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Abstract

LIFEy is an experimental programming language proposing to integrate three orthogonal
programming paradigms proven useful for symbolic computation. From the programmer’s
standpoint, it may be perceived as a language taking after logic programming, functional
programming, and object-oriented programming. From a formal perspective, it may be seen
as an instance (or rather, a composition of three instances) of a Constraint Logic Programming
scheme due to H¨ohfeld and Smolka refining that of Jaffar and Lassez.

We start with an informal overview demonstrating LIFE as a programming language, illustrating
how its primitives offer rather unusual, and perhaps (pleasantly) startling, conveniences. The
second part is a formal account of LIFE’s object unification seen as constraint-solving over
specific domains. We build on work by Smolka and Rounds to develop type-theoretic, logical,
and algebraic renditions of a calculus of order-sorted feature approximations.

Résumé

LIFEy est un langage de programmation exp´erimental qui propose d’int´egrer trois paradigmes
de programmation orthogonaux qui se sont av´erés utiles pour le calcul symbolique. Du point de
vue du programmeur, il peut ˆetre per¸cu comme un langage tenant des styles de programmation
logique, fonctionnelle et orient´e-objet. D’une perspective formelle, il peut ˆetre vu comme un
exemple (ou plutot, une composition de trois exemples) du sch´ema de programmation par
logique de contraintes dˆu à Höhfeld et Smolka qui raffine celui de Jaffar et Lassez.

Nous commen¸cons par un survol informel d´emontrant LIFE en tant que langage de program-
mation, illustrant comment ses primitives offrent des facilit´es peu courantes et peut-ˆetre aussi
(plaisamment) surprenantes. La deuxi`eme partie est une description formelle de l’unification
d’objets de LIFE vue comme une r´esolution de contraintes dans des domaines sp´ecifiques.
Nous appuyons sur des travaux de Smolka et de Rounds pour d´evelopper des pr´esentations
tenant de la th´eorie des types, de la logique et de l’alg`ebre, d’un calcul d’approximations de
sortes ordonn´eesà traits.

yLogic, Inheritance, Functions, and Equations.
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Towards a Meaning of LIFE 1

... the most succinct and poetic definition:‘Cr éer, c’est
unir’ (‘To create is to unify’). This is a principle that must
have been at work from the very beginning of life.

KONRAD LORENZ, Die Rückseite des Spiegels

1 Introduction

As an acronym, ‘LIFE’ meansLogic, Inheritance,Functions, andEquations. LIFE also
designates an experimental programming language designed after these four precepts for
specifying structures and computations. As for what LIFE means as a programming language,
it is the purpose of this document to initiate the presentation of a complete formal semantics for
LIFE. We shall proceed by characterizing LIFE as a specific instantiation of a Constraint Logic
Programming (CLP) scheme with a particular constraint language. In its most primitive form,
this constraint language constitutes a logic of record structures that we shall call Order-Sorted
Feature logic—or, more concisely, OSF logic.

In this document, we mean to do two things: first, we overview informally the functionality
of LIFE and the conveniences that it offers for programming; then, we develop the elementary
formal foundations of OSF logic. We shall call thisbasicOSF logic. Although, in the basic
form that we give here, the OSF formalism does not account for all overviewed aspects of
LIFE (e.g., functional reduction, constrained sort signature), it constitutes the kernel to be
extended when we address those more elaborate issues later elsewhere. Showing how basic
OSF logic fits as an argument constraint language of a CLP scheme is therefore a useful and
necessary exercise. The CLP scheme that we shall use has been proposed by H¨ohfeld and
Smolka [15] and is a generalization of that due to Jaffar and Lassez [16].

We shall define a class of interpretations of approximation structures adequate to represent
basic LIFE objects. We call these OSF interpretations. As for syntax, we shall describe
three variant (first-order) formalisms: (1) a type-theoretic term language; (2) an algebraic
language; and, (3) a logical (clausal) language. All three will admit semantics over OSF
interpretations structures. We shall make rigorously explicit the mutual syntactic and semantic
equivalence of the three representations. This allows us to shed some light on, and reconcile,
three common interpretations of multiple inheritance as, respectively, (1) set inclusion; as
(2) algebraic endomorphism; and, (3) as logical implication.

Our approach centers around the notion of anOSF-algebra. This notion was already used
implicitly in [1, 2] to give a semantics to -terms. Gert Smolka’s work on Feature Logic [18, 19]
made the formalism emerge more explicitly, especially in the form of a“canonicalOSF-graph
algebra,” and was used by D¨orre and Rounds in recent work showing undecidability of
semiunification of cyclic structures [14].1

1Dörre and Rounds do not consider order-sorted graphs and focus only on features, whereas Smolka considers
both the order-sorted and the unsorted case. However, Smolka does not make explicit the mutual syntactic
and semantic mappings between the algebraic, logical, and type-theoretic views. On the other hand, the logics
considered in [18, 19] are richer than the basic formalism to which we limit ourselves here, allowing explicit
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2 Hassan Aı̈t-Kaci and Andreas Podelski

This document is organized as follows. We first give an informal tour of some of LIFE’s
unusual programming conveniences. We hope by this to illustrate for the reader that some
original functionality is available to a LIFE user. We do this by way of small yet (pleasantly)
startling examples. Following that, in Section 3, we proceed with the formal account of basic
OSF logic. There, OSF interpretations are introduced together with syntactic forms of terms,
clauses, and graphs taking their meaning in those interpretations. It is then made explicit
how these various forms are related through mutual syntactic and semantic correspondences.
In Section 3.4, we show how to tie basic OSF logic into a CLP scheme. (For the sake of
making this work self-contained, we briefly summarize, in Appendix A, the essence of the
general Constraint Logic Programming scheme that we use explicitly. It is due to H¨ohfeld
and Smolka [15].) Finally, we conclude anticipating on the necessary extensions of basic OSF
logic to achieve a full meaning of LIFE.

2 LIFE, Informally

LIFE is a trinity. The function-oriented component of LIFE is directly derived from functional
programming languages with higher-order functions as first-class objects, data constructors,
and algebraic pattern-matching for parameter-passing. The convenience offered by this style of
programming is one in which expressions of any order are first-class objects and computation
is determinate. The relation-oriented component of LIFE is essentially one inspired by the
Prolog language [13, 17]. Unification of first-order patterns used as the argument-passing
operation turns out to be the key of a quite unique and hitherto unusualgenerativebehavior
of programs, which can construct missing information as needed to accommodate success.
Finally, the most original part of LIFE is the structure-oriented component which consists of
a calculus of type structures—the -calculus [1, 2]—and accounts for some of the (multiple)
inheritance convenience typically found in so-called object-oriented languages.

Under these considerations, a natural coming to LIFE has consisted in first studying pairwise
combinations of each of these three operational tools. Metaphorically, this means realizing
edges of a triangle (see Figure 1) where each vertex is some essential operational rendition of
the appropriate calculus. LOGIN is simply Prolog where first-order constructor terms have
been replaced by -terms, with type definitions [5]. Its operational semantics is the immediate
adaptation of that of Prolog’s SLD resolution. Le Fun [6, 7] is Prolog where unification
may reduce functional expressions into constructor form according to functions defined
by pattern-oriented functional specifications. Finally, FOOL is simply a pattern-oriented
functional language where first-order constructor terms have been replaced by -terms, with
type definitions. LIFE is the composition of the three with the additional capability of
specifying arbitrary functional and relational constraints on objects being defined. The next
subsection gives a very brief and informal account of the calculus of type inheritance used in
LIFE ( -calculus). The reader is assumed familiar with functional programming and logic
programming.

negation and quantification. Naturally, all these extensions can as well be considered in our framework.

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 3
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Figure 1: The LIFE molecule

2.1  -Calculus

In this section, we give an informal but informative introduction of the notation, operations,
and terminology of the data structures of LIFE. It is necessary to understand the programming
examples to follow.

The -calculus consists of a syntax of structured types called -terms together with subtyping
and type intersection operations. Intuitively, as expounded in [5], the -calculus is a
convenience for representing record-like data structures in logic and functional programming
more adequately than first-order terms do, without loss of the well-appreciated instantiation
ordering and unification operation.

Let us take an example to illustrate. Let us say that one has in mind to express syntactically
a type structure for apersonwith the property, as expressed for the underlined symbol in
Figure 2, that a certain functional diagram commutes.

The syntax of -terms is one simply tailored to express as a term this kind of approximate
description. Thus, in the -calculus, the information of Figure 2 is unambiguously encoded
into a formula, perspicuously expressed as the -term:

X : person(name) id(first) string;
last) S : string);

spouse) person(name) id(last) S);
spouse) X)).

It is important to distinguish among the three kinds of symbols participating in a -term. We
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4 Hassan Aı̈t-Kaci and Andreas Podelski
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Figure 2: A commutative functional diagram

assume given a setS of sorts ortype constructor symbols, a setF of features, or attributes
symbols, and a setV of variables(or coreference tags). In the -term above, for example, the
symbolsperson; id; stringare drawn fromS, the symbolsname; first; last; spousefromF , and
the symbolsX;Sfrom V. (We capitalize variables, as in Prolog.)

A  -term is eithertaggedor untagged. A tagged -term is either a variable inV or an
expression of the formX : t whereX 2 V is called the term’sroot variableandt is an untagged
 -term. An untagged -term is eitheratomicor attributed. An atomic -term is a sort symbol
in S. An attributed -term is an expression of the forms(`1) t1; . . .; `n) tn)where the root
variable’s sort symbols 2 S and is called the -term’sprincipal type, the`i ’s are mutually
distinct attribute symbols inF , and theti ’s are -terms(n � 0).

Variables capture coreference in a precise sense. They are coreference tags and may be viewed
as typed variables where the type expressions are untagged -terms. Hence, as a condition to
bewell-formed, a -term must have all occurrences of each coreference tag consistently refer
to the same structure. For example, the variableX in:

person(id) name(first) string;
last) X : string);

father) person(id) name(last) X : string)))

refers consistently to the atomic -termstring. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the sort of a variable at most once and understand
that other occurrences are equally referring to the same structure, as in:

person(id) name(first) string;
last) X : string);

father) person(id) name(last) X)))

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 5

In fact, since there may be circular references as inX : person(spouse) person(spouse) X)),
this convention is necessary. Finally, a variable appearing nowhere typed, as injunk(kind) X)
is implicitly typed by a special greatest initial sort symbol> always present inS. This symbol
will be left invisible and not written explicitly as in(age) integer; name) string), or
written as the symbol@as in@(age) integer; name) string). In the sequel, by -term we
shall always mean well-formed -term and call such a form a( )-normal form.

Generalizing first-order terms,2  -terms are ordered up to variable renaming. Given that the
setS is partially-ordered (with a greatest element>), its partial ordering is extended to the set
of attributed -terms. Informally, a -term t1 is subsumed by a -term t2 if (1) the principal
type of t1 is a subtype inS of the principal type oft2; (2) all attributes oft2 are also attributes
of t1 with  -terms which subsume their homologues int1; and, (3) all coreference constraints
binding int2 must also be binding int1.

For example, ifstudent< personandparis< citynamein S then the -term:

student(id) name(first) string;
last) X : string);

lives at) Y : address(city) paris);
father) person(id) name(last) X);

lives at) Y))

is subsumed by the -term:

person(id) name(last) X : string);
lives at) address(city) cityname);
father) person(id) name(last) X))).

In fact, if the setS is such thatgreatest lower bounds(GLB’s) exist for any pair of type
symbols, then the subsumption ordering on -term is also such that GLB’s exist. (See
Appendix B for the case when GLB’s are not unique.) Such are defined as theunificationof
two -terms. A detailed unification algorithm for -terms is given in [5].

Consider for example the poset displayed in Figure 3 and the two -terms:

X : student(advisor) faculty(secretary) Y : staff,
assistant) X);

roommate) employee(representative) Y))

and:

2In fact, if a first-order term is writtenf (t1; . . . ; tn), it is nothing other than syntactic sugar for the -term
f (1) t1; . . .;n) tn):

Research Report No. 11 June 1991 (Revised, October 1992)



6 Hassan Aı̈t-Kaci and Andreas Podelski

person

employee

student

staff faculty

workstudy

s1 sm w1 w2 e1 e2 f1 f2 f3� � �

�
�

��

aaaa

aaaaaaa











@
@
@@

!!!! J
J
J
J

�
�
�
�

A
A
A
A��@@

Figure 3: A lower semi-lattice of sorts

employee(advisor) f1(secretary) employee,
assistant) U : person);

roommate) V : student(representative) V);
helper) w1(spouse) U)).

Their unification (up to tag renaming) yields the term:

W : workstudy(advisor) f1(secretary) Z : workstudy(representative) Z);
assistant) W);

roommate) Z;
helper) w1(spouse) W)).

Last in this brief introduction to the -calculus, we explain type definitions. The concept is
analogous to what a global store of constant definitions is in a practical functional programming
language based on�-calculus. The idea is that types in the signature may be specified to have
attributes in addition to being partially-ordered. Inheritance of attributes from all supertypes to
a subtype is done in accordance with -term subsumption and unification. For example, given
a simple signature for the specification of linear listsS = flist; cons; nilgwith nil < list and
cons< list, it is yet possible to specify thatconshas an attributetail ) list. We shall specify
this as:

list := fnil; cons(tail) list)g.

From which the appropriate partial-ordering is inferred.

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 7

As in this list example, such type definitions may be recursive. Then, -unificationmodulo
such a type specification proceeds by unfolding type symbols according to their definitions.
This is done by need as no expansion of symbols need be done in case of (1) failures due to
order-theoretic clashes (e.g., cons(tail ) list) unified withnil fails; i.e., gives?); (2) symbol
subsumption (e.g., consunified with list gives justcons), and (3) absence of attribute (e.g.,
cons(tail ) cons) unified with consgives cons(tail ) cons)). Thus, attribute inheritance
may be done “lazily,” saving much unnecessary expansions [11].

In LIFE, a basic -term denotes a functional application in FOOL’s sense if its root symbol is a
defined function. Thus, afunctional expressionis either a -term or a conjunction of -terms
denoted byt1 : t2 : . . . : tn.3 An example of such isappend(list; L) : list, whereappendis the
FOOL function defined as:

list := f[]; [@jlist]g:

append([] ; L : list)! L:
append([HjT : list]; L : list)! [Hjappend(T; L)]:

This is how functional dependency constraints are expressed in a -term in LIFE. For
example, in LIFE the -term foo(bar) X : list; baz) Y : list; fuz) append(X;Y) : list)
is one in which the attributefuz is derived as a list-valued function of the attributesbar and
baz. Unifying such -terms proceeds as before modulo suspension of functional expressions
whose arguments are not sufficiently refined to be provably subsumed by patterns of function
definitions.

As for relational constraints on objects in LIFE, a -term t may be followed by asuch-
that clause consisting of the logical conjunction of (relational) literalsC1; . . .;Cn, possibly
containing functional terms. It is written ast j C1; . . .;Cn. Unification of such relationally
constrained terms is done modulo proving the conjoined constraints. We will illustrate this
very intriguing feature with two examples:prime.life (Section 2.5) andquick.life
(Section 2.4). In effect, this allows specifyingdaemonic constraintsto be attached to
objects. Such a (renamed) “daemon-constrained” object’s specified relational and (equational)
functional formula is normalized by LIFE, its proof being triggered by unification at the
object’s creation time.

We give next some LIFE examples.

2.2 Order-sorted logic programming: happy.life

The first example illustrates a use of partially-ordered sorts in logic programming. The -terms
involved here are only atomic -terms;i.e., unattributed sort symbols. This example shows
the advantage of summarizing the extent of a relation with predicate’s arguments ranging over
types rather than individuals.

3In fact, we propose to see the notation: simply as a dyadic operation resulting in the GLB of its arguments
since, for example, the notationX : t1 : t2 is shorthand forX : t1;X : t2. Where the variableX is not necessary, (i.e.,
not otherwise shared in the context), we may thus simply writet1 : t2.

Research Report No. 11 June 1991 (Revised, October 1992)



8 Hassan Aı̈t-Kaci and Andreas Podelski

Peter, Paul and Mary are students, and students are persons.

student := {peter;paul;mary}.
student <| person.

Grades are good grades or bad grades. A and B are good grades, while C, D and F are bad
grades.

grade := {goodgrade;badgrade}.
goodgrade := {a;b}.
badgrade := {c;d;f}.

Goodgrades are good things.

goodgrade <| goodthing.

Every person likes herself. Every person likes every good thing. Peter likes Mary.

likes(X:person,X).
likes(person,goodthing).
likes(peter,mary).

Peter got a C, Paul an F and Mary an A.

got(peter,c).
got(paul,f).
got(mary,a).

A person is happy if s/he got something that s/he likes, or, if s/he likes something that got a
good thing.

happy(X:person) :- got(X,Y),likes(X,Y).
happy(X:person) :- likes(X,Y),got(Y,goodthing).

To the query ‘happy(X:student)? ’ LIFE answersX = mary (twice—see why?), then
givesX = peter , then fails. (It helps to draw the sort hierarchy order diagram.)

2.3 Passive constraints: lefun.life

The next three examples illustrate the interplay of unification and interpretable functions. The
first two do not make any specific use of -terms. Again, the first-order term notation is used
as implicit syntax for -terms with numerical features.

Consider first the following:

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 9

p(X, Y) :- q(X, Y, Z, Z), r(X, Y).

q(X, Y, X+Y, X*Y).
q(X, Y, X+Y, (X*Y)-14).

r(3, 5).
r(2, 2).
r(4, 6).

Upon a query ‘p(X,Y)? ’ the predicatep selects a pair of expressions inX and Y whose
evaluations must unify, and then selects values forX andY. The first solution selected by
predicateq sets up the residual equation (orresiduation, or suspension) thatX + Y = X � Y
(more precisely that bothX + Y andX � Y should unify withZ), which is not satisfied by the
first pair of values, but is by the second. The second solution sets upX + Y = (X � Y) � 14
which is satisfied byX = 4;Y= 6.

The next two examples show the use of higher-order functions such asmap:

map(@, []) -> [].
map(F, [H|T]) -> [F(H)|map(F,T)].

inc_list(N:int, L:list, map(+(N),L)).

To the query ‘inc list(3,[1,2,3,4],L)? ’ LIFE answersL = [4,5,6,7] .

In passing, note the built-in constant@as the primeval LIFE object (formally written>) which
approximates anything in the universe.

Note that it is possible, since LIFE uses -terms as a universal object structure, to pass
arguments to functions by keywords and obtain the power of partial application (currying) in
all arguments, as opposed to�-calculus which requires left-to-right currying [3]. For example
of an (argument-selective) currying, consider the (admittedly pathological) LIFE program:

curry(V) :- V = G(2=>1), G = F(X), valid(F), pick(X), p(sq(V)).
sq(X) -> X*X.
twice(F,X) -> F(F(X)).
valid(twice).
p(1).
id(X) -> X.
pick(id).

What does LIFE answer when ‘curry(V)? ’ is the query? The relationcurry is the
property of a variableV when this variable is the result of applying a variable functionG to
the number 1 as its second argument. ButG must also be the value of applying a variable
functionF to an unknown argumentX. The predicatevalid bindsF to twice , and therefore
bindsV to twice(X,1) . Then,pick bindsX to the identity function. Thus, the value
of G, twice(X) , becomestwice(id) and V becomes now bound to 1, the value of

Research Report No. 11 June 1991 (Revised, October 1992)



10 Hassan Aı̈t-Kaci and Andreas Podelski

twice(id,1) . Finally, it must be verified that the square ofV unifies with a value satisfying
propertyp.

2.4 Functional programming with logical variables: quick.life

This is a small LIFE module specifying (and thus, implementing) C.A.R. Hoare’s “Quick Sort”
algorithm functionally. This version works on lists which are not terminated with[] (nil) but
with uninstantiated variables (or partially instantiated to a non-minimal list sort). Therefore,
LIFE makes difference-listsbona fidedata structures in functional programming.

q_sort(L,order => O) -> undlist(dqsort(L,order => O)).

undlist(X\Y) - > X | Y=[].

dqsort([]) -> L\L.
dqsort([H|T],order => O)

-> (L1\L2) : where
((Less,More) : split(H,T,([],[]),order => O),

(L1\[H|L3]) : dqsort(Less,order => O),
(L3\L2) : dqsort(More,order => O)).

where -> @.

split(@,[],P) -> P.
split(X,[H|T],(Less,More),order => O) ->

cond(O(H,X),
split(X,T,([H|Less],More),order => O),
split(X,T,(Less,[H|More]),order => O)).

The functiondqsort takes a regular list (and parameterized comparison boolean functionO)
into a difference-list form of its sorted version (using Quick Sort). The functionundlist
yields a regular form for a difference-list. Finally, notice the definition and use of the
(functional) constantwhere which returns the most permissive approximation (@). It simply
evaluates its arguments (a priori unconstrained in number and sorts) and throws them away.
Here, it is applied to three arguments at (implicit) positions (attributes)1 (a pair of lists),
2 (a difference-list), and3 (a difference-list). Unification takes care of binding the local
variablesLess , More , L1, L2, L3, and exporting those needed for the result (L1, L2).
The advantage (besides perspicuity and elegance) is performance: replacingwhere with @
inside the definition ofdqsort is correct but keeps around three no-longer needed argument
structures at each recursive call.

Here are some specific instantiations:

number_sort(L:list) -> q_sort(L, order => < ).

string_sort(L:list) -> q_sort(L, order => $< ).

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 11

such that to the query:

L = string_sort(["is","This","sorted","lexicographically"])?

LIFE answers:

L = ["This","is","lexicographically","sorted"].

2.5 High-school math specifications: prime.life

This example illustrates sort definitions using other sorts and constraints on their structure. A
prime number is a positive integer whose number of proper factors is exactly one. This can be
expressed in LIFE as:

posint := I:int | I>0=true.

prime := P:posint | number_of_factors(P) = one.

where:

number_of_factors(N:posint)
-> cond(N<=1,

{},
factors_from(N,2)).

factors_from(N:int,P:int)
-> cond(P*P>N,

one,
cond(R:(N/P)=:=floor(R),

many,
factors_from(N,P+1))).

posint_stream -> {1;1+posint_stream}.

list_all_primes :- write(posint_stream:prime), nl, fail.

As for @, the dual built-in constant{} is the final LIFE object (formally written?) and is
approximated by anything in the universe. Operationally, it just causes failure equivalent to
that due to an inconsistent formula. Any object that is not a non-strict functional expression
(such ascond ) in which {} occurs will lead to failure (? as an object or the inconsistent
clause as a formula). Also, LIFE’s functions may contain infinitely disjunctive objects such as
streams. For instance,posint stream is such an object (a 0-ary function constant) whose
infinitely many disjuncts are the positive integers enumerated from 1. Or, if a limited stream
is preferred:
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posint_stream_up_to(N:int)
-> cond(N<1,

{},
{1;1+posint_stream_up_to(N-1)}).

list_primes_up_to(N:int)
:- write(posint_stream_up_to(N):prime), nl, fail.

This last example concludes our informal overview of some of the most salient features of
LIFE. Next, with a slight change of speed, we shall undertake casting its most basic components
into an adequate formal frame.

3 Formal LIFE

This section makes up the second part of this paper and sets up formal foundations upon which
to build a full semantics of LIFE. The gist of what follows is the construction of a logical
constraint language for LIFE type structures with the appropriate semantic structures. In the
end of this section, we will use this constraint language to instantiate the H¨ohfeld-Smolka CLP
scheme (see Appendix Section A for a summary of the scheme). We hereby give a complete
account essentially of that part of LIFE which makes up LOGIN [5] without type definitions.
Elsewhere, using the same semantic framework, we account for type definitions [11] and for
functions as passive constraints [8].

Thus, the point of this section is to elucidate how the core constraint system of LIFE (namely,
 -terms with unification) is an instance of CLP. The main difficulty faced here is the absence
of element-denoting terms since -terms denote sets of values. It is still possible, however, to
compute “answer substitutions,” and we will make explicit their formal meaning. A concrete
representation of -terms is given in term of order-sorted feature (OSF) graphs. One main
insight is thatOSF-graphs make a canonical interpretation. In addition, they enjoy a nice
“schizophrenic” property:OSF-graphs denoteboth elementsof the domain of interpretation
andsetsof values. Indeed, anOSF-graph may be seen as the generator of a principal filter for
an approximation ordering (namely, of the set of all graphs it approximates). What we also
exhibit is that a most general solution as a variable valuation is immediately extracted from an
OSF-graph. All other solutions are endomorphic refinements (i.e., instantiations) of this most
general one, generating all and only the elements of the set denotation of thisOSF-graph.

Lest the reader, faring through this dense and formal section, feel a sense of loss and fail to see
the forest from the trees, here is a road map of its contents. Section 3.1 introduces the semantic
structures needed to interpret the data structures of LIFE. Then, Section 3.2 describes three
alternative syntactic presentations of these data structures: Section 3.2.1 defines a term syntax,
Section 3.2.2 defines a clausal syntax, and Section 3.2.3 defines a graph syntax. In each case,
a semantics is given in terms of the algebraic structures introduced in Section 3.1. The three
views are important since the term view is the abstract syntax used by the user; the clausal
view is the syntax used in the normalization rules presenting the operational semantics of
constraint-solving; and, the graph view is the canonical representation used for implementation.
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Then, all these syntaxes are formally related thanks to explicit correspondences. Following
that, Section 3.3 shows that each syntax is endowed with a natural ordering. The terms are
ordered by set-inclusion of their denotations; the clauses by implications; and, the graphs by
endomorphic approximation. It is then established in a semantic transparency theorem that
these orderings are semantically preserved by the syntactic correspondences. The last part,
Section 3.4, integrates the previous constructions into a relational language of definite clauses
and ties everything together as an explicit instance of the H¨ohfeld-Smolka CLP scheme.
Section 3.4.1 deals with definite clauses and queries overOSF-terms; Section 3.4.2 deals with
definite clauses ofOSF-constraints; and, Section 3.4.3 deals withOSF-graphs computed by a
LIFE program.

3.1 The Interpretations: OSF-algebras

The formulae of basic OSF logic aretype formulaewhich restrict variables to range over
sets of objects of the domain of some interpretation. Roughly, such types will be used as
approximations of elements of the interpretation domains when we may have only partial
information about the element or the domain. In other words, specifying an object to be of
such a type does in no way imply that this object can be singled out in every interpretation.
Furthermore, it will not be necessary to consider a single fixed interpretation domain, reflecting
situations when the domain of discourse can not be specified completely, as is often the case
in knowledge representation. Instead, it can be sufficient to specify aclassof admissible
interpretations. This is done by means of asignature. We shall consider domains which are
coherently described by classifying symbols (i.e., partially-ordered sorts) and whose elements
may be functionally related with one another through features (i.e., labels or attributes). Thus,
our specific signatures will comprise the symbols for sorts and features and regulate their
intended interpretation.

An order-sorted feature signature(or simplyOSF-signature) is a tuplehS;�;^;Fi such that:

� S is a set ofsortscontaining the sorts> and?;
� � is a decidable partial order onS such that? is the least and> is the greatest element;
� hS;�;^i is a lower semi-lattice (s^ s0 is called the greatest common subsort of sortss

ands0);
� F is the set offeature symbols.

A signature as above has the following interpretation. Anorder-sorted feature algebra(or
simplyOSF-algebra) over the signaturehS;�;^;Fi is a structure

A = hDA; (sA)s2S ; (`A)`2F i

such that:

� DA is a non-empty set, called thedomainof A (or, universe);
� for each sort symbols in S, sA is a subset of the domain; in particular,>A = DA and
?A = ;;

� the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection;
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i.e., (s^ s0)A = sA \ s0A for two sortssands0 in S.
� for each featurè in F , `A is a total unary function from the domain into the domain;

i.e., `A : DA 7! DA;

Thanks to our interpretation of features as functions on the domain, a natural monoid
homomorphism extends this between the free monoidhF�; :; "i and the endofunctions ofDA

with composition,h(DA)(D
A); �; IdDAi. We shall refer to elements of either of these monoids

as attribute (or feature) compositions.

In the remainder of this paper, we shall implicitly refer to some fixed signaturehS;�;^;Fi.

The notion of OSF-algebra calls naturally for a corresponding notion of homomorphism
preserving structure appropriately. Namely,

Definition 1 (OSF-Homomorphism) An OSF-algebra homomorphism : A 7! B between
two OSF-algebrasA andB is a function : DA 7! DB such that:

� (`A(d)) = `B((d)) for all d 2 DA;
� (sA) � sB.

It comes as a straightforward consequence thatOSF-algebras together withOSF-homomor-
phisms form a category. We call this categoryOSF.

Let D be a non-empty set and(`D 2 DD)`2F anF -indexed family of total endofunctions ofD.
To any feature composition! = `1: . . .:`n; n � 0 in the free monoidF�, there corresponds a
function composition!D = `Dn � . . .�`D1 in DD (for n = 0; "D = 1D). Then, for any non-empty
subsetS of D, we can construct theF -closureof S, the setF�(S) =

S
!2F� !

D(S). This is
the smallest set containingSwhich is closed under feature application. Using this, the familiar
notion of least algebra generated by a set can naturally be given forOSF-algebras as follows.

Proposition 1 (Least subalgebra generated by a set) Let D be the domain of anOSF-
algebraA, then for any non-empty subset S of D, theF -closure of S is the domain ofA[S], the
leastOSF-algebra subalgebra ofA containing S; i.e., DA[S] = F�(S).

Proof: F�(S) is closed under feature application by construction. As for sorts, simply take
sA[S] = sD \ F�(S). It is straightforward to verify that this forms a subalgebra which is the smallest
containingS.

3.2 The syntax

3.2.1 OSF-terms

We now introduce the syntactic objects that we intend to use as type formulae to be interpreted
as subsets of the domain of anOSF-algebra. LetV be a countably infinite set of variables.
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Definition 2 (OSF-Term) An order-sorted feature term (or,OSF-term) is an expression of
the form:

 = X : s(`1)  1; . . .; `n)  n) (1)

where X is a variable inV , s is a sort inS , `1; . . .; `n are features inF , n� 0, and 1; . . .;  n

are OSF-terms.

Note that the equation above includesn = 0 as a base case. That is, the simplestOSF-terms
are of the formX : s. We call the variableX in the aboveOSF-term theroot of  (noted
Root( )), and say thatX is “sorted” by the sorts and “has attributes”̀1; . . .; `n. The set of
variables occurring in is given byVar( ) = fXg [

S
j�n Var( j).

Example 3.1 The following is an example of the syntax of anOSF-term.

X : person(name) N : >(first) F : string);
name) M : id(last) S : string);
spouse) P : person(name) I : id(last) S : >);

spouse) X : >)).

Note that, in general, anOSF-term may have redundant attributes (e.g., nameabove), or the
same variable sorted by different sorts (e.g., X andSabove).

Intuitively, such anOSF-term as given by Equation 1 is a syntactic expression intended
to denote sets of elements in some appropriate domain of interpretation under all possible
valuations of its variables in this domain. Now, what is expressed by anOSF-term is that, for
a given fixed valuation of the variables in such a domain, the element assigned to the root
variable must lie within the set denoted by its sort. In addition, the function that denotes
an attribute must take it into the denotation of the corresponding subterm, under the same
valuation. The same scheme then applies recursively for the subterms. Clearly, anOSF-algebra
forms an adequate structure to capture this precisely as shown next.

Given the interpretationA, the denotation[[ ]]A;� of an OSF-term of the form given by
equation 1,under a valuation� : V 7! DA is given inductively by:

[[ ]]A;� = f�(X)g \ sA \
\

1�i�n

(`Ai )
�1([[ i]]A;�) (2)

where an expression such asf�1(S), when f is a function andS is a set, stands for
fx j 9y y= f (x)g; i.e., denotes the set of all elements whose images byf are inS.

Without further context with which variable names may be shared, we shall usually use a
lightened notation forOSF-terms whereby any variable occurring without a sort is implicitly
sorted with> and all variables which do not occur more than once are not given explicitly.
This is justified in some manner by ourOSF-term semantics is the sense that theOSF-term
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16 Hassan Aı̈t-Kaci and Andreas Podelski

recovered from the lightened notation, by introducing a new distinct variable anywhere one is
missing and introducing the sort> anywhere a sort is missing, denotes precisely the same set,
irrespective of the name of single occurrence variables.

Example 3.2 Using this light notation, theOSF-term of Example 3.1 becomes:

X : person(name) >(first) string);
name) id(last) S : string);
spouse) person(name) id(last) S);

spouse) X)).

Observe that Equation 2 reflects the meaning of anOSF-term for only one valuation and
therefore always specifies a singleton or possibly the empty set. Also, note that this definition
does include the base case (i.e., n = 0), owing to the fact that intersection over the empty set
is the universe (

T
f. . . j 1� i � ng=

T
; = DA).

Since we are interested in all possible valuations of the variables in the domain of anOSF-
algebra interpretationA, thedenotationof anOSF-term = X : s(`1)  1; . . .; `n)  n) is
defined as thesetof domain elements:

[[ ]]A =
[

�2Val(A)

[[ ]]A;�: (3)

The syntax ofOSF-term allows some to be in a form where there is apparently ambiguous
or even implicitly inconsistent information. For instance, in theOSF-term of Example 3.1,
it is unclear what the attributenamecould be. Similarly, ifstring andnumberare two sorts
such thatstring^ number= ?, it is not clear what thessnattribute is for theOSF-term
X : >(ssn) string; ssn) number), and whether indeed such a term’s denotation is empty or
not. The following notion is useful to this end.

Definition 3 ( -term) A normalOSF-term is of the form = X : s(`1)  1; . . .; `n)  n)
where:

� there is at most one occurrence of a variable Y in such that Y is the root variable of a
non-trivial OSF-term (i.e., different than Y: >);

� s is a non-bottom sort inS;
� `1; . . .; `n are pairwise distinct features inF , n� 0,
�  1; . . .;  n are normalOSF-terms.

We call	 the set that they constitute.

Example 3.3 One could verify easily that theOSF-term:
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X : person(name) id(first) string;
last) S : string);

spouse) person(name) id(last) S);
spouse) X))

is a -term and always denotes exactly the same set as the one of Example 3.1.

Given an arbitraryOSF-term  , it is natural to ask whether there exists a -term  0 such
that [[ ]]A = [[ 0]]A in everyOSF-interpretationA. We shall see in the next subsection that
there is a straightforward normalization procedure that allows either to determine whether an
OSF-term denotes the empty set or produce an equivalent -term form for it.

Before we do that, let us make a few general but important observations aboutOSF-terms.
First, theOSF-terms generalize first-order terms in many respects. In particular, if we see a
first-order term as an expression denoting the set of all terms that it subsumes, then we obtain
the special case whereOSF-terms are interpreted as subsets of a free term algebraT (�;V),
which can be seen naturally as a specialOSF-algebra where the sorts form a flat lattice and the
features are (natural number) positions. Recall that the first-order term notationf (t1; . . .; tn)
is syntactic sugar for the -term notationf (1) t1; . . .; n) tn):4

Second, observe that since Equation (3) takes the union over all admissible valuations, it
is natural to construe all variables occurring in anOSF-term to be implicitly existentially
quantified at the term’s outset. However, this latter notion is not very precise as it is only
relative toOSF-terms taken out of external context. Indeed, it is not quite correct to assume so
in the particular use made of them in definite relational clauses where variables may be shared
among several goals. There, it will be necessary to relativize carefully this quantification to
the global scope of such a clause.5 Nevertheless,assuming no further context, theOSF-term
semantics given above is one in which all variables are implicitly existential. To convince
herself, the reader need only consider the equality [[X : s]]A = sA (which follows sinceS
�2Val(A)(f�(X)g \ sA) = sA). A corollary of this equality, is that it is natural to view

sorts as particular (basic)OSF-terms. Indeed, their interpretations as either entities coincide.

Third, another important consequence of this type semantics is that the denotation of an
OSF-term is the empty set in all interpretations if has an occurrence of a variable sorted
by the empty sort?.6 We shall call anyOSF-term of the formX : ? anemptyOSF-term. As
observed above, any emptyOSF-term denotes exactly the empty set. Dually, it is also clear
that [[ ]] = DA in all interpretationsA if and only if all variables in are sorted by>. If  is
of the formZ : >, we call a trivial OSF-term.

4To render exactly first-order terms, feature positions should be such thati
�
f (t1; . . . ; tn)

�
= ti is defined only

for 1 � i � n. That is, feature positions should be partial functions. In our case, they are total so that ifi > n then
i
�
f (t1; . . .; tn)

�
= >. Therefore, the terms that we consider here are “loose” first-order terms.

5See Section 3.4 for precise details.
6As a direct consequenceof the universal set-theoretic identity:f�1(A\B) = f�1(A)\ f�1(B), for any function

f and setsA;B.

Research Report No. 11 June 1991 (Revised, October 1992)



18 Hassan Aı̈t-Kaci and Andreas Podelski

Fourth, it is important to bear in mind that we treat features astotal functions. There are fine
differences addressing the more general case of partial features and such deserves a different
treatment. We limit ourselves to total features for the sake of simplicity.7 This is equivalent to
saying that, given anOSF-term,

 = X : s(`1)  1; . . .; `n)  n);

and a variableZ =2 Var( ), we have:

[[ ]]A;� = [[X : s(`1)  1; . . .; `n)  n; `) Z : >)]]A;�

for any feature symbol̀2 F , anyOSF-interpretationA and valuation� 2 Val(A).

Finally, note that variables occurring in anOSF-term denote essentially an equality among
attribute compositions as made clear by, say:

[[X : >(`1) Y : >; `2) Y : >)]]A = fd 2 DA j `A1 (d) = `A2 (d)g:

This justifies semantically why we sometimes refer to variables ascoreference tags.

3.2.2 OSF-clauses

An alternative syntactic presentation of the information conveyed byOSF-terms can be given
using logical means as anOSF-term can be translated into a constraint formula bearing the same
meaning. This is particularly useful for proof-theoretic purposes. A constraint normalization
procedure can be devised in the form of semantics preserving simplification rules. A special
syntactic form calledsolved formmay be therefore systematically exhibited. This is the key
allowing the effective use of types as constraints formulae in a Constraint Logic Programming
context.

Definition 4 (OSF-Constraint) An order-sorted feature constraint (OSF-constraint) is an
atomic expression of either of the forms:

� X : s
� X

:
= Y

� X:`
:
= Y

where X and Y are variables inV , s is a sort inS, and` is a feature inF . An order-sorted feature
clause (OSF-clause)�1 & . . . & �n is a finite, possibly empty conjunction ofOSF-constraints
�1; . . .; �n (n� 0).

One may read the three atomic forms ofOSF-constraints as, respectively, “X lies in sorts,” “ X
is equal toY,” and “Y is the featurè of X.” The setVar(�) of (free) variables occurring in an
OSF-clause� is defined in the standard way.OSF-clauses will always be considered equal if

7Furthermore, this is what is realized in our implementation prototype [4].
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they are equal modulo the commutativity, associativity and idempotence of conjunction “&.”
Therefore, a clause can also be formalized as the set consisting of its conjuncts.

The definition of the interpretation ofOSF-clauses is straightforward. IfA is anOSF-algebra
and� 2 Val(A), thenA; � j= �; thesatisfactionof the clause� in the interpretationA under
the valuation�, is given by:

� A; � j= X : s iff �(X) 2 sA;

� A; � j= X
:
= Y iff �(X) = �(Y);

� A; � j= X:`
:
= Y iff `A(�(X)) = �(Y);

� A; � j= � & �0 iff A; � j= � andA; � j= �0:

Note that the empty clause is trivially valid everywhere.

We can associate anOSF-term  = X : s(`1 )  1; . . .; `n )  n) with a corresponding
OSF-clause�( ) as follows:

�( ) = X : s & X:`1
:
= Y1 & . . . & X:`n

:
= Yn & �( 1) & . . . & �( n)

whereY1; . . .;Yn are the roots of 1; . . .;  n, respectively. We say that theOSF-clause�( ) is
obtained from “dissolving” theOSF-term .

Example 3.4 Let  be theOSF-term of Example 3.1. Its dissolved form�( ) is the
following OSF-clause:

X : person & X: name
:
= N & N : > & N : first

:
= F & F : string

& X: name
:
= M & M : id & M: last

:
= S & S : string

& X: spouse
:
= P & P : person & P : name

:
= I & I : id

& I : last
:
= S & S : >

& P : spouse
:
= X & X : >:

Proposition 2 If the OSF-clause�( ) is obtained from dissolving theOSF-term , then, for
everyOSF-algebra interpretationA and everyA-valuation�,

[[ ]]A;� =

8<
:
f�(X)g if A; � j= �( );

; otherwise;

and therefore,

[[ ]]A = f�(X) j � 2 Val(A); A; � j= �( )g:

Proof: This is immediate, from the definitions of the interpretations ofOSF-terms andOSF-clauses.
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We will now definerootedOSF-clauseswhich, when solved, are in one-one correspondence
with OSF-terms.

Given anOSF-clause�, we define a binary relation onVar(�), notedX
�
; Y (read, “Y is

reachable fromX in �”), and defined inductively as follows. For allX;Y2 Var(�):

� X
�
; X;

� X
�
; Y if Z

�
; Y whereX:`

:
= Z is a constraint in�.

A rootedOSF-clause�X is anOSF-clause� together with a distinguished variableX (called
its root) such that every variableY occurring in� is explicitly sorted (possibly asY : >),
and reachable fromX. We use�R for the injective (!) assignment ofrootedOSF-clauses to
OSF-terms , i.e., �R( ) = �( )Root( ).

Conversely, it is not always possible to assign a (unique)OSF-term to a (rooted)OSF-clause
(e.g., X : s & X : s0). However, we see next that such a thing is possible in an important
subclass of rootedOSF-clauses.

Given anOSF-clause� and a variableX occurring in�, we say that a conjunct in� constrains
the variableX if it has an occurrence of a variable which is reachable fromX. One can thus
construct theOSF-clause�(X) which is rooted inX and consists of all the conjuncts of�
constrainingX. That is,�(X) is the maximal subclause of� rooted inX.

Definition 5 (Solved OSF-Constraints) An OSF-clause� is called solvedif for every vari-
able X,� contains:

� at most one sort constraint of the form X: s, with? < s;
� at most one feature constraint of the form X:`

:
= Y for each̀ ; and,

� no equality constraint of the form X
:
= Y.

We call� the set of allOSF-clauses in solved form, and�R the subset of� of rooted solved
OSF-clauses.

Given anOSF-clause�, it can be normalized by choosing non-deterministically and applying
any applicable rule among the four transformations rules shown in Figure 4 until none applies.
(A rule transforms the numerator into the denominator. The expression�[X=Y] stands for the
formula obtained from� after replacing all occurrences ofY by X. We also refer to any clause
of the formX : ? as thefail clause.)

Theorem 1 (OSF-Clause Normalization) The rules of Figure 4 are solution-preserving,
finite terminating, and confluent (modulo variable renaming). Furthermore, they always result
in a normal form that is either the inconsistent clause or anOSF-clause in solved form together
with a conjunction of equality constraints.

Proof: Solution preservation is immediate as each rule transforms anOSF-clause into a semantically
equivalent one.
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(Inconsistent Sort)
� & X : ?

X : ?

(Sort Intersection)
� & X : s & X : s0

� & X : s^ s0

(Feature Decomposition)
� & X:`

:
= Y & X:`

:
= Y0

� & X:`
:
= Y & Y

:
= Y0

(Variable Elimination)
� & X

:
= Y

�[X=Y] & X
:
= Y

if X 2 Var(�)

Figure 4:OSF-Clause Normalization Rules

Termination follows from the fact that each of the three first rules strictly decreases the number of
non-equality atoms. The last rule eliminates a variable possibly making new redexes appear. But,
the number of variables in a formula being finite, new redexes cannot be formed indefinitely.

Confluence is clear as consistent normal forms are syntactically identical modulo the least equivalence
onV generated by the set of variable equalities.

Given� in normal form, we will refer to its part in solved form asSolved(�); i.e., � without
its variable equalities.

Example 3.5 The normalization of theOSF-clause given in Example 3.4 leads to the solved
OSF-clause which is the conjunction of the equality constraintN

:
= M and the following

solvedOSF-clause:

X : person & X: name
:
= N & N : id & N: first

:
= F & F : string

& N: last
:
= S & S : string

& X: spouse
:
= P & P : person & P: name

:
= I & I : id

& I : last
:
= S

& P: spouse
:
= X:

Given a rooted solvedOSF-clause�X, we define theOSF-term (�X) by:

 (�X) = X : s(`1)  (�(Y1)); . . .; `n)  (�(Yn)));

where� contains the constraintX : s (if there are none of this form given explicitly, we
can assume the implicit existence ofX : > in �, according to our convention of identifying
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OSF-clauses), andX:`1
:
= Y1; . . .;X:`n

:
= Yn are all other constraints in� with an occurrence

of the variableX on the left-hand side.

3.2.3 OSF-graphs

We will now introduce the notion oforder-sorted feature graph(OSF-graph) which is closely
related to those of normalOSF-term and of rooted solvedOSF-clause. The exact syntactic and
semantic mutual correspondence between these three notions is to be established precisely.

Definition 6 (OSF-Graph) The elements g of the domain DG of the order-sorted feature graph
algebra G are directed labeled graphs, g= (N;E; �N; �E;X), where�N : N ! S and
�E : E! F are (node and edge, resp.) labelings and X2 N is a distinguished node called the
root, such that:

� each node of g is denoted by a variable X, i.e., N� V ;
� each node X of g is labeled by a non-bottom sort s, i.e.,�N(N) � S � f?g;
� each (directed) edgehX;Yi of g is labeled by a feature, i.e.,�E(E) � F ;
� no two edges outgoing from the same node are labeled by the same feature, i.e., if
�E
�
hX;Yi

�
= �E

�
hX;Y0i

�
, then Y= Y0 (g is deterministic);

� every node lies on a directed path starting at the root (g is connected).

In the interpretationG, the sorts2 S denotes the setsG of OSF-graphsg whose root is labeled
by a sorts0 such thats0 � s; that is,

sG = fg= (N;E; �N; �E;X) j �N(X) � sg:

The featurè 2 F has the following denotation inG. Let g = (N;E; �N; �E;X). If there
exists an edgehX;Yi labeled` for some nodeY of g, thenY is the root of`G(g), and the
(labeled directed) graph underlying`G(g) is the maximally connected subgraph ofg rooted at
the nodeY, g0 = (NjY;EjY; �N; �E;Y). If there is no edge outgoing from the root ofg labeled
`, then`G(g) is thetrivial graph of DG whose only node is the variableZ`;g labeled>, where
Z`;g 2 V �N is a new variable uniquely determined by the feature` and the graphg; that is, if
` 6= `0 or g 6= g0 thenZ`;g 6= Z`0;g0 . In summary, ifg= (N;E; �N; �E;X), then:

`G(g) =

8<
:

(NjY;EjY; �N; �E;Y) if �E
�
hX;Yi

�
= ` for somehX;Yi 2 E;

(fZ`;gg; ;; fhZ`;g;>ig; ;;Z`;g) whereZ`;g 2 V � N; otherwise.

We will present two concise ways of describingOSF-graphs. The first one assigns to a normal
OSF-term a (unique)OSF-graphG( ). If  = X : s, thenG( ) = (fXg; ;; fhX; sig; ;;X).
If  = X : s(`1 )  1; . . .; `n )  n), and G( i) = (Ni;Ei; �Ni; �Ei ;Xi), then G( ) =
(N;E; �N; �E;X) where:

� N = fXg [ N1 [ . . .[ Nn;
� E = fhX;X1i; . . .; hX;Xnig [ E1 [ . . .[ En;
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� �N(U) =

(
s if U = X;
�Ni(U) if U 2 Ni � (fXg [

Si�1
j=1 Nj);

� �E(e) =

(
`i if e= hX;Xii;

�Ei(e) if e2 Ei :

Conversely, we construct a (unique, normal)OSF-term (g) for anyOSF-graphg. If X is the
root of g 2 DG , labeled with the sorts 2 S, and`1; . . .; `n are the (pairwise distinct) features
in F , n � 0, labeling all the edges outgoing fromX, then there exists anOSF-term:

 (g) = X : s(`1)  (g1); . . .; `n)  (gn))

where`G1 (g) = g1, . . . , `Gn (g) = gn. If, in this recursive construction, the root variableY of
 (g0) has already occurred earlier in some predetermined ordering ofF� then one has to put
Y : > instead of (g0). The uniqueness ofG( ) follows from the fixed choice of an ordering
overF� for normalOSF-terms.8

Corollary 1 (Graphical Representation of  -Terms) The correspondences : DG ! 	

and G : 	 ! DG between normalOSF-terms ( -terms) andOSF-graphs are bijections.
Namely,

G �  = 1DG and  �G = 1	 :

Using this one-one correspondence, we can formally characterize theOSF-graph algebra as
follows.

� DG = fG( ) j  is a normalOSF-termg;
� sG = fG(X : s0(. . .) ) j s0 � sg;

� `G(G(X : s(. . .; `)  0; . . .)) ) =

(
G(X : s(. . .; `)  0; . . .)) if Root( 0) = X;
G( 0) otherwise;

� `G(G( )) = G(Z`;G( ) : >), otherwise; whereZ =2 Var( ).

Note that, in particular,̀G(G(X : s(`) X : >))) = G(X : s(`) X : >)).

We have defined the following mappings:

 � : �R! 	

 G : DG ! 	

G : 	 ! DG

� : 	 ! �R

somehow “overloading” the notation of mapping (=  � +  G) to work either on rooted
solvedOSF-clauses orOSF-graphs.

It follows that Corollary 1 can be extended and reformulated as:
8Without any loss of generality, we may assume an ordering onF which induces a lexicographical ordering on

F�. We require that, in anormalOSF-term of the form above, the features`1; . . . ; `n be ordered, and that the
occurrence of a variableY as root of a non-trivialOSF-term is the least of all occurrences ofY in  according to
the ordering onF�.
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Proposition 3 (Syntactic Bijections) There is a one-one correspondence betweenOSF-
graphs, normalOSF-terms, and rooted solvedOSF-clauses as the syntactic mappings :
(�R + DG)! 	 , G : 	 ! DG , and� : 	 ! �R put the syntactic domains	 , DG , and�R in
bijection. That is,

1	 =  G �G and G � G = 1DG ;

1�R = � �  � and  � � � = 1	 :

Proof: This is clear from the considerations above. The bijection betweenOSF-graphs and rooted
solvedOSF-clauses can be defined viaOSF-terms. Therefore, we shall take the freedom of cutting
the intermediate step in allowing notations such as�(g) or G(�). It is interesting, however, to see
how a solved clause� with the rootX corresponds uniquely to anOSF-graphG(�X) which is rooted
at the nodeX. A constraintX : s “specifies” the labeling of the nodeX by the sorts, and a constraint
X:`

:
= Y specifies an edgehX;Yi labeled by the featurè. If, for a variableZ, there is no constraint of

the formZ : s, then the nodeZ of G(�) is labeled>. Conversely, every clause�(g) together with the
root X of theOSF-graphg is a rooted solved clause, since the reachability of variables corresponds
directly to the graph-theoretical reachability of nodes.

As for meaning, we shall presently give three independent semantics, one for each syntactical
representation. Each semantics allows an apparently different formalization of a multiple-
inheritance ordering. We show then that they all coincide thanks to semantic transparency of
the syntactic mappingsG,  , and�.

3.3 OSF-orderings and semantic transparency

Endomorphisms on a givenOSF-algebraA induce a natural partial ordering.

Definition 7 (Endomorphic Approximation) On eachOSF-algebraA a preordervA is
defined by saying that, for two elements d and e in dA, d approximates e,

d vA e iff (d) = e for some endomorphism : A 7! A:

We remark that allOSF-graphs are approximated by the trivialOSF-graphG(Z : >) consisting
of one nodeZ labeled>; i.e., for all g 2 DG, G(Z : >) vG g. Clearly an endomorphism
 : DG 7! DG can be extended from(Z : >) = g by setting(Zi : >) = gi, if `Gi (g) = gi

and`Gi (Z : >) = Zi : > for some “new” variableZi , etc.. . .

The following results aim at characterizing the solutions of a solved (not necessarily connected)
clause in anOSF-algebra. The essential point is to demonstrate that all solutions in anyOSF-
algebra of a set ofOSF-constraints can be obtained as homomorphic images from one solution
in one particular subalgebra ofOSF-graphs—the canonical graph algebra induced by�.

Definition 8 (Canonical Graph Algebra) Let � be an OSF-formula in solved-form. The
subalgebraG

�
DG;�

�
of the OSF-graph algebraG generated by DG;� = fG(�(X)) j X 2

Var(�)g of all maximally connected subgraphs of the graph form of� is called the canonical
graph algebra induced by�.
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It is interesting to observe that, for� anOSF-formula in solved-form, the setDG;� is almostan
OSF-algebra. More precisely, it is closed under feature application up to trivial graphs, in the
sense that for all̀ 2 F ; `G(g) =2 DG;� ) `G(g) = G(Z`;g : >). In other words, theF -closure
of DG;� adds only mutually distinct trivial graphs with root variables outsideVar(�).

Definition 9 (�-Admissible Algebra) Given an OSF-clause in solved form�, any OSF-
algebraA is said to be�-admissible if there exists someA-valuation� such thatA; � j= �.

It comes as no surprise that the canonical graph algebra induced by any solvedOSF-clause�
is �-admissible, and so is anyOSF-algebra containing it—G, in particular. The following is a
direct consequence of this fact.

Corollary 2 (Canonical Solutions) Every solvedOSF-clause�(X) is satisfiable in theOSF-
graph algebraG under anyG-valuation� such that�(X) = G(�(X)).

In other words, according to the observation made above, the setDG;� contains all the
non-trivial graphs solutions. In fact, the canonical graph algebra induced by� is weakly initial
in OSF(�), the full subcategory of�-admissibleOSF-algebras.9 This is expressed by the
following proposition.

Theorem 2 (Extracting Solutions) The solutions of a solvedOSF-clause � in any �-
admissibleOSF-algebraA are given byOSF-algebra homomorphisms from the canonical
graph algebra induced by� in the sense that for each� 2 Val(A) such thatA; � j= � there
exists anOSF-algebra homomorphism : G

�
DG;�

�
7! A such that:

�(X) = 
�
G(�(X))

�
:

Proof: Let � be a solution of� in A; i.e., such thatA; � j= �. We define a homomorphism
 : G

�
DG;�

�
7! A by setting

�
G(�(X))

�
= �(X), and extending from there homomorphically.

This is possible since the two compatibility conditions are satisfied for any graphg = G(�(X)).
Indeed, if`G(g) = g0, then there are two possibilities: (1)g0 = G(Z : >) whereZ =2 Var(�), or (2)
g0 = G(�(Y)) for some variableY occurring in�; namely, in a constraint of the formX:` := Y. Then,
`A(�(X)) = �(Y). This means that for allg 2 DG;� of the formg = G(�(X)), it is the case that
(`G (g) = `A((g)). If G(�(X)) 2 sG (i.e., if G(�(X)) is labeled by a sorts0 such thats0 � s), then
� contains a constraint of the formX : s0, and therefore�(X) 2 s0A. This means that ifg 2 sG then
(g) 2 sA and the second condition is also satisfied (ifg = G(Z : >), then this is trivially true).

Some known results are easy corollaries of the above proposition. The first one is a result
in [19], here slightly generalized from so-called set-descriptions to clauses.

9An objecto is weakly initial (resp., final) in a category if there is at least one arrowa : o ! o0 (resp.,
a : o0 ! o) for any other objecto0 in the category. Weakly initial (resp., final) objects are not necessarily mutually
isomorphic. If the objecto admitsexactly onesuch arrow, it is initial (resp., final). Initial (resp., final) objects are
necessarily mutually isomorphic.
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For a solved clause�, Theorem 2 can be used to infer that the image of a solution in one
OSF-algebra under anOSF-homomorphism (sufficiently defined) is a solution in the other: If
� 2 Val(A) with A; � j= � and�0 2 Val(B) is defined by�0(X) = (�(X)) for some
 : A 7! B, then simply let0 : G 7! A be the homomorphism existing according to
Theorem 2 (i.e., such that�(X) = 

�
G(�(X))

�
), and then�0(X) =

�
 � 0

��
G(�(X))

�
,

and thusB; �0 j= �. This fact, a standard property expected from homomorphisms in other
formalisms, holds also for a not necessarily solved clause.

Proposition 4 (Extending Solutions) Let A and B be two OSF-interpretations, and let
 : A 7! B be anOSF-homomorphism between them. Let� be anyOSF-clause such that
A; � j= � for someA-valuation�. Then, for anyB-valuation� obtained as� =  � � it is
also the case thatB; � j= �.

Proof: A; � j= � means thatA; � j= �0 for every atomic constraint conjunct�0 of �. If �0 is of
the formX:`

:
= Y, then`B

�
�(X)

�
= `B

�

�
�(X)

��
= 

�
`A
�
�(X)

��
= 

�
�(Y)

�
= �(Y). If �0 is of

the formX : s, this means that�(X) 2 sA; and then,�(X) = 
�
�(X)

�
2 sB. Therefore, all atomic

constraints in� are also true inB under�, and so is�.

Theorem 3 (Weak Finality of G) There exists a totally defined homomorphism from any
OSF-algebraA into theOSF-graph algebraG.

Proof: For eachd 2 DA we choose some variableXd 2 Var to denote a node. There is an edge
hXd;Xd0i labeled` if `A(d) = d0. Each nodeXd is labeled with the greatest common subsort of all
sorts such thatd 2 sA (which exists, since we assumeS to be finite). We thus obtain a graphg
whose nodes are denoted by variables and labeled by sorts and whose (directed) edges are labeled
by features. We define(d) to be theOSF-graph which is the maximally connected subgraph ofg
rooted inXd and whose root isXd. Obviously, we obtain a homomorphism.

In other words, theOSF-graph algebraG is a weakly final object in the categoryOSF of
OSF-algebras withOSF-homomorphisms. Therefore, we have the interesting situation where,
if in the OSF-algebraA a solution� 2 Val(A) of an OSF-clause� exists, it is given by a
homomorphism from theOSF-graph algebraG intoA, and a solution of� in G can always be
obtained as the image of� under a homomorphism fromA into G.

Therefore, we may obtain purely semantically as a corollary the following result due to Smolka
which establishes that theOSF-algebraG is a “canonical model” forOSF-clause logic [18]:

Corollary 3 (Canonicity of G) AnOSF-clause is satisfiable iff it is satisfiable in theOSF-graph
algebra.

Proof: This is a direct consequence of Theorem 2 and Theorem 3.

This canonicity result was originally proven proof-theoretically by Smolka [18], and then by
Dörre and Rounds [14], directly, for the case of feature graph algebras without sorts.
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Corollary 4 (Principal Canonical Solutions) TheOSF-graph G(�(X)) approximates every
other graph g assigned to the variable X by a solution of anOSF-clause�; i.e., the solution
� 2 Val(G), �(X) = G(�(X)) is a principal solution of� in theOSF-algebraG.

Proof: This is a specialization of Theorem 2 for the case ofA = G.

That is, graph solutions are most general. A related fact—the existence of principal solutions
in the feature graph algebra (without sorts)—has already been proven by Smolka (directly; the
generalization in Theorem 2 seems to be new).

The following fact comes from Proposition 3 for the special case of a rooted solvedOSF-clause,
since from�(G( )) = �( ) and from Proposition 2 we know that [[ ]]A = f�(X) j A; � j=
�(G( ))g. It states that the elements of the set denoted by anOSF-term in anyOSF-algebra
can be obtained by “instantiating”one element in the set denoted by thisOSF-term in one
particularOSF-algebra (namely, its principal element).

Theorem 4 (Interpretability of Canonical Solutions) If the normal OSF-term  corre-
sponds to theOSF-graph G( ) 2 DG , then its denotation can be characterized by:

[[ ]]A = f
�
G( )

�
j  : G 7! A is anOSF-algebra homomorphismg: (4)

The following corollary expresses the intuitive idea that some of the solutions of a clause are
solutions to stronger clauses (which are obtained viaOSF-graph algebra endomorphisms;cf.
also, Corollary 8).

Corollary 5 (Homomorphic Refinability of Solutions) If the normal OSF-term  corre-
sponds to theOSF-graph g= G( ) = G(�( )), then its denotation can be characterized
by:

[[ ]]A = f�(X) j A; � j= �
�
(g)

�
;  : G 7! G is an endomorphismg: (5)

Proof: The mapping1 : G 7! A given by�0(x) 7! �(X) is clearly anOSF-algebra homomorphism;
so is the mapping2 : G 7! G given byG(�(X)) 7! �0(X). The homomorphisms of equation (5)
are of the form2 � 1.

Corollary 6 ( -Types as Graph Filters) The denotation of a normalOSF-term in theOSF-
graph algebra is the set of allOSF-graphs which the correspondingOSF-graph approximates;
i.e.,

[[ ]]G = fG 2 DG j G( ) vG Gg:

Proof: This is a simple reformulation of (4) for the case ofA = G.
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In lattice-theoretic terms, this result characterizes the canonical type denotation of a -term as
the principal approximation filter generated by its graph form.

We readily obtain the following result established in [14] as an immediate consequence of
Theorem 4.

Corollary 7 (Dörre/Rounds) The approximation relation between two elements d and d0 in
anOSF-algebraA can be characterized onOSF-terms as:

d vA d0 iff for all OSF-terms ; d0 2 [[ ]]A whenever d2 [[ ]]A:

Proof: If 
�
G( )

�
= d for some : G 7! A according to (4) assumingd 2 [[ ]]A, and0(d) = d0

according to theassumptiond vA d0, for some endomorphism0 : A 7! A, thend0 =
�
�0

�
(G( )),

and one can apply (4) again.—In the other direction, the condition on allOSF-terms says exactly that
from (d) = d0 a homomorphic extension : A 7! A can be defined.

Besides the approximation ordering onOSF-graphs, there are two other natural partial orders
that can be defined overOSF-terms andOSF-clauses. Namely, subsumption and implication,
respectively.

Definition 10 (OSF-Term Subsumption) Let and 0 be twoOSF-terms; then, �  0 (“  
is subsumedby 0”) iff, for all OSF-algebrasA, [[ ]]A � [[ 0]]A.

Definition 11 (OSF-Clause Implication) Let � and �0 be two OSF-clauses; then,� � �0

(“ � implies �0”) iff, for all A and � such thatA; � j= �, there exists�0 such that
8X 2 Var(�)\ Var(�0); �0(X) = �(X) andA; �0 j= �0:

Definition 12 (Rooted OSF-Clause Implication) Let�X and�0X0 be two rootedOSF-clauses
with no common variables; then,�X � �

0
X0 iff � � �0[X=X0].

Theorem 5 (Semantic Transparency of Orderings) If the normalOSF-terms ;  0, the
OSF-graphs g; g0 and the rooted solvedOSF-clauses�X; �

0
X respectively correspond to one

another through the syntactic mappings, then the following are equivalent statements:

� g vG g0; “g is a graph approximation of g0;”

�  0 �  ; “  0 is a subtype of ;”

� �0X � �X; “ � is true of X whenever�0 is true of X;”

� [[ ]]G � [[ 0]]G . “the set of graphs filtered by is contained in that filtered by 0.”

Proof: This follows from Proposition 2, Theorem 4 and Corollary 6.10

10Strictly speaking, ourOSF-orderings are preorders rather than orderings. It really does not matter, in fact.
Recall that a preorder (reflexive, transitive) o is a “looser” structure than either an order (anti-symmetric preorder) or
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We want to exhibit the following direct consequence of the above considerations.

Corollary 8 (Endomorphic Entailment) If one rooted solvedOSF-clause� is implied by
another,�0 (�0 � �), then it is a homomorphic image of (“more instantiated than”)�0 in the
following way:

� = �
�

�
G(�0)

��
for someOSF-graph algebra endomorphism.

The following two theorems are immediate and tie back our setting to unification as constraint-
solving and principal solution computation.

Theorem 6 ( -Term Unification) Let 1 and 2 be two -terms. Let� be the normal form
of the OSF-clause�( 1) & �( 2) & Root( 1)

:
= Root( 2). Then,� is the inconsistent

clause iff their GLB with respect to� is? (i.e., iff their denotations in all interpretations have
an empty intersection). If� is not the inconsistent clause, then their GLB (modulo variable
renaming) 1 ^  2 is given by the normalOSF-term 

�
Solved(�)

�
.

Theorem 7 (Computing the LUB of two OSF-graphs) Let g1 and g2 be twoOSF-graphs.
Let g be theOSF-graph, if it exists, given by g= G

�
Solved

�
�(g1) & �(g2)

��
. Then, g is

approximated by both g1 and g2 and is the principalOSF-graph forvG (i.e., approximating
all other ones) with this property.

3.4 Definite clauses over OSF-algebras

In this section, we assume familiarity with the H¨ohfeld-Smolka CLP scheme. The reader in
need of background will find all essential material necessary for understanding what follows
in Appendix A.

3.4.1 Definite clauses and queries over OSF-terms

A LIFE program of the form considered here consists of a conjunction of definite clausesC

over -terms of the form:

C � r( 0) r1( 1) & . . . & rm( m): (6)

We denote byR the set of all relation (predicate) symbols occurring in a given program. For
simplicity of notation, we consider all relation symbolsr 2 R to be monadic.

Given anOSF-algebraA, an interpretation of the program is a structureM = hA; (rM)r2Ri

consisting ofA and relationsrM over DA interpreting every symbolr occurring in the

an equivalence (symmetric preorder). It may be tightened into an order by factoring over its underlying equivalence
(�o = o\o�1), its “symmetric core.” Then, the quotient set over�o is partially ordered byo. Hence, if we define,
in all three frameworks,equivalenceas the symmetric core(�o) of the corresponding preorder(o = v;�;�),
then Theorem 5 extends readily to these equivalence relations, and therefore the quotients are in order-bijection.
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program. Such a structureM extendingA models a definite clauseC in the program of the
form of Expression (6) ifrM(d) holds wheneverrM1 (d1) and . . . andrMm (dm) holds, for
all elementsd; d1; . . .; dn of DA such thathd; d1; . . .; dni 2 [[h 0;  1; . . .;  ni]]A (where the
notation [[h 1; . . .;  ni]]A is shorthand for

S
�2Val(A)[[ 1]]A;� � . . .� [[ n]]A;�).

The structureM is a model of the program ifMmodels every definite clauseC in the program.
The meaning of a program is the class of minimal models extending theOSF-algebras over a
givenOSF-signature.11

A query, or resolvent, is a conjunction of atomic formulae of the formr( ) and of typing
constraintsof the formX

:
=  , wherer is a relational symbol and is anOSF-term. Such an

expression has for interpretation:A; � j= X
:
=  if and only if�(X) 2 [[ ]]A;�.

Definition 13 (LIFE Resolution Rule) A resolvent overOSF-termsR � R & r( ) reduces
in one resolution step, choosing the query conjunct r( ) and the (renamed) program
clause C � r( 0)  r1( 1) & . . . & rm( m) non-deterministically, to the resolvent
R0 � R & r1( 1) & . . . & rm( m) & X

:
= ( ^  0), where X= Root( ).

If the GLB of and 0 is ? (“bottom”), thenR0 is equivalent to thefail constraint. Iterated
application of this rule yields a derivation sequence of the queryR. The answer to the query

R� r1( 1) & . . . & rm( m)

computed in a (terminating) derivation sequence is either thefail constraint or a conjunction
of typing constraints

X1
:=  01 & . . . & Xn

:=  0n & Z1
:=  001 & . . . & Zm

:=  00m:

Here,Xi is the root variable of the queryOSF-term i, as well as of the anwserOSF-term 0

(which is subsumed by i). TheOSF-terms 00j are rooted in new variablesZj ; i.e., Zj =2 Var(R).
All the new variables are implicitly existentiallyquantified. We say that “the answerOSF-terms
interpreted inA contain the elementsd01; . . .; d0n,” in order to abbreviate the fact that there exist
elementsd001; . . .; d00m such thathd01; . . .; d0n; d

00
1; . . .; d00mi 2 [[h 01; . . .;  0n;  

00
1; . . .;  00mi]]

A.

Theorem 8 (Correctness of LIFE Resolution) The resolution rule for definite clauses over
OSF-terms is sound and complete.

That is, given the queryr1( 1); . . .; rn( n), the relationsrM1 (d1); . . .; rMn (dn) hold in the
minimal modelM of the program extending theOSF-algebraA for elementsd1; . . .; dn in
the sets denoted by the queryOSF-terms 1; . . .;  n if and only if there exists a derivation of
the query yielding an answer such that the answerOSF-terms interpreted inA contains these
elementsd1; . . .; dn.

Proof: This is an immediate consequence of Proposition 5, Theorem 9, and Proposition 6 in the next
section.

11Minimality is with respect to set-inclusion on the relationsrM.
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3.4.2 Definite clauses over OSF constraints

Proposition 5 The definite clauseC � r( 0) r1( 1) & . . . & rm( m) over -terms has
the same meaning as the following definite clause overOSF-clause constraints:

r(X)  r1(X1) & . . . & rm(Xm) & �( 1) & . . . �( m) & �( 0):

The resolvent over -terms r1( 1) & . . . & rm( m) is equivalent to theOSF-constraint
resolvent r1(X1) & . . . & rm(Xm) & �( 1) & . . . �( m).

Proof: We do not change the meaning ofC if we replace it by a definite clause over typing constraints;
i.e., of the form:

X
:
=  & X1

:
=  1 & . . . Xm

:
=  m !

�
r1(X1) & . . . & rm(Xm) ! r(X)

�
:

Of course, this clause can be written as the definite clause:

r(X) r1(X1) & . . . & rm(Xm) & X1
:
=  1 & . . . Xm

:
=  m & X

:
=  :

Here, X1; . . . ;Xm;X can be chosen as the root variables of, respectively, 1; . . . ;  m;  or,
equivalently, as new variables. In the first case,Xi

:
=  i is, after dissolving theOSF-term, exactly the

solvedOSF-clause�( i) which corresponds (uniquely) to i , and the definite clause becomes the
one in the first statement. The second statement follows similarly.

The resolution rule forOSF-constraint resolvents is stated as follows. The resolventR � R & �

reduces toR0 � R & R0 & � & �, by choosing the conjunctr(X) in R and the (renamed)
program clauser(X)  R0 & �0 non-deterministically (RandR0 are conjunctionsof relational
atoms of the formr(X), and� and�0 areOSF-clauses).

Theorem 9 (Soundness and completeness of OSF-constraint resolution) For every in-
terpretationA and valuation such that anOSF-constrained resolventR holds, then so does a
resolvent derived from it. IfM is a minimal model of the program, and formula� is a solution
of R inM, then there exists a sequence of reductions ofR to a solvedOSF-clause constraint�
exhibiting� as its solution.

Proof: This follows from instantiating the CLP scheme of [15] (cf., Appendix Section A). The
role of the constraint language in this scheme is taken byOSF-clauses as constraints together with
OSF-algebras as interpretations.

The soundness of the resolution rule is clear: Under every interpretationA and every valuation such
thatR holds, then so doesR0; i.e., [[R0]]A � [[R]]A. It is also not difficult to prove its completeness:
If M is a minimal model of the program, and� 2 [[R]]M is a solution of the formulaR inM, then
there exists a sequence of reductions ofR to a solvedOSF-clause� such that� 2 [[�]]M.

Now we can look at the connection with the previous section: Let�0 be the solved-form
OSF-clause constituting an answer of the query:

R� r1(X1) & . . . & rm(Xm) & �( 1) & . . . �( m):
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If �00 is the conjunction of allOSF-constraints in�0 constraining the (new) variablesZ1; . . .;Zm

which are not reachable fromX1; . . .;Xn, �0 can be written as:

�0(X1) & . . . & �0(Xn) & �00(Z1) & . . . & �00(Zm):

Let us call 01; . . .;  0n, and 001; . . .;  00m the normalOSF-terms which correspond uniquely to
the rooted solvedOSF-clauses in this conjunction. Then we say that�0 correspondsto the
typing constraintX1

:
=  01 & . . . & Xn

:
=  0n & Z1

:
=  001 & . . . & Zm

:
=  00m. Clearly, the

two constraints are equivalent.

Proposition 6 Every answer of a query overOSF-terms (obtained by -term resolution) cor-
responds to an answer of anOSF-constrained query (obtained byOSF-constrained resolution),
andvice versa.

Proof: This follows from the above and Theorem 5.

3.4.3 OSF-graphs computed by a LIFE program

Let us call query-OSF-graphs thoseOSF-graphsG( 1); . . .;G( n) which correspond uniquely
to theOSF-terms 1; . . .;  n in a queryR. Note that a solution ofR in theOSF-graph algebra
G consists ofOSF-graphsgi which (1) approximate the query-OSF-graphs,i.e., gi vG G( i),
and (2) satisfy the relationri, that is,rMi (gi) holds in the minimal modelM of the program
extending theOSF-algebraG. EveryOSF-graph approximated by a solution (i.e., lying in its
graph filter,cf. Corollary 6) is also a solution.

Theorem 10 (OSF-graph Resolution and Endomorphic Refinement) Every terminating
non-failing derivation sequence of a queryR yields a uniqueOSF-graph algebra endo-
morphism0. The images of the query-OSF-graphs (under these endomorphisms0) are
principal solutions in theOSF-graph algebra ofR. Every solution of the query is approximated
by one of the principal solutions thus obtained.

More precisely, the images are the principal elements for which the query relations hold in
theOSF-graph algebra, and the principal solutions are given by assigning these elements to the
root variables of the queryOSF-terms.

Proof: Let �0 � �0(X1) & . . . & �0(Xn) & �00 be the solved form of theOSF-clause� which is a
resolution-normal form of the queryR � r1( 1) & . . . & rn( n). All variables in�00 are different
from the ones in�0(X1); . . .; �0(Xn) (and existentially quantified).

Since�0 is the solved form of a conjunction of�( 1); . . . ; �( n) and otherOSF-clauses (added
successively as conjunctions by the resolution procedure), it is clear that the answer constraint�0

implies the query constraint�R � �( 1); . . . ; �( n). By applying Theorem 5 one infers that
there exists anOSF-graph algebra homomorphism0 : G 7! G mapping the graph representing
(uniquely) the query constraint on the graph representing (uniquely) the answer constraint,i.e.,
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�
G(�R)

�
= G(�0). SinceG

�
�( i)

�
= G( i), this and the homomorphism property imply that

0
�
G( 1)

�
= G1; . . .; 0

�
G( n)

�
= Gn: where we set

G1 � G
�
�0(X1)

�
; . . . ;Gn � G

�
�0(Xn)

�
:

That is, definite clause resolution computes an endomorphic refinement0 of the query arguments,
which is the first statement of the proposition.

From Corollary 4 follows that a valuation� with �(Xi) = G
�
�0(Xi)

�
is a principal solution of�0.

Note that, sinceG is a canonicalOSF-algebra,�00 is always satisfiable inG (!).

Corollary 9 The solutions of a query in theOSF-algebraA are exactly the images of the
OSF-graphs which represent the queryOSF-terms, under the homomorphisms � 0 obtained
by composing a homomorphism : G 7! A with a homomorphism0 from a derivation
sequence as in Theorem 10.

Proof: This follows directly from Theorem 5. IfA; � j= �0—and thus, by the soundness of
the resolution procedure,A; � j= r1( 1) & . . . & rn( n),—then there exists a homomorphism
 : G 7! A such that:

�(X1) = (G1); . . . ; �(Xn) = (Gn);

and the converse holds as well; namely, everyOSF-homomorphismG 7! A which is defined on all
of:

G1; . . . ; Gn

defines a solution� in this way, and therefore,

fh (G1); . . . ; (Gn) i j  : G 7! Ag � fhd1; . . .; dni j r
A
1 (d1); . . . ; rAn (dn)g:

In other words,

fh
�
 � 0

��
G( 1)

�
; . . . ;

�
 � 0

��
G( n)

�
i j  : G 7! Ag � rA1 � . . .� rAn :

That is, definite clause resolution computes an endomorphic refinement0 of the query
arguments.Any further refinement of this graph “instantiation” through a homomorphism

into anOSF-algebraA, model of the program, yields elementsd1; . . . ; dn in the relations (of
A) denoted by the query predicates as directed by the definite clauses defining the predicates
of the program.

In particular, if the homomorphism � 0 from the subalgebra generated by the query
OSF-graphs into theOSF-algebraA can be defined, then the query has a solution inA.

This leads to an essential difference between query languages over first-order terms (such as
PROLOG) and LIFE, a query language overOSF-terms: In the first case, an answer of a query
states the existence of solutions in the initial algebra and, thus, inall models of the program.
In the second case, however, an answer of a query overOSF-terms states the existence of
solutions in the (weakly)final algebraG of OSF-graphs only.
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4 Conclusion

There are many benefits to seeing LIFE’s constraints algebraically, especially if the view is in
complete and natural coincidence with logical and implementational views. One nice outcome
of this approach is our understanding that sorted and labeled graph-structures used in our
implementation of LIFE’s approximation structures form a particularly usefulOSF-algebra
which happens to be a canonical interpretation (in the sense of Herbrand) for the satisfiability
of OSF-clauses. This is important as there is no obvious initiality result, our setting having
no values but only approximations. Indeed, approximation chains inOSF-algebras can very
well be infinitely strictly ascending (getting better and better...); and this is the case of our
version presented here—all approximation chains are non Noetherian! We do not care, as only
“interesting” approximations, in a sense to be made rigorously precise, are of any use in LIFE.

With this generalizing insight, we can give a crisp interpretation of Life’s approximation
structures as principal filters inOSF-interpretations for the information-theoretic approximation
ordering(v) derived from the existence of (OSF-)endomorphisms. Thereby, they may inherit
a wealth of lattice-theoretic results such as that of being closed underjoins(t), or equivalently,
set-intersection(\) in the type interpretation(	)with the inclusion ordering(�), conjunction
(&) in the logical interpretation(�) with the implication ordering(�), and graph-unification
(^) in the canonical (graph) interpretation with the (graph) approximation ordering.

The work we have reported is a step towards a complete semantics of LIFE as suggested
by this article’s title. A full constraint language for LIFE has not been given here. We
have merely laid the formal foundations for computing with partial knowledge in the form
of approximations expressed as relational, functional, or type constraints, and explored their
syntactic and semantic properties as type-theoretic, logical, and algebraic formulations. We
have made explicit that these are in mutual correspondence in the clearest possible way and
thence reconciled many common and apparently different formal views of multiple inheritance.
A full meaning of LIFE is being dutifully completed by us authors in terms of the foundations
cast here and to be reported soon. That includes functional beings, daemons, and many other
unusual LIFE forms [8, 12, 11]. Finally, we must mention that quite a decentCimplementation
of a LIFE interpreter for experimentation has been realized by Richard Meyer, and further
completed and extended by Peter Van Roy. It is calledWild LIFE [4], and is in the process
of being released as public domain software by Digital’s Paris Research Laboratory. We hope
to share it soon with the programming community at large so that LIFE may benefit from the
popular wisdom of real life users, and hopefully contribute a few effective conveniences to
computer programming, then perhaps evolve intoRealLIFE.
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Appendix

A The Höhfeld-Smolka Scheme

Recently, Höhfeld and Smolka [15] proposed a refinement of the Jaffar-Lassez’s scheme [16].
It is more general than the original Jaffar-Lassez scheme in that it abstracts from the syntax
of constraint formulae and relaxes some technical demands on the constraint language—in
particular, the somewhat baffling “solution-compactness” requirement.

The Höhfeld-Smolka constraint logic programming scheme requires a setR of relational
symbols(or, predicate symbols) and aconstraint languageL. It needs very few assumptions
about the languageL, which must only be characterized by:

� V , a countably infinite set ofvariables(denoted as capitalizedX;Y; . . .);
� �, a set offormulae(denoted�; �0; . . .) calledconstraints;
� a functionVar: � 7! V, which assigns to every constraint� the setVar(�) of variables

constrained by�;
� a class of “admissible”interpretationsA over some domainDA;
� the setVal(A) of (A-)valuations, i.e., total functions,� : V 7! DA.

Thus,L is not restricted to any specific syntax,a priori. Furthermore, nothing is presumed
about any specific method for proving whether a constraint holds in a given interpretationA

under a given valuation�. Instead, we simply assume given, for each admissible interpretation
A, a function [[ ]]A : � 7! 2(Val(A)) which assigns to a constraint� 2 � the set [[�]]A of
valuations which we call thesolutionsof � underA.

Generally, and in our specific case, the constrained variables of a constraint� will correspond
to its free variables, and� is a solution of� under the interpretationA if and only if� holds true
in A once its free variables are given values�. As usual, we shall denote this as “A; � j= �.”

Then, givenR, the set of relational symbols (denotedr; r1; . . .), andL as above, the language
R(L) of relational clausesextends the constraint languageL as follows. The syntax ofR(L)
is defined by:

� the same countably infinite setV of variables;
� the setR(�) of formulae� fromR(L) which includes:

� all L-constraints,i.e., all formulae� in �;
� all relational atomsr(X1; . . .;Xn), whereX1; . . .;Xn 2 V , mutually distinct;

and is closed under the logical connectives & (conjunction) and! (implication);i.e.,
� �1 & �2 2 R(�) if �1; �2 2 R(�);
� �1! �2 2 R(�) if �1; �2 2 R(�);

� the functionVar : R(�) 7! V extending the one on� in order to assign to every formula
� the setVar(�) of thevariables constrained by�:
� Var(r(X1; . . .;Xn)) = fX1; . . .;Xng;
� Var(�1 & �2) = Var(�1) [ Var(�2);
� Var(�1! �2) = Var(�1) [ Var(�2);
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� the class of “admissible”interpretationsA over some domainDA such thatA extends
an admissible interpretationA0 of L, over the domainDA = DA0 by adding relations
rA � DA � . . .� DA for eachr 2 R;
� the same setVal(A) of valuations� : V 7! DA.

Again, for each interpretationA admissible forR(L), the function [[ ]]A : R(�) 7! 2(Val(A))

assigns to a formula� 2 R(�) the set [[�]]A of valuations which we call thesolutionsof
� underA. It is defined to extend the interpretation of constraint formulae in� � R(�)
inductively as follows:

� [[ r(X1; . . .;Xn)]]A = f� j h�(X1); . . .; �(Xn)i 2 rAg;
� [[�1 & �2]]A = [[�1]]A \ [[�2]]A;
� [[�1 ! �2]]A = (Val(A)� [[�1]]A) [ [[�2]]A.

Note that anL-interpretationA0 corresponds to anR(L)-interpretationA, namely where
rA0 = ; for everyr 2 R.

As in Prolog, we shall limit ourselves todefinite relational clausesinR(L) that we shall write
in the form:

r(~X)  r1(~X1) & . . . & rm(~Xm) & �;

(0 � m), making its constituents more conspicuous and also to be closer to ‘standard’ Logic
Programming notation, where:

� r(~X); r1(~X1); . . .; rm(~Xm) are relational atoms inR(L); and,
� � is a conjunction of constraint formulae inL.

Given a setC of definiteR(L)-clauses, amodelof C is anR(L)-interpretation such that every
valuation� : V 7! DM is a solution of every formula� in C, i.e., [[�]]M = Val(M). It is a
fact established in [15] that anyL-interpretationA can be extended to aminimal modelM of
C. Here, minimality means that the added relational structure extendingA is minimal in the
sense that ifM0 is another model ofC, thenrM � rM

0

(� DA � . . .� DA) for all r 2 R.

Also established in [15], is a fixed-point construction. The minimal modelM of C extending
the L-interpretationA can be constructed as the limitM =

S
i�0Ai of a sequence of

R(L)-interpretationsAi as follows. For allr 2 R we set:

rA0 = ;;

rAi+1 = fh�(x1); . . .; �(xn)i j � 2 [[�]]Ai ; r(x1; . . .; xn) � 2 Cg;

rM =
S

i�0 rAi :

A resolventis a formula of the form� [] �, where� is a possibly empty conjunction of
relational atomsr(X1; . . .;Xn) (its relational part) and� is a possibly empty conjunction of
L-constraints (itsconstraint part). The symbol [] is in fact just the symbol & in disguise. It is
simply used to emphasize which part is which. (As usual, an empty conjunction is assimilated
to true, the formula which takes all arbitrary valuations as solution.)
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Finally, the Höhfeld-Smolka scheme defines constrainedresolutionas a reduction rule on
resolvents which gives a sound and complete interpreter forprogramsconsisting of a setC of
definiteR(L)-clauses. The reduction of aresolvent Rof the form:

� B1 & . . . & r(X1; . . .;Xn) & . . . Bk [] �

by the (renamed) program clause:

� r(X1; . . .;Xn) A1 & . . . & Am & �0

is the new resolventR0 of the form:

� B1 & . . . & A1 & . . . & Am & . . . Bk [] � & �0.

The soundness of this rule is clear: under every interpretationA and every valuation such that
R holds, then so doesR0, i.e., [[R0]]A � [[R]]A . It is also not difficult to prove its completeness:
if M is a minimal model ofC, and� 2 [[R]]M is a solution of the formulaR in M, then
there exists a sequence of reductions of (theR(L)-formula)R to anL-constraint� such that
� 2 [[�]]M .

B Disjunctive OSF Terms

A technicality arises ifS is not a lower semi-lattice. For example, given the (non-lattice) set
of sorts:

john

employee

mary

student
HHHHHHH

�������

the GLB of studentandemployeeis not uniquely defined, in that it could bejohn or mary.
That is, the set of their common lower bounds does not admitonegreatest element. However,
the set of theirmaximalcommon lower bounds offers the most general choice of candidates.
Clearly, thedisjunctivetype fjohn; maryg is an adequate interpretation. In this way, the
OSF-term syntax may be enriched with disjunction denoting type union.

Informally adisjunctiveOSF-term is a set ofOSF-terms, writtenft1; . . . ; tng where theti ’s are
OSF-terms. The subsumption ordering is extended to disjunctive (sets of)OSF-terms such that
D1 � D2 iff 8t1 2 D1; 9t2 2 D2 such thatt1 � t2. This informally justifies the convention
that a singletonftg is the same ast, and that the empty set is identified with?. Unification
of two disjunctiveOSF-terms consists in the enumeration of the set of all maximalOSF-terms
obtained from unification of all elements of one with all elements of the other. For example,
limiting ourselves to disjunctions of atomicOSF-terms in the context of signature in Figure 3,
the unification offemployee; studentg with ffaculty; staffg is ffaculty; staffg. It is the set of
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maximal elements of the setffaculty; staff;?; workstudyg of pairwise GLB’s. In practice, it
is convenient and more effective to allow nesting disjunctions in the structure ofOSF-terms.

Formally, the syntax of a disjunctiveOSF-term is:

X : ft1; . . . ; tng

whereX 2 V , theti ’s are (possibly disjunctive)OSF-terms, andn � 0. Again, whereX is not
shared in the context, it may be omitted and not written explicitly.

Example B.1 In order to describe a person whose friend may be an astronaut with same
first name, or a businessman with same last name, or a charlatan with first and last names
inverted, we may write such expressions as:

person(id ) name(first ) X : string;
last ) Y : string);

friend ) fastronaut(id ) name(first) X))
; businessman(id ) name(last ) Y))
; charlatan(id ) name(first ) Y;

last ) X))g):

Note that variables may even be chained or circular within disjunctions as in:

person(partner ) P : f crook ; Fg;
friend ) F : f artist ; Pg)

which may be used to describe a person whose partner is a crook or whoever his/her friend
is, and whose friend is an artist or whoever his/her partner is. These are no longer graphs
but hypergraphs.

The denotation of a disjunctiveOSF-term in anOSF-interpretationA with variable valuation
� 2 Val(A) is simply given by:

[[X : ft1; . . . ; tng]]
A;� = f�(X)g \

n[
i=1

[[ ti ]]
A;� (7)

and again, as before:
[[ t]]A =

[
�2Val(A)

[[ t]]A;�: (8)

Observe that with this definition, our syntactic convention dealing with the degenerate cases
that, for n = 0, identifiesfg with ?, and forn = 1, identifiesftg with t, is now formally
justified on semantic grounds.
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Also, note that in Equation (7), thesamevaluation is used in all parts of the union. As a result,
for a given�, [[t]]A;� still denotes either the empty set or a singleton,even ift is a non-degenerate
disjunctive term. This may appear strange as one would expect that variables in disjuncts
that are not shared with the global context be independently valuated. They are, in fact, but
thanks to Equation (8), not Equation (7). Taking, for example,t = fX : int; X : stringg,
where intA = Z is the set of all integers andstringA = S is the set of all finite strings
of ASCII characters, with� and � such that�(X) = 1 and �(X) = ‘‘hello’’ , then
[[ t]]A;� = f1g [ ;= f1g and [[t]]A;� = ; [ f‘‘hello’’ g= f‘‘hello’’ g. However, as
expected, we do have [[t]]A = Z [ S.

Example B.2 The disjunctive term:

P : fcharlatan
; person(id ) name(first ) X : “John” ;

last ) Y : f “Doe” ; Xg);
friend) fP ; person(id ) name(first ) Y;

last ) X))g)g

describes either a charlatan, or a person named either “John Doe” or “John John” whose
friend is himself, or a person with his first and last names inverted. It doesnotspecify that
that person’s friend is either a charlatan or himself or a person... since it is semantically
equivalent to the term:

fcharlatan
; P : person(id ) name(first ) X : “John” ;

last ) Y : f “Doe” ; Xg);
friend ) fP ; person(id ) name(first ) Y;

last ) X))g):g

Similarly, OSF-clauses are extended to be possibly disjunctive as well. Hence, anOSF-clause
is now, either of the following forms:

� X : s
� X

:
= Y

� X:`
:
= Y

� �1 & �2
� �1 _ �2

where�1; �2 areOSF-clauses.

The interpretation of atomic and conjunctiveOSF-constraints is as before; and as for disjunc-
tions, we have simply:

A; � j= � _ �0 iff A; � j= � orA; � j= �0:
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(Bottom Elimination)
� _ X : ?

�

(Distributivity)
� & (�1 _ �2)

(� & �1) _ (� & �2)

Figure 5: Disjunctive Clause Normalization Rules

Converting fromOSF-terms toOSF-clauses is done by extending the dissolution mapping� to
be:

�
�
X : ft1; . . . ; tng

�
=
�
X
:
= Root(t1) & �(t1)

�
_ . . ._

�
X
:
= Root(tn) & �(tn)

�
:

Example B.3 Let us reconsider the second term of Example B.1 again. Namely, writing
explicitly all omitted (since unshared) variables:

t = X : person(partner ) P : fC : crook; Fg;
friend ) F : fA : artist ; Pg)

its dissolved form is:

�(t) = X : person& X:partner
:
= P &

�
(P

:
= C & C : crook) _ P

:
= F

�
& X:friend

:
= F &

�
(F

:
= A & A : artist)_ F

:
= P

�
.

Finally, theOSF-clause normalization rules are also extended with two additional ones shown
in Figure 5 (making the similar associativity and commutativity conventions for_ that we did
for &), and we leave it as an exercise to the reader to show that these two rules together with
the four rules shown in Figure 4 enjoy a straightforward extension of Theorem 1. Namely,

Theorem 11 (Disjunctive OSF-Clause Normalization) The sixOSF-clause normalization
rules of Figures 4 and 5 are solution-preserving, finite terminating, and confluent (modulo
variable renaming). Furthermore, they always result in a normal form that is either the
inconsistent clause or a disjunction of conjunctiveOSF-clauses in solved form with associated
conjunctions of equality constraints.

Note that the normalization rules of Figure 5 contribute essentially to putting the dissolved form
in disjunctive normal form. In particular, they do not eliminate disjuncts that are subsumed
by other disjuncts in the same disjunction. In the following example, the second and third
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disjuncts are subsumed by the fourth and are therefore non-principal solutions. Only the first
and fourth disjuncts are principal solutions.

Example B.4 Normalizing the dissolved form of Example B.3, we obtain a disjunction of
four conjunctions:

�
(X : person & X:partner

:
= P & P : crook& P

:
= C

& X:friend
:
= F & F : artist & F

:
= A)

_ (X : person & X:partner
:
= P & P : artist & P

:
= A

& X:friend
:
= P & P

:
= F)

_ (X : person & X:partner
:
= P & P : crook& P

:
= C

& X:friend
:
= P & P

:
= F)

_ (X : person & X:partner
:
= P

& X:friend
:
= P & P

:
= F)

�
:

Research Report No. 11 June 1991 (Revised, October 1992)



42 Hassan Aı̈t-Kaci and Andreas Podelski

References

1. Hassan A¨ıt-Kaci. A Lattice-Theoretic Approach to Computation Based on a Calculus
of Partially-Ordered Types. PhD thesis, University of Pennsylvania, Philadelphia, PA
(1984).

2. Hassan A¨ıt-Kaci. An algebraic semantics approach to the effective resolution of type
equations.Theoretical Computer Science, 45:293–351 (1986).

3. Hassan A¨ıt-Kaci and Jacques Garrigue. Label-selective�-calculus. PRL Research
Report 31, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison
(1993). (A short version is to appear in theProceedings of the 13th International
Conference on Foundations of Software Technology and Theoretical Computer Science,
Bombay, India, December 1993.).

4. Hassan A¨ıt-Kaci, Richard Meyer, and Peter Van Roy. WildLIFE, a user manual.
PRL Technical Report (forthcoming), Digital Equipment Corporation, Paris Research
Laboratory, Rueil-Malmaison, France (1993).

5. Hassan A¨ıt-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance.Journal of Logic Programming, 3:185–215 (1986).

6. Hassan A¨ıt-Kaci and Roger Nasr. Integrating logic and functional programming.Lisp
and Symbolic Computation, 2:51–89 (1989).

7. Hassan A¨ıt-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations, and
Functions. InProceedings of the Symposium on Logic Programming (San Francisco, CA),
pages 17–23, Washington, DC (1987). IEEE, Computer Society Press.

8. Hassan A¨ıt-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Malmaison, France (June 1991). (Revised, November 1992).

9. Hassan A¨ıt-Kaci and Andreas Podelski. Towards a meaning of life. In Jan Maluszy´nski and
Martin Wirsing, editors,Proceedings of the 3rd InternationalSymposium on Programming
Language Implementation and Logic Programming (Passau, Germany), pages 255–274.
Springer-Verlag, LNCS 528 (August 1991).

10. Hassan A¨ıt-Kaci and Andreas Podelski. Towards a meaning of LIFE.Journal of Logic
Programming, 16(3-4):195–234 (July-August 1993).

11. Hassan A¨ıt-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature
theory unification. PRL Research Report 32, Digital Equipment Corporation, Paris
Research Laboratory, Rueil-Malmaison, France (1993). (To appear in theProceedings of
the International Symposium on Logic Programming, (Vancouver, BC, Canada, October
1993), edited by Dale Miller, and published by MIT Press, Cambridge, MA.).

June 1991 (Revised, October 1992) Digital PRL



Towards a Meaning of LIFE 43

12. Hassan A¨ıt-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system
for logic programming with entailment. InProceedings of the 5th International Conference
on Fifth Generation Computer Systems, pages 1012–1022, Tokyo, Japan (June 1992).
ICOT.

13. William F. Clocksin and Christopher S. Mellish.Programming in Prolog. Springer-Verlag,
Berlin, Germany, 2nd edition (1984).

14. Jochen D¨orre and William C. Rounds. On subsumption and semiunification in feature
algebras. InProceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science (Philadelphia, PA), pages 301–310, Washington, DC (1990). IEEE, Computer
Society Press.
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Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.
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