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Abstract

The essential part of abstract interpretation is to build a machine-representable abstract domain
expressing interesting properties about the possible states reached by a program at run-time.
Many techniques have been developed which assume that one knows in advance the class of
properties that are of interest. There are cases however when there are no a priori indications
about the “best” abstract properties to use. We introduce a new framework that enables non-
unique representations of abstract program properties to be used, and expose a method, called
dynamic partitioning, that allows the dynamic determination of interesting abstract domains
using data structures built over simpler domains. Finally, we show how dynamic partitioning
can be used to compute non-trivial approximations of functions over infinite domains and give
an application to the computation of minimal function graphs.

Résumé

L’une des principales difficult´es de l’interprétation abstraite consiste `a construire un domaine
abstrait, repr´esentable en machine, qui permette d’exprimer un ensemble de propri´etés suffisant
à décrire de mani`ere précise l’ensemble des ´etats dans lequel peut se trouver un programme
lorsqu’il est exécuté. De nombreuse techniques d’interpr´etation abstraite ont ´eté développées
à partir de l’hypoth`ese que la classe des “bonnes” propri´etés est, d`es le départ, bien identifi´ee.
Cependant, dans de nombreux cas, il n’y a aucune indication a priori quant `a l’intérêt relatif
des différentes classes de propri´etés envisageables. Nous pr´esentons ici une nouvelle m´ethode,
appelée partitionnement dynamique, qui autorise la d´etermination dynamique des “bonnes”
propriétés par l’utilisationde structures de donn´ee construites `a partir d’approximationssimples
du domaine concret. Nous montrons en particulier comment des approximations finies et non
triviales de fonctions sur des domaines infinis peuvent ˆetre calculées de mani`ere automatique,
et nous donnons une application au calcul des graphes fonctionnels minimaux.
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Abstract Interpretation by Dynamic Partitioning 1

1 Introduction

Abstract interpretation, as defined in Cousot [2, 4, 6], provides a general framework aimed
at computinginvariance propertiesof programs. These properties describe the run-time states
that can be reached from a set of initial statesP

0
by means of a transition function� over

the subsets of the set of run-time statesS, which defines the operational semantics of a given
program. When� is continuous over the lattice (P(S);�), the invariant I=

S
n2N �n(P

0
) is

also the least fixed point lfp(Φ) of the functionΦ = �P:(P
0
[ � (P )). In most cases however,

S is infinite, and methods must be developed to determine a safe and finitely represented
approximation of this least fixed point. Patrick and Radhia Cousot introduced the notion of
Galois connection (�; ) as a general tool for building such approximate frameworks. The
abstractionfunction�maps a set of statesP to an elementP # of a finitely represented abstract
(approximate) lattice (P#(S);v) whereas theconcretizationfunction maps an abstract state
P # to a set of states, called itsmeaning. Then, by defining a safe approximationΦ# of Φ, i.e.,
a function such thatΦ# w � �Φ� , one can determine an approximate invariant I#

= lfp(Φ#)
which is a safe approximation of I, i.e.,(I#) � I.

However, when the approximate lattice is of infinite height, the iterative computation of the
approximate invariant may not finitely converge, and speedup techniques, such as widening
and narrowing, must be used to determine a safe approximation of I#. But in many cases, there
is not even a clear indication about how to build agoodandfinitely representedabstract lattice.
This happens when there is no indication about what the least fixed point will “look like”,
and therefore no advance knowledge of the properties that should be expressed in the abstract
lattice P#(S) to precisely describe the invariant I. Differently stated, there is a gap between
the exact latticeP(S) and the abstract lattices that one cana priori build or think about.
This is true in particular when functions over infinite domains are approximated. Moreover,
most implementations of abstract interpretation have to deal with the problem of testing the
equivalence of the data structures used to represent lattice elements (i.e., testing the equality
of their meaning). This test is often very costly and difficult to implement, as with the abstract
interpretation of functional or logic programs for instance, and it would be desirable to design
a framework that avoids such a test.

The aim of this paper is to discuss a technique, which we calldynamic partitioning, that
can be used to compute non-trivial, safe approximations of program invariants in the above
cases, by dynamically selecting interesting and finitely represented abstract properties without
having to test the equality of their meaning.

We shall first recall, in section 2, the classical definition of a widening operator, and then
describe, in section 3, a framework that generalizes the classical lattice-oriented framework
to cases where no Galois connection can be defined and where testing the equivalence of
data structures can be avoided by using properly generalized widening operators over general
partial orders. We shall then discuss in section 4 several classical situations in interprocedural
abstract interpretation and show how our technique can be applied in each case. We will show
in particular how non-trivial approximations of functional fixed points can be computed by
using our framework and an adequate data structure. Finally, we shall give in section 5 two
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2 François Bourdoncle

practical applications and show how dynamic partitioning can be used to effectively compute
non-trivial, safe approximations of minimal function graphs.

2 Widening operators

The Galois connection approach described above is perfectly adequate when the abstract
latticeP#(S) is of finite height, since the iterative computation of the least fixed point ofΦ#

over P#(S) will necessarily converge in a finite amount of time. However, some interesting
program properties, such as the range of integer variables, are expressed in a lattice of infinite
height. Even if the integer variables were bounded, choosing for instanceZ = f!�; . . .; !+g,
!� = �2w�1, !+

= 2
w�1 � 1, the interval latticeI (Z) is still of height2w, and fixed point

computations may in theory require up to the same number of iterations. A speedup technique
has been proposed in Cousot [2] that uses so calledwidening operatorsto transform infinite
iterative computations into finite but approximated ones. So let us suppose for instance that
one has a program functionLoop defined in ML as follows:

fun Loop i = if i < 100 then

Loop (i + 1)

else

i

Suppose now that one wants to compute the values returned byLoop for a set ofinput data
specifications. Loop being recursive, this computation may require computing the value
returned byLoop for arguments that were not present in the initial data set. Therefore, the
goal of an interprocedural abstract interpretation framework will be to determine thisminimal
function graphdescribing the minimal information aboutLoop needed to compute its value
for every argument in the original specification. This notion of minimal function graph was
first introduced in Jones and Mycroft [10], but was in essence already present in Cousot [5].
A program stateha; bi 2 Z � Z? therefore consists of an input valuea and a return value
b = Loop(a), where the special value? denotes nontermination. Generalizing the idea used
by Jones and Mycroft for constant propagation, we can approximate the minimal function
graph ofLoop by a pair of intervals representing an approximation of all ofLoop’s arguments
and all ofLoop’s results. This approximate minimal function graph is therefore the least fixed
pointX # of the monotonic functionΦ# over the latticeI (Z)� I (Z) defined as follows:

Φ#hi; vi = hi
0
;?i _ hΦ#

1
(i);Φ#

2
(i; v)i

wherei
0

is the input data specification, and the two functionsΦ#
1

andΦ#
2

are defined by:

Φ#
1
(i) = incr # (i ^ [!�; 99])

Φ#
2
(i; v) = v _ (i ^ [100; !+])

where the strict abstract functionincr # is defined by:

incr # (?) = ?

incr # [a; b] = [min(a + 1; !+);min(b + 1; !+)]
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Abstract Interpretation by Dynamic Partitioning 3

The least fixed pointX # is known to be the upper limit of the increasing chain:(
X #
0

= h?;?i

X #
n+1 = Φ#(X #

n)

But this limit can take a very long time to compute. For instance, ifi
0
= [0; 0], this least fixed

point is equal toh[0; 100]; [100; 100]i and is reached after 102 iterations. One must therefore
find a way tospeedupthis computation in order for it to be tractable. To this end, we introduce
thewidening operatorrI over I (Z), taken from Cousot [2] p. 247, or [6] p. 334:

? rI x = x rI ? = x

[a
1
; b

1
] rI [a

2
; b

2
] = [if a

2
< a

1
then !� elsea

1
;

if b
2
> b

1
then !+ elseb

1
]

This non-commutative operator generalizes “unstable” bounds of its right argument. It is a
safe approximation of the join operator, and is such that for every increasing chain (xn)n2N,
the increasing chain (yn)n2N defined by:(

y
0

= x
0

yn+1 = yn rI xn+1

is always eventually stable, i.e., there exists an
0

such that:8n � n
0

: yn = yn0 . Under
these assumptions, it is well known ([6], theorem 10-30, p. 334) that the upper limitY # of the
increasing chain:8><

>:
Y #
0

= h?;?i

Y #
n+1 = Y #

n rI Φ#(Y #
n ) if : (Φ#(Y #

n ) � Y #
n )

Y #
n+1 = Y #

n if Φ#(Y #
n ) � Y #

n

where the widening operator is applied componentwise, is a post fixed point ofΦ#, i.e.,
Φ#(Y #) � Y #, and, therefore, is a safe approximation ofX #, i.e.,X # � Y #. Note that since
here:

y � x =) xrI y = x

this chain could be simply defined by:(
Y #
0

= h?;?i

Y #
n+1 = Y #

n rI Φ#(Y #
n )

So for example, with input data specificationi
0
= [0; 0], one can compute the increasing

chain:
Y #
0

= h?;?i

Y #
1

= h[0; 0];?i
Y #
2

= h[0; !+];?i
Y #
3

= Y #
= h[0; !+]; [100; !+]i

whose limitY # is a safe approximation of the least fixed point:

X #
= h[0; 100]; [100; 100]i
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4 François Bourdoncle

This result could also be improved by using thenarrowing operator∆ I defined by:

? ∆ I x = x ∆ I ? = ?

[a
1
; b

1
] ∆ I [a

2
; b

2
] = [if a

1
= !� then a

2
else min(a

1
; a

2
);

if b
1
= !+ then b

2
else max(b

1
; b

2
)]

This operator satisfies the canonical condition:

8 x; y 2 I (Z) : x � y =) x � x ∆ I y � y

and is such that for every decreasing chain (yn)n2N, the chain (zn)n2N defined by:

(
z
0

= y
0

zn+1 = zn ∆ I yn+1

is always eventually stable. It is known that the lower limitZ# of the decreasing chain:

(
Z#
0

= Y #

Z#
n+1 = Z#

n ∆ I Φ#(Z#
n)

starting from the post fixed pointY #, is a safe approximation ofX #. On our example, this
gives, after only 2 iterations:

Z#
0

= h[0; !+]; [100; !+]i
Z#
1

= Z#
= h[0; 100]; [100; !+]i

This example shows how good results can be obtained by using very na¨ıve and “brute force”
widening and narrowing operators. Of course, it might be argued that the interval [0; 100]
inferred by the computation could have been easily determined by simply looking at thetextof
the program, and that a finite abstract lattice could thus have been builta priori. We shall see,
in section 5.2, an example that shows that this is not always the case, and in practice, building
ad-hoc approximate functional lattices is simply not feasible. However, since we already know
how to deal with intervals, it is very tempting to describe minimal function graphs bysetsof
interval pairs, instead of a single pair of intervals. The advantage of such a representation
is that it is very flexible, and does not establish in advance any particular tradeoff between
complexity and precision.

There is however a difficult problem to solve if we want to use this approach, in that there
is no canonical representation of abstract minimal function graphs. For example, it is quite
clear that the two setsfh[1; 2]; [0; 0]ig andfh[1; 1]; [0; 0]i; h[2; 2]; [0; 0]ig are equivalent in
the sense that they represent the same minimal function graph, but no one is “better” than the
other. What we would like to do however, is to work with such representations, even though
they are not unique, and still ensure the convergence and safeness of every computation. The
traditional complete lattice framework is clearly not appropriate in this case, so we need to
generalize the approach to general partial orders.

March 1992 Digital PRL



Abstract Interpretation by Dynamic Partitioning 5

3 Representations

Definition 1 Let (D;?;v) be a countable complete partial order (cpo),R a set, and
 : R! D a meaning function. Then(R;�; ;r) is said to be a representation ofD if:

i) (R;?;�) is a partial order

ii) The meaning function is monotonic

iii) Each elementd 2 D can be safely abstracted by an element�(d) 2 R, i.e.:

(�(d)) w d

iv) Each binary operatorri : R� R! R of the sequencer = (ri)i2N is such that:

8 r; r0 2 R :

(
r � rri r

0

(r0) v (rri r0)

v) For everyfrigi2N � R, the chain(r0i)i2N defined by:
(

r0
0

= r
0

r0i+1 = r0iri ri+1

has an upper bound.

A representation is said to be complete if(R;�) is a cpo, finite if every element ofR has a
finite encoding, and tractable if the chain(r0i)i2N is always eventually stable.

This definition has some similarities with the definition of the upper approximation (D#;�) of
a complete lattice (D;v) using a Galois connection, i.e., a pair of monotonic functions (�; ),
� : D! D# and : D# ! D such that:

8 (d; d#) 2 D �D# : �(d) � d# () d v (d#)

The difference between the two definitions is that our framework makes very weak assumptions
aboutR andD and generalizes the case whereR andD are both complete lattices, since
we only require that� be safe. As a matter of fact,� is not even needed in the framework,
and only theexistenceof a safe approximation for every concrete element is required. This
allows in particular different representations to have the same meaning and one can choose
arbitrarily between them, hence the termrepresentation. Therefore, the traditional inequality
�� � IdR, which becomes an equality when is one-to-one, does not hold in this framework.

Each elementary widening operatorri of the widening operatorr = (ri)i2N is an
alternative to a join operator over the abstract latticeD# which does not necessarily exist ifR
is a partial order. The conditions imposed onri simply ensure that safe and increasing chains
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6 François Bourdoncle

overR can be built from increasing chains overD, as we shall see below. WhenR andD
are both complete lattices, the operatorr of a tractable representation is a straightforward
generalization of the classical widening operator, in the sense that(rri r0) w (r)t(r0) and
every increasing chain built usingr is eventually stable.

Another remark concerning this framework is that condition (v) is trivially satisfied for any
complete representation, for every increasing chain has a least upper bound. Differently stated,
the widening operatorr is not necessary in a complete representation to prove the existence
of a least upper approximation. But even so, it can be very interesting to have such a widening
operator to definefinite and tractableframeworks, as we have seen in section 2. Also, note
that the use of widening operators over non-complete lattices was already present in Cousot
and Halbwachs [3], where the lattice of finitely represented convex hulls is not complete.

Finally, it should be noted that our framework can be very easily generalized to cases where
(R;�) is only a preorder1, in which case the meaning function need not be monotonic and the
conditions imposed on the elementary widening operators must be:

8 r; r0 2 R :

(
(r) v (rri r0)
(r0) v (rri r0)

Preorders have been used for instance in Stransky [12]. However, the problem with such
very general frameworks is that not much can be said about them, for they are essentially
defined by the properties of the widening operatorr. Moreover, preorders are not very
easy to work with, for representations having the same meaning can “oscillate” during the
computation and one must be able to finitely compute theequivalenceof representations (i.e.,
(r) = (r0)) to detect the stabilization of increasing chains. As we noted earlier, this is not
necessary here since stabilization is detected by theequalityof representations (i.e.,r = r0).
Hence, our framework is perfectly suited to cases whereR is implemented using verycomplex
data structuresfor which the equivalence test is intractable or very costly, sincewe require
that equivalent representations be comparable only when they are “similar enough”. It is
interesting to note that a comparable idea, which was only a heuristic at the time, was used in
the design of the widening operator of Cousot and Halbwachs [3] which preserves as much as
possible the representations of convex hulls during iterative computations.

So let (R;�; ;r) be a representation ofD, andΦ 2 D ! D be a continuous function,
that is, a monotonic function such that for every directed subsetC � D: Φ(

F
C) =

F
Φ(C).

It is well known that the least fixed point ofΦ is:

� = lfp(Φ) =

G
i2N

Φi(?)

If the elements ofD do not have a finite encoding, it may be impossible to compute this
increasing chain. So let us suppose that one can define a safe approximationΦ# of Φ operating
over the set of (supposedly finitely encoded) representationsR, that is, a functionΦ# such
that:

 �Φ# w Φ � 

1A preorder is a reflexive and transitive binary relation.
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Abstract Interpretation by Dynamic Partitioning 7

One can choose in particular2 any functionΦ# such thatΦ# � � �Φ � , for by monotonicity
of  and property (iii):

 �Φ# w ( � �) �Φ �  w Φ � 

but this is not mandatory. The only thing we really need isany safe approximation ofΦ. Our
problem is now: how can we compute a safe representation of� usingΦ# which is the only
function that we can possibly compute? To this end, let us define the chain (ri)i2N by:

(
r
0

= ?

ri+1 = ri ri Φ#(ri)

Theorem 2 The chain(ri)i2N is an increasing chain overR that has an upper boundr!
which is a safe representation of the least fixed point ofΦ, that is:

(r!) w �

Proof. Let us first define the increasing chain (�i)i2N by �
0
= ? and�i+1 = Φ(�i). It is

clear that(r
0
) w ? = �

0
. Suppose by induction that(ri) w �i. Then by definition of the

widening operatorr:

(ri+1) = (riri Φ#(ri)) w (Φ#(ri))

But Φ# being a safe approximation ofΦ, and by monotonicity ofΦ:

(Φ#(ri)) w Φ((ri)) w Φ(�i) = �i+1

which proves that eachri is a safe approximation of�i. But thanks to the first property of
r, ri+1 � ri, and (ri)i2N is an increasing chain which has an upper boundr!. Finally, by
monotonicity of : 8 i : �i v (ri) v (r!), which implies that� v (r!).

Using a finite and tractable representation, one can therefore compute a non-trivial, safe and
finitely represented approximation of the least fixed point� of any continuous functionΦ over
D, even if the representationR does not have a maximum element (which would be of course
a trivial safe approximation of any element ofD).

However, as in section 2, it is possible to compute an even better representationr0! of
the least fixed point ofΦ by defining anarrowing operator∆ = (∆ i)i2N such that every
elementary narrowing operator∆ i satisfies:

8 r; r0 2 R; 8� 2 D : � v (r); (r0) =)

(
r ∆ i r

0 � r

� v (r∆ i r
0)

2As in Cousot [6] p. 331 for instance.
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8 François Bourdoncle

and computing the lower limit of the decreasing chain (r0i)i2N defined as follows:(
r0
0

= r!
r0i+1 = r0i ∆ i Φ#(r0i)

Note that, once again, the first condition imposed on∆ i enforces the chain condition whereas
the second condition enforces the safeness of the computation, that is, this condition ensures
that the narrowing operator will not “jump below” the least fixed point, as shown by the
following theorem.

Theorem 3 When the decreasing chain(r0i)i2N is eventually stable, its lower limit is a safe
representation of the least fixed point ofΦ.

Proof. We first note thatr0
0
= r! being a safe representation of�, we have:

(r0
0
) w �

Now, suppose by induction that:
(r0i) w �

then obviously, by monotonicity ofΦ:

(Φ#(r0i)) w Φ((r0i)) w Φ(�) = �

and therefore:
(r0i+1) = (r0i ∆ i Φ#(r0i)) w �

which shows that the lower limitr0! = r0i0 for somei
0
2 N is a safe representation of�.

Note that, contrary to the classical widening/narrowing approach, we do not require that the
meaning of the first elementr0

0
= r! be a post fixed point ofΦ, which, consequently, avoids

comparing(ri) with Φ((ri)) at each stage of the iterative computation ofr!, as in section
2. This property is very important if, as stated in the introduction, comparing the meaning of
representations is very costly. However, if the elementary widening operatorri satisfies the
naturalstability condition:

8 r; r0 2 R : (r0) v (r) =) r ri r
0
= r

as does the widening operatorrI over the interval latticeI (Z), then(r!) will always be a post
fixed point ofΦ. Elementary widening operators satisfying this condition will be calledstable.
Note that complex widening operators, such as the ones that will be presented in the following
sections, will not generally be stable. Intuitively, since we require that two representations
r andr0 be comparable only when they are “similar enough”, the stability test(r0) v (r)
will be approximated, and, therefore, redundant informationr0 added to a representationr will
sometimes lead to a loss of precision.

Finally, note that widening and narrowing are not dual operations. However, for the sake of
simplicity, we shall only focus on widening operators in the rest of this paper.
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Abstract Interpretation by Dynamic Partitioning 9

4 Dynamic partitioning

The aim of this section is to build generic representations based on the idea of “non-
redundancy”. We shall first talk about what we callbasic partitioning, which is a technique
that can be used to build representations of a concrete complete lattice (L;?;>;v;t;u) using
well chosen subsets ofA whenA is an upper approximation ofL. We shall then discuss two
other methods, calledbasic functional partitioningand functional partitioningused to build
representations of functionsF : C ! B over an infinite setC, using subsets ofA� B when
A is an upper approximation ofP(C) andB is a lattice. We start by defining two notions of
non-redundancy for the subsets of a latticeA.

Definition 4 A subsetP of a latticeA is said to be non-redundant if it does not contain?
and:

8 a; a0 2 P : a � a0 =) a = a0

P is said to be strongly non-redundant if it does not contain? and:

8 a; a0 2 P : a 6= a0 =) a ^ a0 = ?

Non-redundant subsets are often calledcrownsor antichains. The set of non-redundant and
strongly non-redundant subsets ofA will be noted respectivelyPnr(A) and Psnr(A). Two
elements of a non-redundant subset are either equal or not comparable, whereas they are equal
or have “nothing in common” if they belong to the same strongly non-redundant subset. Note
that strong non-redundancy implies non-redundancy.

4.1 Basic partitioning

So let us suppose thatA is an upper approximation of a complete latticeL and let (�; )
denote the Galois connection between the two lattices. We wish to build a representation ofL

using the subsets ofA. The most naturalmeaningof a subsetP of A is of course:

Γ(P ) =

G
a2P

(a)

that is, the least upper bound of the set of concrete elements denoted by the abstract elements
of P . Let us define the binary relation� overP(A) by:

P � P 0 () 8 a 2 P; 9 a0 2 P 0 : a � a0

This relation is similar to the preorder used to build thelower powerdomain(see Gunter and
Scott [8] p. 653), sometimes called theHoare powerdomain, or therelational powerdomain
(see Schmidt [14], p. 295). The originality of our framework is that using well chosen subsets
of P(A), we can turn this preorder into a partial order and avoid using principal ideals and
complex power domains, as in Mycroft and Nielson [11] for instance.

Theorem 5 (Pnr(A);�) and(Psnr(A);�) are partial orders andΓ is monotonic overP(A).

Research Report No. 18 March 1992



10 François Bourdoncle

Proof. � is obviously a preorder. So letP � P 0, P 0 � P , anda 2 P . Then there exists
a0 2 P 0 anda00 2 P such that: a � a0 � a00, and by non-redundancy:a = a00, which
implies that:a = a0 2 P 0, and henceP � P 0. But similarlyP 0 � P , and thus� is a partial
order. Finally, it is easy to show that the monotonicity of implies the monotonicity ofΓ.

Under more restrictive conditions, we can show that (Psnr(A);�) is a complete partial order.

Theorem 6 If A is meet-continuous3, then(Psnr(A);�) is a cpo.

Proof. To show that (Psnr(A);�) is complete, let (Pi)i2N be an increasing chain. Using the
diagonal argument and the definition of�, one can build a (possibly infinite) set of increasing
chainsfCjgj2J , J � N, Cj = (cji)i2N, such that for alli 2 N : Pi = fcjigj2J � f?g. But
A being a complete lattice, each increasing chainCj has a limitlj 2 A. The only possible
candidate to the upper limit of the chain (Pi)i2N is thereforefljgj2J . But then for allj 6= j0:

lj ^ lj0 =
W
Cj ^

W
Cj0

=
W

i (cji ^
W
Cj0)

=
W

i;i0 (cji ^ cj0i0)
=

W
i;i0 ? = ?

which shows thatfljgj2J is strongly non-redundant and is the least upper bound of the
chain (Pi)i2N.

Under the light of this theorem, one might think that it is a good idea to limit oneself to the
strongly non-redundant subsets ofA, since they form a complete partial order, and appear
to be “less arbitrary” than the general non-redundant subsets ofA. But it depends a lot on
the “shape” of the abstract latticeA. Intuitively, for strongly non-redundant subsets to be
useful, every abstract elementa 2 A should be the least upper bound of a set ofatoms. This
can be formalized by saying thatA should be an algebraic atomic lattice with a strongly
non-redundantbasisA of atoms such that:

8 a 2 A : a =
_

(A \#a)

where#a = fa0 2 A : a0 � ag is the principal ideal generated bya. Standard examples of
such lattices are (P(S);�) and the interval latticeI (Z), with basesffsggs2S andf[i; i]gi2Z
respectively. Counter-examples are complete total orders, for which every subset with more
than two elements is necessarily redundant. More generally, one can prove the following
theorem.

3A complete latticeL is meet-continuous (see Gierz [7] p. 30) if for every directed subsetD � L and every
elementx 2 L: x ^

W
D =

W
fx ^ d : d 2 Dg
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Abstract Interpretation by Dynamic Partitioning 11

Theorem 7 Let (A;?;>;�;_;^) be an upper approximation ofP(S), such that is one-to-
one,(?) = ;, and:

[s] 6= [s0] =) [s] ^ [s0] = ? (where [s] = �(fsg))

ThenA is an algebraic atomic lattice,A = f[s] : s 2 Sg is a strongly non-redundant basis
of A, andf(a) : a 2 Ag is a partition ofS. Moreover, if is _-continuous, thenA is
meet-continuous.

Proof. We first note that being one-to-one,� �  = IdA,  is ^-continuous and� is
[-continuous (Cousot [4], theorem 4.2.7.0.3, p. 4.33). Suppose now that there existss 2 S

such that [s] = ?. Then [s] = �(fsg) � ? and by definition of Galois connections,
fsg � (?) = ; which is impossible. ThusA is strongly non-redundant. But:

x 2 A \#a () 9 s 2 S : x = �(fsg) � a

() 9 s 2 S : x = [s] ^ fsg � (a)
() 9 s 2 (a) : x = [s]

ThereforeA \#a = �(a) = f[s] : s 2 (a)g. In order to show thata =
W
�(a), we shall

first show that(a) =
S
a2�(a) (a). But  � � � Id P(S) and thus:

S
a2�(a) (a) =

S
s2(a)( � �)(fsg)

�
S
s2(a)fsg = (a)

Conversely, letx 2
S
s2(a) ([s]). Then there existsfsg � (a) such thatfxg � ([s]),

and hence by monotonicity of�:

�(fxg) � [s] = �(fsg) � �((a)) = a

which implies thatfxg � (a), that is,x 2 (a). Therefore:

a = (� � )(a) = �(
S
a2�(a) (a))

=
W
a2�(a)(� � )(a) =

W
�(a)

Now, when is_-continuous, then for everya 2 A and every subsetX � A:

(a^
W
X) = (a)\

S
f(x) : x 2 Xg

=
S
f(a)\ (x) : x 2 Xg

=
S
f(a^ x) : x 2 Xg

and therefore,� being[-continuous:

a ^
W
X = (� � )(a^

W
X)

=
W
f(� � )(a^ x) : x 2 Xg

=
W
fa^ x : x 2 Xg

which shows thatA is meet-continuous. Finally,([s]) 6= ([s0]) implies that [s] 6= [s0],
and being^-continuous,([s]) \ ([s0]) = ([s] ^ [s0]) = (?) = ;, which proves that
f(a) : a 2 Ag is a (set-theoretic) partition ofS.
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12 François Bourdoncle

What we need now in order to complete our framework is to define elementary widening
operatorsr such that:P � P rP 0 andΓ(P 0) v Γ(P rP 0). There are of course many ways
to define these operators. When working withPnr(A), the most precise widening operator can
be defined by:

P rP 0
= (P [ P 0)� fa0 2 P 0; 9 a 2 P : a0 < ag

In fact, this widening operator behaves rather like a join operator. More generally, at each step
of the computation, one can choose (either deterministically or not) a subsetP

0
of the current

invariantP to coalesce. The idea of such a generalization is to replaceP by:

�
P [ fa

0
g
�
� fa 2 P : a < a

0
g

wherea
0

is any element greater than
W
P
0
. Of course, one might choose to define a very poor

widening, which does not improve the expressible properties of the framework, by:

P rP 0
=

n_
(P [ P 0)

o

It is easy to see that these definitions turnPnr(A) into a representation framework abstracting
the latticeL whenever the “generalizations” are properly used. It is difficult to say more about
these generalizations since widening operators are well known to be highly lattice-dependent.
When working withPsnr(A), widening operators are even more difficult to define in the general
case, and we shall only develop an example in section 5.1. Note that in practice, one will
always work with the set offinitestrongly non-redundant subsets ofA which is generally not
a cpo, so the completeness ofPsnr(A) will not help. Finally, note that the definition of the
widening operator has a great influence over the quality of the result of the computation, as
we shall see in section 5.2. Therefore, the general idea one should follow in the definition of a
widening operator (ri)i2N should be to use very precise elementary operators (i.e., join-like)
at the beginning of an iteration sequence, and to generalize only after these operators have
precisely defined the “shape” of the least fixed point. However, as we shall see in section
5.2, there are also cases where it can be a good idea to alternate join-like operators and
generalizations.

4.2 Basic functional partitioning

A central problem in abstract interpretation is to find a safe approximation of a least fixed
pointF that belongs to a functional latticeC ! B, where (B;?;>;v;t;u) is itself a lattice.
For instance, for very simple, non-recursive programming languages,C is usually the finite
set of lexical control points, andB the powerset of run-time memory states. But for more
complicated, recursive languages, a control point is more naturally defined as a subpart of the
run-time stack, andC is infinite. More generally, there are cases where it can be interesting
to consider that control points are indeedexecution tracesand not only static control points.
Finally, in the minimal function graph approach,C is the set of admissible inputs of program
functions, andB is the lattice of possible outputs, the bottom value ofB being used to denote
nontermination. In this paper, we shall refer to the elements of the possibly infinite setC as
control points.
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Abstract Interpretation by Dynamic Partitioning 13

Very often however, there is no need to know the value ofF for every control point, and
it is sufficient to determine a safe approximationFi w

F
fF (c) : c 2 Cig, of the values taken

by F over each subset of a givenpartition fCigi2I of C. This partition can be defined in a
very natural way by assigning atokento each control point. This method has been proposed
for instance in Sharir and Pnueli [13] and Jones [9], where tokens are used to group execution
traces and coalesce the memory states associated with them.

If the set of tokens is finite, then the framework is said to bepartitioned(see Cousot [6] p.
315) and the problem is equivalent to the resolution of a finite system of semantic equations.
This is the case for instance in Bourdoncle [1], where a token is assigned to each run-time
stack. These tokens model the “shape” of the stack (pointers, control stack. . . ) and generalize
the tokens used in Sharir and Pnueli [13] that only took into account the control part of the
run-time stacks.

However, if the set of tokens is infinite (or very large) and one has no idea of a good way of
defining a finite partition, then the original problem of finding a safe and finitely represented
approximation ofF remains to be solved. The idea is then to “lift”F so that it operates on
sets of control points, and to dynamically calculate a partition ofC, instead of it being “hard
wired”.

We are going to study two general methods for doing thisdynamic partitioning. For each
of these methods, we suppose that there is a basic (and supposedly not satisfactory) way
of finitely representing sets of control points, and we intend to build arepresentationfrom
this initial approximation. We shall therefore suppose that (A;?;>;�;_;^) is an upper
approximation of (P(C); ;; C;�;[;\), and call (�; ) the Galois connection between the two
lattices. We shall also suppose that is one-to-one and that(?) = ;, which implies that
is ^-continuous. The elements ofA will be calledabstract control pointsand the elements
of T = f[c] : c 2 Cg, where [c] = �(fcg), will be called thetokens. Theorem 7 shows that
wheneverT is strongly non-redundant, thenA is an algebraic atomic lattice, andT defines a
partition ofC, but this hypothesis will not be necessary. Our definition therefore generalizes
the classical notion of token. Finally, the elements ofB will be calledabstract values.

The first representation that we shall define is based on the very na¨ıve observation that every
abstract control pointa 2 A implicitly defines a (possibly infinite) set of control points(a)
that we shall informally call a “region”. Therefore, an easy way to approximate a function
fromC intoB is to “cover” the region over which this function is different from? by a finite
subset ofA, and to associate an abstract valueb with each elementa of this subset.

If the regions of such a representationP � A� B do not overlap, the natural meaning of
P will map every control pointc to the unique abstract valueb associated with the elementa
by which its token [c] is covered, or to? if its token is not covered. However, if the regions
overlap, the meaning ofP can be defined in several ways. We shall study in this section the
most natural idea which is to map every control pointc to theunion of the abstract values
associated with the abstract control pointa with which its tokenintersects. We will show that
these representations can be constrained in order to form a partial order compatible with this
meaning, and then explain how widening operators can be effectively designed. We shall then
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14 François Bourdoncle

study, in the next section, a different and non standard meaning of overlapping representations
that is better suited to generalization.

Definition 8 A subsetP ofA� B is said to be normalized if:

8 ha; bi 2 P; 8 ha0; b0i 2 P : a = a0 =) b = b0

For every normalized subsetP , anda; a
1
; a

2
2 A, we define:

A(P ) = fa 2 A : 9 b 2 B : ha; bi 2 Pg

C(P ) =
S
f(a) : ha; bi 2 Pg

P (a) =
F
fb 2 B : ha; bi 2 Pg

P \(a
1
; a

2
) = fb : ha; bi 2 P ^ a

1
� a � a

2
g

The setA(P ) is called thedomainof P , and the abstract valueP (a) is theimageof a by P .
The setC(P ) is theconcrete domainof P , i.e., the “region” ofC covered by the domain of
P . For a normalized subsetP of A � B, the imageP (a) of every element of the domain of
P is the unique elementb such thatha; bi 2 P . We callP(A;B) the set of normalized subsets
P whose domains do not contain?, andPnr(A;B) (resp.Psnr(A;B)) the set of normalized
subsets which have a non-redundant (resp. strongly non-redundant) domain. Obviously:

Psnr(A;B) � Pnr(A;B) � P(A;B)

We then define the meaningΓ(P ) of a representationP 2 P(A;B) by:

Γ(P )(c) = MP [c]

where the monotonic functionMP : A! B is defined by:

MP (x) =

G
a2A(P )
a^x6=?

P (a)

WhenT is a strongly non-redundant basis ofA, we obviously have:

8 � 2 T; 8 a 2 A : a ^ � 6= ? () � � a

and therefore:
Γ(P )(c) =

G
fb : ha; bi 2 P ^ [c] � ag

which states that each control pointc is mapped to the union of the abstract valuesb attached
to the elements ofA(P ) by which its token [c] is “covered”, or to? if its token is not covered.
Note that ifA(P ) is strongly non-redundant, then an element of the basis is at most covered by
a single element inA(P ). It is worth mentioning at this stage that although any set of tokens
can be chosen, it seems reasonable to impose thatT be strongly non-redundant. To see the
problem, let us choseC = Z, A = Z?, and [c] = c. Then(c) = f!�; . . .; cg, the lattice
(A;?; !+;�;max;min) is totally ordered, and:

8 a; a0 2 A : a 6= ? ^ a0 6= ? () a ^ a0 6= ?
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Abstract Interpretation by Dynamic Partitioning 15

which shows thatΓ(P ) is constant overC and:

Γ(P )(c) =

G
fb : ha; bi 2 Pg

Intuitively, all the “regions” defined by the abstract control points overlap, and therefore, there
is no way to distinguish between the different abstract valuesb 2 B of the representation. We
are now going to show thatPnr(A;B) andPsnr(A;B) can be turned into partial orders.

Theorem 9 Pnr(A;B) andPsnr(A;B) are partial orders for the binary relation:

P � P 0 () 8 ha; bi 2 P; 9 ha0; b0i 2 P 0 : a � a0 ^ b v b0

and the meaning functionΓ is monotonic overPnr(A;B) andPsnr(A;B).

The proof is straightforward. Note that every functionF in C ! B can always be finitely
abstracted byfh>;>ig and, whenT is non-redundant, it can also be safely abstracted by
fh[c]; F (c)i : c 2 Cg. Therefore, defining a widening operator overPnr(A;B) will turn
Pnr(A;B) into a representation ofC ! B. Elementary widening operators can be defined as
follows:

� We first define the domain ofP rP 0 by:

A(P rP 0) = A(P )rb A(P 0)

whererb is any basic partitioning widening operator defined in section 4.1.

� Then, for everya in the domain ofP rP 0, we define the image ofa by:

(P rP 0)(a) = b

whereb 2 B is any abstract value such that:

b w MP (a) tMP 0 (a)

To prove thatP � P rP 0, we remark that by definitionA(P ) � A(P rP 0), and therefore:

8 ha; bi 2 P; 9 a0 2 A(P rP 0) : a � a0

hence:

b = P (a) v MP (a) v MP (a0) v MP (a0) tMP 0(a
0) v (P rP 0)(a0)

and thus:
9 ha0; b0i 2 P rP 0 : a � a0 ^ b v b0

Let us now prove thatΓ(P 0) v Γ(P rP 0). So let ha0; b0i 2 P 0 and x 2 A be such that
x ^ a0 6= ?. By construction, we have:

C(P 0) =

[
a2A(P 0)

(a) �
[

a2A(P rP 0)

(a) = C(P rP 0)
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16 François Bourdoncle

and therefore, there exists a pairha; bi 2 P rP 0 such thata^ x^ a0 6= ?, otherwise, being
^-continuous:

(x^ a0) = (x^ a0) \ (a0)
� (x^ a0) \

S
a2A(P 0) (a)

�
S
a2A(P rP 0) ((x ^ a0) \ (a))

�
S
a2A(P rP 0) (a^ x ^ a0) = ;

and thus, being one-to-one,x ^ a0 = ?, which is absurd. Consequently,a ^ a0 6= ?, and
therefore:

b w MP (a) tMP 0(a) w MP 0(a ^ a0) w b0

which shows that:

MP 0(x) =

G
ha0;b0i2P 0

x^a0 6=?

(b0) v
G

ha;bi2P rP 0

x^a6=?

(b) = MP rP 0 (x)

and hence:
Γ(P 0) v Γ(P rP 0)

Provided that condition (v) of definition 1 is satisfied, (Pnr(A;B);�; Γ;r) is thus a represen-
tation of the functional latticeC ! B.

4.3 Functional partitioning

The main interest of basic functional partitioning is that it is indeed very natural and easy
to understand: the value mapped to a control pointc by the meaning of a representationP
is defined as the union of the abstract valuesb associated with the abstract control pointsa

which have “something in common” with its token [c], i.e., [c] ^ a 6= ?. But basic functional
partitioning has several shortcomings.

Firstly, as we noted earlier, basic functional partitioning is reasonably applicable only when
the latticeA is an algebraic atomic lattice with a strongly non-redundant basis. This can be very
annoying when approximating higher order functions for instance, since abstract functional
lattices do not generally have a strongly non-redundant basis.

Secondly, there are cases where the ordering� over Pnr(A;B) is not appropriate, and
one would like abstract control points of representations to be maintained during iterative
computations. This happens to be the case for interprocedural abstract interpretation since
abstract control points naturally correspond to function calls in the fixed point computation
algorithm, and the abstract call graph, which is generally needed to determine the set of
recursive procedures, is therefore defined in terms of abstract control points. Of course, this
goal can be easily achieved by slightly modifying the definition of� as follows:

8 ha; bi 2 P; 9 ha0; b0i 2 P 0 : a = a0 ^ b v b0

However, this ordering has a major drawback with respect to the definition of widening
operators in that, intuitively, the only way to generalize a representationP without losing too
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Figure 1: Basic functional partitioning vs. functional partitioning.

much information is to “pave”C using strongly non-redundant subsets ofA, because every
extra elementha0; b0i added toP leads to a loss of information for every token “covered” by
a0. This is illustrated by the left part of figure 1 in the case of the interval latticeI (Z2). But this
pavement can turn out to be much too complicated when working with sophisticated lattices
such as the linear inequalities lattice for instance. Worse, it can even be impossible to define
such a pavement for atomic lattices that do not have a strongly non-redundant basis. What we
would like to do is therefore to map small regionsfaigi2I ofC to a given set of valuesfbigi2I ,
while defining some kind ofdefault valueb0 for a larger and possibly overlapping areaa0, as
illustrated by the right part of figure 1. This can be achieved by generalizing the definition of
the meaning functionΓ to every elementP of P(A;B) by:

Γ(P )(c) = MP [c]

whereMP : A! B is defined by:

MP (x) =
F

a2A(P )
a^x6=?

DP (a ^ x; a)

and DP (u; v) = u P \(u; v)

Given two abstract control pointsu andv, DP (u; v) is equal to the greatest lower bound of
the abstract valuesb associated with the abstract control pointsa that belong to the (possibly
empty) convex subsetfx : u � x � vg. It is easy to see that this function is increasing
in its first argument and decreasing in its second argument. The functionMP is therefore
monotonic and maps every abstract control pointx 2 A to the union of the abstract values
b associated with theminimumelementsa 2 A(P ) such thatx ^ a 6= ?. The meaning of
a representation inPnr(A;B) is thus identical to the meaning defined in the previous section,
since every element of a non-redundant domainA(P ) is minimum. The meaning ofMP

for the representationP = fha; bi; ha0; b0i; ha00; b00ig and three particular valuesa = [2; 13],
a0 = [10; 18] anda00 = [6; 21], is illustrated in figure 2 in the case of the interval latticeI (Z).
The functionMP maps an abstract control point, represented by a point on the plane using
the usual encoding of intervals:

[x; y] 7! h(x + y)=2; (y � x)=2i
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Figure 2: Meaning ofMP for P = fha; bi; ha0; b0i; ha00; b00ig.

to an abstract value inB. The functionΓ(P ) : Z ! B maps every integerk to MP [k],
where the token [k] = [k; k] is the one-point interval. Note how the intervals belowa0 are
“protected” from the valueb00 associated with the abstract control pointa00.

The problem however with this new meaning functionΓ is that it is not monotonic
over P(A;B). Intuitively, non-monotonicity arises when an elementha0; b0i is added to a
representationP anda0 “masks” a region previously mapped to a value greater thanb0. This
would be the case for instance in figure 2 ifha0; b0i was added tofha; bi; ha00; b00ig andb0 < b00.
In order to avoid this situation, one can require thatb0 be greater thanSP (a0), where the
smallest safe valueSP (x) is defined by:

SP (x) =

G
a2A(P )
?<x � a

DP (x; a)

Intuitively, this condition ensures that the new valueb0 is at least the union of every value that
a0 could mask, i.e., the values associated with the minimum elements inA(P ) that are above
a0. This intuition can be formalized by defining the relation� overP(A;B) as follows:

P � P 0 ()

(
8 ha; bi 2 P; 9 ha0; b0i 2 P 0 : a = a0 ^ b v b0

8 ha0; b0i 2 P 0 : a0 62 A(P ) =) b0 w SP (a0)

Note that sinceSP (a) = P (a) for everya in the domain ofP , this condition could also be
written as follows:

P � P 0 ()

(
A(P ) � A(P 0)
8 ha0; b0i 2 P 0 : b0 w SP (a0)

Theorem 10 (P(A;B);�) is a partial order, andΓ is monotonic overP(A;B).
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Abstract Interpretation by Dynamic Partitioning 19

Proof. Let us first show thatΓ is monotonic overP(A;B). So let us suppose thatP � P 0.
ThenA(P ) � A(P 0), and for everyx 2 A such thatx 6= ? :8<

:
SP 0(x) w

F
a2A(P )
?<x�a

DP 0(a ^ x; a)

MP 0(x) w
F

a2A(P )
a^x6=?

DP 0(a ^ x; a)

But for everya 2 A(P ) such that eitherx ^ a 6= ? or? < x � a:

DP 0(a ^ x; a) = u ha0;b0i2P 0

a^x�a0�a

(b0)

Let us now suppose that there existsha0; b0i 2 P 0 such thata ^ x � a0 � a. Then by
hypothesis:

b0 w SP (a0) =

G
a002A(P )
a0�a00

DP (a0; a00) w
G

a002A(P )
a0�a00�a

DP (a0; a00)

But a ^ x � a0 � a00 � a implies thatDP (a ^ x; a) v DP (a0; a00), and sincea 2 A(P ), the
setfa00 2 A(P ) : a0 � a00 � ag is non-empty and thus:

b0 w DP (a ^ x; a)

which implies that:
DP 0 (a ^ x; a) w DP (a ^ x; a)

and therefore: (
SP 0(x) w SP (x)
MP 0(x) w MP (x)

Consequently, sinceSQ(?) =MQ(?) = ? for every representationQ, thenMP vMP 0 ,
SP v SP 0 , and Γ is monotonic overP(A;B). Finally, � being trivially reflexive and
antisymmetric, let us prove that it is also transitive. So letP � P 0 � P 00. Then for every
ha00; b00i 2 P 00 such thata00 62 A(P ), eithera00 2 A(P 0), and thusb00 w b0 w SP (a00), or else:

b00 w SP 0(a
00) w SP (a00)

which proves thatP � P 00.

We have proven that (P(A;B);�) is a partial order, but we must note that the meaning function
is not strictly monotonic, i.e., one can find two distinct representations such thatP

1
� P

2
and

Γ(P
1
) = Γ(P

2
). This holds for instance wheneverb

1
< b

2
for:

Pi = fh[1; 1]; bi; h[2; 3]; b0i; h[1; 3]; biig (i 2 f1; 2g)

since:
Γ(P

1
) = Γ(P

2
) = f1 7! b; 2 7! b0; 3 7! b0g

This problem can be solved by considering well chosen subsets ofP(A;B), but we shall not
study this problem here. We have thus defined a very flexible framework such that abstract
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Figure 3: Widening in a functional partitioning framework.

control points are added and never removed during a given computation. Moreover, the
information associated with each control point is only allowed to increase. Finally, we have
a very easy criterion to check whether or not a pairha; bi 2 A � B can be safely added to a
representation, which is very important if one wishes to be able to generalize at some point of
the computation. What we need now is to define elementary widening operators, i.e., operators
such that:P � P rP 0 andΓ(P 0) v Γ(P rP 0).

In the rest of this section, we shall only consider finite representations, for they have the
greatest practical interest, and for the sake of simplicity, we start by definingP 00

= P rP 0 for
a singletonP 0

= fha0; b0ig. There are basically three cases in the definition ofP 00. Each one is
illustrated in figure 3, where we have takenA = I (Z), andP = fha

1
; b

1
i, ha

2
; b

2
i, ha

3
; b

3
ig.

� If a0 2 A(P ), then for everyha; bi 2 P such thata � a0, the replacement ofb by any
element greater thanb0 t b ensures that the meaning ofP 00 is greater than the meaning
of fha0; b0ig, and at the same time thatP � P 00 (fig. 3a).

� If a0 62 A(P ). Suppose one wishes to add this new abstract control point to the domain
of the current representationP . Obviouslyha0; b0i cannot simply be added toP . But
adding any pairha00; b00i such thata00 � a0 andb00 w b0tSP (a00) will ensure thatP � P 00.
However, as in the previous case, everyha; bi 2 P such thata � a00 may “mask” the
valueb0 to several elements of the basis. Hence, each valueb must be replaced by an
element greater thanb0 t b to ensure that the meaning ofP 00 is greater than the meaning
of fha0; b0ig (fig. 3b and 3c).

� There are cases however wherea0 62 A(P ) but one does not want to adda0 to the
domain ofP . In fact, this will almost always be the case when working with finite
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representations. There are then two subcases to consider. If(a0) � C(P ), every
control pointc represented bya0 is already represented by at least one elementa such
thatha; bi 2 P and [c] � a, and replacingb by bt b0 will ensure that the meaning ofP 00

is greater than the meaning offha0; b0ig — provided of course that, as in the previous
cases, everyb00 such thatha00; b00i 2 P anda00 � a be replaced by an element greater
thanb0 t b00 (fig. 3d). But if(a0) 6� C(P ), then the region defined bya0 contains “new”
control points, and there is no way to avoid the addition ofa0 to A(P ). The previous
case must thus be applied, choosing for instancea00 = >.

Note that, in practice, the test(a0) � C(P ) will always be approximated, and a given
abstract control pointa0 will not be added to the domain ofP only if there exists
ha; bi 2 P such thata0 � a. Such an approximation will thus generally imply the
non-stability of the widening operator (cf. section 3).

This definition shows that functional partitioning is well suited to generalization processes, for
it enables one to easily generalize without losing too much information. In order to complete
our framework, we now defineP rQ for any finite representationQ 2 P(A;B) by arbitrarily
numbering the elementshai; bii, i 2 [1; k] of Q, and adding them one at a time toP , i.e.:

P rQ = ((P rQ
1
) � � �)rQk

whereQi = fhai; biig. This definition trivially implies that:

P rQ � ((P rQ
1
) � � �)rQk�1 � � � � � P

and thanks to the next theorem:

Γ(P rQ) = Γ(((P rQ
1
) � � �)rQk)

w Γ(Q
1
) t � � � t Γ(Qk)

w Γ(Q
1
[ � � � [ Qk)

= Γ(Q)

which shows that conditioniv) of definition 1 is satisfied.

Theorem 11 For everyQ
1
; Q

2
2 P(A;B) such thatQ

1
[Q

2
2 P(A;B):

Γ(Q
1
[Q

2
) v Γ(Q

1
) t Γ(Q

2
)

Proof. We first remark that for everyu; v 2 A:

(Q
1
[Q

2
)\(u; v) = Q

1

\(u; v)[ Q
2

\(u; v)

thus:

DQ1[Q2
(u; v) = DQ1

(u; v) u DQ2
(u; v) v DQ1

(u; v); DQ2
(u; v)

and therefore:

MQ1[Q2
(x) =

F
a2A(Q

1
[Q

2
)

a^x6=?

DQ1[Q2
(a ^ x; a)

=
F

a2A(Q
1

)
a^x6=?

DQ1[Q2
(a ^ x; a)t

F
a2A(Q

2
)

a^x6=?

DQ1[Q2
(a ^ x; a)

v MQ1
(x) tMQ2

(x)

which proves thatΓ(Q
1
[Q

2
) v Γ(Q

1
) t Γ(Q

2
).
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a) b)

c) d)

a

a

1 2

3

a

a

Figure 4: Widenings overPnr(I (Z2)).

5 Applications

We are now going to present two possible applications of dynamic partitioning. The first one
is simply the application of basic partitioning to the bi-dimensional interval latticeI (Z2). Its
interest is rather academic, but we shall use this example toillustrate how widening operators
can be effectively built. In the second example, we will show how a precise description of the
input/output behavior of a program function can be computed using functional partitioning.
This example will exemplify the case where the shape of a program invariant cannot be
predicted and has to be considered as an output of the fixed point computation itself.

5.1 Multi-intervals

The aim of this section is to show how sets of bi-dimensional intervals can be used to
represent sets of integer pairs. Following the method developed in section 4.1, we can either
use non-redundant subsets or strongly non-redundant subsets ofI (Z2). Note that strongly
non-redundant subsets ofI (Z2) are always larger than non-redundant subsets. We are going to
illustrate the ideas that can be used to build elementary widening operators over such subsets.
Figure 4a shows an elementP = fa

1
; a

2
; a

3
g of Psnr(I (Z2)) plus an extra elementa0 2 I (Z2).

We wish to calculateP 0
= P rfa0g. Figure 4b illustrates howP 0 can be defined using a

join-like operator. Note that such an operator might be very difficult to implement. So let
us focus onPnr(I (Z2)). We shall define two elementary operators. The first onerj (fig. 4c)
behaves like a join operator and shall be used in the first steps of a computation. The second
onerg (fig. 4d) computes a generalization as follows. Using the widening operatorrI over
I (Z2) defined in section 2, one first computesa00 = (

W
P ) rI a

0. Intuitively,
W
P is used as a

reference to determine in “which direction”a0 is “moving”. Of course, different references can
be used, such as the most recently added elements ofP for instance. Finally,P 0 is calculated
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Figure 5: Safe representation of lfp(Φ).

by removing the redundant elements ofP [fa00g. We shall use these two elementary widening
operators to compute a non-trivial, safe and finitely represented approximation of the least
fixed point ofΦ : P(N2) ! P(N2) defined by:

Φ(M ) = fh2; 1i; h2; 2ig[ fhbxy=2c; x + yighx;yi2M

This least fixed point cannot be finitely represented in any usual lattice used for modeling
sets of integer pairs, such as the linear inequalities lattice of Cousot and Halbwachs [3] for
instance. But one can very easily define a safe approximationΦ# of Φ by:

Φ#(P ) = fh[2; 2]; [1; 2]ig[ fΦ#
1
(X; Y )ghX;Y i2P

where:
Φ#
1
([i; s]; [i0; s0]) = h[bii0=2c; bss0=2c]; [i + i0; s + s0]i

Then, using the framework of section 3 with the widening operator:

r = (rj
3rg

!) = (rj ;rj;rj ;rg � � �)

one can finitely compute the following non-trivial approximation displayed in figure 5:n
h[2; 2]; [1; 2]i; h[1; 2]; [3; 4]i; h[1; 4]; [4; 6]i; h[2; 12]; [5; 10]i; h[5; !+]; [7; !+]i

o

5.2 Minimal function graphs

We are now going to present an application of functional partitioning to interprocedural
abstract interpretation, which in fact originally motivated this work. Let us suppose that one
has aprogram functionΦ : Z ! Z? such as theLoop function introduced in section 2 or
MacCarthy’s 91-function defined by:
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fun Mc n = if (n > 100) then

n-10

else

Mc(Mc(n + 11))

We wish to determine a safe approximation of the minimal function graph ofΦ for a given
set of input data specifications. We are not going to formally describe a minimal function
graph semantics but rather give an intuition about the way finite representations of minimal
function graphs can be computed using functional partitioning. As hinted at the end of section
2, we shall abstract minimal function graphs using representations inP(I (Z); I (Z)), and input
data specifications using representations inPnr(I (Z)). So let us suppose that we have an initial
representationI

0
of the set of input data specifications. We can define the first representation

of the minimal function graph ofΦ with respect to the input data specificationI
0

by:

P
0

= fhi
0
;?igi02I0

The meaning of a representationP is the one introduced in section 4.3, that is:

Γ(P )(n) = MP [n; n]

where:

MP (x) =

_^
hi;vi2P
x^i 6=?

fv0 : (x ^ i) � i0 � ighi0;v0i2P

Note that, contrary to what is proposed in Jones and Mycroft [10], we have not introduced
a special value “!” to denote non-termination. Therefore, at the end of the computation,
Γ(P )(n) = ? either means thatΦ has never been called withn as argument or that it has been
called and looped. Note that this is not too important since these two interpretations can be
easily distinguished by looking at the domain of the representation. The approximate minimal
function graph is therefore the limit of the increasing chain defined by:

Pk+1 = Φ#(Pk)

whereΦ#(P ) is defined as follows:

1) For everyhi; vi in P , an updated valuev0 w v of v is computed by applying the definition
of Φ to the set of values denoted byi and replacing the values of the recursive calls
Φ(i0) byMP (i0). The latter is the best approximation ofΦ(i0) that can be given using
the current approximation ofΦ.

2) ThenΦ#(P ) = fhi; vrI v
0ighi;vi2P rk fhi

0;?igi02I 0 , whereI 0 is the set ofnewabstract
control points over whichΦ has been called in step 1.

In other words, we compute an updated approximationv0 of the valuev of Φ over each
abstract control pointi in the domain of the representationP , and take into account the fact
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that recursive calls have generated new abstract control pointsi0 by inserting these intervals
into the representation.

The insertion of the updated valuev0 can be done for instance in a fairly simple way by
using the usual widening operatorrI overI (Z) defined in section 2, and replacinghi; vi in the
initial representation byhi; vrI v

0i, in order to make sure that the increasing chain of abstract
values (v; v rI v

0; . . .) will be eventually stable. Of course, at the beginning of the iteration
sequence, it is also safe to replacehi; vi by hi; v _ v0i.

The insertion of the new abstract control pointsi0 into the representation is more subtle, and
uses the elementary widening operatorr defined in section 4.3. Obviously, it is generally
unsafe to add directlyhi0;?i into the representation since, as discussed in section 4.3,i0

might “mask” one of the intervalsi in the domain of the representation and thus invalidate its
meaning. The smallest pair that can be safely inserted is thereforehi0;SP (i0)i. But abstract
control points themselves need to be generalized in order to enforce a finite computation, and
at some point of the iteration sequence, we will have to replace the intervali0 by a greater one
i00, e.g., the maximum element>. This can be formalized by introducing three elementary
widening operators defined as follows.

(ra) Add the pairhi0;SP (i0)i. This is the most precise, join-like, widening operator.

(rb) When it is safe not to addi0, i.e., when the region covered byi0 is already covered by
the domain ofP , then do nothing, otherwise generalize by addinghi00;SP (i00)i, where
i00 � i0. A good choice can be for instancei00 = (

W
A(P )) _ i0, i.e., the smallest interval

representing all the values over whichΦ has been computed so far, in which case
SP (i00) = ?.

(rc) Finally, to avoid adding an infinite number of abstract control points, one can use the
widening operator over the intervals and addh(

W
A(P )) rI i

0;?i.

Of course, the choice of thesequenceof elementary widening operators is essential. The first
elementary widening operatorra will generally be used at the beginning of the computation,
andrc will systematically be used at the end. Moreover, it is often useful, after having
generalized usingrc, to make a few more precise steps usingra orrb. The motivation behind
this choice is that once the domain of the minimal function graph has been delimited, a few
more precise steps are generally needed to determine the abstract control points that are useful
to precisely describe this graph and allow these intervals to “propagate” along recursive calls.

Finally, note that the insertion of the updated abstract valuesv0 and the insertion of the new
abstract control pointsi0 can be freely mixed in pratice, and newly generated control points
can be added on the fly to the representation without problem.

The widening operator that we have described turns the functional partitioning framework
into a tractableframework. So for instance, using the widening operator (rcrarc

!), one can
automaticallycompute, after 4 iterations, the following representation of the minimal function
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graph ofLoop for the input data specificationf[0; 0]g:

n
h[0; 0]; [100; 100]i; h[0; !+]; [100; !+]i; h[1; 1]; [100; 100]i; h[1; 100]; [100; 100]i

o

which has the following meaning:

i Loop(i)
0 � n � 100 [100; 100]
100 < n [100; !+]

This result is interesting in that it shows that the exact information:Loop [0; 100] = [100; 100]
has been obtained, as opposed to section 2, and this has been achieved without the help of a
narrowing operator. However, contrary to the result of section 2, the approximate minimal
function graph seems to indicate that the computation ofLoop(0) might require computing
Loop for values greater than100, but starting this time from the input data specification
f[0; 100]g, and using the “brute force” widening operator (rc

!) we can compute the following
representation: n

h[0; 100]; [100; 100]i
o

which invalidates this interpretation. Similarly, using the widening operator (rcra
2rc

!) one
can compute, after 4 iterations, the following representation of the minimal function graph of
Mc for the input specificationf[0; 50]g:

n
h[0; 50]; [91; 91]i; h[0; !+� 10]; [91; !+]i; h[11; 111]; [91; 101]i; h[11; 61]; [91; 91]i;

h[22; 72]; [91; 91]i; h[22; 111]; [91; 101]i; h[91; 101]; [91; 91]i
o

This representation has the following meaning:

n Mc(n)
n < 0 ?

0 � n � 72 [91; 91]
73 � n � 90 [91; 101]
91 � n � 101 [91; 91]
102 � n � 111 [91; 101]

112 � n [91; !+ � 10]

which is a good and safe approximation of the exact meaning ofMc, i.e.:

Mc(n) =

(
n� 10 if n > 101

91 otherwise

It is interesting to compare this result to the one obtained in Bourdoncle [1] using a method
based onstatic partitioning. In this method, the representation of MacCarthy’s 91 function
would consist of three interval pairs, each pair being associated with asyntactically different
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call toMc, that is, the main call toMc and the two recursive calls. This formally corresponds to
having three mutually recursive functionsMc1, Mc2 andMc3 with the following definition:

if (n > 100) then

n-10

else

Mc3(Mc2(n + 11))

and describing each of these functions by a pair of intervals representing all of the function’s
inputs and all of the function’s outputs. The result obtained is the following:

Mc1 : h[0; 50]; [91; !+� 20]i
Mc2 : h[11; !+]; [91; !+ � 10]i
Mc3 : h[91; !+� 10]; [91; !+� 20]i

This quite mediocre result can be explained by noting that the induction property:

8n 2 [91; 101] : Mc(n) = 91

has not beeninferred by the framework because the number of interval pairs was fixedin
advance. This phenomenon can be worked around by using an ad-hoc input data specification,
namelyf[0; 100]g, which gives the following, optimum, result:

Mc1 : h[0; 100]; [91; 91]i
Mc2 : h[11; 111]; [91; 101]i
Mc3 : h[91; 101]; [91; 91]i

However, this “trick” is not necessary when using the functional partioning framework, since
this framework infers the interesting program properties by itself, and automatically determines
the number of interval pairs needed to describe the program invariant. Howevever, it is worth
mentioning that the widening operator has a major impact on the result’s quality, and for
instance, the “brute force” widening operator would only compute, after 2 iterations, the
following, mediocre but concise, representation:

n
h[0; 50]; [91; !+� 10]i; h[0; !+]; [91; !+� 10]i

o

with the obvious meaning:

8n 2 [0; !+] : Mc(n) 2 [91; !+� 10]

This example shows that the data-oriented approach of dynamic partitioning is much more
versatile than the syntax-oriented approach of static partitioning, and generally gives better
results. But on the other hand, static partitioning guarantees the size of the least fixed point’s
representation, and can lead to faster analyses. Finally, note that the two approaches can
be easily mixed. For example, using the widening operator (rcrarc

!) and the input data
specificationhf[0; 50]g; ;; ;i,one can compute, after 5 iterations, the following representations:
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Mc1 : fh[0; 50]; [91; 91]ig
Mc2 : fh[11; 61]; [91; 91]i; h[11; !+]; [91; !+� 10]i;

h[22; 72]; [91; 91]i; h[22; 111]; [91; 101]ig
Mc3 : fh[91; 101]; [91; 91]ig

which have the following, coalesced meaning, obtained by intersecting their individual
meanings:

n Mc(n)
n < 0 ?

0 � n � 72 [91; 91]
73 � n � 90 [91; 101]
91 � n � 101 [91; 91]
102 � n � 111 [91; 101]

112 � n [91; !+ � 10]

6 Conclusion

We have presented a technique that enables rich abstract interpretation frameworks to
be built from simpler ones even in cases when one has no indication about what such
frameworks should look like. We believe in particular that functional partitioning is of great
interest to interprocedural abstract interpretation for it incrementally builds finite, non-trivial
representations of minimal function graphs and monotonic functions. More generally, the
representation framework can be used every time there is no canonical representation of
abstract program properties and the equivalence test over these properties is intractable or very
costly.

We have shown how widening operators can be built in dynamic partitioning frameworks,
and exemplified their behavior over a set of examples. However, this paper has not addressed
a number of interesting problems such as the effective design of narrowing operators,
the combination of forward and backward analyses, and the generalization of functional
partitioning to higher order functions.
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