
M A R C H 1 9 9 4

NSL
Technical Note TN-12

Producing HTML
Documents
with Scribe

Glenn Trewitt

d i g i t a l Network Systems Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Network Systems Laboratory (NSL), begun in August 1989, is a research laboratory
devoted to components and tools for building and managing real-world networks. Our
charter is to research and develop innovative internetworking systems. We apply what
we have learned to help open strategic new markets for Digital.

Our expertise is in open systems and in big networks, especially those that cross or-
ganizational boundaries. Our interest is in building real systems for real users, in order to
advance the state of the art. Sometimes we work on systems inside Digital; sometimes
we work directly on large revenue projects.

Our strategy, since we are a small group, is to leverage our work by using, whenever we
can, existing hardware and software systems. We do this by building on the large exist-
ing body of widely-accepted networking technologies. We like to work in partnership
with other groups in Digital, including large account teams and engineering organiza-
tions.

Our deliverables are the communication of ideas to other parts of Digital by building and
releasing prototype systems, consulting within Digital, publishing technical reports, and
participation in external research and standards activities.

NSL is also a focal point for operating Digital’s internal IP research network (CRAnet)
and the Palo Alto Internet gateway. Ongoing experience with practical network opera-
tions provides an important basis for research on network management.

We publish the results of our work in a variety of journals, conferences, research reports,
and technical notes. This document is a technical note. We use this form for rapid
distribution of technical material. Usually this represents research in progress. Research
reports are normally accounts of completed research and may include material from ear-
lier technical notes.

You can order reports and technical notes by mail by sending a request to:

Technical Report Distribution
Digital Equipment Corporation
Network Systems Laboratory - WRL-1
250 University Avenue
Palo Alto, California 94301 USA

You can also order reports and technical notes by electronic mail or browse them on the
World Wide Web. Use one of the following addresses:

Internet mail:
NSL-Techreports@pa.dec.com

World Wide Web (outside of Digital):
http://www.research.digital.com/nsl/home.html

World Wide Web (Internal):
http://nsl.pa.dec.com/nsl/home.html

To obtain more details on ordering by electronic mail, send a message to one of these
mail addresses with the word ‘‘help’’ in the Subject line; you will receive detailed
instructions.

Producing HTML Documents
with Scribe

Glenn Trewitt

February, 1994

Abstract

Scribe is a document production system that supports the generation
of many different types of documents on many different types of out-
put devices. HTML (HyperText Markup Language) is the native for-
mat for documents in the World Wide Web (WWW). The web is un-
dergoing explosive growth at this time. A major factor limiting this
growth is the effort required to produce high-quality HTML docu-
ments.

This note describes a Scribe device type and document type that can
be used to generate HTML files from a conventional Scribe docu-
ment, with minimal modification. We assume that the reader has
some familiarity with both HTML and Scribe.

Copyright  1994 Digital Equipment Corporation

d i g i t a l Network Systems Laboratory 250 University Avenue Palo Alto, California 94301 USA

i

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

ii

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

Table of Contents
1. Scribe vs. HTML 1
2. Making Scribe produce HTML 1
3. Making A Structured HTML Document 2

3.1. Coexistence With Other Device Types 3
3.2. Convert @Section to @MakeSection 3
3.3. Convert @Chapter to @MakeChapter 3
3.4. Add @MakeDocument at the Beginning 4
3.5. Include @generate Commands for Each Chapter 4
3.6. Forced Line Breaks -- Convert @* to @br 4
3.7. Add an @HTMLfinish Command at the End 5

4. Imbedded Graphics 5
5. The First Chapter Contents 5
6. Labels, Cross References, and Anchors 6
7. Chapter and Section Buttons 6
8. Character Conversions and Raw HTML 7
9. Headers, Footers, and Addresses 7
10. The <TITLE> Tag 8
11. Postprocessing the .HTML file 8
12. How the Conversion and Structuring Works 9

12.1. The HTML Device Type 9
12.2. HTML tags vs. Scribe Character Counting 10
12.3. Document Structuring and Links 10

iii

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

iv

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

The software described here is available by anonymous FTP from the Network Systems
Laboratory, nsl.pa.dec.com (Digital internal only), in the /pub/www directory. Outside of Digi-
tal, it is available from gatekeeper.dec.com in the /pub/DEC/NSL/www directory.

1. Scribe vs. HTML

HTML documents are usually short, typically no more than a few text pages. Each document is
named by a Universal Resource Locator (URL) that looks like:

http://host.domain/path/file

A document can contain pointers to other documents by associating its URL with some text
(called the anchor) in the document. When the user clicks on the anchor, the corresponding
document is retrieved and displayed.

The World Wide Web consists of the entire collection of such documents, connected by hyper-
text links.

A typical Scribe document differs from an HTML document in several ways:

• A Scribe document is usually much longer than an HTML document. An HTML
equivalent would consist of several small documents, connected by hypertext links.

• Scribe documents are usually read in a linear order, one section after another.
HTML documents are often browsed in random order. It is easy to get lost.

• The only indexing information in a Scribe document is the table of contents and,
possibly, the index. HTML documents are usually very richly cross-referenced.
Even the Joy of Cooking pales by comparison.

There are two levels of capability for producing HTML documents. The simplest just produces
an HTML version of the manuscript file. In addition, with a little work, a structured set of
HTML documents can be produced from the manuscript file.

2. Making Scribe produce HTML

In the simplest case, you have a short Scribe document that you want to use to produce a single
HTML file. Two things need to be done:

1. Specify @device(HTML) at the beginning of your document, or use the ap-
propriate command-line switch.

2. If your document uses @description, you must post-process the .html output file
1with the awk script html-post.awk . This adds the HTML <DD> tags inside the

description body. If you omit this step, your @description environments will be
incorrectly formatted.

Not all Scribe environments can be successfully translated into HTML. The following limita-
tions exist:

1See Section 11.

1

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

• @display, @example, @fileexample, @programexample, @format are all formatted
using the HTML <PRE> tag (preformatted text). This is usually displayed in a
typewriter font.

• HTML doesn’t support centered text. @center just puts the text on a line by itself.

• Footnotes are placed in-line, enclosed in [square brackets].

• Tabbing and other format control commands don’t have analogs in HTML, so these
commands will have no effect, except in unfilled environments, which are formatted
with <PRE>.

• The @* command has no effect for the HTML device, except in unfilled environ-
ments. As an alternative, the HTML library (Section 3) defines the @br command,
which causes a line break for all device types. You should use @br in place of @*.

• With the common availability of laser printers, many document types, and some
Scribe users, specify the size environment attribute. Since HTML doesn’t directly
support arbitrary character sizes, specification of size will result in the error mes-
sage:

Output device html cannot achieve scaling.

This is not harmful and may be ignored.

The HTML device type provides the basic formatting into HTML. The features described in the
remaining sections are only available by including the library file HTML.

3. Making A Structured HTML Document

By including the library file:
@libraryfile(HTML)

in addition to specifying the HTML device, you can produce structured HTML documents, with
inter-file links set up automatically. This command should be included after all document setup
commands, such as @generate, @disable, and @style.

The resulting document is structured as follows:

• Each Chapter and Section produces a separate HTML file. The HTML <TITLE>
tag is inserted automatically. If needed, you can specify "inline" Chapters and Sec-
tions that don’t start new files.

• Each HTML file contains, at the very beginning, PREVIOUS and NEXT hypertext
links, pointing at the adjacent sections. Chapters also contain PREVIOUS
CHAPTER and NEXT CHAPTER links. These links appear as buttons.

• Each Chapter contains, at the beginning, a table of contents with hypertext links to
the individual sections.

To achieve these results, the following changes must be made to the Scribe manuscript file:

• Add information to the document to construct the hypertext links. This consists of
augmenting the @Chapter and @Section commands to include a tag, which will be
used by both Scribe and HTML for cross-references.

2

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

• Add a postprocessing step that splits the Scribe-generated .html file into separate
.html files.

The following sections describe these changes in detail.

3.1. Coexistence With Other Device Types

Once you’ve made the changes described below, you will still be able to format your document
for other devices. For devices other than HTML, the HTML library contains "stub" definitions
for the new commands that duplicate the behavior of the regular Scribe commands.

Summary: You can do all of the fancy HTML formatting you want, and you’ll still be able to
format for other devices, without changing your document.

3.2. Convert @Section to @MakeSection

Each @Section command should be converted to @MakeSection:
@MakeSection(tag=tag, title="Title of the Section")

This will start a new HTML file named tag.html at this point. If you want to continue the same
file (for example, if you have several short sections), you can use the @MakeInlineSection com-
mand:

@MakeInlineSection(tag=tag, title="Title of the Section")

If you use other section-level sectioning commands, such as @PrefaceSection, you can give an
additional parameter to the @MakeSection or @MakeInlineSection command:

@MakeSection(tag=tag, title="Title of the Section",
command=PrefaceSection)

3.3. Convert @Chapter to @MakeChapter

If your document doesn’t contain chapters, skip this part, and make sure that you specify
"nochapters" to the @MakeDocument command.

Each @Chapter command should be converted to @MakeChapter:
@MakeChapter(tag=tag, title="Title of the Chapter")

This will start a new HTML file named tag.html at this point. If you want to continue the same
file (for example, if there is very little introductory material before the first real chapter) you can
use the @MakeInlineChapter command:

@MakeInlineChapter(tag=tag, title="Title of the Chapter")

If you use other chapter-level sectioning commands, such as @Appendix or @UnNumbered, you
can give an additional parameter to the @MakeChapter or @MakeInlineChapter command:

@MakeChapter(tag=tag, title="Title of the Chapter",
command=UnNumbered)

3

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

3.4. Add @MakeDocument at the Beginning

@MakeDocument is very similar to @MakeChapter, except that it doesn’t actually start a chap-
ter. It does determine the name of the first HTML generated. It should be placed before any text
in the .mss file.

@MakeDocument(tag=tag, title="Title of the Whole Document")

We use a convention that the name of the top-level document in a directory is home.html. So,
the tag in the @MakeDocument command would be "home.html".

There are two options that may be specified in the @MakeDocument command:

NoChapters Specifies that no chapters will be used. This causes the chapter forward/back
buttons to be omitted.

NoSections Specifies that the document will not use @MakeSection or
@MakeChapter commands, so it will be a single HTML file. No
forward/back buttons (either for sections or chapters) will be produced.

For example:
@MakeDocument(tag=home.html, title="Document Title", nochapters)

3.5. Include @generate Commands for Each Chapter

The section cross references for each chapter are stored in Scribe "generated portions," each
named after the chapter tag. This is the same mechanism that Scribe uses for the tables of con-
tents. For a document named "test.mss" with a @MakeChapter(tag=intro, ...), the chapter con-
tents for that chapter would be stored in a file named "test.intro".

Each of these generated portions requires a command to be added to the beginning of the .mss
file. For each @MakeChapter, insert a line of the form:

@generate(tag=tag)

before the @LibraryFile(HTML) command.

If you add a chapter and forget the @generate command, Scribe will produce some very cryptic
error messages:

Error in BACKPLACE command found while processing the manuscript.
res-html.mss, line 123: @backplace(resources)
The name RESOURCES should be defined but is not!

Error in BACKPLACE command.
res-html.mss, line 123: @backplace(resources)
Portion RESOURCES cannot be backplaced.

3.6. Forced Line Breaks -- Convert @* to @br

The @* command has no effect for the HTML device, except in unfilled environments. As an
alternative, the HTML library defines the @br command, which causes a line break for all
device types.

4

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

You should use @br in place of @*.

3.7. Add an @HTMLfinish Command at the End

At the very end of your .mss file, add the command:
@HTMLfinish()

If you leave out this command, you will get two error messages for the last chapter and section
tags:

Error in VALUE command found while processing the manuscript.
other.mss, line 241: @value(tag-next)
The name tag-next is used in the @Value command, but it has not
been defined with @String.

4. Imbedded Graphics

The HTML library allows the @graphic command to be used. The only two parameters that are
used are URL, which specifies the URL of the graphic to display, and ALIGN, which can be
either TOP or BOTTOM, and controls how the image is aligned with the text. Other
parameters, used for other devices (such as PostScript), are ignored. Here are two examples:

@graphic[url="/digital/pics/logo.gif", align=top]:

@graphic[url="/digital/pics/logo.gif", align=bottom]:

Note that, for PostScript output, the align parameter has no effect, as is obvious here.

5. The First Chapter Contents

If your document contains no chapters, only sections, or if your introductory material contains
sections before the first chapter, no chapter contents will be generated. If you want this, you
must:

• Insert an @HTMLcontents(tag) command at the point you want the contents to ap-
pear.

• Add an @generate(tag=tag) at the beginning of your .mss file.

The tag should be the same tag that you used in the @MakeDocument command.

The chapter contents is displayed as an itemized list. Here are the contents for this document:

• Scribe vs. HTML
• Making Scribe produce HTML
• Making A Structured HTML Document
• The First Chapter Contents

5

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

• Labels, Cross References, and Anchors
• Chapter and Section Buttons
• Character Conversions and Raw HTML
• Headers, Footers, and Addresses
• The <TITLE> Tag
• Postprocessing the .HTML file
• How the Conversion and Structuring Works

6. Labels, Cross References, and Anchors

Existing Scribe commands for doing cross-references include @Label, @Tag, @Ref, and
@PageRef. These references can easily be converted to hypertext links, as follows:

Replace each occurrence of @Label or @Tag with @LinkLabel or @LinkTag. If an @Label
command is used to identify a chapter or section, it should be removed, because @MakeChapter
and @MakeSection automatically create the label.

For each usage of @Ref, replace it with @LinkRef. This is more complicated, because you have
to identify the text to be the anchor of the hypertext link (i.e., the highlighted text). If you have
the text

Chapter @ref(alice) discusses other aspects of
Alice’s journey.

you could convert it to:
@LinkRef(tag=alice, text="Chapter @ref(alice)") discusses
other aspects of Alice’s journey.

Both of these produce the same text, but in the HTML result, "Chapter 1" would be a hypertext
link.

There is no analog to @PageRef, because HTML doesn’t have page numbers. We suggest that
you replace page references with section and chapter references.

You can insert hypertext links (anchors) using the @URLref command:
@URLref(url="file://nsl.pa.dec.com/pub/nsl-tools",
text="/pub/nsl-tools")

This command puts the text into the document as a hypertext link to the named file. The result
is:

/pub/nsl-tools

7. Chapter and Section Buttons

The chapter and section buttons are produced by including inline GIF images. The Scribe string
buttondir names the directory where the buttons are kept. The default is "/digital/pics/icons/",
which you can change permanently by editing html.lib, or in each document by specifying:

@string(buttondir="/pics/icons/")

The path name must be relative to the HTTP daemon’s DocumentRoot, since it is used to form a
URL, not a file name.

6

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

The following button names are used:

• left-icon-dim.gif
• left-icon.gif
• right-icon-dim.gif
• right-icon.gif
• fast-left-icon-dim.gif
• fast-left-icon.gif
• fast-right-icon-dim.gif
• fast-right-icon.gif

The "-dim" icons are used for links that don’t exist (i.e., "next" link from the last page). The
"fast-" icons are used for chapter links.

8. Character Conversions and Raw HTML

The characters &, <, >, and " are all special to HTML, and are represented by the words &,
<, >, and ". When any of these special characters are encountered in a Scribe docu-
ment, they are converted to the corresponding words.

This makes it difficult to produce raw HTML, for example, when setting headers and footers.
So, we provide Scribe commands that produce the commonly-used HTML constructs:

HTML construct Scribe command Example HTML result
<tag> @htag(tag) @tag(ISINDEX) <ISINDEX>
"string" @quot(string) @quot(filename) "filename"
&entity; @entity(entity) @entity(quot) "

 @br @br

<HR> @bar() @bar()

To construct an HTML anchor, you could use:
@htag(A HREF=@quot(http://www.digital.com/archive/pub/DEC/DECinfo/html/home.html))
Digital’s home page@htag(/A)

Which would produce:

Digital’s home page

The preferred method is be to use the @URLref command described in Section 6.

9. Headers, Footers, and Addresses

Most HTML documents have a footer at the bottom to indicate authorship. In addition, you may
want to put some sort of a header at the beginning of each HTML file. There are two strings that
you may define the tell Scribe what to insert for headers and footers: HTMLheader and
HTMLfooter. The definitions that were used for this document (assuming that you are viewing
it with a WWW browser) are:

7

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

@string(htmlheader={@majorheading(@htag(IMG
SRC=@quot(/digital/pics/logo.gif))
Producing HTML Documents with Scribe)
})

@string(HTMLfooter={@bar()
@address[Copyright (C) 1993, 1994 Digital Equipment Corporation]
@address(@urlref(url=/nsl/people/trewitt/bio.html,
text="Glenn Trewitt"), trewitt@pa.dec.com)
})

Note the @address command -- it marks the text with an <ADDRESS> tag.

Scribe page headings and footings are not relevant to the HTML device, because it is not
paginated in the normal way. Therefore, the two mechanisms are completely independent.

10. The <TITLE> Tag

The HTML <TITLE> tag is automatically generated from the @MakeDocument,
@MakeChapter, and @MakeSection commands, using the appropriate title as the HTML docu-
ment title. If your document is going to be indexed (for example, by an automated web-walking
program, then these titles probably won’t make any sense outside the context of your document.

If you set the string titleprefix:
@string(titleprefix="Scribe to HTML: ")

then that value will be prepended to each <TITLE>. If you are viewing this report via the Web,
you can see the effect of this by looking at the document title for this page. Note that the trailing
space in the string is significant.

11. Postprocessing the .HTML file

After Scribe has produced the .html file, it must be post-processed, in order to split it apart into
individual HTML files, and to add the <DD> tag for @description environments.

The following command does the actual work:

awk -f html-post.awk <file.html

All of the resulting HTML files are placed in a subdirectory named html, which must already
exist.

Here is the actual awk script, which should be named html-post.awk:

8

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

BEGIN { file = "" }

/<P> %DOCUMENT%/ {
if (file!="") close(file);
file = "html/" $3 ".html";
next;

}

file == "" { next }

Remove all backspaces.
{ gsub("^H", "", $0) }

Add the <DD> tag to the line after the <DT> tag.
/<DT>/ {

if (file == "") { print $0 ; printf "<DD> " }
else { print $0 >file ; printf "<DD> " >file }
next;

}

{
if (file == "") print $0;
else print $0 >file;

}

12. How the Conversion and Structuring Works

The material in this section is only interesting if you want to modify the HTML library, and need
to understand how it works.

12.1. The HTML Device Type

This turns out to be relatively simple, with just a few tricks.

The HTML raw font is normal, except that the four special characters &, <, >, and " are
redefined to emit the HTML entity codes &, <, >, and ".

To actually emit the raw characters &, <, >, and ", a raw font, HTMLsymbols, is defined that
maps all of these characters directly. For most uses, the commands in Section 8 should be used.
If you are desperate, you can use the @H(char) environment, which will emit the raw text.

Environments that map directly to HTML constructs, such as itemize, enumerate, example, etc.,
are handled by specifying BeforeEntry and AfterExit to insert the tags. Per-paragraph tags,
such as and <DT> are put in using the Numbered environment attribute.

Headings and chapter title environments are handled the same way, with the <H1>, <H2>, etc.
tags.

The <P> separator between paragraphs is inserted by making the text environment numbered,
with the string <P>. Since both the text and list-making environments use the numbered at-
tribute to insert tags, using @multiple to group multiple paragraphs into one list item is not
possible.

9

PRODUCING HTML DOCUMENTS WITH SCRIBE NSL TN-12

12.2. HTML tags vs. Scribe Character Counting

Scribe counts each character output to the .html file as a significant character -- it thinks that the
string "bold" is 11 characters long, even though it will be seen by the user as only 4
characters. This can severely disrupt the alignment of text in formatted environments. When
anchors are involved, where dozens of characters may be "invisible", line breaks may be affected
enough to make the formatting intolerable.

The solution used in the HTML device definition is that all such tags are output with tag, which
makes Scribe output the tag, then the same number of backspace characters, so that it treats the
string as having zero width. The awk script removes the backspace characters.

A better solution would have been to define a font for printing HTML tags with, that has zero-
width characters. Unfortunately, Scribe didn’t properly interpret this when we tried it.

12.3. Document Structuring and Links

The Scribe facility for generated portions is heavily used. The most important generated portion
is tags, which contains @string definitions for cross references. A combination Scribe/HTML
tag is generated for each:

• @LinkTag command in the document

• @MakeDocument

• @MakeChapter or @MakeInlineChapter

• @MakeSection or @MakeInlineSection

This combination tag consists of the following components:

• A conventional Scribe tag, generated with @Label.

• A @string definition of tag-file, which names the HTML file that the tag occurs in.

• An HTML anchor in that file, at the location of the @LinkLabel or section/chapter
heading.

For chapters and sections, the Scribe tag and the HTML anchor are placed slightly differently:
The Scribe tag is located after the @Section or @Chapter command, so that it will have the
correct number associated with it. The HTML anchor is placed immediately before the
@Section or @Chapter command, so that the heading will be visible when the link is referenced.

The following strings are defined in the tags generated portion:

tag-file HTML file that contains the tag.

tag Name of the Chapter or Section (Only for chapter and section tags.)

tag-next Next HTML file after this one. (Only for chapter/section tags that start a
new file.)

tag-nextc HTML file for the chapter after this one. (Only for chapter tags that start a
new file.)

10

NSL TN-12 PRODUCING HTML DOCUMENTS WITH SCRIBE

For each chapter (inline or not), a generated portion is used to contain the hypertext links to the
sections in that chapter. The @HTMLcontents textform does a @backplace of the portion to
insert the chapter contents at that point.

11

