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Abstract

Much research has been devoted to path planning during the past decade,i.e. the geometrical
problem of finding a collision-free path between two given postures (configurations) of an
articulated body (robot) among obstacles. This problem has straightforward applications in
robotic automation, computer aided design, and computer graphics animation. Current global
techniques compute explicitly the non-colliding zones in configuration space. Thus, they
require exponential space and time in the number of Degrees of Freedom (DOF) of the body.
These methods are therefore untractable for more than 4 DOF.

This report presents a new approach to path planning which does not require construction of an
explicit description of the configuration space. The method consists of building and searching
a graph connecting the local minima of a potential function defined over the configuration
space. The graph is explored by means of a randomization technique that escapes the local
minima by executing Brownian motions. This planner is considerably faster than previous
path planners and it solves problems with many more degrees of freedom. Experiments are
reported for several computer simulated robots, including rigid objects with 3 DOF (in 2D
workspaces) and 6 DOF (in 3D workspaces) and articulated bodies with up to 30 DOF (in 2D
and 3D workspaces).

Résumé

Le problème de la planification de trajectoire consiste `a trouver des chemins sans collisions
entre différentes postures (configurations) d’un corps articul´e (robot), tout en ´evitant des
obstacles d´efinis par un mod`ele géométrique. Des applications directes existent en robotique,
en conception assit´ee par ordinateur, et en synth`ese de sc`enes graphiques anim´ees. Les
techniques actuelles, dites globales, calculent explicitement toutes les postures autoris´ees du
corps articulé. Ainsi, elles n´ecessitent une espace m´emoire et un temps de calcul exponentiels en
fonction du nombre de degr´es de libert´e (DDL) du corps. Ces m´ethodes sont donc inutilisables
pour plus de 4 DDL.

Ce rapport pr´esente une nouvelle approche ne n´ecessitant pas la construction explicite de
l’espace des configurations. Son principe est de construire et d’explorer un graphe connectant
les minima locaux d’une fonction de potentiel d´efinie sur l’espace des configurations. Le
graphe est explor´e par une m´ethode al´eatoire quiéchappe des minimas locaux en ex´ecutant
des mouvements Browniens. Ce planificateur est consid´erablement plus rapide que les autres
systèmes de planification et il r´esoud des probl`emes ayant beaucoup plus de degr´es de libert´e.
Des simulations effectu´ees sur différents robots sont pr´esentées dans ce rapport, incluant des
objets rigides avec 3 DDL (dans un espace de travail 2D), 6 DDL (dans un espace 3D), et des
objets articulés ayant jusqu’`a 30 DDL (dans des espaces 2D et 3D).
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Automatic Motion Planning 1

1 Introduction

Much research has been devoted to robot motion planning during the past ten years (Latombe
1990 [26]). Most of this research has focused on path planning,i.e. the geometrical problem
of finding a collision-free path between two given configurations of a robot. Today the
mathematical and computational structures of the general problem (when stated in algebraic
terms) are reasonably well understood (Schwartz and Sharir 1983 [37], Canny 1988 [10]). In
addition, practical algorithms have been implemented in more or less specific cases (Brooks
and Lozano-Perez 1983 [9], Gouzenes 1984 [20], Laugier and Germain 1985 [27], Faverjon
1986 [15], Lozano-Perez [31], Faverjon and Tournassoud 1987 [17], Barraquand Langlois and
Latombe 1989a [4], Zhu and Latombe 1989 [39]).

One of the most widely studied path planning approach is the “cell decomposition” ap-
proach (Brooks and Lozano-Perez 1983 [9]). It consists of first decomposing (exactly or
approximately) the set of free configurations of the robot into a finite collection of cells and
then searching a connectivity graph that represents the adjacency relation among these cells.
However, in this approach, the number of cells to be generated is a function of the number of
polynomial constraints used to model the robot and the obstacles, and of the degree of these
constraints. This function also grows exponentially with the numbern of DOF’s of the robot,
as the volume of the configuration space increases exponentially withn. Thus, the approach
is intractable even for reasonably small values ofn. To our knowledge, no effective planner
has been implemented using this approach withn > 4. In fact, this is also true of the other
so-called “global” methods,e.g. retraction (ODunlaing Sharir and Yap 1983 [33]), which also
represent the connectivity of free space in the form of a graph before actually starting the
search for a path.

Some approximate cell decomposition methods proceed hierarchically by decomposing the
configuration space into rectangular cells organized at several levels of resolution. For
example, Faverjon[14] uses an “octree” to represent a three-dimensional configuration space.
Each cell is labeled as EMPTY if it intersects no configuration space obstacle, FULL if it lies
entirely in configuration space obstacles, and MIXED otherwise.

Since the intractability of the cell decomposition approach — and more generally of the
other global path planning methods — is due to the precomputation of a connectivity
graph representing the “global” topology of the robot’s free space, “local” methods to path
planning have been developed for handling more DOF and some successful systems have been
implemented,e.g. Donald 1984 [13], Faverjon and Tournassoud 1987 [17]. A local path
planning method consists of searching the configuration space using heuristics computed from
local geometric information. Thus, a local method requires no expensive precomputation step
before starting the search of a path. In favorable cases, it runs substantially faster than any
global method. But, since the search heuristics are only local, it may require much more time
than global methods in less favorable cases, or even fail to find a path when one exists.

A widely used heuristic consists of guiding the robot along the negated gradient of a real-valued
function defined over the configuration space, called the potential function. The potential has
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2 Jérôme Barraquand

two components: a goal potential attracting the robot towards its goal configuration, and an
obstacle potential, repulsing the robot from the obstacles. This so-calledartificial potential
fieldapproach was originally proposed in robotics as an on-line approach, applicable when the
robot does not have a prior model of the obstacles, but senses them during motion execution
(Khatib 1986 [22]). Emphasis was put on real-time efficiency, rather than on completeness.
In particular, since it acts as a gradient descent optimization procedure, this approach may get
stuck at a local minimum of the potential function.

However, the idea underlying potential field can be combined with graph searching techniques
to explore a grid placed over the robot’s configuration space. Then, if a prior model of the
robot’s workspace is available, it can be turned into a systematic motion planning approach.
This approach consists of incrementally building a graph connecting the local minima of the
potential function defined over the robot’s configuration space and concurrently searching this
graph until a goal configuration is attained. The local-minima graph plays a role similar to that
of the connectivity graph in a cell decomposition approach (Brooks and Lozano-Perez 1983
[9], Schwartz and Sharir 1983 [37]). The major difference, however, is that it is constructed in
an incremental fashion during the search. Hence, the approach does not require an expensive
precomputation step. But local minima remain an important cause of inefficiency for planners
based on such an approach. If there are too many of them, the planner may have to explore a
large graph. Worse, if the attraction wells of the local minima are too large, the planner may
spend much time finding a connection between two minima.

The local-minima problem can be addressed at two levels: (1) in thedefinition of the potential
function, by attempting to specify a function with no or few local minima; and (2) in the
design of the search algorithm, by including appropriate techniques for escaping from local
minima. At the first level, the construction of analytical potentials free of local minima has
been investigated, so far with limited success. Solutions have been proposed only in Euclidean
configuration spaces with spherical or star-shaped obstacles (Koditschek 1987 [25], Rimon and
Koditschek 1989 [36]). Another research has attempted to reduce the number of local minima
and the size of their attraction wells by using superquadric potentials (Khosla and Volpe 1988
[24]). At the second level, there has been substantial research in the more general field of
optimization and various methods have been proposed (e.g., simulated annealing (Kirkpatrick
Gelatt and Vecchi 1983 [23])). But there has been no significant attempt to apply these results
to motion planning.

The planning approach presented in these notes was originally proposed in Barraquand and
Latombe 1989a [6]. It addresses the local-minima problem at the two levels mentioned above.

The principle of the method is the following:

1) construct goal-attractive potential fields over the workspace without spurious local minima,
each of them applying to a specific point of the robot.

2) combine these potentials into a configuration space potential implicitly defined by the
robot’s kinematics.

3) force the robot to remain in free space by checking that each new configuration explored is
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Automatic Motion Planning 3

collision-free. This corresponds in the classical potential field framework to assigning
an obstacle-repulsive potential of zero in free space and infinity in colliding zones.

4) use a randomization technique to escape from local minima created by kinematic conflicts.

5) postprocess the resulting collision-free path to obtain smooth motions.

The method has been shown to beprobabilistically complete, i.e. the probability to find a path
if one exists tends toward 1 when the computation time tends toward infinity.

Experiments were conducted with the implemented planner using several computer-simulated
robots, including rigid objects (“mobile robots”) with 3 DOF (in two-dimensional workspaces)
and 6 DOF (in three-dimensional workspaces) and articulated objects (“manipulator arms”)
with up to 31 DOF (in two- and three-dimensional workspaces). Some of the most significant
experiments are reported in these notes. The planner demonstrated the following capabilities:

- It is much faster than any previous planner. For instance, a variant of this planner generates
paths for a holonomic 3-DOF mobile robot in non-trivial workspaces in about 1 second of
computation1, as opposed to minutes or even tens of minutes for most other planners.

- It generates paths for robots with many DOF. In particular, within a few minutes of
computation, it constructs complex paths for a 10-DOF non-serial manipulator arm with
both revolute and prismatic joints.

- It solves path planning problems for multiple robots. For example, without domain-specific
heuristics, it can generate the coordinated paths of two 3-DOF mobile robots in a workspace
made of narrow corridors.

Another advantage of the planner is that it accepts goals defined by specifying the desired
positions of one or several points in the robot. This feature is essential when robots have many
DOF, since specifying the goal configuration of the robot,i.e. a collision-free placement of
the various bodies of the robot, is a difficult task in itself. It also allows easy handling of any
kind of redundancy of the robot. Finally, a version of the planner (not described in this report)
generates paths for nonholonomic robots. These are robots with non-integrable kinematic
constraints such as a car and a car towing a trailer. This version of the planner is described in
Barraquand and Latombe 1989b[7] and 1991[8].

This report is organized as follows. In Section 2, we discuss the representational issues
for geometric primitives relevant to the path planning problem, and more specifically to the
collision detection problem. In Section 3 we describe the construction of efficient attractive
potential fields. In Section 4 we present the randomization method for escaping local minima of
the potential field. In Section 5, we present experimental results illustrating the effectiveness
of the approach proposed. Finally, in Section 6, we briefly discuss some theoretical and
practical issues related to randomized planning.

1All the experiments reported in these notes were carried out on a DEC 3100 MIPS-based workstation.

Research Report No. 14 June 1991



4 Jérôme Barraquand

2 Centralized versus Distributed Representations

2.1 Definitions

LetA denote the robot,W its workspace, andC its configuration space. A configuration of the
robot, i.e. a point inC, completely specifies the position of every point inA with respect to a
coordinate system attached toW (Lozano-Perez 1983 [30]). Letn be the dimension ofC, i.e.
the number of DOF. We represent a configurationq 2 C by a list ofn parameters (q1; :::; qn),
with appropriate modulo arithmetic for the angular parameters (Latombe 1990 [26]). The
subset ofC consisting of all the configurations where the robot has no contact or intersection
with the obstacles inW is called thefree spaceand is denoted byCfree.

For each pointp 2 A, one can consider the geometrical application that maps any configuration
q = (q1; :::; qn) 2 C to the positionw 2 W of p in the workspace. This map:

X : A� C ! W
(p; q) 7! X(p; q) = w

is calledforward kinematic map.

2.2 Centralized Representations: the Problem of Collision Detection

Most solid modeling systems used in scientific computing or computer aided design represent
geometric primitives by algebraic inequalities defining the boundaries of objects. This is
also the case of systems used for the generation of computer graphics scenes. Often, the
algebraic inequalities used are linear, and the geometric primitives are simply polyhedra.
Representations of this kind are calledcentralized representations. The great advantage of
centralized representations is that they provide a precise description of objects boundaries at
any scale, while minimizing the amount of redundant information. Using such representations,
accurate modeling of 3D structures can fit into the memory of current computer workstations.
However, these representations have a severe drawback. They areunstructured, i.e. assessing
the occupancy of a given location in space requires scanning the list of objects present in the
scene. Therefore, detecting the collision of a given point in space with the objects present
in the scene requires a time linear in the number of geometric primitives. Through the use
of hierarchical representations such as octrees, the assessment of relative positions ofstatic
objects in the scene can be made much faster. Unfortunately, octree decompositions are not
practical when some objects are movable, since they may change dramatically under small
displacements.

The high computational requirements of automatic motion planning are mostly due to the
need to perform repeated collision checking between the robot and the obstacles (Metivier
and Urbschat 1990 [32]). Detecting the collision of a robot with many DOF in realistic
environments may take as much as 1/10 to 1 second when using centralized representations.
Automatic planning of a path requires a number of collision detections ranging from a few
hundred for the simplest cases to a few hundreds of thousands for the most complex ones.

June 1991 Digital PRL



Automatic Motion Planning 5

Such computation times are practically prohibitive for planning very complex motions using
centralized representations.

An implementation of the planning approach reported here using centralized representations
was tested in realistic industrial settings (Ohlund 1990 [34]). These experiments show that only
relatively simple planning problems are computable in a reasonable amount of time with such
representations. Fast hardware implementations of collision detection algorithms currently
under development will hopefully circumvent these limitations (Libby 1990a [28] and 1990b
[29], Cliff 1991 [12]). It may also be possible to improve collision detection algorithms for
centralized representations using specific properties of the path planning problem, such as the
continuity of the path (Faverjon 1991 [16]).

2.3 Distributed Representations

The experiments reported in these notes were all performed using adistributedrepresentation
of the workspace. The workspaceW is modeled as aN -dimensional bitmap array, withN = 2
or 3 being the dimension ofW . The array is defined by the following functionBM :

BM : W ! f1; 0g
x 7! BM (x)

in such a way that the subset of pointsx such thatBM (x) = 1 represents the workspace
obstacles and the subset of pointsx such thatBM (x) = 0 represents the empty part of the
workspace. We write:Wempty = fx j BM (x) = 0g.

The main advantage of distributed representations is that they arestructured, i.e. assessing
the occupancy of any point in workspace is performed in a time constant in the number and
shape of the obstacles, and in the resolution of the bitmap. A pointx is occupied if and only
if BM (x) = 1. Consequently, checking the collision of the robot with obstacles can be done
by simply “drawing” the robot on the bitmap. The drawing procedures used are reminiscent
of the Bresenham’s algorithm well known in Computer Graphics literature. Details on the
collision detection methods employed can be found in (Barraquand and Latombe 1989a [6]).
In the experiments reported in these notes, typical computation times for checking a collision
with a complex robot ranged from 0.5 to 5 milliseconds on a DECstation 3100.

The drawback of distributed representations is the high memory requirement associated with
the bitmap array, especially for 3D workspaces. In the experiments, the resolution used
ranged from 2562 to 5122 for 2D workspaces, and 1283 for 3D workspaces. In order to store
high resolution 3D bitmaps on current workstations, it is necessary to compress the bitmap.
Indeed, some industrial settings require a resolution of the order of 10003. Corresponding
bitmaps arrays do not fit in the memory of current low cost computer workstations without
compression. Strong compression ratios can be obtained by using an octree or a runlength
coding technique for one of the spatial dimensions. However, assessing occupancy over the
compressed representation is no longer constant in the resolution of the bitmap. Collision
checking is typically one order of magnitude slower for such compressed representations.
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6 Jérôme Barraquand

3 Computation of Potential Field.

3.1 Overview

The set of goal configurations of the robot is exogenously defined by a series of specific final
positions for some particular points of the robot body. These particular points on the robot are
calledcontrol points.

For each control pointp, a workspace potential field is computed in such a way that it has no
other local minimum than its desired final position. Such “perfect” potentials tends to keep
the robot outside the workspace concavities created by the obstacles. When the workspace
potentials are combined together –i.e., are applied concurrently to the different control points–
the resulting configuration space potential may have (and indeed has) local minima other than
the goal. However, it is usually possible to define the combination in such a way that either
the number of minima or their domains of attraction remain small. The idea then is to build a
graph connecting the local minima and perform a search of this graph until the goal is attained.

Let p1; :::; ps be s control points inA. For each pointpi we first construct the workspace
potential:

Vpi : x 2 Wempty 7! Vpi(x) 2 R

Then, using the forward kinematic mapX , we can combine the different workspace potentials
into another potential functionU defined over the configuration space:

U : q 2 Cfree 7! U (q) = G(Vp1(X(p1; q)); :::; Vps(X(ps; q))) 2 R:

U is called theconfiguration space potential.

The construction of theVpi ’s is described in the next subsection. The construction ofU is
described in Subsection 3.3.

3.2 Workspace Potential Fields Without Local Minima

We want each functionVpi to have a single minimum at the goal position of the pointpi. This
is a major heuristic step toward the construction of a configuration space potential with few or
small spurious local minima.

In order to compute a workspace potential numerically, we need to construct of atriangulation
of Wempty . By definition, a triangulation is a partition of the space in semi-algebraic convex
cells such that any two adjacent cells share either a vertex or a face (edge in 2D). If the
representation used is distributed, an obvious candidate for a triangulation ofWempty is
the collection of free bitmap cells. If the representation is centralized, standard techniques
derived from finite elements methods exist to compute such a triangulation (e.g. Delaunay
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Automatic Motion Planning 7

Figure 1: Equipotential Contours of the Workspace Potential.

triangulation). In the following, we will limit our presentation to the case of distributed
representations without loss of generality.

The workspace potentialVp is computed for every control pointp using a wavefront expansion
technique starting at the goal positionxgoal of p. The value ofVp is first set to 0 atxgoal.
Next, the value ofVp at the neighbors ofxgoal in Wempty is set to 1, the value ofVp at
the neighbors of these neighbors inWempty is set to 2 (if not previously computed), etc.
This procedure is recursively repeated until the connected subset ofWempty containingxgoal
has been completely explored. The complexity of this procedure is linear in the number of
cells of the triangulation. When the representation is distributed, the number of such cells is
upper bounded by the total number of bitmap cells. Then, the procedure becomes constant
in the number and shape of the obstacles. Equipotential contours of the resulting workspace
potential field for a two-dimensional workspace are displayed in Figure 1. This computation
was performed in a fraction of a second.

Notice thatVp is computed only in the connected subset ofWempty that contains the goal
positionxgoal. Hence, if the initial positionxinit is not in the same connected component as
the goal, the value ofVp is not computed at this point, and we can immediately infer that there
is no collision-free path for the robot.

Several variants of this workspace potential can be computed by modifying the wavefront
expansion procedure. Some are described in detail in Barraquand and Latombe 1989a [6] and
Barraquand, Latombe and Langlois 1989b[5].
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8 Jérôme Barraquand

3.3 Configuration Space Potential

The goal configurations of a robot are specified by the goal positions of one or several points in
the robot. By definition, the robot is at a goal configuration whenever all the control points are
at their goal positions. For instance, ifA is a two-dimensional object that can both translate
and rotate in the plane (three-dimensional configuration space), the specification of the goal
positions of two points uniquely determines the goal configuration of the robot. IfA is, say, a
10-DOF manipulator arm, specifying the desired positions of some points in the end-effector
determines a goal region in configuration space.

It is important that a path planner allows one to specify a goal region in configuration space
instead of a single goal configuration. Indeed, for many tasks, the goal configuration is
incompletely specified. Arbitrarily selecting one would possibly result in a more difficult, or
impossible, path planning problem. Furthermore, if the robot has many degrees of freedom,
specifying a unique goal configuration is a difficult task in itself, since it requires a collision-free
placement of the various bodies of the robot to be found.

The points used to specify the goal configurations of a robot are exactly those which are later
used by the planner as the control points. Letp1; . . .; ps be these points. The configuration
space potentialU is defined as a combination:

U (q) = G(Vp1(X(p1; q)); . . .; Vps(X(ps; q)))

of the workspace potentialsVpi , i = 1; :::; s, defined for thes control pointspi. This
combination concurrently attracts the different pointspi toward their respective goal positions.

The choice of the functionG is important since it strongly influences the number of local
minima of the potentialU . With our “perfect” workspace potentials, the workspace concavities
do not directly create local minima. It is the concurrent attraction of the different control
points toward their respective goal positions which creates these local minima. This results
from the fact that these points do not move independently. As suggested above, the function
G precisely defines the way in which the competition between the different points is to be
regulated.

In most of the previous collision-avoidance systems using artificial potential fields,G was
chosen as a linear combination of the workspace potentials (Khatib 1986 [22]),i.e. :

G(y1; . . .; ys) =
i=sX
i=1

�iyi: (1)

In the experiments reported here, non-linear expressions were used for the functionG, such
as:

G(y1; . . .; ys) =
i=s

max
i=1

yi: (2)

June 1991 Digital PRL



Automatic Motion Planning 9

This particular choice tends to increase the number of competitions between the control points
and, therefore, the number of local minima. However, it can be a good choice for robots with
many DOF. As a matter of fact, the number of local minima is not the only measure for the
quality of the potential, since it might be much more difficult to escape a local minimum with
a large attractive well than a minimum with a small well. The above competition functionG

increases the number of local minima, but experiments show that in general it also reduces their
volumes. This is the function that gave the best results for planning the paths of manipulator
arms with many DOF and multiple control points (see Section 5).

Unlike the workspace potentialsVpi , the configuration space potentialU does not have to be
precomputed before actually searching for a path. In fact, in high-dimensional configuration
spaces, this precomputation would be untractable. The functionU is only computed during
the search of a path at those configurations which are attained by the search algorithm.

4 Path Planning for Complex Articulated Bodies

In this section we describe a version of the planner, called Randomized Path Planner (RPP),
which has demonstrated its ability to solve many complex planning problems, some being non
trivial for humans. When encountering a local minimum of the potential function, it applies a
randomization procedure which consists of generating Brownian motions until the minimum
is escaped. The resulting planning algorithm is probabilistically (rather than deterministically)
resolution-complete. For robots with many DOF, the configuration space potential defined by
formula (2) was used in the experiments, rather than the one defined by formula (1). However,
the Monte-Carlo procedure itself does not depend on the particular potential function that is
used.

4.1 Overview

Starting from the initial configurationqinit of the robot, RPP first applies a best-first algorithm,
i.e. it descends the potentialU , until it reaches a local minimumqloc We call such a motion a
gradient motion. LetUloc = U (qloc). If Uloc = 0, the problem is solved and the planner returns
the constructed path. Otherwise, it attempts to escape the local minimum by executing a series
of random motionsissued fromqloc. These random motions are approximations of Brownian
motions described in Subsection 4.2.

At the terminal configuration of every random motion, the algorithm executes a gradient
motion until it reaches a new local minimum. The new local minimumqnew with lowest
potential value is selected. IfU (qnew ) < U (qloc), the same randomization procedure is applied
recursively fromqnew . Else, if U (qnew) � U (qloc), it is said thatqloc is a dead-end. In
this case, the planner randomly chooses a previously reached configuration and restarts the
randomization procedure from there. The procedure is stopped when the goal is reached. If
the search terminates successfully, the generated path is transformed into a smoother path
(Subsection 4.3).
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10 Jérôme Barraquand

Thus, the graph of the local minima is incrementally built, the path joining two “adjacent” local
minima being the concatenation of a random motion and a gradient motion. The randomized
depth-first search outlined above is described in more detail in Barraquand and Latombe 1989a
[6].

An interesting property of this planning algorithm is that all the random motions starting from
a given local minimum can be performed concurrently on a parallel machine since there is no
need for communication among the different processing units.

As the algorithm uses a random procedure to build the graph of the local minima, it is
not guaranteed to find a path whenever one exists. In other words, the algorithm is not
complete. However, the properties of Brownian motions make it possible to prove that
when the number of Brownian motions executed from every local minimum is unbounded (the
computation time may then tend toward infinity), the probability of reaching the goal converges
toward 1. Hence, we say that the algorithm isprobabilistically resolution-complete. However,
this convergence-in-distribution property, which is well-known for the so-called “simulated
annealing” algorithms (Geman and Hwang 1986 [19]), is a very weak one. Indeed, the
totally uninformed algorithm which executes a Brownian motion from the initial configuration
qinit and terminates when it enters a small neighborhood of the goal configuration, is also
probabilistically resolution-complete! Despite the weakness of this theoretical result, our
experiments show that RPP is quite efficient.

We describe the generation of random motions in the following subsection. Further details can
be found in Barraquand and Latombe 1989a [6].

4.2 Random Motions

When the algorithm reaches a local minimum of the potential fieldU , if no assumption is
made on the statistics of the obstacle distribution, no additional information can be used for
reaching the goal. RPP continues the search by executing random motions issued from the
current local minimumqloc.

The most uninformed type of motion is known to be the Brownian motion (Papoulis 1965 [35]).
Since a Brownian motion is a continuous stochastic process, the random motions performed
by RPP are approximations of Brownian motions and are defined as discrete random walks.
A random walk in the configuration space consists of executing a certain numbers of steps,
each step corresponding to a “time”∆t. The “duration” of the random walk ist = s∆t. Each
step projects into everyqi axis,i 2 [1; n], as an increment +∆i or�∆i of fixed amplitude, each
with the constant probability 0.5 (hence, independent of the previous steps). The amplitude of
the increment,∆i, is proportional to the “velocity” of the walk along theqi axis. This random
walk is known to converge almost surely toward a Brownian motion when the amplitude
∆i = vi

p
∆t of every increment tends toward 0 as the square root of time (Papoulis 1965 [35]).

Without loss of generality, let us take the current local minimum,qloc, as the origin of the
coordinates ofC. The configuration attained by a Brownian motion of durationt and velocity
vi along eachqi axis is a random variableQ(t) = (Q1(t); . . .; Qn(t)) with the following
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fundamental property (Papoulis 1965 [35]):

The standard deviationDi(t) of the differenceQi(t + t0)� Qi(t0) grows as the square root of
t, i.e. :

D2
i (t) = E

�
(Qi(t0 + t) � Qi(t0))2

�
= v2

i t:

The Brownian motion (also calledWiener-Levyprocess) is well-defined as long as it does
not encounter any obstacle in configuration space. When the processQ(t) hits the boundary
of an obstacle, the Brownian motion has to be adapted so that it remains in the free space.
The classical generalization of a Brownian motion when the space is bounded consists of
reflecting the motion that would have taken place in the absence of boundary, symmetrically
to the tangent hyperplane of the boundary at the collision configuration (Brownian motion
with “reflective boundary”). The mathematical consistency of this adaptation is discussed
in detail in Anderson and Orey 1976 [1]. Our planner, which does not construct an explicit
representation of the configuration space obstacles, does not know the orientation of the tangent
hyperplane at the collision configuration. Hence, whenever a random motion step leads to
collision with an obstacle, instead of reflecting the motion on the boundary, the planner guesses
another random step and substitutes it for the previous one.

We still have to select the velocitiesvi and the durationt of every random motion. For the sake
of simplicity, we set∆t = 1. Since we approximate a Brownian motion as a random walk in a
grid where the increment along eachqi axis is∆i, we would like the standard deviation of each
step to be equal to∆i. This leads to choosingvi = ∆i. Regarding the durationt, we should
choose it such that the generated random motion take the robot out of the current local minima
of U . Let us define theattractive radiusaRi

(qloc) of any local minimumqloc of U along theqi
axis as the distance alongqi betweenqloc and the nearest saddle point ofU in that direction.
In order to escape the local minimumqloc, the minimum distance that the robot must travel in
directionqi from qloc is aRi

(qloc). If we were able to estimate the statistics ofaRi
, the property

Di(t) = ∆i

p
t would give us a clue for choosingt. The duration of the motion would then be:

t � max
i2[1;n]

�
aRi(qloc)

∆i

�2

(3)

But, as we make no assumption on the obstacle distribution, we cannot infer any strong
statistical property aboutU andaRi

. However, in general, we may assume that the distance
aRi for each parameterqi does not exceed the distanceDmax

i that would provoke a motion of
the robot greater than the workspace diameter. Fortunately, the value ofDmax

i can be reliably
approximated using the specific characteristics of the robot’s workspace and kinematics (see
Barraquand and Latombe 1989a [6]).

Then, a simple choice fort would be:

t � max
i2[1;n]

�
Dmax

i

∆i

�2
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12 Jérôme Barraquand

However, this choice would mean that we implicitly assume that all the attraction radii are the
same, which is not the case. Instead, we takeaRi

as the value of a strictly positive random
variableARi

whose expected value isDmax
i . The most uninformed distribution (i.e. the

one which maximizes entropy) of a positive random variable of given expected value is the
truncated Laplace distribution. Therefore, we define the density ofARi

as:

p(aRi) =
1

Dmax
i

exp(� aRi

Dmax
i

):

This leads to choosing the durationt of a random motion as the value of a random variableT .
The above density ofARi

combined with the relation (3), entails the following density forT :

p(t) =
�

2
p
t

exp(��
p
t): (4)

with

� = min
i2[1;n]

 
∆i

Dmax
i

!

One can verify that the expected value of this distribution is 1=�2.

Remark: As mentioned at the beginning of this subsection, executing Brownian motions when
the algorithm reaches a local minimum of the potentialU other than the goal configuration,
corresponds to assuming that there is no more local information that we can extract from
U in order to guess the direction of motion which will lead us toward the goal. However,
higher-order derivatives could provide useful additional information. As a matter of fact, in
Barraquand, Langlois and Latombe 1989a [4], the concept of valley (which is based on the
first and second derivatives) was used to escape local minima. The resulting planner was not
very reliable, but the idea of tracking valleys for escaping local minima could be re-used here
to generate more informed random motions.

4.3 Path Optimization

The path produced by the search of the local-minima graph consists of a succession of gradient
and random motions, both of them containing a large spectrum of spatial frequencies. In
order to enable the robot to execute a graceful motion, the resulting path has to be smoothed.
The smoothing procedure can be theoretically described as an optimization problem: Given
an initial path�INIT , find a new path� in the homotopy class of�INIT that minimizes the
functional:

J(� ) =
Z T

0
K(�̇ (t))dt

whereK is the quadratic form of the kinetic energy, under the obstacle avoidance constraint
and the two conditions� (0) = qinit and � (T ) = qgoal. In order to reduce the amount of
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computation, a simplified diagonal form forK is used. This corresponds to artificially
decoupling the different degrees of freedom. The geodesics of the corresponding Riemanian
metric are simply straight line segments in the generalized coordinate system (q1; :::; qn).

As any spatial frequency may be present in the initial path, it is highly preferable to use a
multiscale technique for minimizingJ . The optimization procedure consists of iteratively
modifying the path�INIT by replacing subpaths of decreasing lengths with straight line
segments in the configuration space. For each of the straight line segments, it is necessary to
check that it is collision-free. The algorithm first checks long segments of the order of the total
length of the path, and then smaller and smaller ones until the resolution of the configuration
space grid is attained. The final path generated by this algorithm generally lies in the same
homotopy class than the initial one.

5 Experimental Results

RPP was implemented at the Stanford Computer Science Department Robotics Laboratory.
It consists of a program written in C that runs on a DEC 3100 MIPS-based workstation.
Interestingly, the program consists only of about 1,500 lines of code (but it does not include
fancy inputs/outputs). Successful experiments were conducted with RPP using a variety
of robot structures. The planner was also used to generate paths for a PUMA robot, and
for a dual-arm system in the Stanford Aerospace Robotics Laboratory. Other experiments
have been conducted with 7 DOF Robotics Research Corp. manipulators at the Lockheed
Missiles and Space company (Ohlund 1990 [34]). The method is currently under evaluation
at Aerospatiale (Graux Kociemba and Millies 1991 [21]) for robotic assembly operations on
the Airbus A320/A340 aircraft. We present below some of the most significant simulation
experiments done at Stanford. Since the algorithm contains several random components,
neither the running time of the planner, nor the generated solution, are constant across several
runs for the same problem. The times given below are typical times. It is not unusual that two
running times for the same example differ by a factor of 5. The execution times would be both
smaller and much more stable on a parallel architecture allowing the concurrent execution of
several random motions.

- 3 DOF rectangular robot in 2D workspace:Figure 2 shows a path generated by the planner
for a holonomic rectangular robot in the plane. The resolution of the workspace bitmap was
2562. The computation time for this example was approximately 10 seconds. However, for
such problems with three degrees of freedom or less, a deterministic search of the local minima
is more efficient. With this deterministic variant (described in Barraquand and Latombe 1989a
[6]), we obtained the same result in less than 1 second.

- 6 DOFt-shaped robot in 3D workspace:Figure 3 shows snapshots (from left to right and
top to bottom) along a path generated by RPP for at-shaped robot that can translate and rotate
freely in a three-dimensional workspace. The obstacles consist of a parallelepiped block and a
lattice. Because the workspace is bounded the robot must “maneuver” among the bars of the
lattice.
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14 Jérôme Barraquand

Figure 2: Path Generated by RPP for a 3-DOF Rectangular Robot

Figure 3: Path Generated by RPP for a 6-DOFt-Shaped Robot
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Figure 4: Structure of the 10-DOF Non-Serial Manipulator Robot

Figure 5: Path Generated by RPP for the 10-DOF Non-Serial Manipulator
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16 Jérôme Barraquand

Figure 6: Structure of the 31-DOF Serial Manipulator Robot

- 10-DOF non-serial manipulator robot in 2D workspace:We also applied RPP to the
planar non-serial manipulator robot shown in Figure 4, which includes three prismatic joints
(telescopic links) and seven revolute joints. Figure 5 illustrates a path found by RPP. In this
example, the potentialU was computed with two control points located at the endpoints of the
two kinematic chains. Overlapping of the links was forbidden. The path was computed in 3
minutes over a 2562 bitmap. The size of the corresponding configuration space discretization
is of the order of 1020 configurations.

- 31-DOF non-serial manipulator robot in 3D workspace:RPP was also tested on the 31-DOF
manipulator illustrated in Figure 6. This manipulator consists of 10 telescopic links connected
by 10 spherical joints. The bar at the end of the manipulator is connected to the last link by a
revolute joint. A path generated by the program is illustrated in Figure 7. The potential was
computed with two control points located at the endpoints of the bar. The computation time
was or the order of 15 minutes. The size of the workspace bitmap was 1283. The size of the
corresponding configuration space grid is of the order of 1062 configurations.

- Coordination of two 3-DOF mobile robots:The same planner was applied to problems
requiring the coordination of two 3-DOF mobile robots in a two-dimensional workspace made
of several corridors. These are narrow enough so that the two robots cannot pass each other
in the same corridor. The two robots are treated by RPP as a single two-body robot with 6
DOF. The problem shown in figure 8 is particularly difficult because the two robots have to
interchange their positions in the central corridor; hence, both of them must first move to an
intermediate position in order to allow the permutation. Notice that in the initial configuration
both robots are rather close from their respective goal configurations, despite the fact that the
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Figure 7: Path Generated by RPP for the 31-DOF Serial Manipulator

Figure 8: The Corridor Problem for Two 3-DOF Mobile Robots
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18 Jérôme Barraquand

paths to move there are not short. This example illustrates the power of the random techniques
used in RPP. The path was generated in about 30 seconds.

6 Discussion

The experiments with RPP have shown that randomized planning is both efficient and reliable.
The efficiency of RPP results from the fact that a typical path planning problem has many
solutions, so that a globally random search procedure can find one if it is well-informed most
of the time (by the potential function). In fact, similar randomized techniques (e.g. “simulated
annealing”) have proven to be useful for solving other NP-hard problems,e.g. the traveling
salesman problem (Cerny 1985 [11]) and VLSI placement and routing (Kirkpatrick Gelatt
and Vecchi 1983 [23], Sechen 1988 [38]). In these problems the very large search space is
associated with a large number of “good” sub-optimal solutions.

Monte-Carlo procedures for optimization have also been used in computer vision. In Geman
and Geman 1984 [18], a simulated annealing approach is applied for restoring images blurred
with non-linear filters. Several authors have implemented edge detection algorithms based
on the same paradigm. Recently, simulated annealing has also been applied to higher-level
problems in computer vision. In Barnard 1988 [2], the stereo matching problem is addressed
using a hierarchical pixel-level simulated annealing algorithm. A stochastic optimization
approach for the three-dimensional reconstruction of stratigraphic layers and the detection of
geological faults in seismic data is proposed in Barraquand 1988 [3].

Nevertheless, RPP behaves very differently from the classical simulated annealing procedures.
On a sequential computer, while simulated annealing procedures perform a kind of breadth-first
search of the graph of local minima of the function to be optimized, RPP performs a depth-first
search of this graph using the potentialU as the heuristic function. See Barraquand and
Latombe 1989a [6] for a more detailed comparison of RPP and simulated annealing.

Randomized planning has some drawbacks, however. The planner typically generates different
paths if it is run several times with the same problem and the running time varies from one run
to another. Furthermore, if the input path planning problem admits no solution, the planner
has usually no way to recognize it, even after a large amount of computation. Hence, a limit
on the running time of the algorithm has to be imposed. But, if this limit is attained and no
path has been generated yet, there is no guarantee that no paths exist. However, in practice,
experiments have shown that it is not difficult, for a given class of problem (e.g. an object
moving in a three-dimensional workspace) and a given size of the configuration space grid,
to determine (through a series of preliminary trials) a time limit such that if no path has been
found yet, there is little chance that one actually exists.

In Barraquand and Latombe 1989a [6], it has been shown that the randomized planning
algorithm implemented in RPP is probabilistically resolution-complete. This result is based
on a general property of the Wiener-Levy process: Whenever the free space is connected and
bounded, the probability for a Brownian motion! with reflective boundary starting at any
initial configurationqinit 2 Cfree to reach any given open subsetB of Cfree at least once
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during the interval of time [0; t] converges toward 1 when the durationt tends toward infinity.
We can chooseB so that it contain at least one goal configuration and small enough so that it
does not contain a local minimum (other than the goal minimum). From withinB, a gradient
motion achieves a goal configuration. See Barraquand and Latombe 1989a [6] for more detail.

7 Conclusion

This report described a new approach to robot path planning, which essentially consists of: (1)
computing potential functions over the robot’s workspace and combining them into a “good”
potential function in the configuration space; (2) searching the graph of the local minima of the
configuration space potential using an efficient randomization technique; (3) postprocessing
the resulting paths in order to generate graceful motions.

This approach has been implemented in a program, called RPP, which was run successfully
on many different examples. RPP has solved a large variety of problems that fall far outside
the range of the capabilities of any other previous planner,e.g. problems with 10-DOF and
31-DOF robots and multi-robot problems.

We feel that the techniques presented in this paper and the experimental results obtained with
them make it possible to realistically envision the development of “real-time” path planners.
By “real-time”, we mean that the planners would be able to produce paths in a very small
amount of time (say, a fraction of a second) in almost all practical situations. The construction
of such a real-time planner will probably require the use of some dedicated hardware and
parallel computing architecture, leading to the notion of “motion engine” just like there
exist “geometric engines” for performing graphic operations (e.g., hidden line removal). We
believe that the availability of a real-time motion engine would open new perspectives on
some important issues in computer graphics, computer aided design, robot programming, and
enable the construction of efficient robot systems operating in partially known and dynamically
changing workspaces.
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