion of minimal function graph was
first introduced in Jones and Mycroft [10], but was in essence already present in Cousot [5].
A program stat€a,b) € Z x Z, therefore consists of an input valaeand a return value

b = Loop(a), where the special value denotes nontermination. Generalizing the idea used
by Jones and Mycroft for constant propagation, we can approximate the minimal function
graph ofLoop by a pair of intervals representing an approximation of allafp’s arguments

and all ofLoop’s results. This approximate minimal function graph is therefore the least fixed
point X # of the monotonic functio®” over the latticd (Z) x 1(Z) defined as follows:

®™(i,0) = (io, L) v (®I(0), P3(i, )
wherei, is the input data specification, and the two functidisand®i are defined by:

o¥G@) = incr¥(i Afw,99))
®i@,v) = vV (EA[100,w"])

where the strict abstract functiamcr # is defined by:

incrf(1) = L
incr*[a,b] = [min(a+1,w%),min(+1,w")]

March 1992 Digital PRL



Abstract Interpretation by Dynamic Partitioning 3

The least fixed poink * is known to be the upper limit of the increasing chain:

X(?)# = <J—7J—>
Xﬁﬂ = CD#(Xf)

But this limit can take a very long time to compute. For instancg, # [0, 0], this least fixed
point is equal tg[0,100],[100, 100]) and is reached after 102 iterations. One must therefore
find a way tospeedupthis computation in order for it to be tractable. To this end, we introduce
thewidening operatoiV, overl(Z), taken from Cousot [2] p. 247, or [6] p. 334:

1Vie = 2Vi1L = =z
[(11, bl] Vi [(12, bz] = [|f as < a; thenw™ elseal,
if by > by thenw™ elseb;]

This non-commutative operator generalizes “unstable” bounds of its right argument. It is a
safe approximation of the join operator, and is such that for every increasing ehainy,
the increasing chairyg ), N defined by:

Yo Zo
Yn+y1 = Yn V| Ln+1

is always eventually stable, i.e., there existgasuch that:Vn > ng : y, = yn,. Under
these assumptions, it is well known ([6], theorem 10-30, p. 334) that the uppeFTinoit the
increasing chain:

YO# = <J—7 J—>
Vi, = YIVOHY)) if 2 (@) <Y])
Yn#+1 = Yn# if q)#(Yn#) < Yn#

where the widening operator is applied componentwise, is a post fixed poiht,ofe.,
o*(Y#) < Y# and, therefore, is a safe approximationdf, i.e., X* < Y*. Note that since
here:

y<z — zViy==

this chain could be simply defined by:
YO# = <J—7 J—>
Yn#l-l = Yn# V' q)#(Yn#)

So for example, with input data specificatian= [0, 0], one can compute the increasing
chain:

YO# = <J—7J—>
Yl# = <[070]7J—>
YZ# = <[07w+]7J—>

Yy = Y# = ([0,w"],[100,w™])
whose limitY # is a safe approximation of the least fixed point:

X* = ([0,100],[100,100])
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4 Francois Bourdoncle

This result could also be improved by using tregrowing operato\| defined by:
1A = 20 1L = L
[(11, bl] A, [(12, bz] = [|f a; = w~ thena, else mir(al, (12),
if b = w™ then b, else maxby, bs)]
This operator satisfies the canonical condition:

Ve,yel(Z) tz>y = z > zliy >y

and is such that for every decreasing chagi){cn, the chain £,),.cN defined by:

20 Yo
Zn+l = Zn A| Yn+1

is always eventually stable. It is known that the lower lighit of the decreasing chain:
zy
Zln

starting from the post fixed poifit”, is a safe approximation o€ #. On our example, this
gives, after only 2 iterations:

Y#
zZE N o*(ZF)

Z(?)# = <[07w+]7[1007w+]>
zi = 2z¥ = {[0,100],[100,w"])

This example shows how good results can be obtained by using veny anad “brute force”
widening and narrowing operators. Of course, it might be argued that the intéytaD]
inferred by the computation could have been easily determined by simply lookingiektbé

the program, and that a finite abstract lattice could thus have beem lpuitiri. We shall see,

in section 5.2, an example that shows that this is not always the case, and in practice, building
ad-hoc approximate functional lattices is simply not feasible. However, since we already know
how to deal with intervals, it is very tempting to describe minimal function graphsebsof

interval pairs, instead of a single pair of intervals. The advantage of such a representation
is that it is very flexible, and does not establish in advance any particular tradeoff between
complexity and precision.

There is however a difficult problem to solve if we want to use this approach, in that there
is no canonical representation of abstract minimal function graphs. For example, it is quite
clear that the two set§([1, 2],[0,0])} and {([1, 1], [0, 0]),([2,2],[0,0])} are equivalent in
the sense that they represent the same minimal function graph, but no one is “better” than the
other. What we would like to do however, is to work with such representations, even though
they are not unique, and still ensure the convergence and safeness of every computation. The
traditional complete lattice framework is clearly not appropriate in this case, so we need to
generalize the approach to general partial orders.
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Abstract Interpretation by Dynamic Partitioning 5

3 Representations

Definition 1 Let (D, L,C) be a countable complete partial order (cpak a set, and
v : R — D ameaning function. The{®, <, v, V) is said to be a representation &f if:

i) (R, L, =X)is a partial order
it) The meaning functiof is monotonic

1i1) Each elemend € D can be safely abstracted by an eleme() € R, i.e.

v(e(d) 2 d
iv) Each binary operatoF; : R x R — R of the sequenc¥ = (V});cn is such that:

r = r\ir!

I .
v ER'{v(r') C (i)

v) Forevery{r;};cn C R, the chain(r});cn defined by:

ry = To
! !
il 73V, Tivt

has an upper bound.

A representation is said to be completé i, <) is a cpo, finite if every element & has a
finite encoding, and tractable if the chai);cN is always eventually stable.

This definition has some similarities with the definition of the upper approximafién<) of
a complete lattice®, C) using a Galois connection, i.e., a pair of monotonic functiensy,
a:D — D*andy : D¥ — D such that:

V(d,d" e Dx D¥ : a(d)<d? < dC~y(d"

The difference between the two definitions is that our framework makes very weak assumptions
aboutR and D and generalizes the case whdteand D are both complete lattices, since

we only require that be safe. As a matter of faat, is not even needed in the framework,

and only theexistenceof a safe approximation for every concrete element is required. This
allows in particular different representations to have the same meaning and one can choose
arbitrarily between them, hence the terapresentation Therefore, the traditional inequality

aoy = ldg, which becomes an equality wheris one-to-one, does not hold in this framework.

Each elementary widening operato¥; of the widening operatorV = (V;);en IS an
alternative to a join operator over the abstract latiidewhich does not necessarily existRf
is a partial order. The conditions imposed@rsimply ensure that safe and increasing chains
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6 Francois Bourdoncle

over R can be built from increasing chains ovBr, as we shall see below. Whethand D

are both complete lattices, the opera¥orof a tractable representation is a straightforward
generalization of the classical widening operator, in the sense & ') J v(r) LU~ (r’) and
every increasing chain built using is eventually stable.

Another remark concerning this framework is that conditigrig trivially satisfied for any
complete representation, for every increasing chain has a least upper bound. Differently stated,
the widening operatoV is not necessary in a complete representation to prove the existence
of aleast upper approximation. But even so, it can be very interesting to have such a widening
operator to defindinite andtractableframeworks, as we have seen in section 2. Also, note
that the use of widening operators over non-complete lattices was already present in Cousot
and Halbwachs [3], where the lattice of finitely represented convex hulls is not complete.

Finally, it should be noted that our framework can be very easily generalized to cases where
(R, <) is only a preordér, in which case the meaning function need not be monotonic and the
conditions imposed on the elementary widening operators must be:

fp . [ A0 T N
e R {v(r’) C y(rvir)

Preorders have been used for instance in Stransky [12]. However, the problem with such
very general frameworks is that not much can be said about them, for they are essentially
defined by the properties of the widening opera®r Moreover, preorders are not very
easy to work with, for representations having the same meaning can “oscillate” during the
computation and one must be able to finitely computestiigvalencef representations (i.e.,

v(r) = v(»')) to detect the stabilization of increasing chains. As we noted earlier, this is not
necessary here since stabilization is detected bedgoalityof representations (i.er, = =').

Hence, our framework is perfectly suited to cases wikieimplemented using vergomplex

data structuredor which the equivalence test is intractable or very costly, simeaequire

that equivalent representations be comparable only when they are “similar enoulghs
interesting to note that a comparable idea, which was only a heuristic at the time, was used in
the design of the widening operator of Cousot and Halbwachs [3] which preserves as much as
possible the representations of convex hulls during iterative computations.

So let R, <,v, V) be a representation d, and® € D — D be a continuous function,
that is, a monotonic function such that for every directed sufisetD: ®(||C) = | P(C).
It is well known that the least fixed point df is:

¢ = lip(®) = || (L)
ieN
If the elements ofD do not have a finite encoding, it may be impossible to compute this
increasing chain. So let us suppose that one can define a safe approxibfatioh operating
over the set of (supposedly finitely encoded) representatiyrigat is, a functiord®” such
that:
5o o I oo -

! A preorder is a reflexive and transitive binary relation.
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Abstract Interpretation by Dynamic Partitioning 7

One can choose in particutany functiond®” such thatb” > a o ® o v, for by monotonicity
of v and property#z):

'yoq)# d (yoa)odPoy O Doxy

but this is not mandatory. The only thing we really neednyg safe approximation ob. Our
problem is now: how can we compute a safe representatignusing®” which is the only
function that we can possibly compute? To this end, let us define the efpiy (by:

To = 1
Piv1 = TV q5’#(7%')

Theorem 2 The chain(r;);cN IS an increasing chain oveR that has an upper boung,
which is a safe representation of the least fixed poirpathat is:

¥(r,) 3 ¢

Proof. Let us first define the increasing chaify),cn by ¢o = L and¢;+1 = P(¢;). Itis
clear thaty(rg) O 1 = ¢g. Suppose by induction tha(r;) O ¢;. Then by definition of the
widening operatoN:

y(riv)) = (G OH(r)) I ()
But ®* being a safe approximation df, and by monotonicity ofb:
(@ (r)) 2 P(y(r)) I D) = ¢in

which proves that each is a safe approximation a@f;. But thanks to the first property of
V, ri+1 = 75, and ;);cN IS @an increasing chain which has an upper borndFinally, by
monotonicity ofy : Vi : ¢; C v(r;) C v(rw), which implies that C v(r,,). B

Using a finite and tractable representation, one can therefore compute a non-trivial, safe and

finitely represented approximation of the least fixed pginf any continuous functio® over

D, even if the representatia® does not have a maximum element (which would be of course

a trivial safe approximation of any elementBj.

However, as in section 2, it is possible to compute an even better represemfatidn
the least fixed point ofp by defining anarrowing operatorA = (A;);en such that every
elementary narrowing operat satisfies:

rl;r <r

VT',T'IER7 VéeD : ¢E‘Y(r)7 7(7'1) = { ¢E‘Y(7'Ai7'l)

2 As in Cousot [6] p. 331 for instance.
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8 Francois Bourdoncle

and computing the lower limit of the decreasing chaiji;{y defined as follows:

I

T = Ty

! _ I' A . DR
T = 70 ®(ry)

Note that, once again, the first condition imposed\@renforces the chain condition whereas

the second condition enforces the safeness of the computation, that is, this condition ensures
that the narrowing operator will not “jump below” the least fixed point, as shown by the
following theorem.

Theorem 3 When the decreasing chafn});cn is eventually stable, its lower limit is a safe
representation of the least fixed pointdf

Proof. We first note that, = r,, being a safe representationgyfwe have:

Y(rg) 2 ¢

Now, suppose by induction that:
() 3 ¢
then obviously, by monotonicity ab:

(@) T d((r) 2 D) = ¢

and therefore:
V(i) = Y0 O7E)) T ¢
which shows that the lower limit, = r{ for someio € N is a safe representation ¢f m

Note that, contrary to the classical widening/narrowing approach, we do not require that the
meaning of the first elememf = »,, be a post fixed point o, which, consequently, avoids
comparingy(r;) with ®(y(r;)) at each stage of the iterative computatiorrgf as in section

2. This property is very important if, as stated in the introduction, comparing the meaning of
representations is very costly. However, if the elementary widening opé¥asatisfies the
naturalstability condition

Ve,’ € R . v() C 4(r) =— N7 =1

as does the widening operafgrover the interval latticé&(Z), theny(r,,) will always be a post

fixed point of®. Elementary widening operators satisfying this condition will be caitadle

Note that complex widening operators, such as the ones that will be presented in the following
sections, will not generally be stable. Intuitively, since we require that two representations
r andr’ be comparable only when they are “similar enough”, the stabilitytés) C ~(r)

will be approximated, and, therefore, redundant informati@uded to a representatioenvill
sometimes lead to a loss of precision.

Finally, note that widening and narrowing are not dual operations. However, for the sake of
simplicity, we shall only focus on widening operators in the rest of this paper.
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Abstract Interpretation by Dynamic Partitioning 9

4 Dynamic partitioning

The aim of this section is to build generic representations based on the idea of “non-
redundancy”. We shall first talk about what we dadisic partitioning which is a technique
that can be used to build representations of a concrete complete l&tticeT, C, LI, M) using
well chosen subsets of when A is an upper approximation df. We shall then discuss two
other methods, callebasic functional partitioningandfunctional partitioningused to build
representations of functiorfd : C — B over an infinite seC, using subsets ol x B when
A is an upper approximation ¢#(C) and B is a lattice. We start by defining two notions of
non-redundancy for the subsets of a lattite

Definition 4 A subsetP of a lattice A is said to be non-redundant if it does not contdin
and:
Va,d € P : a<d = a=d

P is said to be strongly non-redundant if it does not contaiand:

Va,a' € P i a#d = aAd =1

Non-redundant subsets are often calteslwnsor antichains The set of non-redundant and
strongly non-redundant subsets afwill be noted respectivel\,(4) and Ryn{(A4). Two
elements of a non-redundant subset are either equal or not comparable, whereas they are equal
or have “nothing in common” if they belong to the same strongly non-redundant subset. Note
that strong non-redundancy implies non-redundancy.

4.1 Basic partitioning

So let us suppose that is an upper approximation of a complete latti€eand let ¢, )
denote the Galois connection between the two lattices. We wish to build a representdtion of
using the subsets of. The most naturaheaningof a subsef of A is of course:

ree) = [
acP
that is, the least upper bound of the set of concrete elements denoted by the abstract elements
of P. Let us define the binary relatiot over P(A) by:
P<P <« VaeP JdcP :a<d

This relation is similar to the preorder used to build kinver powerdomairfsee Gunter and
Scott [8] p. 653), sometimes called thiware powerdomainor therelational powerdomain

(see Schmidt [14], p. 295). The originality of our framework is that using well chosen subsets
of P(A), we can turn this preorder into a partial order and avoid using principal ideals and
complex power domains, as in Mycroft and Nielson [11] for instance.

Theorem 5 (Ry(4), <) and(Rsn(A4), <) are partial orders and™ is monotonic oveP(A).
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10 Francois Bourdoncle

Proof. < is obviously a preorder. So lé&t < P/, P’ < P, anda € P. Then there exists
a € P'anda” € P such that:a < o’ < da”, and by non-redundancye = a”, which
implies that:a = &’ € P’, and hence®? C P’. But similarly P’ C P, and thus< is a partial
order. Finally, it is easy to show that the monotonicityyamplies the monotonicity of .
]

Under more restrictive conditions, we can show tlat(A4), <) is a complete partial order.

Theorem 6 If A is meet-continuodsthen(Psn(4), <) is a cpo.

Proof. To show thatRn(A), <) is complete, letP;);.n be an increasing chain. Using the
diagonal argument and the definition®fone can build a (possibly infinite) set of increasing
chains{C’j}jGJ, J CN, Cj = (cji)i€N1 suchthatforalf e N: P, = {cji}jGJ - {J_} But

A being a complete lattice, each increasing cl@jrhas a limitl; € A. The only possible
candidate to the upper limit of the chaiR);cy is therefore{;} ;c;. But then for allj # j':

lj/\ljr = VCJ A Ver

Vi(eji AV Cy)
V’i,i’ (CJ,L A le,ir)
= Vo L = 1L

which shows tha{l;};cs is strongly non-redundant and is the least upper bound of the
chain @;);cn. W

Under the light of this theorem, one might think that it is a good idea to limit oneself to the
strongly non-redundant subsets 4f since they form a complete partial order, and appear
to be “less arbitrary” than the general non-redundant subsets dut it depends a lot on
the “shape” of the abstract latticé. Intuitively, for strongly non-redundant subsets to be
useful, every abstract elemeant A should be the least upper bound of a seatwims This

can be formalized by saying that should be an algebraic atomic lattice with a strongly
non-redundanasisA of atoms such that:

Vac A : a:\/(Aﬂla)

wherela = {a’ € A : o’ < a} is the principal ideal generated lay Standard examples of
such lattices areR(S), C) and the interval latticé(Z), with bases{{s}},cs and{[7, %] };cz
respectively. Counter-examples are complete total orders, for which every subset with more
than two elements is necessarily redundant. More generally, one can prove the following
theorem.

3 A complete latticel is meet-continuous (see Gierz [7] p. 30) if for every directed subsé&t L and every
element € L: z A\ D =\/{z Ad:d € D}
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Abstract Interpretation by Dynamic Partitioning 11

Theorem 7 Let(4, L, T, <,V,A)be an upper approximation &f(.5), such thaty is one-to-
one,y(L) = 0, and:

[s] #[s1 = [sInls1=1  (wheref] = a({s}))

ThenA is an algebraic atomic latticed = {[s] : s € S} is a strongly non-redundant basis
of A, and{y(a) : a € A} is a partition of S. Moreover, ify is V-continuous, them is
meet-continuous.

Proof. We first note thaty being one-to-onex o ¥ = Id4, v is A-continuous and is
U-continuous (Cousot [4], theorem 4.2.7.0.3, p. 4.33). Suppose now that theresexiSts
such that §] = L. Then ] = a({s}) < L and by definition of Galois connections,
{s} € v(L) = 0 which is impossible. Thud is strongly non-redundant. But:

tcANla <= dseS :z=a({s})<a
< dse S z=[s]A{s} Cv(a)
<~ dseq(a) : z=1[s]

ThereforeA N |a = B(a) = {[s] : s € ¥(a)}. In order to show that = \/ B(a), we shall
first show thaty(a) = Ugeg(e)7(2)- Buty o a 2 Idp(sy and thus:

= UsE’y(a)(‘yoa)({s})
2 Usefy(a){s} = 7(0’)

Conversely, lett € U,cq(a)7([8])- Then there existgs} C y(a) such that{z} C y([s]),
and hence by monotonicity of:

afe}) < [s] = a({s}) < aly(@) = a
which implies thafz} C y(a), thatis,z € y(a). Therefore:

Ugeﬂ(a) 7(a)

a = (ao7)(@) = a(Usepa)7(2))
= Vaep@(@07)@) = VB(a)

Now, wherry is vV-continuous, then for every € A and every subset C A:
7@AVX) = y@nU{y():zec X}

= U{r(@ny(=):z e X}
= U{ylernz):ze X}

and thereforeq beingu-continuous:
aAVX = (aovy)eAnVX)

Vi{(@ovy)anz):ze X}
= V{arz:zec X}

which shows thatd is meet-continuous. Finally([s]) # v([s']) implies that ] # [s'],
andy beingA-continuousyy ([s]) N y([s']) = v([s] A [s']) = v(L) = @, which proves that
{v(a) : a € A} is a (set-theoretic) partition &. m
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12 Francois Bourdoncle

What we need now in order to complete our framework is to define elementary widening
operatorsV such that:P < PV P’ andl'(P') C I'(P V P’). There are of course many ways
to define these operators. When working Wi A), the most precise widening operator can
be defined by:

PVP = (PuP)-{deP,3acP:d<a}

In fact, this widening operator behaves rather like a join operator. More generally, at each step
of the computation, one can choose (either deterministically or not) a sBpséthe current
invariant P to coalesce The idea of such a generalization is to repl&chy:

(PU{ap}) —{a€ P : a<ap}

whereaq is any element greater th§hP,. Of course, one might choose to define a very poor
widening, which does not improve the expressible properties of the framework, by:

PVP = {\/(PUP')}

It is easy to see that these definitions t&A) into a representation framework abstracting

the latticeL whenever the “generalizations” are properly used. It is difficult to say more about
these generalizations since widening operators are well known to be highly lattice-dependent.
When working withPs,{A), widening operators are even more difficult to define in the general
case, and we shall only develop an example in section 5.1. Note that in practice, one will
always work with the set dinite strongly non-redundant subsetsAfvhich is generally not

a cpo, so the completenessifi{A) will not help. Finally, note that the definition of the
widening operator has a great influence over the quality of the result of the computation, as
we shall see in section 5.2. Therefore, the general idea one should follow in the definition of a
widening operatorV;);cn should be to use very precise elementary operators (i.e., join-like)

at the beginning of an iteration sequence, and to generalize only after these operators have
precisely defined the “shape” of the least fixed point. However, as we shall see in section
5.2, there are also cases where it can be a good idea to alternate join-like operators and
generalizations.

4.2 Basic functional partitioning

A central problem in abstract interpretation is to find a safe approximation of a least fixed
point F' that belongs to a functional latti€2 — B, where B, L, T,C, LI, M) is itself a lattice.
For instance, for very simple, non-recursive programming langudgés usually the finite
set of lexical control points, an® the powerset of run-time memory states. But for more
complicated, recursive languages, a control point is more naturally defined as a subpart of the
run-time stack, and’ is infinite. More generally, there are cases where it can be interesting
to consider that control points are indeexkcution traceand not only static control points.
Finally, in the minimal function graph approadfi,is the set of admissible inputs of program
functions, andB is the lattice of possible outputs, the bottom valueBdbeing used to denote
nontermination. In this paper, we shall refer to the elements of the possibly infinifé aet
control points
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Very often however, there is no need to know the valué'dbr every control point, and
it is sufficient to determine a safe approximatiBnd | |[{ F(¢) : ¢ € C;}, of the values taken
by F over each subset of a givgrartition {C;};cr of C. This partition can be defined in a
very natural way by assigningtakento each control point. This method has been proposed
for instance in Sharir and Pnueli [13] and Jones [9], where tokens are used to group execution
traces and coalesce the memory states associated with them.

If the set of tokens is finite, then the framework is said tphditioned(see Cousot [6] p.
315) and the problem is equivalent to the resolution of a finite system of semantic equations.
This is the case for instance in Bourdoncle [1], where a token is assignhed to each run-time
stack. These tokens model the “shape” of the stack (pointers, control stack. . .) and generalize
the tokens used in Sharir and Pnueli [13] that only took into account the control part of the
run-time stacks.

However, if the set of tokens is infinite (or very large) and one has no idea of a good way of
defining a finite partition, then the original problem of finding a safe and finitely represented
approximation ofF' remains to be solved. The idea is then to “liff’ so that it operates on
sets of control points, and to dynamically calculate a partitio@ pihstead of it being “hard
wired”.

We are going to study two general methods for doing dlyisamic partitioning For each
of these methods, we suppose that there is a basic (and supposedly not satisfactory) way
of finitely representing sets of control points, and we intend to buitdpaesentatiorfrom
this initial approximation. We shall therefore suppose thati(, T, <, Vv, A) is an upper
approximation of P(C), 0, C, C,U,N), and call &, v) the Galois connection between the two
lattices. We shall also suppose thais one-to-one and that(L) = @, which implies thaty
is A-continuous. The elements df will be calledabstract control pointgind the elements
of T = {[c] : ¢ € C}, where k] = a({c}), will be called thetokens Theorem 7 shows that
whenevelT is strongly non-redundant, thehis an algebraic atomic lattice, aftddefines a
partition of C, but this hypothesis will not be necessary. Our dedin therefore generalizes
the classical notion of token. Finally, the element®Boivill be calledabstract values

The first representation that we shall define is based on the very olaServation that every
abstract control poind € A implicitly defines a (possibly infinite) set of control pointéz)
that we shall informally call a “region”. Therefore, an easy way to approximate a function
from C into B is to “cover” the region over which this function is different framby a finite
subset of4, and to associate an abstract valweth each element of this subset.

If the regions of such a representatiBnC A x B do not overlap, the natural meaning of
P will map every control point to the unique abstract valdeassociated with the elememnt
by which its token ¢] is covered, or tal if its token is not covered. However, if the regions
overlap, the meaning a? can be defined in several ways. We shall study in this section the
most natural idea which is to map every control pairib the union of the abstract values
associated with the abstract control pairnwith which its tokerintersects We will show that
these representations can be constrained in order to form a partial order compatible with this
meaning, and then explain how widening operators can be effectively designed. We shall then
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14 Francgois Bourdoncle

study, in the next section, a different and non standard meaning of overlapping representations
that is better suited to generalization.

Definition 8 A subsefP of A x B is said to be normalized if:
V{a,b)e P, V{d',b'YeP :a=d = b=V

For every normalized subs&, anda, a;,as € A, we define:

A(P) = {a€A:3be B:(a,b)€c P}
o) = U{r(@:{ab)e Py
P(a) = |J{b€ B:{a,b) € P}
Pli(ai,a) = {b:{a,b) e P N a1 <a<as}

The setA(P) is called thedomainof P, and the abstract valuB(a) is theimageof a by P.
The setC(P) is theconcrete domaif P, i.e., the “region” ofC' covered by the domain of
P. For a normalized subsét of A x B, the imageP(a) of every element of the domain of
P is the unique elementsuch thata, b) € P. We callP(4, B) the set of normalized subsets
P whose domains do not contain, andR,(A4, B) (resp.Rn(4, B)) the set of normalized
subsets which have a non-redundant (resp. strongly non-redundant) domain. Obviously:

Rnd4,B) C Ru(4,B) C P(4,B)
We then define the meanifdP) of a representatio® € P(A, B) by:
F(P)e) = Mplc]
where the monotonic functioMp : A — B is defined by:

Mp) = || Pla)

a€A(P)
ahz# L

WhenT is a strongly non-redundant basis4fwe obviously have:
VTeT, VaceA : aANT# 1 < 71<a

and therefore:
F(P)e) = ||{b:(a,b)e P A []<a}

which states that each control poinis mapped to the union of the abstract valbedtached

to the elements afi (P) by which its token ¢] is “covered”, or toL if its token is not covered.

Note that if A(P) is strongly non-redundant, then an element of the basis is at most covered by
a single element ik (P). It is worth mentioning at this stage that although any set of tokens
can be chosen, it seems reasonable to impose/tim strongly non-redundant. To see the
problem, let us chos€ = Z, A =Z,, and ] = ¢. Theny(c) = {w™,...,c}, the lattice

(4, L,w", <, max, min) is totally ordered and:

Va,a' € Ata# 1L ANd £ 1 < ahd #1
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Abstract Interpretation by Dynamic Partitioning 15

which shows thak (P) is constant ove€' and:

F(P)e) = | |{p:(a,b)e P}

Intuitively, all the “regions” defined by the abstract control points overlap, and therefore, there
is no way to distinguish between the different abstract values3 of the representation. We
are now going to show th& (4, B) andRs(A4, B) can be turned into partial orders.

Theorem 9 Ry(A4, B) andRsn(4, B) are partial orders for the binary relation:
PP < Vi{ab)eP, I, b)eP :a<d ABCV

and the meaning functidnis monotonic oveR,(4, B) andRsn{A4, B).

The proof is straightforward. Note that every functi&nin C — B can always be finitely
abstracted by{(T, T)} and, whenT" is non-redundant, it can also be safely abstracted by
{{le]l, F(c)) : ¢ € C}. Therefore, defining a widening operator o\&f(A4, B) will turn

RPr(4, B) into a representation @f — B. Elementary widening operators can be defined as
follows:

¢ We first define the domain @? V P’ by:
APV P) = APV AP)
wherey; is any basic partitioning widening operator defined in section 4.1.
e Then, for everys in the domain ofP V P’, we define the image af by:
(PVP)Ya) = b
whereb € B is any abstract value such that:

b J Mp(a) U Mpi(a)

To prove thatP < PV P’, we remark that by definitiod(P) < A(P V P’), and therefore:
V{a,b) e P, 3a' € A(PVP) :a<d
hence:
b = P(a) & Mp(a) E Mp(a') C Mp(a)UMpi(a) E (PV P')(a)

and thus:
I, bYe PVP :a<ad ANBCY

Let us now prove thaf (P') C (P V P’). So let{a’,b') € P’ andz € A be such that
z A a’ # L. By construction, we have:

cPy= | v ¢ U 7 = crvP)
acA(P") a€A(PV P')
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16 Francois Bourdoncle

and therefore, there exists a p&irb) € P V P’ suchtha A z A a' # L, otherwise;y being
A-continuous:

v(@Ad) N y(d)

(@ Aa) N Usearprn(a)

Uscapvpy (e Ad) N y(a))
Uscapvpyrl@nzra) =0

and thus; being one-to-onez A @’ = L, which is absurd. ConsequentyA o' # L, and
therefore:

y(z A a')

N 1NN

b 3 Mp@UMpi(a) I Mp(and) 3 ¥

which shows that:

(a!,b'yeP! {a,b)eP V P’
zhal#1 zNha# L
and hence:
NPy Cc r(pvpe)

Provided that conditionw of definition 1 is satisfied Hy (4, B), <,I", V) is thus a represen-
tation of the functional lattic€ — B.

4.3 Functional partitioning

The main interest of basic functional partitioning is that it is indeed very natural and easy
to understand: the value mapped to a control peiby the meaning of a representatiéh
is defined as the union of the abstract valhessociated with the abstract control poiats
which have “something in common” with its tokeg},[i.e., [c] A a # L. But basic functional
partitioning has several shortcomings.

Firstly, as we noted earlier, basic functional partitioning is reasonably applicable only when
the latticeA is an algebraic atomic lattice with a strongly non-redundant basis. This can be very
annoying when approximating higher order functions for instance, since abstract functional
lattices do not generally have a strongly non-redundant basis.

Secondly, there are cases where the orderingver R,(4, B) is not appropriate, and
one would like abstract control points of representations to be maintained during iterative
computations. This happens to be the case for interprocedural abstract interpretation since
abstract control points naturally correspond to function calls in the fixed point computation
algorithm, and the abstract call graph, which is generally needed to determine the set of
recursive procedures, is therefore defined in terms of abstract control points. Of course, this
goal can be easily achieved by slightly modifying the definitiorkals follows:

V{a,b)e P, 3{(d',b'Ye P' : a=d A DLV

However, this ordering has a major drawback with respect to the definition of widening
operators in that, intuitively, the only way to generalize a represent&tiaithout losing too
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Figure 1: Basic functional partitioning vs. functional partitioning.

much information is to “paveC using strongly non-redundant subsetsdgfbecause every

extra elementa’, b') added toP leads to a loss of information for every token “covered” by

a'. Thisis illustrated by the left part of figure 1 in the case of the interval lak{i¢). But this
pavement can turn out to be much too complicated when working with sophisticated lattices
such as the linear inequalities lattice for instance. Worse, it can even be impossible to define
such a pavement for atomic lattices that do not have a strongly non-redundant basis. What we
would like to do is therefore to map small regidfs };c; of C to a given set of value®; }cr,

while defining some kind oflefault valued’ for a larger and possibly overlapping aaas
illustrated by the right part of figure 1. This can be achieved by generalizing the definition of
the meaning functiofn to every elemenP of P(A4, B) by:

F(P)c) = Mpld]

whereMp : A — B is defined by:

Mp(z) = I_laeA;I? Dp(a Nz, a)
and Dp(u,v) = [ Pli(u,v)

Given two abstract control points andv, Dp(u, v) is equal to the greatest lower bound of
the abstract valudsassociated with the abstract control poimthat belong to the (possibly
empty) convex subsdtz : u < = < v}. It is easy to see that this function is increasing
in its first argument and decreasing in its second argument. The funktipris therefore
monotonic and maps every abstract control peirg A to the union of the abstract values

b associated with theninimumelementse € A(P) such thate A @ # L. The meaning of

a representation iRy (A, B) is thus identical to the meaning defined in the previous section,
since every element of a non-redundant dom&{#®) is minimum. The meaning aMp

for the representatio® = {(a,b), (d’,b’), (a”,b")} and three particular values= [2,13],

a’' = [10,18] anda” = [6, 21], is illustrated in figure 2 in the case of the interval latti¢g).

The functionM p maps an abstract control point, represented by a point on the plane using
the usual encoding of intervals:

[z,9] — ((z+y)/2,(y—2)/2)
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bub'ub” o
(a,b")
(a,b)
b U b” bl u bII
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Figure 2: Meaning oM p for P = {{a,b), (a’, b}, (a",b") }.

to an abstract value i®. The functionl (P) : Z — B maps every integet to Mp[k],
where the tokend] = [k, k] is the one-point interval. Note how the intervals belaare
“protected” from the valué” associated with the abstract control paifit

The problem however with this new meaning functibnis that it is not monotonic
over P(4, B). Intuitively, non-monotonicity arises when an eleméat, ') is added to a
representatio? anda’ “masks” a region previously mapped to a value greater thaifthis
would be the case for instance in figure 2df, b') was added t§(a, b), (a”, ")} andbd’ C b".
In order to avoid this situation, one can require tabe greater tha$p(a’), where the
smallest safe valu8p(z) is defined by:

Sp(z) = || Drl=,a)
a€A(P)
1<z <a
Intuitively, this condition ensures that the new valliés at least the union of every value that
a' could mask, i.e., the values associated with the minimum elemedit&Hh that are above
a’. This intuition can be formalized by defining the relatigroverP(A, B) as follows:

V{a,b)e P, (', "Y€ P' 1 a=a ANDCV

!
PL P {V<al,bl>epl : a’QA(P) — b'QSP(a')

Note that sinceSp(a) = P(a) for everya in the domain ofP, this condition could also be
written as follows:

A(P) C A(P")

!
PP {v<a',b'>eP' L ¥ 3 8p(a)

Theorem 10 (P(4, B), <) is a partial order, and™ is monotonic oveP(A4, B).
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Proof. Let us first show thalt is monotonic oveP(4, B). So let us suppose th&t < P’.
ThenA(P) C A(P’'), and for everye € A suchthate £ 1 :

Spr(z) T |Jecarwy Dpi(a Az,a)
l<z<a

Mpi(2) O |lecaw) Dpr(a Az,a)
ahz# L

But for everya € A(P) suchthateithet Aa# Lor L <z <a:

Dpl(a/\ :t:,a) = |_|(a’7b’)epl (b’)

ahz Sa’Sa

Let us now suppose that there exiés, b') € P’ such thata A ¢ < a’ < a. Then by
hypothesis:

¥ 3 Sp(a) = |_| Dp(d',d") 3 |_| Dp(a’,a")
a!’ € A(P) a’’cAP)
a'<all a'<a<a

Buta Az < o’ < d” < aimpliesthatDp(a A z,a) C Dp(a’, a”), and sincar € A(P), the
set{a” € A(P) : o’ < a" < a} is non-empty and thus:

¥ 2 Dplarez,a)

which implies that:
Dpi(aNz,a) I DplaAhz,a)

and therefore:

Mpi(z) I Mp(z)

Consequently, sinc8g (L) = Mg(L) = L for every representatio@, thenMp T Mpr,
Sp C Spr, andTl is monotonic overP(4, B). Finally, < being trivially reflexive and
antisymmetric, let us prove that it is also transitive. SoRek P’ < P”. Then for every
(a",b") € P" suchthaw” ¢ A(P), eithera” € A(P’'), and thud” 3 ¥’ 3 Sp(a”), or else:

{ Spi(z) I Sp(z)

bII g SP’ (all) g SP (all)

which proves thaP < P"”. m

We have proven thaP(A4, B), <) is a partial order, but we must note that the meaning function
is not strictly monotonic, i.e., one can find two distinct representations suclrthatP, and
I'(P,) = I'(P2). This holds for instance whenevar C b, for:

P = {<[171]7b>7<[273]7bl>7<[173]7b’t>} (7’ € {172})

since:
FNP) =TMP) = {1—05,2— b,3— b'}

This problem can be solved by considering well chosen subs&&49fB), but we shall not
study this problem here. We have thus defined a very flexible framework such that abstract
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Figure 3: Widening in a functional partitioning framework.

control points are added and never removed during a given computation. Moreover, the
information associated with each control point is only allowed to increase. Finally, we have
a very easy criterion to check whether or not a gajib) € A x B can be safely added to a
representation, which is very important if one wishes to be able to generalize at some point of
the computation. What we need now is to define elementary widening operators, i.e., operators
suchthat:P < PV P'andlN(P')C (P V P).

In the rest of this section, we shall only consider finite representations, for they have the
greatest practical interest, and for the sake of simplicity, we start by defitfing P V P’ for
asingletorP’ = {(d’,¥')}. There are basically three cases in the definitioR'af Each one is
illustrated in figure 3, where we have takén= 1(Z), andP = {(a1, b1), (a2, b2), (as, b3)}.

e If o’ € A(P), then for every(a,b) € P such thaiz < a’, the replacement df by any
element greater tha L b ensures that the meaning Bf’ is greater than the meaning
of {{(da', )}, and at the same time th&t < P” (fig. 3a).

e If o’ ¢ A(P). Suppose one wishes to add this new abstract control point to the domain
of the current representatiaP. Obviously(a’, b’y cannot simply be added t8. But
adding any paifa”, ") such that” > o' andd” J b’ LI Sp(a”) will ensure thatP < P”.
However, as in the previous case, evédyb) € P such thatz < a” may “mask” the
valueb’ to several elements of the basis. Hence, each valuast be replaced by an
element greater thai LI b to ensure that the meaning Bf' is greater than the meaning
of {{da', b} (fig. 3b and 3c).

e There are cases however wher'e¢ A(P) but one does not want to add to the
domain of P. In fact, this will almost always be the case when working with finite
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representations. There are then two subcases to considef(a’)fC C(P), every
control pointc represented by’ is already represented by at least one elemenich
that(a, b) € P and ] < a, and replacing by b LI b’ will ensure that the meaning &

is greater than the meaning ffa’, b’} — provided of course that, as in the previous
cases, every’ such that{a”,b"”) € P anda” < a be replaced by an element greater
thand' U b” (fig. 3d). Butify(a') € C(P), then the region defined hy contains “new”
control points, and there is no way to avoid the additiom'afo A(P). The previous
case must thus be applied, choosing for instarfce T.

Note that, in practice, the teg{a’) C C(P) will always be approximated, and a given
abstract control point’ will not be added to the domain d@? only if there exists
{(a,b) € P such thata’ < a. Such an approximation will thus generally imply the
non-stability of the widening operator (cf. section 3).

This definition shows that functional partitioning is well suited to generalization processes, for
it enables one to easily generalize without losing too much information. In order to complete
our framework, we now defin2 V @ for any finite representatiof € P(A, B) by arbitrarily
numbering the elementa;, b;), ¢ € [1, k] of @, and adding them one at atime®i.e.:

PVQ = (PVQ1) -)VQk
where@®; = {(ai, b;)}. This definition trivially implies that:

PVQ = (PVQ1) )VQr1 = -+ = P
and thanks to the next theorem:
rPve) = r((PVE1) -)VQk
J M@u)u---ul(Qk)
J M@1U---UQg)
= @)

which shows that conditioiv) of definition 1 is satisfied.

Theorem 11 For every@1, Q2 € P(A, B) such that); U @, € P(A4, B):
MQ:UQ@2) C M@Q1)UT(Q2)

Proof. We first remark that for every, v € A:

(Q1UQ2)'(u,v) = Q1%(u,v)U Q2 (u,v)
thus:
Do,uq@,(u,v) = Do,(u,v)NDg,(u,v) T Dg,(u,v), Dg,(u,v)
and therefore:
Mq,uq,(2) = szfﬁluqz) Do,ug,(a Nz, a)

= Useaon Doiug,(an e, a)Ullseann Do,ue,(ah 2, a)
C Mg, (z) U Mg, (z)

which proves thaf (@1 U Q2) CT(Q1) LT (Q2). m
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Figure 4: Widenings ove®,(1(Z?)).

5 Applications

We are now going to present two possible applications of dynamic partitioning. The first one
is simply the application of basic partitioning to the bi-dimensional interval lat{i¢é). Its
interest is rather academic, but we shall use this examplleistrate how widening operators
can be effectively built. In the second example, we will show how a precise description of the
input/output behavior of a program function can be computed using functional partitioning.
This example will exemplify the case where the shape of a program invariant cannot be
predicted and has to be considered as an output of the fixed point computation itself.

5.1 Multi-intervals

The aim of this section is to show how sets of bi-dimensional intervals can be used to
represent sets of integer pairs. Following the method developed in section 4.1, we can either
use non-redundant subsets or strongly non-redundant subsk®?hf Note that strongly
non-redundant subsetsigZ?) are always larger than non-redundant subsets. We are going to
illustrate the ideas that can be used to build elementary widening operators over such subsets.
Figure 4a shows an elemeRt= {ay, as, as} of Rn(I(Z2)) plus an extra element € 1(Z2).

We wish to calculate®’ = PV {a’}. Figure 4b illustrates howP’ can be defined using a
join-like operator. Note that such an operator might be very difficult to implement. So let
us focus orPy(1(Z%)). We shall define two elementary operators. The first Gnéig. 4c)
behaves like a join operator and shall be used in the first steps of a computation. The second
oneV, (fig. 4d) computes a generalization as follows. Using the widening opevatover

1 (Z2) defined in section 2, one first computigs= (\/ P) V, a’. Intuitively, \/ P is used as a
reference to determine in “which directioa”is “moving”. Of course, different references can

be used, such as the most recently added elemedafinstance. FinallyP’ is calculated
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e

Figure 5: Safe representation of i),

by removing the redundant elementsif {a}. We shall use these two elementary widening
operators to compute a non-trivial, safe and finitely represented approximation of the least
fixed point of® : P(N?) — P(N?) defined by:

o) = {(2,1),(2,2}U{(lzy/2],2 +y) }zyem

This least fixed point cannot be finitely represented in any usual lattice used for modeling
sets of integer pairs, such as the linear inequalities lattice of Cousot and Halbwachs [3] for
instance. But one can very easily define a safe approximexfasf ® by:

q)#(P) = {<[272]7[172]>}U{q)?l#(X7Y)}(X,Y)€P

where:
(i, 8], [¢,8) = ([[id'/2], [ss'/2]], [ +4', s +])
Then, using the framework of section 3 with the widening operator:

V = (Vjsvgw) = (VJ7VJ:VJ7V9 o )
one can finitely compute the following non-trivial approximation displayed in figure 5:

{412,21, 11,21), {[1,2],[3,41), ([1,4],[4,61),([2,12],[5,10]), ([5, ], [7,"]) }
5.2 Minimal function graphs
We are now going to present an application of functional partitioning to interprocedural
abstract interpretation, which in fact originally motivated this work. Let us suppose that one

has aprogram function® : Z — Z, such as thd.oop function introduced in section 2 or
MacCarthy’s 91-function defined by:
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fun Mc n = if (n > 100) then
n-10
else
Mc(Mc(n + 11))

We wish to determine a safe approximation of the minimal function graph fafr a given

set of input data specifications. We are not going to formally describe a minimal function
graph semantics but rather give an intuition about the way finite representations of minimal
function graphs can be computed using functional partitioning. As hinted at the end of section
2, we shall abstract minimal function graphs using representatidd@ (8), | (Z2)), and input

data specifications using representationg,j(i (Z)). So let us suppose that we have an initial
representatiotf, of the set of input data specifications. We can define the first representation
of the minimal function graph oP with respect to the input data specificatifyrby:

Py, = {<i07 J—>}i0610
The meaning of a representatiénis the one introduced in section 4.3, that is:
F(P)(n) = Mp[n,n]

where:
Mp) = VA0 @A) <7 <i}puer

(i,v)eP

zANt £ L
Note that, contrary to what is proposed in Jones and Mycroft [10], we have not introduced
a special value “I” to denote non-termination. Therefore, at the end of the computation,
I'(P)(n) = L either means thab has never been called withas argument or that it has been
called and looped. Note that this is not too important since these two interpretations can be
easily distinguished by looking at the domain of the representation. The approximate minimal
function graph is therefore the limit of the increasing chain defined by:

P = OF(B)
where®#(P) is defined as follows:
1) Forevery(i,v)in P, an updated valué 1 v of v is computed by applying the definition
of @ to the set of values denoted kyand replacing the values of the recursive calls

®(¢'") by Mp('). The latter is the best approximation®{:’) that can be given using
the current approximation @.

2) Then®*(P) = {(i,v V) ") }iwyer Ve ({7, L) }oer, wherel' is the set ohewabstract
control points over whicl® has been called in step 1.

In other words, we compute an updated approximatibof the valuev of ® over each
abstract control point in the domain of the representatiédh) and take into account the fact
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that recursive calls have generated new abstract control pbimygsinserting these intervals
into the representation.

The insertion of the updated valwé can be done for instance in a fairly simple way by
using the usual widening operatdy overl(Z) defined in section 2, and replacifgv) in the
initial representation by, v V, v}, in order to make sure that the increasing chain of abstract
values ¢,v V, v',...) will be eventually stable. Of course, at the beginning of the iteration
sequence, it is also safe to repldégv) by (7, v v v').

The insertion of the new abstract control poiiitsito the representation is more subtle, and
uses the elementary widening operafodefined in section 4.3. Obviously, it is generally
unsafe to add directlys’, L) into the representation since, as discussed in sectior:'4.3,
might “mask” one of the intervalsin the domain of the representation and thus invalidate its
meaning. The smallest pair that can be safely inserted is thergfp&(:')). But abstract
control points themselves need to be generalized in order to enforce a finite computation, and
at some point of the iteration sequence, we will have to replace the ini€byah greater one
7", e.g., the maximum element. This can be formalized by introducing three elementary
widening operators defined as follows.

(V) Add the pair(¢’, Sp(i')). Thisis the most precise, join-like, widening operator.

(%) When it is safe not to addl, i.e., when the region covered lyis already covered by
the domain ofP, then do nothing, otherwise generalize by addjitySp(:")), where
" > 4'. A good choice can be for instan£e= (\/ A(P)) v ¢, i.e., the smallest interval
representing all the values over whidh has been computed so far, in which case
Sp(i") = L.

(V.) Finally, to avoid adding an infinite number of abstract control points, one can use the
widening operator over the intervals and d@d A(P)) V, ¢/, L).

Of course, the choice of threequencef elementary widening operators is essential. The first
elementary widening operat®, will generally be used at the beginning of the computation,
and V. will systematically be used at the end. Moreover, it is often useful, after having
generalized using,, to make a few more precise steps usiggr V. The motivation behind

this choice is that once the domain of the minimal function graph has been delimited, a few
more precise steps are generally needed to determine the abstract control points that are useful
to precisely describe this graph and allow these intervals to “propagate” along recursive calls.

Finally, note that the insertion of the updated abstract vallaad the insertion of the new
abstract control pointg can be freely mixed in pratice, and newly generated control points
can be added on the fly to the representation without problem.

The widening operator that we have described turns the functional partitioning framework
into atractableframework. So for instance, using the widening opera’&, V.“), one can
automaticallycompute, after 4 iterations, the following representation of the minimal function
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graph ofL.oop for the input data specificatiofj0, 0] }:
{10, 0], 1100, 100]), ([0, "], [100,&]), ([1, 1], [100, 100]), {[1, 100], [100, 100]) }

which has the following meaning:

i Loop(z)
0 <7 <100 | [100,100]
100 < n [100, w™]

This result is interesting in that it shows that the exact informati@ep [0, 100] = [100, 100]

has been obtained, as opposed to section 2, and this has been achieved without the help of a
narrowing operator. However, contrary to the result of section 2, the approximate minimal
function graph seems to indicate that the computatioboafp(0) might require computing

Loop for values greater thah00, but starting this time from the input data specification
{[0,100]}, and using the “brute force” widening operat®<) we can compute the following
representation:

{<[0, 100], [100, 100]>}

which invalidates this interpretation. Similarly, using the widening oper&o¥? V.“) one
can compute, after 4 iterations, the following representation of the minimal function graph of
Mc for the input specificatiof[0, 50] }:

{10,501, 91,911}, ([0,* — 10],[91,&*]), {[11,111],[91,101]), ([11,61],[91, 91]),
(122, 72], 91, 911), ([22, 111], [91, 101]), ([91,101],[91,91]) }

This representation has the following meaning:

n Mc(n)
n <0 1
0<n<T72 [91,91]

73<n<90 | [91,101]
91<n<101 | [91,91]
102<n<111| [91,101]

112<n  |[91,w* —10]

which is a good and safe approximation of the exact meanitig,dfe.:

Moy =  n—10 if n>101
a 91 otherwise

It is interesting to compare this result to the one obtained in Bourdoncle [1] using a method
based orstatic partitioning In this method, the representation of MacCarthy’s 91 function
would consist of three interval pairs, each pair being associated wightactically different
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call toMc, that is, the main call tiic and the two recursive calls. This formally corresponds to
having three mutually recursive functions1, Mc2 andMc3 with the following definition:

if (n > 100) then
n-10

else
Mc3(Mc2(n + 11))

and describing each of these functions by a pair of intervals representing all of the function’s
inputs and all of the function’s outputs. The result obtained is the following:

Mcl @ {[0,50],[91,w" — 20])
Mc2 : ([11,w7],[91,w™ — 10])
Mc3 : ([91,w" — 10],[91,w" — 20])

This quite mediocre result can be explained by noting that the induction property:
Vn €[91,101] : Mc(n) = 91

has not beerinferred by the framework because the number of interval pairs was fixed
advance This phenomenon can be worked around by using an ad-hoc input data specification,
namely{[0, 100]}, which gives the following, optimum, result:

Mci : ([0,100],[91,91])
Mc2 @ ([11,111],[91,101])
Mc3 @ ([91,101],[91,91])

However, this “trick” is not necessary when using the functional partioning framework, since

this framework infers the interesting program properties by itself, and automatically determines
the number of interval pairs needed to describe the program invariant. Howevever, it is worth
mentioning that the widening operator has a major impact on the result's quality, and for
instance, the “brute force” widening operator would only compute, after 2 iterations, the

following, mediocre but concise, representation:

{<[0,50], [91,w* — 10]), ([0, w*], [91, w* — 10]>}
with the obvious meaning:
Vnc[0,w'] : Mc(n) € [91,w" —10]

This example shows that the data-oriented approach of dynamic partitioning is much more
versatile than the syntax-oriented approach of static partitioning, and generally gives better
results. But on the other hand, static partitioning guarantees the size of the least fixed point’s
representation, and can lead to faster analyses. Finally, note that the two approaches can
be easily mixed. For example, using the widening operd®&{ V.“) and the input data
specificatio{{[0, 50]}, 0, #), one can compute, after 5 iterations, the following representations:
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Mc1

{([0,50], [91, 91])
Mc2 @ {

( }
([11,61],[91,91]), ([11,w"], [91, w* — 10]),
([22,72],[91,91]), ([22,111],[91,101])}
Mc3 @ {([91,101],[91,91])}

which have the following, coalesced meaning, obtained by intersecting their individual
meanings:

n Mc(n)
n <0 1
0<n<T72 [91,91]

73<n<90 | [91,101]
91<n<101 | [91,91]
102<n<111| [91,101]

112<n  |[91,w* —10]

6 Conclusion

We have presented a technique that enables rich abstract interpretation frameworks to
be built from simpler ones even in cases when one has no indication about what such
frameworks should look like. We believe in particular that functional partitioning is of great
interest to interprocedural abstract interpretation for it incrementally builds finite, non-trivial
representations of minimal function graphs and monotonic functions. More generally, the
representation framework can be used every time there is no canonical representation of
abstract program properties and the equivalence test over these properties is intractable or very
costly.

We have shown how widening operators can be built in dynamic partitioning frameworks,
and exemplified their behavior over a set of examples. However, this paper has not addressed
a number of interesting problems such as the effective design of narrowing operators,
the combination of forward and backward analyses, and the generalization of functional
partitioning to higher order functions.
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