
PARIS RESEARCH LABORATORY

d i g i t a l

March 1992

17

Solange Karsenty
James A. Landay

Chris Weikart

Inferring Graphical Constraints
with Rockit





17

Inferring Graphical Constraints
with Rockit

Solange Karsenty

James A. Landay

Chris Weikart

March 1992



Publication Notes

This report also appears inHuman Computer Interaction: Proceedings of HCI’92, University
of York, U.K., September 1992. A short videotape demonstrating this work is available.
Information can be obtained from the librarian at PRL.(librarian@prl.dec.com)

For correspondence, Solange Karsenty and Chris Weikart may be contacted at the following
address:

Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor-Hugo
92563 Rueil-Malmaison Cedex
FRANCE
karsenty@prl.dec.com
weikart@prl.dec.com

James Landay was a research intern at Digital’s Paris Research Laboratory from June to
September 1991. For correspondence, he may be contacted at the following address:

Carnegie Mellon University
School of Computer Science
5000 Forbes Ave.
Pittsburgh, PA 15213
USA
landay@cs.cmu.edu

c Digital Equipment Corporation 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii



Abstract

Rockit is a system that identifies the possible graphical constraints between objects in a
two-dimensional scene and allows the user to choose and apply the desired constraints quickly
and easily. Rockit looks for intersections between the position of a designated object and the
gravity fieldsof other objects to determine the possible constraints. These candidate constraints
are passed to a rule system that encodes some simple knowledge about how graphical objects
normally interact and can thus be constrained to one another. The rules are used to determine
the most likely constraints to be applied between the designated object and the other objects in
the scene. As the user manipulates the object, the object willgravitatetowards the most likely
constraint scenario. The inferred constraints are indicated by the creation of graphical and
sonic feedback objects. Rockit makes it easy to try other likely scenarios by simply pressing a
key, causing the system to cycle through the other possibilities.

Résumé

Rockitest un syst`eme qui permet d’inf´erer des contraintes graphiques dans une sc`ene contenant
des objets graphiques `a deux dimensions. Ces contraintes peuvent rapidement et facilement
être choisies par l’utilisateur, puis appliqu´ees. Rockit consid`ere les intersections entre la
position de l’objet selectionn´e, et leschamps de gravit´e dont sont munis tous les objets,
ceci afin de determiner une liste de contraintes possibles. La liste ainsi construite est ensuite
utilisée par un syst`eme de r`egles. Ces r`egles decrivent la fa¸con dont les contraintes sont
usuellement appliqu´ees entre les objets, et permettent ainsi de d´eterminer les contraintes les
plus plausibles. Lorsque l’utilisateur manipule l’objet s´electionné, celui-ci est attir´e dans une
direction correspondant au sc´enario de la contrainte choisie par le syst`eme de r`egles. Les
contraintes ainsi inf´erées sont mises en ´evidence grˆaceà des objets sp´ecialisés qui peuvent ˆetre
à la fois graphiques et sonores. De plus, Rockit permet `a l’utilisateur d’essayer successivement
d’autres sc´enarios. Pour cela, l’utilisateur tape sur une cl´e du clavier, et Rockit montre, par
ordre décroissant de potentiel, les contraintes possibles.

iii



Keywords

Geometric constraints, graphical editors, inferencing, interaction techniques, direct manipula-
tion, user interfaces, sonic feedback, audio.

Acknowledgements

We would like to thank James Aspnes, Michel Beaudouin-Lafon, Stewart Clamen, Michael
Gleicher, Bruce Horn, David Kosbie, David Kurlander, Brad Myers, Greg Nelson, Francis
Prusker, Marc Ringuette, and Hank Wan for improving the readability of this report. We would
also like to thank Michel Gangnet for the helpful discussions and comments on this work.

iv



Contents

1 Introduction 1

2 User interface and examples 2

3 Constraints and feedback 4
3.1 Supported constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
3.2 Combining sonic and graphical feedback : : : : : : : : : : : : : : : : 7

4 Inferring and solving constraints 8
4.1 Gravity fields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
4.2 Rule system : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
4.3 Constraint solver : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

5 Related work 12

6 Status and future research 13

7 Conclusion 14

References 15

v





Inferring Graphical Constraints with Rockit 1

1 Introduction

Graphical constraints define relations among graphical objects that must be automatically
maintained by an underlying system. The automatic maintenance of these relations has
become important in increasing the functionality of graphical editors and user interface
builders. Yet this increase in functionality forces the users of these tools, usually program
or interface designers, to perform the difficult task of specifying the constraints. Constraints
in these systems are generally specified by writing mathematical equations that define the
relations which must hold.

The purpose ofRockit, which stands for a Rapid graphical Object Constraint identifier
using Knowledge Inferencing Techniques, is to automatically identify the possible graphical
constraints between objects in a scene and to allow the user to choose and apply the desired
constraints quickly and easily. Rockit is a component of a larger system,Rollit [15], an
interface and application builder for two dimensional graphical applications that concentrates
on building the data view, also known as the domain adaptor [31] of an application (see
Figure 1).

Rockit

Kernel

Funbuild

Figure 1: Rollit components

Rockit is implemented as a function of the graphical editor,Funbuild, which allows the user
to create both primitive and composite application objects by direct manipulation. The user
creates (possibly hierarchical) graphical objects and applies constraints to them, with the
help of Rockit. Both Rockit and Funbuild rely on the system kernel, which manages the
data structures and constraints. Typical application objects include diagrams, circuits, and
flowcharts. The targeted applications are graphical editors, though Rollit is not restricted to
this kind of application. One of the main goals of Rollit is to provide powerful mechanisms
for the creation, representation, and manipulation of data within the application’s functional
core. In this document, the termuserwill refer to the application designer – a user of Funbuild
– as opposed to the end-user of the application being designed.

Rockit uses a rule system that encodes some simple knowledge about how graphical objects
are related and thus how they can be constrained among one another, as inPeridot [20, 21].
When a user creates or modifies an object, Rockit uses object-definedgravity fieldsto filter
out unlikely constraints. The remaining candidates are passed on to the rule system, which
prioritizes the possible constraints to be applied between the selected object and the other
objects in the scene. As the user manipulates the object, it willgravitatetowards the most
likely constraint scenario. Rockit makes it easy to try other likely scenarios by simply pressing

Research Report No. 17 March 1992



2 Solange Karsenty, James A. Landay, and Chris Weikart

a key, causing the system to cycle through the most likely possibilities, as in [10, 19].

One unique feature of Rockit is that it usually infers the desired constraint very quickly by
using gravity fields to filter out unlikely possibilities. Users do not need to continually answer
questions [20], produce multiple snapshots [16], or specify constructor objects [3, 10, 18, 19].
In addition, the user does not need to specify the constraints explicitly as in many previous
systems [5, 13, 22]. Another unique feature of our system is that it allows developers to
dynamically change the rule conditions and rule ordering that determine which constraints
are most likely, and thus make applications behave differently depending on end-user runtime
actions. For instance, this would allow Rockit to automatically improve the quality of its
inference based upon similar actions performed repeatedly.

The next section describes the user interface to the graphical editor, Funbuild, and gives
examples of how Rockit is used within this editor. In the third section we describe the
constraints supported by Rockit, while the fourth section explains how gravity fields interact
with the rule system to infer these constraints. The fifth section outlines related work and
explains how Rockit differs. Finally, we describe the current status of the system and our plans
for future research.

2 User interface and examples

Funbuild is the interactive front-end to Rollit. It allows the user to create and edit primitive
and composite application objects by direct manipulation, in the spirit of a graphical editor
such asMacDraw[1]. In general, an application object is made up of several primitive objects
that are constrained among one another. Rockit is used to help specify these constraints during
the creation and editing of these objects.

When automatic constraint inferencing is turned on, Rockit will try to infer the most likely
graphical constraints by examining the currently selected object, the position of this object with
respect to other objects close by, and known relations between the selected object and other
objects in the region. These relations express both the necessary conditions for a constraint
to be inferred and a ranking among the types of constraints that can be inferred between the
current object and other types of objects.

As the user drags an object, Rockit may infer one or several constraints. The user then observes
the dragged object moving towards the most likely scenario. Thisgravitationdoes not involve
warping the mouse pointer; the pointer continues to travel as directed by the user, but the
object may be offset slightly. This offset is the result of a gravitational force applied to the
object. The gravity-induced component of the object’s movement is recalculated every time
the mouse pointer moves. In contrast to the traditional usage of gravity in user interfaces, as
first defined bySketchpad[28], gravity in Rockit more closely resembles the natural attraction
between physical objects, rather than just the sudden snapping of one object to another when
they are at some fixed distance from each other.

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 3

In addition to gravitation towards the most likely constraint scenario, Rockit provides feedback
about the kind of constraint that is being proposed by creating appropriate feedback objects.
These feedback objects are both graphical (similar to the user-selected alignment objects in
Snap-Dragging[3]) and sonic (that is, they can have an associated sound). The user can accept
a constraint by snapping the dragged object to the feedback object; otherwise the constraint is
not accepted.

Figure 2: As the user drags the circle towards the triangle, Rockit infers a connection constraint.

If at any time the user is unhappy with the inferred constraints, hitting thecycle key will
identify the next most likely set of constraints. In addition, the user can snap to one of the
feedback objects and then indicate to the system that no constraint should be applied, thus
allowing the use of simple Snap-Dragging for precise, unconstrained placement.

For example, Figure 2 shows how to create an inverter for a CAD application. First, a
triangle is created using Funbuild’s toolbox. Next, a circle is made. As the circle is dragged
towards the right vertex of the triangle, it eventually enters one of the triangle’s gravity fields.
At this point, Rockit uses its rule system to infer that we could connect the circle – more
specifically, an object-defined site closest to the mouse position, which in this case is the
center of the circle – to the triangle. Rockit creates a feedback object, a nail on the triangle’s
right vertex, and activates its gravity field to indicate this inferred constraint. Entering the
gravity field produces an unobtrusive sound which sustains as long as we remain inside the
gravity field. Furthermore, while the circle is being dragged, the gravity causes the circle to
begin to “gravitate” towards the target location. The gravitation makes it easier to guide the
circle towards the vertex and to then snap it into place, thus indicating our acceptance of the
proposed constraint.

Research Report No. 17 March 1992



4 Solange Karsenty, James A. Landay, and Chris Weikart

The next example illustrates the creation of a simple slider. The slider is made up of a box, a
line with an “elevator” moving along it, and two pieces of text to indicate the lower and upper
bounds of the slider’s value. We want to connect the line’s endpoints to the top and bottom of
the box along its centerline, and we want the elevator to move vertically along the line. We
also want the text objects to be attached to the top-right and bottom-right corners of the slider.

First we create the box. Then we use the line tool and start dragging a thick line from a point
on the top of the box to a point near the bottom of the box. At this point, no constraint is
applied on the initial endpoint. While dragging the other endpoint, Rockit will infer that we
want to connect the line to the box and will display a feedback object at the connection point
as in the first example (see Figure 2). We then snap it to the bottom of the box, thus indicating
our acceptance of the proposed constraint. In order to similarly connect the initial endpoint
to the box, we select it and stretch it towards the top of the box. Again, Rockit will infer a
connection constraint and we can snap the endpoint into place.

Next we create the elevator – a polygon that will be allowed to slide – and drag it inside the
box. As the dragged point of the polygon approaches the center of the line, Rockit will infer
that these two objects should be connected. We can easily ignore that constraint by dragging
the polygon towards the upper end of the line. At this point, Rockit will infer that we would
like to vertically align the two objects. Rockit will create a feedback object – a vertical dashed
line going through the axis line (see Figure 3). This line has a gravity field surrounding it
with a gravity function that only affects the x coordinate of objects entering it. We can now
easily drag the polygon towards the dashed line and snap it into place. The elevator is now
constrained to slide vertically along this line.

We now create two text objects, a “0” and a “100”. We want to connect them to the lower-right
and upper-right corners of the box, respectively. If we drag the “0” below the box, Rockit
infers that it should be centered below the box. We can easily ignore that constraint by
dragging the text towards the right corner of the box. At this point, Rockit will infer that we
would like to align the text with the bottom of the box. Since this is not yet what we want, we
can hit the cycle key and see the next guess. Rockit finally proposes to connect the text to the
box. After snapping the text into place, it will be constrained as desired. Similarly, we can
connect the second text object to the upper-right corner of the box (see Figure 4).

3 Constraints and feedback

Constraints are relations that must hold at all times and are generally maintained by an
underlying system known as a constraint solver. Traditionally constraints have been represented
as a combination of a predicate, used to test whether the constraint currently holds, and some
methods that can be executed to satisfy the constraint [4]. In Rockit, as in [5], the methods to
satisfy a given constraint are deduced automatically from the predicate.

Two different types of graphical feedback are given by Rockit. The first kind is given when
the system guesses a possible constraint, while interaction is in progress. The second is given
when the user indicates acceptance of the guessed constraint by snapping the dragged object.

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 5

Figure 3: As the user drags the polygon towards the axis line, Rockit indicates that it has
inferred a vertical alignment constraint between the two objects.

Figure 4: After the user snaps the text onto the corner of the box, Rockit indicates that the user
has accepted a connection constraint between the corner of the box and the text.

Research Report No. 17 March 1992



6 Solange Karsenty, James A. Landay, and Chris Weikart

For instance, if the user drags an object towards another object to which it can connect, the
dragged object will gravitate towards the fixed object. At this stage, aguessfeedback object
is displayed on the fixed object. If the user drags the object even closer, the dragged object
will snap to the feedback object, and anacceptfeedback object will be both shown and heard.
This indicates that the user has accepted the guess, although it can still be refused by pressing
a designated reject key.

3.1 Supported constraints

The system currently attempts to identify six different kinds of constraints between objects:
connectors, spacers, attractors, repulsers, containers, and aligners. Each of these constraints is
indicated to the user by the creation of a graphical feedback object (see Figure 5). A user can
add new types of constraints by using facilities available in Rollit’s programming environment.

Guess

Accept

Constraint Connector Spacer Attractor Repulser Container Aligner

120 120 120

Figure 5: Guess and accept graphical feedback objects

Spacers specify a fixed distance between two points. Repulsers specify a minimum allowable
distance, while attractors specify a maximum distance between two points. Spacers are
commonly used to maintain precise measurements in drawings. By allowing the two points
to occur on the vertices of the same object, the object can be constrained such that stretching
of a given dimension is not permitted. Repulsers are useful in defining the minimum spacing
between a group of objects that may be resized. An example of this is in defining the minimum
spacing between buttons in a window.

Connectors, a special case of spacers, specify that two points must be coincident. A connector
constraint is used to attach the circle to the triangle in the inverter shown in Figure 2.

Containers specify that either the extent or the center of one object must remain within the
extent of another. Containers are useful for hierarchical design in circuit editors, for instance,
since they allow the specification of a box in which logic gates must remain.

Aligners allow the vertical or horizontal alignment of points. A vertical aligner was used to
create the slider shown in Figure 3.

By default, all constraints are symmetrical. This means that if two objects are constrained,
neither of them masters the other. In other words, the arithmetic equations describing the

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 7

constraints are not oriented. However, there are many cases where one needs to fix the
direction in which the constraint should be solved. For instance, if objectsA and B are
vertically aligned, we may want to haveB’s alignment depend onA, but not the converse.
As a result,B cannot move horizontally, while movingA horizontally changesB’s horizontal
position in order to satisfy the constraint. All of the constraints in Rockit can be oriented by
defining the master object and the slave object of the constraint, as inAlien [6]. For example,
oriented attractors, known as “annotators”, are often used for labeling objects with a piece of
text. This means that the text – the slave – must follow the object if it moves, yet the text can
still move independently within a fixed distance from the object.

Spacers, attractors, and repulsers typically have low priority in Rockit’s rule system, since
their gravity field regions are infinite. Such constraints are usually proposed to the user after
cycling through several other guesses. When Rockit guesses such a constraint, the user can
switch to an accept state by dragging the object to the corresponding object’s site. Rockit
then shows the accept feedback object, which displays the current distance between the two
sites. Rockit remains in this state until the user either (a) accepts the constraint by releasing
the dragged object, (b) cycles to the next guess, or (c) hits thecancelkey. If accepted, the
constraint is created with the current distance between the two objects.

The constraint solver is called during every user action, and therefore the user always sees
a consistent scene. For instance, suppose that the user drags an object in a direction that
would cause some existing constraints to become unsatisfied. At that point, the dragged object
“decouples” from the pointer (stops moving). This type of feedback informs the user of a
conflict. The user can either abort the action or accept the most recent position of the object
that still satisfies the existing constraints.

3.2 Combining sonic and graphical feedback

Purely graphical feedback is problematic, largely because it is not always easily distinguishable
from the graphical objects themselves. There is no graphical style attribute, such as line
thickness or dash style, “reserved” for feedback objects. Since the nature of the task at hand is
to construct graphical applications, we need an orthogonal sensorial dimension: audio [14].

We have associated a sound property with each feedback object. This property is activated by
default when the feedback object appears on the screen. As a result, a continuous sound is
produced while an object is dragged through the region of a gravity field. When a constraint
is accepted – for example, when an object is snapped to the edge of a guess feedback object
– a brief “clack” sound is played. The type of constraint, which may have been graphically
symbolized by only a dashed line, is now also represented by a sound. With six constraint
types and two states for each, there must be twelve unique sounds. Naturally, the two sounds
associated with a specific constraint type are related to each other and must therefore be
“sonically similar”.

Since our paradigm does not directly correspond to a “real-world” situation, as inArkola [9],
we needed to find sounds that would be the most helpful for the largest number of users.

Research Report No. 17 March 1992



8 Solange Karsenty, James A. Landay, and Chris Weikart

Obviously, such subjective judgements can only be vindicated by experience. We have
collected sounds from two sources: some natural sounds were sampled and other sounds were
recorded from a synthesizer. For sampled sounds, we started by recording speech because it
was an obvious kind of feedback that did not require any learning. We used such phrases as
“vertical alignment!” or “spacer!”. This technique revealed two problems: such sounds were
not intelligible when mixed and sustain was not possible unless looping on the word (in our
system, a sustained sound is required while an object remains in the region of a gravity field.)

Mixing sounds causes a major difficulty. Users frequently activate as many as two or
three potential constraints, triggering multiple sounds simultaneously. By carefully choosing
the sounds and ensuring that pitches combine consonantly, we can make the feedback
understandable and pleasant to listen to. We can also adjust the volume to render the intensity
of the gravity field (which usually varies with distance). This particular aspect was never
reflected clearly through the graphics alone, although it could be detected through the “feel” of
the gravitation towards the feedback objects. As a result, we have observed among our users a
significant increase in the complexity of their graphics manipulations, and therefore the scenes
being designed. Audio allows the user to choose more easily among several constraints.

In a previous implementation, we experimented with sound interleaving instead of sound
mixing. That is, sounds were played successively and repeatedly for a time proportional to the
intensity of the gravity field. This technique was abandoned because interleaved sounds were
not accurate enough. Furthermore, the human ear can easily capture and understand mixed
sounds if they are carefully designed, as discussed above. We found, for instance, that the
attack, sustain, and decay of a sound can express fine grained states of interaction that can help
distinguish mixed sounds.

While it is obvious that sound conveys useful information in everyday life, it is not always
clear how audio can be used in the computer to improve user interfaces. It is still often
considered annoying, especially in a group context. Nevertheless, within the context of our
experiment, audio with graphics is easier to use than the purely graphical alternative.

4 Inferring and solving constraints

Rockit simplifies the task of inferring constraints by relying on both graphical and written
relations. The graphical relations are expressed by both the shapes and strengths of gravity
fields, while the written relations are defined by a simple rule system.

Rockit analyzes a designated object and a set of candidate objects in the same scene. This
process uses gravity fields, which are attached to every object in the scene, to filter the set
of objects to consider. Rockit then uses its rule system to return an ordered list of possible
constraints between the first object and the candidate objects, ranked by a confidence value
indicating how “desirable” each constraint is.

The inference process is initiated whenever an object is created or modified (i.e. moved or
resized) or when the user chooses to identify the possible constraints on a selected object. In

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 9

this section, we explain the inference process and give a brief overview of the constraint solver.

4.1 Gravity fields

Each object in a scene has gravity fields associated with it. A gravity field consists of:

� a size and shape, or region

� a potential function that describes how it attracts or repels objects contained in the
region.

A gravity field is said to beenclosingwhen its region contains the dragged point. Rockit can
limit the number of possible constraints to be examined by the rule system by first building the
set of enclosing gravity fields and then inferring constraints only with respect to the enclosing
fields.

A gravity field is said to beactivewhen its function is applied to the currently selected object
lying within its region. After the rule system has inferred the possible constraints, then most
likely candidates will have their gravity fields activated (n defaults to one, but can be adjusted).
Dragging an object through multiple overlapping active gravity fields results in a composite
displacement for each mouse move, according to the average of the contributions of all the
fields.

Each object in a scene has points defined on it, known asconstraint sites, to which constraints
can be attached. These points are usually important features of the object, such as vertices,
midpoints of line segments, or centers of circles. Figure 6 shows these points highlighted.
There can be multiple constraint sites defined on the same geometrical point. Each constraint
site has a constrainttype, guess and acceptfeedback objects, a snap horizon, and agravity
field associated with it. The type specifies the kind of constraint the site can be involved in.
For instance, in Figure 6, there are two constraint sites on each of the midpoints of the line
segments that define the rectangle: a constraint site of typeconnectorand another one of type
aligner.

The snap horizon (not shown in Figure 6) defines a region within which dragged objects should
snap to the guess feedback object associated with the constraint site defining that region.
Snapping to the feedback object indicates acceptance of the proposed constraint involving that
site.

The shape, size, and force of the gravity field are maintained by each site. The rule system
will try to infer a constraint between two sites only if the site being dragged lies within the
gravity field region of the other site.

The gravity field region is usually a symmetrical area around the site. These regions can be
made visible within the editor. Figure 6 shows two kinds of regions around the sites: a circular
area for connectors and an elongated area for aligners, both centered on their constraint site.
In order to allow alignment constraints for any distance, the size of the elongated region may
be made long enough to cover the entire scene. The rectangle in this example has thirteen

Research Report No. 17 March 1992



10 Solange Karsenty, James A. Landay, and Chris Weikart

Figure 6: Gravity field regions for connectors and aligners

constraint sites. These regions can be redefined interactively by the interface designer, using
the mouse to either stretch an existing shape or to draw a new shape.

The function defining the gravity force can be dynamically set for each site. An object that is
very unlikely to be involved in a constraint with the selected object can set its associated force
function to one that returns only negative values. By allowing dynamically-defined gravity
fields, including infinitely negative gravity, the user is free to implement constraints that have
runtime semantics, as in [12]. For example, this could be used in a circuit editor to disallow
connecting wires that have different voltages. As the user drags the first wire close to the
second wire, a negative gravity field could be activated to keep them apart.

4.2 Rule system

Rockit uses a simple rule system along with the gravity magnitudes to choose among the
possible graphical constraints. Our system allows the application to dynamically change the
conditions that determine which rules to execute and thus lets applications behave differently
depending on runtime actions of the end-user.

The rules are stored as tuples of the form:
(constraint, conditions, rank function)

When a rule’s conditions match the current situation, its rank function is then calculated. The
rank function, which can be defined separately for each rule, is used to order the applicable
constraints by how “good” that constraint would be in the current situation. Its arguments
are made up of simple graphical attributes of the scene, such as the magnitude of the gravity

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 11

between the two constraint sites.

An example of a rule is:
constraint(VerticalAligner(A; B)),
conditions(IsAny(A); IsAny(B); A:x� B:x; A:y 6� B:y),
rank function(abs(A:x� B:x))

This rule vertically aligns any two objects (say a rectangle and a line) which are already close
to being vertically aligned, but are not close enough to be connected.

These are the steps involved in the process of inferring the constraints:

� As the user drags an object, Rockit identifies a specific point on this object. This point is
by default its middle point, unless the user has intentionally grabbed another point. This
point may have a number of constraint sites attached to it. These sites form the dragged
object’s set of sites,D.

� Rockit then builds the set of constraint sites,S, whose gravity fields are enclosing. These
are the sites associated with gravity field regions that contain the dragged point.

� Rockit then builds an initial set of constraints by considering all pairs(x; y), where
x 2 D; y 2 S, andType(Constraint(x)) = Type(Constraint(y)).

� These constraints are passed to the rule system. The rule system ranks them and returns
a list sorted by decreasing rank.

� Rockit picks the firstn constraints in this list,n defaulting to one, activates the associated
gravity fields, and shows feedback for each one.

� At this point, the user can either accept one of the constraints by snapping to the feedback
object or cycle through the nextn constraints in the list.

4.3 Constraint solver

Rockit has been designed independently of the constraint solver. The constraint solver that we
have implemented works by local propagation. The underlying data structure is a data graph
made up of nodes that are graphical objects and edges that are constraints. If constraints are not
initially oriented, the solver will arbitrarily choose an orientation during solving. The solver
works as follow: it constructs a DAG from the data graph and chooses a root of the DAG as the
“master” node. This master node is usually the object being manipulated by the user. The user
expects this object to follow the mouse position and affect other objects in the sceneaccording
to the constraints applied between them (to do otherwise would be confusing). When a loop
is encountered in the construction of the DAG, the solver will fail if that constraint cannot be
satisfied without undoing other previously satisfied constraints.

We expect to improve the solver and to eventually implement a more powerful algorithm, such
asDelta–Blue[7] or the algorithm described in [8]. This has become necessary because of
scenes that include lots of constraints or situations where the solver fails on relatively simple
cases. For instance, depending on the arbitrary orientation initially given to the constraints,
the current solver may not succeed.

Research Report No. 17 March 1992



12 Solange Karsenty, James A. Landay, and Chris Weikart

5 Related work

Early attempts at improving computer-based illustrators suggested the use of constraints to
maintain relationships between graphical objects in illustrations. Though the use of constraints
in drawing programs [13, 22, 28, 30] and graphical user interfaces [4, 17, 20, 23] is not
new, successful attempts at automatically inferring graphical constraints have only more
recently been gaining attention. One such attempt has been made in scenebeautification[25].
Beautification tries to “clean up” a completed drawing that has been roughly sketched by
satisfying the inferred constraints in the scene. This batch method has several drawbacks for
our application. Often, it does not infer all of the proper constraints on the first attempt and
the operation of beautifying is not idempotent, thus leaving users in the dark on how many
times they need to execute the beautifier to achieve the desired results. Trying to infer all
possible constraints in a scene at once is much harder than trying to infer only the constraints
between one object and the rest of the scene. More importantly, by getting user assistance
as each constraint is placed, Rockit further improves the speed at which it can infer the
correct constraints. Beautification is therefore both much slower and less accurate, making it
inappropriate for an interactive editor.

Another approach to constraint identification involves taking multiplesnapshots[16] of a
scene. In this type of system the initial drawing is considered fully constrained after the first
snapshot. After modifying the drawing, a new snapshot is taken. The differences between
the two snapshots are analyzed to see which degrees of freedom the objects in the scene are
allowed to have. This process can be repeated multiple times until the desired constraints are in
place. One problem with this method is that the system may infer anincidental constraint, that
is, a constraint that was evident in the snapshots, yet not intended by the user. An incidental
constraint may leave the constraint system unsolvable when the user tries to manipulate the
system. In order to keep the user from having to confront this confusing problem, we avoid
having our constraint system enter unsolvable states. We achieve this by solving the system at
every mouse move, while the user is dragging an object. Therefore Rockit will only accept
constraints which do not conflict with existing constraints.

Another recent system infers constraints by observing which positioning operations are used
as individual objects are moved [10]. This system extends Snap-Dragging [3] by inferring
and remembering the underlying constraints specified by the Snap-Dragging operations. In
addition, it combines a differential approach with the technique ofconstrained dynamicsto
ensure that it will always be possible to solve the constraint system since the system is never
allowed to move to an unsolvable state. This system still requires the user to specify the
positioning operations, whereas we infer the positioning operations automatically by the use
of gravity fields and a rule system.

The main motivation ofsemantic snapping[12] is to provide semantic feedback at the lexical
(user input) level. This is achieved through predicate functions called when snapping onto
sites. For instance, consider an object with a maximum fan-in/fan-out. Connecting to that
object invokes a predicate function that tests the number of connections. When the maximum
fan-in/fan-out is exceeded, the site provides feedback to the user, such as a message explaining

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 13

why they cannot make the desired connection. In order to resolve ambiguous snaps, the
user can reject a snap by pushing a button, which causes the site to be deactivated. This
is somewhat similar to our approach, except that we rely on the rule system to give more
fine-grained control over how to resolve these ambiguities. The main difference is that we
can consider several constraints on one point, each with its own independent gravity field.
We do not deactivate a site, but we consider the priorities of the constraints, as expressed by
the rule system, to choose the most likely constraint. Semantic feedback is supported within
Rollit itself and is thus specified at that level rather than in Rockit. Graphical constraints are
a special case of Rollit’s constraints, which allow semantic feedback to be achieved through
pre- and post-conditions on the creation and deletion of constraints and application objects.

Rule-based systems have been used previously in helping to create both drawings and user
interfaces [29], as well as in design tools for building models to describe and position
shapes [11]. TheVisualization-System[26] used heuristics to allow artists to automatically
transform drawings according to the rule selected by the artist. The system allowed the
exploration of new artistic concepts, but it required the user to select which rule to apply.
Peridot[20] andDruid [27] both store simple rules about the relationships between objects in
graphical user interfaces. Even though they use inferencing to choose a rule, both require the
user to continually answer questions to decide if the inferred rule is the correct one to apply.
By automatically inferring constraints and integrating this with the basic drawing metaphor,
the user interface to constraint placement is much improved and therefore allows further use
of this powerful mechanism.

6 Status and future research

Rockit is implemented in C++ 2.0, as is the rest of Rollit. The graphics and event handling are
provided by theXtv [2] graphical toolkit. Rockit is integrated with the Funbuild editor, which
uses theMotif [24] toolkit. Funbuild allows the developer to build application object classes
that are typically composite, constrained objects. Rockit allows interactive specification of
these constraints.

Some areas of Rockit must be investigated further to see if more powerful functionality can be
added without undue difficulty for the user. One area of possible investigation is in conflicting
constraint resolution. Currently, we do not allow the user to create conflicting constraints. An
alternative solution would be to allow this, and then to partition the conflicting constraints
using a preference level. Constraint solvers have been developed that can solve constraint
systems with this type of hierarchy [7, 8]. Another area of investigation is in tuning the types
and ordering of the rules. This could be done through a rule browser that would allow the
developer to easily change the conditions and ordering of the rules by direct manipulation.

Rockit could be made user adaptive. Since it is possible to modify the rule system dynamically,
Rockit could profit from a history of the user’s actions. For instance, in the example where
the user is placing the second text object on the slider (see Figure 4), there are two inferences
that are plausible. The first would be to align the text with the box and the second would be

Research Report No. 17 March 1992



14 Solange Karsenty, James A. Landay, and Chris Weikart

to connect the two objects together. Rockit could rate the latter option as more likely since we
had recently applied this type of constraint.

Another important area to investigate is extending the constraints themselves. This would
include making more complex constraints, such as alignment along arbitrary angles, and
extending the interface to allow the specification of constraints between more than two
constraint sites. In addition, a facility to specify constraints on constraints would allow a
simple specification of even more complex constraints, such as a constraint on the relative
distances between pairs of points.

Finally, we would like to explore other forms of feedback, such as graphic style changes,
animation, and more sophisticated sound effects. Rockit has been implemented in a way that
easily allows a high degree of customization of its behavior, thus making it simple to examine
different interaction techniques. Formal user testing is necessary to determine which kind of
feedback is the most helpful in indicating to the user that a constraint is being guessed by the
system.

7 Conclusion

The Rockit system described in this paper will help users to easily specify graphical constraints,
thus speeding up the creation of Rollit applications. By using both gravity fields and rule-based
methods, Rockit is able to vastly reduce the number of possible constraints it considers and is
therefore able to propose constraints quickly. The use of multiple kinds of feedback allows
users to easily decide whether the proposed constraints are what they intended. If not, Rockit’s
cycling feature allows them to try other possibilities. This novel approach to constraint
specification can be applied to other applications such as drawing programs, page layout, and
CAD tools. In the future, we expect to learn more through additional user testing and to tune
our system for improved efficiency.

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 15

References

1. Apple Computer Inc., 20525 Mariani Avenue, Cupertino, California 95014.MacDraw
User Manual(1987).

2. Michel Beaudouin-Lafon, Yves Berteaud, and St´ephane Chatty. Creating Direct Manip-
ulation Applications with Xtv. InProc. European X Window System Conference EX’90,
pages 148–155 (November 1990).

3. Eric A. Bier and Maureen C. Stone. Snap-Dragging.Computer Graphics, 20(4):233–240
(August 1986). ACM SIGGRAPH’86 Conference Proceedings.

4. Alan Borning and Robert Duisberg. Constraint-Based Tools for Building User Interfaces.
ACM Transactions on Graphics, 5(4):345–374 (October 1986).

5. Alan H. Borning. Defining Constraints Graphically. InHuman Factors In Computing
Systems: Proceedings ACM SIGCHI’86, pages 137–143, Boston, MA (April 1986).
Addison and Wesley.

6. Eric Cournarie and Michel Beaudouin-Lafon. Alien: a prototype-based constraint system.
In Second Eurographics Workshop on Object Oriented Graphics, pages 93–114 (June
1991).

7. Bjorn Freeman–Benson, John Maloney, and Alan Borning. An Incremental Constraint
Solver.Communications of the ACM, 33(1):54–63 (January 1990).

8. Michel Gangnet and Burt Rosenberg. Constraint Programming and Graph Algorithms.
In Second International Symposium on Artificial Intelligence and Mathematics, Ft.
Lauderdale (January 1992).

9. William W. Gaver, Randall B. Smith, and Tim O’Shea. Effective Sounds in Complex
Systems: The Arkola Simulation. InCHI’91 Proceedings, Human Factors in Computing
Systems, pages 85–90. Addison Wesley (1991).

10. Michael Gleicher and Andrew Witkin. Creating and Manipulating Constrained Models.
Technical Report CMU-CS-91-125, Carnegie Mellon University, School of Computer
Science (January 1991).

11. Bernice Trefman Glenn. DESCRIPTOR: A Model for Describing Shapes that Infers
Relations for Positioning Them. Master’s thesis, University of California, Los Angeles
(1986). Architecture and Urban Planning.

12. Scott E. Hudson. Adaptive Semantic Snapping – A Technique For Semantic Feedback
at the Lexical Level. InHuman Factors In Computing Systems: CHI’90 Conference
Proceedings, pages 65–70, Seattle, WA (April 1990). Addison and Wesley.

Research Report No. 17 March 1992



16 Solange Karsenty, James A. Landay, and Chris Weikart

13. Devendra Kalra and Alan H. Barr. A Constraint-Based Figure-Maker. InEurographics’90:
Proceedings of the European Computer Graphics Conference and Exhibition, pages 413–
424, Montreux, Switzerland (September 1990). North–Holland.

14. Solange Karsenty, James A. Landay, and Chris Weikart. Audio Cues for Graphic Design.
In CHI’92 Posters and Short Talks Proceedings, pages 77–78, Monterey, CA (May 1992).

15. Solange Karsenty and Chris Weikart. Building the Domain Specific User Interface:
Another Challenge. Submitted for publication (January 1992).

16. David Kurlander and Steven Feiner. Inferring Constraints from Multiple Snapshots.
Technical Report CUCS-008-91, Department of Computer Science, Columbia University
(May 1991).

17. John H. Maloney, Allan Borning, and Bjorn N. Freeman-Benson. Constraint Technology
for User-Interface Construction in ThingLab II. InOOPSLA’89 Conference Proceedings,
pages 381–388, New Orleans, LA (October 1989).

18. David L. Maulsby, Kenneth A. Kittlitz, and Ian H. Witten. Constraint-Solving in Interactive
Graphics: A User-Friendly Approach. InComputer Graphics International’89, pages
305–318. Springer–Verlag (1989).

19. David L. Maulsby, Ian H. Witten, and Kenneth A. Kittlitz. Metamouse: Specifying
Graphical Procedures by Example.Computer Graphics, 23(3):127–136 (July 1989).
ACM SIGGRAPH’89 Conference Proceedings.

20. Brad A. Myers.Creating User Interfaces by Demonstration. Academic Press (1988).

21. Brad A. Myers and William Buxton. Creating Highly-Interactive and Graphical User
Interfaces by Demonstration.Computer Graphics, 20(4):249–258 (August 1986). ACM
SIGGRAPH’86 Conference Proceedings.

22. Greg Nelson. Juno, a Constraint-Based Graphics System.Computer Graphics, 19(3):235–
243 (July 1985). ACM SIGGRAPH’85 Conference Proceedings.

23. Dan R. Olsen Jr. and Kirk Allan. Creating Interactive Techniques by Symbolically
Solving Geometric Constraints. InProceedings of UIST’90, pages 102–107, Snowbird,
UT (October 1990). ACM Press.

24. OSF, editor.OSF/Motif Programmer’s Reference. Prentice Hall (1990).

25. Theo Pavlidis and Christopher J. Van Wyk. An Automatic Beautifier for Drawings and
Illustrations. Computer Graphics, 19(3):225–234 (July 1985). ACM SIGGRAPH’85
Conference Proceedings.

26. Laura Scholl. Heuristic Rules for Visualization. InProceedings of Graphics Interface’85,
pages 443–446, Montreal, Quebec (May 1985).

March 1992 Digital PRL



Inferring Graphical Constraints with Rockit 17

27. Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan. Druid: a System for Demonstra-
tional Rapid User Interface Development. InProceedings of UIST’90, pages 167–177,
Snowbird, UT (October 1990). ACM Press.

28. Ivan Sutherland.Sketchpad: A Man Machine Graphical Communication System. PhD
thesis, Massachusetts Institute of Technology (January 1963).

29. Brad Vander Zanden and Brad A. Myers. Automatic, Look-and-Feel Independent Dialog
Creation for Graphical User Interfaces. InHuman Factors In Computing Systems: CHI’90
Conference Proceedings, pages 27–34, Seattle, WA (April 1990). Addison and Wesley.

30. R.M. White. Applying Direct Manipulation to Geometric Construction Systems. In
Computer Graphics International’88, pages 446–455. Springer–Verlag (1988).

31. The UIMS Tools Developers workshop. A Metamodel for the Runtime Architecture of an
Interactive System.ACM SIGCHI Bulletin, pages 32–38 (January 1992).

Research Report No. 17 March 1992





PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line ishelp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server .

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.y

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

yThis report is no longer available from PRL. A revised version has now appeared as a book: “Hassan A¨ıt-Kaci,
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”



Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution à la Résolution Numérique des Équations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. François Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic �-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. François Bourdoncle. January 1993.

Research Report 23: Dessin à main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. November 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérôme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Aı̈t-Kaci. March 1993.



Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective �-Calculus. Hassan Aı̈t-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Aı̈t-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

Research Report 33: Path Planning through Variational Dynamic Programming. Jérôme
Barraquand and Pierre Ferbach. September 1993.

Research Report 34: A Penalty Function Method for Constrained Motion Planning. Pierre
Ferbach and Jérôme Barraquand. September 1993.

Research Report 35: The Typed Polymorphic Label-Selective �-Calculus. Jacques Garrigue
and Hassan Aı̈t-Kaci. October 1993.

Research Report 36: 1983–1993: The Wonder Years of Sequential Prolog Implementation.
Peter Van Roy. December 1993.



17
Inferring

G
raphicalC

onstraints
w

ith
R

ockit
S

olange
K

arsenty,Jam
es

A
.Landay,and

C
hris

W
eikart

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE


