
TM

Wait-Free Implementations in Message-Passing Systems

Soma Chaudhuri Maurice Herlihy Mark R. Tuttle

CRL 98/5

May 1998

Cambridge Research Laboratory

The Cambridge Research Laboratory was founded in 1987 to advance the state of the art in both
core computing and human-computer interaction, and to use the knowledge so gained to support the
Company’s corporate objectives. We believe this is best accomplished through interconnected pur-
suits in technology creation, advanced systems engineering, and business development. We are ac-
tively investigating scalable computing; mobile computing; vision-based human and scene sensing;
speech interaction; computer-animated synthetic persona; intelligent information appliances; and
the capture, coding, storage, indexing, retrieval, decoding, and rendering of multimedia data. We
recognize and embrace a technology creation model which is characterized by three major phases:

Freedom: The life blood of the Laboratory comes from the observations and imaginations of our
research staff. It is here that challenging research problems are uncovered (through discussions with
customers, through interactions with others in the Corporation, through other professional interac-
tions, through reading, and the like) or that new ideas are born. For any such problem or idea,
this phase culminates in the nucleation of a project team around a well articulated central research
question and the outlining of a research plan.

Focus: Once a team is formed, we aggressively pursue the creation of new technology based on
the plan. This may involve direct collaboration with other technical professionals inside and outside
the Corporation. This phase culminates in the demonstrable creation of new technology which may
take any of a number of forms - a journal article, a technical talk, a working prototype, a patent
application, or some combination of these. The research team is typically augmented with other
resident professionals—engineering and business development—who work as integral members of
the core team to prepare preliminary plans for how best to leverage this new knowledge, either
through internal transfer of technology or through other means.

Follow-through: We actively pursue taking the best technologies to the marketplace. For those
opportunities which are not immediately transferred internally and where the team has identified a
significant opportunity, the business development and engineering staff will lead early-stage com-
mercial development, often in conjunction with members of the research staff. While the value to
the Corporation of taking these new ideas to the market is clear, it also has a significant positive im-
pact on our future research work by providing the means to understand intimately the problems and
opportunities in the market and to more fully exercise our ideas and concepts in real-world settings.

Throughout this process, communicating our understanding is a critical part of what we do, and
participating in the larger technical community—through the publication of refereed journal articles
and the presentation of our ideas at conferences–is essential. Our technical report series supports
and facilitates broad and early dissemination of our work. We welcome your feedback on its effec-
tiveness.

Robert A. Iannucci, Ph.D.
Director

Wait-Free Implementations in Message-Passing Systems

Soma Chaudhuri
Department of Computer Science

Iowa State University
Ames, IA 50011

chaudhur@cs.iastate.edu

Maurice Herlihy
Computer Science Department

Brown University
Providence, RI 02912
herlihy@cs.brown.edu

Mark R. Tuttle
DEC Cambridge Research Lab
One Kendall Square, Bldg 700

Cambridge, MA 02139
tuttle@crl.dec.com

May 1998

Abstract

We study the round complexity of problems in a synchronous, message-passing
system with crash failures. We show that if processors start in order-equivalent states,
then a logarithmic number of rounds is both necessary and sufficient for them to reach
order-inequivalent states. These upper and lower bounds are significant because they
establish a complexity threshold below which no nontrivial problem can be solved, but
at which certain nontrivial problems do have solutions.

This logarithmic lower bound implies a matching lower bound for a variety of de-
cision tasks and concurrent object implementations. In particular, we examine two
nontrivial problems for which this lower bound is tight: thestrong renaming task, and
a wait-freeincrement register implementation. For each problem, we present a non-
trivial algorithm that halts inO�log c� rounds, wherec is the number of participating
processors.

c�Digital Equipment Corporation, 1998

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Cambridge Research Laboratory of Digital Equipment Corpo-
ration in Cambridge, Massachusetts; an acknowledgment of the authors and individual contributors
to the work; and all applicable portions of the copyright notice. Copying, reproducing, or repub-
lishing for any other purpose shall require a license with payment of fee to the Cambridge Research
Laboratory. All rights reserved.

CRL Technical reports are available on the CRL’s web page at
http://www.crl.research.digital.com.

Digital Equipment Corporation
Cambridge Research Laboratory

One Kendall Square, Building 700
Cambridge, Massachusetts 02139 USA

1

1 Introduction

In a synchronous, message-passing system with crash failures, a computation proceeds
in a sequence ofrounds: each processor sends messages to the others, receives all
the messages sent to it, and performs an internal computation. At any point in the
computation, a processor maycrash: it stops and sends no more messages. This model
is one of the most thoroughly-studied models in the distributed computing literature,
partly because it is so easy to describe, and partly because the behaviors exhibited
by this model are a subset of the behaviors exhibited by almost any other model of
computation, which means that lower bounds in this model usually extend to other
models.

We investigate the time needed to solve nontrivial problems in this model. Loosely
speaking, a nontrivial problem is one in which at least two processors must perform
different actions, which is a kind of “symmetry breaking.” In the well-knowncon-
sensus problem [PSL80, LSP82, FLP85], each processor starts with an input value,
and all nonfaulty processors must halt after agreeing on the input value of one of
the processors. Consensus breaks symmetry by requiring one processor to choose
its input value, and the rest to discard theirs. Consensus requires a linear number of
rounds to solve [FL82], but it can be used to solve almost any other nontrivial prob-
lem [Lam78, Lam89, Sch87, Her91b], so solving these nontrivial problems never takes
longer than consensus. We want to know exactly how quickly these nontrivial problems
can be solved.

Solving a nontrivial problem requires causing two processors to perform different
actions. Speaking informally, if processors start in equivalent states and follow the
same deterministic protocol, then as long as they remain in equivalent states, they will
continue to perform the same actions. We can therefore equate the number of rounds
needed to reach inequivalent states with a threshold below which no nontrivial problem
has a solution. Surprisingly, we can show that there do exist nontrivial problems that
become solvable at exactly this threshold.

What does it mean for two processors to be in equivalent states? Each processor
begins execution with a unique identifier (called itsid) taken from a totally-ordered
set. We assume that processors can test ids for equality and order: given idsp andq, a
processor can test whetherp � q, p � q, andp � q. We say that two processor states
are order-equivalent [FL87] if they cannot be distinguished by the order of the ids
appearing within them. More specifically, the two states must have the same structure,
and the order of any two ids appearing in one state must be the same as the order of the
ids appearing in the corresponding positions of the other state. For example, if each
processor’s initial state contains its id and nothing else, then all initial states are trivially
order-equivalent because there are no pairs of ids to compare within an initial state.
A protocol iscomparison-based if the comparison operations are theonly operations
applied to process ids. Clearly, comparison-based protocols cannot distinguish between
order-equivalent states.

We restrict our attention to comparison-based protocols. This restriction to proto-
cols that can only compare processor ids for order is reasonable in systems where there
are many more processor ids than there are processors, or in systems where there is a
very large pool of potential participants, of which only an unpredictable subset actually

2 1 INTRODUCTION

participates in the protocol. In such systems, there may be no effective way to enumer-
ate all possible processor ids, and no way to tell whether there exists a processor with
an id between two other ids. Most significant, since there are so many possible ids, it
is not feasible to use processor ids as indices into data structures as is frequently done
in implementations of objects like atomic registers (see [SP89]).

This paper’s first principal contribution is a proof that any comparison-based proto-
col for c processors has an execution in which all processors remain in order-equivalent
states for��log c� rounds. As a result, any problem that requires breaking order-
equivalence also requires��log c� rounds. Although the proof is elementary, this loga-
rithmic lower bound is “universal” for this model in the sense that it is difficult to con-
ceive of a nontrivial problem that can be solved without breaking order-equivalence.
This bound is tight: we give a protocol that forces any two processors into order-
inequivalent states withinO�log c� rounds.

This paper’s second principal contribution is to show that there exist nontrivial
problems that do have solutions withO�log c� round complexity. The existence of
these problems implies that the synchronous message-passing model undergoes a kind
of “phase transition” at a logarithmic number of rounds. Below this threshold, it is
impossible to solve any problem that requires different processors to take different
actions. Beyond this threshold, however, solutions do exist to nontrivial problems.

We consider two classes of problems: decision tasks, and concurrent objects. A
decision task is a problem in which each processor begins execution with a private
input value, runs for some number of rounds, and then halts with a private output value
satisfying problem-specific constraints. Consensus is an example of a decision task. By
contrast, aconcurrent object is a long-lived data structure that can be simultaneously
accessed by multiple processors. A concurrent object implementation iswait-free if
any nonfaulty processor can complete any operation on the object in a finite number
of steps, even if other processors crash at arbitrary points in their protocols. A shared
FIFO queue is an example of a concurrent object.

Strong renaming is a decision task in which processors start with input bits indicat-
ing whether to participate in the protocol, and participating processors must choose
unique names in the range� � � � c, wherec is the number of participating proces-
sors. A weaker form of this task has been extensively studied in asynchronous mod-
els [ABND�87, ABND�90, HS93]. Any protocol for strong renaming can be used
to break order-equivalence, so a logarithmic lower bound is immediate. This bound is
tight: we give a nontrivial protocol that solves strong renaming inO�log c� rounds.

Our lower bound on order-equivalence also translates into a lower bound on a vari-
ety of wait-free concurrent object implementations. For example, anincrement register
is a concurrent object consisting of an integer-valued register with anincrement oper-
ation that atomically increments the register and returns its previous value. Because
we can use an increment register to break order-equivalence, the��log c� lower bound
for order-inequivalence translates directly into an��log c� lower bound on any wait-
free implementation of theincrement operation. This bound is also tight: we give a
nontrivial wait-free increment register implementation in which eachincrement halts
in O�log c� rounds, wherec is the number of concurrently executing increment opera-
tions.

Our increment register construction is interesting in its own right, since it is based

3

on our optimal solution to the strong renaming problem. In general, implementing
long-lived objects is inherently more difficult than solving decision tasks. A decision
task is solved once, while operations can be invoked on an object repeatedly. Even
worse, processors solving a decision task start together, while processors invoking op-
erations on an object can arrive at different and unpredictable times. The major techni-
cal difficulty in our register construction is how to guarantee that increment operations
starting at different times do not interfere.

The rest of this paper is organized as follows. In Section 2 we define our model
of computation. In Section 3, we define formally what we mean by order-equivalence
of processors and present the matchinglog c lower and upper bounds for the problem.
In Section 4, we define the strong renaming problem. We then reduce the problem of
eliminating order-equivalence to the strong renaming problem, thus obtaining thelog c
lower bound for strong renaming. We then show that this bound is actually tight with
an efficient strong renaming algorithm. In Section 5 we define concurrent objects and
their implementation. We then reduce the problem of eliminating order-equivalence to
the problem of implementing several concurrent objects, thus obtaining the samelog c
lower bound on the complexity of these concurrent objects. Finally we give our opti-
mal wait-free implementation of an increment register, based on the strong renaming
algorithm. We close with a discussion of some open problems in Section 6.

2 Model

Our model of computation is a synchronous, message-passing model with crash fail-
ures. It is similar to the models used in a number of other papers [MT88, HM90, HF89].

A system consists ofn unreliableprocessors p�� � � � � pn and an externalenviron-
ment e. We usen to denote the total number of processors in the system, andc to
denote the number of these processors that actually participate in a protocol like strong
renaming or access a concurrent object like an increment register. Each processor
has a unique processor id taken from some totally-ordered set of processor ids. Each
processor can send a message to any other processor and to the environment. The
environment can send to any processor a message taken from some set of messages
(including� to denote “no input”). Each processor has access to aglobal clock that
starts at� and advances in increments of�. Computation proceeds in a sequence of
rounds, with roundk lasting from timek � � to timek on the global clock. In each
round, each processor receives some message (possibly�) from the environment, then
it sends messages to other processors (including itself) and the environment, then it
receives the messages sent to it by processors in that round, and then it changes state
and enters the next round. Communication is reliable: a message sent in a round is
guaranteed to be delivered in that round. Processors are not reliable: a processor can
crash or fail at any time by just halting in the middle of a round after sending some
subset of its messages for that round.

A global state is a tuple�s�� � � � � sn� se� of local states, one local statesi for each
processorpi and one local statese for the environment. Thelocal state for proces-
sorpi includes the time on the global clock, its processor id, the history of messages
it has received from the environment, and the history of messages it has received from

4 2 MODEL

other processors. The local state for the environment may contain similar information,
but it certainly contains the sequence of messages it has sent to processors in the sys-
tem, the pattern of failures exhibited by processors, and any other relevant information
that cannot be deduced from processors’ local states. Anexecution e is an infinite
sequenceg�g� � � � of global states, wheregi is the global state at timei.

Processors follow a deterministicprotocol that determines what messages to send
to processors and the environment during a round as a function of its local state. A
processor follows its protocol in every round, except that a processor maycrash or
fail in the middle of a round. Ifpi fails in roundk, then it sends all messages in
roundsj � k as required by the protocol, it sends a proper subset of its messages in
roundk, and it sends no messages in roundsj � k. A processor is consideredfaulty in
an execution if it fails in some round of that execution, andnonfaulty otherwise.

Without loss of generality, we can assume that processors follow afull-information
protocol in which processors broadcast their entire local state to every processor (in-
cluding itself) in every round, and apply amessage function to their local states to
determine what message to send to the environment in every round. Given the state
of a processor in the full-information protocol, this state contains enough information
for us to compute the processor’s state at the corresponding point of any other proto-
col [FL87, MT88].

Also without loss of generality, since processors broadcast their entire local state in
every round, we can assume that thelocal state of a processor is a LISP S-expression
defined as follows. Let us fix some totally-ordered setI of processor ids, some setS
of initial states, some setM of messages from the environment (including�), and
some setN of messages from the processors to the environment. The initial state for
a processor with processor idp starting in initial states with initial input m from the
environment is written�p m s�. Later states are written�p m m� m� � � � mk�,
wherep is the processor id,m is the input received from the environment at the start
of the current round, andm� � � �mk is the set of messages received from processors
during the last round (includingp itself) sorted by processor id. The messagesm i are
themselves S-expressions representing the states of the sending processors at the start
of the round, includingp’s local state. Notice that while processors send S-expressions
to each other, they still send messages from a fixed set to the environment: the message
function maps a processor’s local state to a message inN that the processor sends
to the environment in that round. Again, we can assume processor states have such
a special representation since from such a description of a processor’s state we can
reconstruct the value of every variablev appearing in the actual state [FL87, MT88].
All of the protocols in this paper are stated using an Algol-like notation for the sake of
convenience, but their translation into this model is straight-forward.

For any given protocol, an execution of the protocol is completely determined by
the processor ids, the initial states, the inputs received from the environment, and the
pattern of processor failures during the execution. We define anenvironment graph
to be an infinite graph that records this information [MT88]. We define an environ-
ment graph to be a grid withn vertices in the vertical axis labeled with processor
namesp�� � � � pn — denoting physical processors and not their processor ids — and
with a countable number of vertices in the horizontal axis labeled with times�� �� �� � � �.
The node representing processorp at timei is denoted by the pairhp� ii. Given any pair

5

of processorsp andq and any roundi, there is an edge fromhp� i� �i to hq� ii if p suc-
cessfully sends a message toq in roundi, and the edge is missing otherwise. Each
nodehp� ii is labeled with the input received from the environment by processorp at
time i. In addition, each nodehp� �i is labeled withp’s processor id and initial state.
Since processors fail by crashing, an environment graph must satisfy the following
property: if k is the least integer such that an edge is missing fromhp� ki, then no
edges are missing fromhp� ji for all j � k and all edges are missing fromhp� ji for
all j � k. An environment graph must also satisfy the property that every processor
starts with a unique processor id. Given a setS of processor initial states, a setI of
processor ids, and a setM of environment messages, we defineE�S� I�M� to be the
set of all such environment graphs labeled with initial states inS, processor ids inI ,
and messages from the environment inM .

We define thelocal state of the environment at timek to be the finite prefix of an
environment graph describing the processor inputs and failures at times� throughk,
and we require that the local states of the environment in an execution be prefixes of
the same environment graph. We define anenvironment to be a set of environment
graphs. We will typically consider environments of the formE�S� I�M�, or simple
restrictions of such environments. For example, in the context of decision problems
like consensus, we might consider an environment in which each processor receives
a message from the environment (the processor’s input bit) at time 0 and at no later
time. Given a protocolP and an environmentE , we defineP �E� to be the set of all
executions ofP in the context of the environment graphs inE .

3 Order-equivalence

In this section, we show that a logarithmic number of rounds is a necessary and suffi-
cient amount of time for comparison-based protocols to reach order-inequivalent states.
We begin with the definitions of comparison-based protocols and order-equivalent
states. Both definitions are based on the assumption that the set of processor ids is
a totally-ordered set, meaning that it is possible to test processor ids for relative order,
but that it is not possible to examine the structure of ids in any more detail.

Informally, two states are order-equivalent if they cannot be distinguished by com-
paring the processor ids that appear within them. Remember that a processor state
is represented by an S-expression in our model. A processor’s initial state is written
as�p m s�, wherep is a processor id,m is a message from the environment, ands
is an initial state. Later states are written�p m m� m� � � � mk�, wherep is a pro-
cessor id,m is a message from the environment,m� � � �mk is some set of messages
(S-expressions representing local states) received from processors during the last round
and all sorted by processor id. Loosely speaking, two processor statess ands � are
equivalent if (i) they are structurally equivalent S-expressions, (ii) initial states from
corresponding positions ins ands � are identical, (iii) messages from the environment
from corresponding positions ins ands � are identical, and (iv) if two idsp andq taken
froms satisfyp � q, then the two idsp� andq� taken from corresponding positions ofs �

satisfyp� � q�. Intuitively, a processor cannot distinguish equivalent states simply by
comparing processor ids: if a processor tries to learn something about its local state by

6 3 ORDER-EQUIVALENCE

sequentially testing pairs of ids appearing within that state for relative order, then this
sequence of tests will yield the same results when applied to any other equivalent state.

Formally, a one-to-one function� from one totally ordered set to another isorder-
preserving if p � q implies��p� � ��q�. Any such� can be extended to S-expressions
representing processor states by defining��p m s� � ���p� m s� and

��p m m� � � � mk� � ���p� m ��m�� � � � ��mk���

Two processor states areorder-equivalent if there exists an order-preserving func-
tion � mapping one to the other, andorder-inequivalent otherwise. A protocol is a
comparison-based protocol if the message function choosing the message inN that a
processor is to send to the environment maps order-equivalent states to the same mes-
sage.

3.1 Lower bound

First let us prove that every comparison-based protocol has an execution in which pro-
cessors remain in order-equivalent states for a logarithmic number of rounds.

Given a protocolP , the larger the environmentE — the more environment graphsE
contains — the larger the setP �E� of executions ofP in this environment, and the
more likely the setP �E� contains a long execution. To make our lower bound as
widely applicable as possible, we now define the smallest environmentF for which
we can prove the existence of the long execution. A processor isactive in round r
in an environment graph (or an execution) if it sends at least one message in roundr,
and a processor isactive if it is active in any round (and, in particular, if it is active
in round 1). Given a setS of processor initial states, a setI of processor ids, and a
setM of environment messages, defineF�S� I�M� to be the subset of all environment
graphs inE�S� I�M� satisfying the condition that (i) each active processor starts with
the same initial state fromS and the same environment message fromM , and (ii) each
active processor receives� (representing no input) from the environment at every time
after time 0.

In such an environment, the long executions of a comparison-based protocol are the
ones in which the processors fail according to asandwich failure pattern in every round.
This failure pattern is defined as follows. Suppose processors with idsq�� � � � � qu
have not failed at the start of a round, and supposeu � �v � � for some integerv.
(The sandwich failure pattern can always fail the one or two processors with lowest
ids at the beginning of the round and pretend they don’t exist.) The sandwich fail-
ure pattern causes thev processorsq�� � � � � qv with the lowest ids and thev proces-
sorsq�v��� � � � � q�v�� with the highest ids to fail in the following way: each proces-
sorqv�j � fqv��� � � � � q�v��g receives messages only from processorsqj � � � � � q�v�j .
Notice that each such processorqv�j sees�v�� active processors, and sees its rank in
this set of active processors asv��. Notice also that the active processors after a round
of the sandwich failure pattern is always a consecutive subsequence of processors from
the middle of the sequence of active processors at the beginning of the round. Using
this failure pattern, we can prove our lower bound:

3.2 Order-equivalence elimination algorithm 7

Proposition 1: Let P be a comparison-based protocol, and letE be an environment
containing an environment of the formF�S� I�M�. For everyc � n, there is an
execution inP �E� with c active processors in which the nonfaulty processors remain
order-equivalent for��log� c� rounds.

Proof: Let G be an environment graph inF�S� I�M� � E with the sandwich fail-
ure pattern and withc active processors with idsq�� � � � � qc. Each active processor
starts with the same initial states � S and the same environment inputm � M , and
receives� from the environment at all times after time 0. Notice that the sandwich fail-
ure pattern fails roughly��� of the active processors, leaving roughly��� remaining
active in the next round. A simple analysis shows that if� � log� c, then the num-
ber�v � � of processors remaining at the end of round� is at least four. We claim that
if � � log� c, then after� rounds of the sandwich failure pattern the statess i andsj
of processorsqi andqj are related by an order-preserving function� j�i defined as
follows. For all integersd, the function�d�qi� � qi�d is defined for� � i � c � d
whend � � and for�d � � � i � c whend � �. We claim that�j�i�si� � sj . We
proceed by induction on�.

The result is immediate for� � � since eachqi’s initial state is�qi m s�, and

�j�i�qi m s� � ��j�i�qi� m s� � �qj m s��

For � � �, suppose the hypothesis is true for� � �. Consider the�v � � processors
that are active in round�. Since the active processors at the beginning of round� are a
consecutive subsequence ofq�� � � � � qc, suppose they areqa��� � � � � qb. By the induction
hypothesis for�� �, the statesSa��� � � � � Sb these processors have at the beginning of
the round are related by�j�i�Si� � Sj . Notice that at the end of the round, due to the
sandwich failure pattern in that round, the active processors areq a�v��� � � � � qb�v , and
that the state of processorqa�v�i is

�qa�v�i � Sa�i � � � Sa��v�i�

and the state of processorqa�v�j is

�qa�v�j � Sa�j � � � Sa��v�j�

It is easy to see that�j�i maps the state ofqa�v�i to qa�v�j , as desired.

3.2 Order-equivalence elimination algorithm

Now let us prove that this lower bound is tight. There is a simple algorithm that forces
all processors into order-inequivalent states in a logarithmic number of rounds:

Proposition 2: There exists a protocol that leaves all nonfaulty processors in order-
inequivalent states afterO�log c� rounds, wherec is the number of active processors in
the execution.

Proof: Here is a comparison-based algorithm that causes nonfaulty processors to choose
distinct sequences of integers after a logarithmic number of rounds. In each round,

8 4 DECISION PROBLEMS

each processor broadcasts its id and the sequence of integers constructed so far. Two
processorscollide in a round if they broadcast identical sequences in that round. In
round 1, a processor with idp broadcasts�p� ��, and hence all processors collide ini-
tially with the empty sequence�. Let �p� i� � � � ik��� be the messagep broadcast at
roundk, and letik be the number of processors with ids less thanp thatp hears from
and that collide withp in roundk. In roundk � �, p broadcasts�p� i � � � � ik�. Each
processor halts when it does not hear from any colliding processor. As an example,
suppose thatp� fails in round 1 by sending a message top� but not top�. Thenp�
receives�pi� �� from p�� p�� p�� p� andp� receives�pi� �� from p�� p�� p�, so bothp�
andp� will consider its rank in the processors it hears from in round 1 to be 3, both
will broadcast�pi� �� in round 2, and both will collide again at the end of round 2.

We claim that the size of maximal sets of colliding processors must shrink by ap-
proximately half with each round, yielding anO�log c� running time. Two processors
that broadcast different sequences continue to do so, so the set of processors that col-
lide with p at roundk is a subset of the processors that collided withp at earlier rounds.
Consider a maximal setS of processors that collide in roundk; that is, a set of� pro-
cessors that do not fail in roundk � � and broadcast the same sequencei � � � � ik��
in roundk. Let p be the lowest processor in that set, and letq be the highest. Since
processors inS do not fail in roundk � �, processorq must hear from each of the�
processors inS in roundk � �. Since these processors collide withq in roundk, they
must collide withq in roundk � � as well, soq must count at least� � � colliding
processors with lower ids that broadcast the sequencei� � � � ik�� in roundk � �. It
follows that ik�� � � � � for processorq. Sincep andq collide at roundk, they
broadcast the same value forik�� in roundk, so ik�� � � � � for processorp as
well. Therefore, processorp must see at least�� � colliding processors with lower ids
broadcasting the sequencei� � � � ik�� in roundk � �, none of which are inS (sincep
is the processor with smallest id inS). Hence at least��� � processors broadcast the
sequencei� � � � ik�� in roundk � � and collide withp andq in roundk � �, implying
that the number of processors colliding withp andq has shrunk from at least�� � �
to � in one round, which is a reduction by a factor of�.

Since the logarithmic bounds are tight, these results show that the logarithmic
bounds are the best possible bounds that can be obtained in this model using the notion
of order-equivalence. In the remainder of this paper, we will show that this logarithmic
lower bound can be used to prove logarithmic lower bounds for decision problems like
strong renaming and concurrent objects like increment registers. Since this logarithmic
bound is tight for order-equivalence, these results show, for example, that if operations
on objects such as stacks or queues require more than a logarithmic number of rounds,
then this additional complexity cannot be an artifact of the comparison model, but must
somehow be inherent in the semantics of the objects themselves.

4 Decision problems

We can use the lower bound on order equivalence to prove lower bounds for decision
problems. For example, consider the problem ofstrong renaming defined as follows.
Each processor has a unique id taken from a totally-ordered set of ids. At the start

4.1 Lower bound 9

of the protocol, each processor is in a distinguished initial state and receives a single
bit from the environment, either 0 or 1 meaning “don’t participate” or “participate,”
respectively. At the end of the protocol, each participating processor sends an integer
to the environment. A protocol solves the strong renaming problem if each nonfaulty
participating processor sends a distinct integer fromf�� � � � � cg to the environment at
the end of every execution in which at mostn � � processors fail, wherec � n is the
number of participating processors.

4.1 Lower bound

The logarithmic lower bound for strong renaming follows quickly from the lower
bound for order-inequivalence:

Proposition 3: Any comparison-basedprotocol for strong renaming requires��log � c�
rounds of communication, wherec is the number of participating processors.

Proof: Let P be a comparison-based protocol for strong renaming. According to the
definition of strong renaming, each processor has a unique id from a totally-ordered
setI , each processor starts in the same initial states, and each processor receives a
bit in f�� �g from the environment. Consequently, the environmentE for this problem
includes the environmentF�fsg� I� f�g� consisting of environment graphs in which
all active processors start with the same states and all active processors start with the
same participation bit 1. In this environment, the active processors are precisely the
participating processors.

Since each processor terminates by sending a different integer to the environment,
and since the message function of a comparison-based protocol — the function com-
puting the messages processors send to the environment — must be the same in order-
equivalent states, the processors must end the protocol in order-inequivalent states.
By Proposition 1, for everyc � n, there must be some execution ofP in P �E� in
which thec active (and hence participating) processors are still order-equivalent af-
ter ��log� c� rounds. Consequently, for everyc � n, there must be some execution
of P that requires��log� c� rounds.

Lower bounds for other decision problems like order-preserving renaming can also
be proven using the same technique.

4.2 Strong renaming algorithm

The logarithmic lower bound for strong renaming is tight, because there is a simple
algorithm solving strong renaming in a logarithmic number of rounds. The algorithm
is given in Figure 1.

The basic idea is that if a processorp hears of�b other participating processors, then
it chooses ab-bit name for itself one bit at a time, starting with the high-order bit and
working down to the low-order bit. Every round,p sends an intervalI containing the
names it is willing to choose from. On the first round, when the processor has not yet
chosen any of the leading bits in its name, it sends the entire interval	�� � b
. It sets its
high-order bit to 0 if it finds it is in the bottom half of the set of processors it hears from

10 4 DECISION PROBLEMS

definerank�s� S� � jfs� � S � s� � sgj
definebot�S� � fs � S � rank�s� S� � jSj��g
definetop�S� � S � bot�S�
definebot�S� k� � fs� � S � rank�s�� S� � k��g

broadcastp
P � fp� � p� receivedg
b� dlog jPje
I � 	�� �b

repeat
broadcast�p� I�
I � fI � � �p�� I �� received andI � I � 	�
g
P � fp� � �p�� I �� received andI � I � 	�
g
if I � � I for everyI � � I then

if p � bot�P � jI j�
thenI � bot�I�
elseI � top�I�

until jI �j � � for all I � � fI � � �p�� I �� receivedg

returna, whereI � 	a� a

Figure 1: Alog c renaming protocolA for processorp.

interested in names from the interval	�� �b
, and to 1 if it finds itself in the top half. In
the first case it sends the interval	�� �b��
, and in the second it sends	�b�� � �� �b
.
In order to make an accurate prediction of the behavior of processors interested in
names in its intervalI , however, it must wait until every processor interested in names
in I is interestedonly in names inI before choosing its bit and splitting its interval in
half; that is, it must wait until its intervalI is maximal among the intervals intersect-
ing I . Continuing in this way, the processor chooses each bit in its name, and continues
broadcasting its name until all processors have chosen their name.

There are a few useful observations about the intervals processors send during
this algorithm. The first is that if processorp sends the intervalIk during roundk,
then Ik � Ik� for all later roundsk � � k. The second is that each intervalIk is
of a very particular form; namely, every interval sent during an execution ofA is of
the form 	d�j � �� d�j � �j
 for some constantd. This is easy to see since the first
intervalI� a processor sends (in round 2) is of the form	�� � b
, and every succeeding
intervalIk is eitherIk�� or of the formtop�Ik��� or bot�Ik��� (as defined in Figure 1).
We say that an intervalI is awell-formed interval if it is of the form	d�j ��� d�j ��j

for some constantd. It is easy to see that any two well-formed intervals are either
distinct, or one is contained in the other. Notice that every well-formed intervalI is
properly contained in a unique minimal, well-formed interval�I � I . Furthermore,
eitherI � top� �I� or I � bot� �I�, and it is the low-order bit of the constantd that tells

4.2 Strong renaming algorithm 11

us which is the case. We define the operator�I that maps a well-formed intervalI to the
unique minimal, well-formed interval�I properly containingI .

In every round of the algorithm, a processorp computes the setP of processors
with intervalsI � intersecting its current intervalI . These processors inP are the pro-
cessorsp is competing with for names inI . Whenp sees that its intervalI is a maximal
interval (that is, all intervalsI � received byp that intersectI are actually contained inI),
processorp adjusts its setI to eitherbot�I� or top�I�. Our first lemma essentially says
that whenp replacesI with bot�I� or top�I�, there are enough names inI to assign a
name fromI to every competing processor. Furthermore, this lemma shows that when
a processor’s interval reduces to a singleton set, then this processor no longer has any
competitors for that name.

Lemma 4: Supposep sends intervalI during roundk � �. If P is the set of processors
sending an intervalI � � I during roundk, thenjP j � jI j.

Proof: We consider two cases:I � bot� �I� andI � top� �I�.
First, supposeI � bot� �I�. Consider the greatest processorq (possiblyp itself) inP .

Processorq sent an intervalJk � I to p in roundk, so consider the first round� � k
in whichq sent some intervalJ � I to any processor (and hence top).

If � � �, thenJ is of the form	�� �b
, where�b is an upper bound on the number
of processorsq heard from in round�, and hence on the number of active processors
in roundk � �, and therefore onjP j, the number of processors sending intervals
contained inI in roundk. It follows thatjP j � �b � jJ j � jI j.

If � � �, thenq sentJ � I in round�, andq sent a larger interval�J 	� I in
round�� �, since� is the first round thatq sent an interval contained inI . In fact, we
must haveJ � I and �J � �I , for if J I then �J � I and� is not the first round thatq
sent an interval contained inI , a contradiction. LetP be the set of processors sending
an interval intersecting�I to q in round� � �. Since every processorp � � P sending
an intervalI � � I to p in roundk must also send an interval intersecting�I to q in
round���, each of these processors must be contained inP , and henceP � P . Sinceq
sent�I in round��� andI � bot� �I� in round�, it must be the case thatq � bot�P � j �Ij�
at the end of round� � �. SinceP � P and sinceq is the greatest processor inP , it
must be the case thatP � bot�P � j �I j�. It follows thatjP j � j�I j�� � jI j, as desired.

Now, supposeI � top� �I�. The proof in this case is similar to the proof whenI �
bot��I�, except thatq is now taken to be theleast processor inP .

Our second lemma shows that when a processorp selects an intervalI � 	a� b
,
there are enough participating processors to use up the names�� � � � � a. In particular,
whenp’s interval becomes the singleton set	a� a
, then there are at leasta participating
processors, and hencea is a valid name forp to choose. We say that a processorholds
an interval	a� b
 during a round if	a� b
 is its interval at the beginning of the round, and
hence the interval it sends during that round (if it sends any interval at all).

Lemma 5: If I � 	a� b
 is a maximal interval received by some processorp during
roundk, then there are at leasta � � processors that either hold an interval	a �� b�

with b� � a during roundk or fail to send top in roundk.

12 4 DECISION PROBLEMS

Proof: We proceed by induction onk.
Supposek � �. This is the first round that any processor sends any interval, soI

must be of the form	�� �b
, and it is vacuously true that at least� processors fail to
send top in round�. Now supposek � �, and suppose the induction hypothesis holds
for k� � k.

SupposeI � bot� �I�. Processorp receivedI in roundk, so consider any processorq
that sentI during roundk, and consider the first roundk � � k in which q sentI .
If k� � �, thenI is of the form	�� �b
, and it is vacuously true that� processors fail to
send top, so supposek � � �. In this case,q must send�I during roundk � � � andI
during roundk �, and the fact thatq splits down at the end of roundk ��� implies that�I
is a maximal interval received byq during roundk � � �.

Since intervalsI and �I have the same lower bounda, the induction hypothesis
for k� � � � k � � implies that there are at leasta � � processors that either hold an
interval	a�� b�
 with b� � a during roundk ��� or fail to send toq in roundk ���. Since
each processor that holds an interval	a �� b�
 in roundk ���must hold an interval	a��� b��

contained in	a�� b�
 in roundk or fail to send top in roundk, and since each processor
that fails to send toq in roundk � � � must fail to send top in roundk, it follows that
there are at leasta� � processors that either hold an interval	a ��� b��
 with b�� � b� � a
in roundk or fail to send top in roundk.

SupposeI � top� �I�. Let q be the smallest processor ever sendingI during the
execution. The intervalI is not the interval thatq sent in round 2 — the first round in
which any processor sends any interval — because in that roundq sent an interval of
the form	�� �b
, which is not of the formtop� �I�. SinceI is a maximal interval received
by p in roundk, it follows thatq must have sent the intervalI for the first time in some
roundk� � k and the interval�I � 	�a� b
 in roundk � � �. Sinceq changed intervals
between roundk ��� andk�, the interval�I must be a maximal interval received byq in
roundk�� �. By the induction hypothesis there are at least�a� � processors that either
hold an interval	a�� b�
with b� � �a during roundk ��� or fail to send toq in roundk ���,
and all of these processors must either hold an interval	a �� b�
 with b� � �a � a in
roundk or fail to send top in roundk. Sinceq changed its interval from�I � 	�a� b

to I � top� �I� � 	a� b
 at the end of roundk � � �, there are at leasta� �a � j�I j��
processorsq� � q sending an interval contained in�I to q in roundk ���. None of these
processorsq� sending an interval in�I � 	�a� b
 to q in roundk �� � could have been one
of the�a� � processors that either held an interval	a �� b�
 with b� � �a in roundk � � �
or failed to send toq in roundk � � �. All of these processorsq � sending an interval
in �I � 	�a� b
 to q in roundk � � � must either send an interval inbot� �I� to p in roundk
or fail to send top in roundk, sinceI � top� �I� is a maximal interval received byp in
roundk, and sinceq � � q and we choseq to be the smallest processor ever sendingI
during the execution. It follows that at least��a� ��� �a� �a� � a� � processors hold
an interval	a�� b�
 with b� � a in roundk or fail to send top in roundk, and we are
done.

Finally, since the algorithm terminates when every processor’s interval is a single-
ton set, and since the size of the maximal interval sent during a round decreases by a
factor of 2 in every round, it is easy to prove that the algorithmA terminates inlog c
rounds.

4.2 Strong renaming algorithm 13

Lemma 6: The algorithmA terminates inlog c � � rounds, wherec is the number of
participating processors.

Proof: Consider an arbitrary execution ofA. For each roundk, let � k be the size of the
largest interval sent during roundk.

Consider roundk � �. In this round, each processorp sends an interval of the
form 	�� �b
 where�b is the least power of two greater than or equal to the number of
processors that processorp heard from in round�. It follows that� � � �b � �c, for
someb, wherec is the number of participating processors.

Consider any roundk � � with �k�� � �. We claim that�k � �k����. Consider
any processor that holds an interval of size�k�� � � at the start of roundk � �, and
hence sends this interval in roundk� �. Since no interval sent in roundk � � is larger
than�k��, this processor must see that its interval is maximal at the end of roundk� �
and split its interval in half for the next round. Since this is true for every processor
sending an interval of size�k�� during roundk � �, and every processor sending a
smaller interval during roundk� � sends an interval of size at most�k����, it follows
that all processors send an interval of size at most�k���� in roundk, so�k � �k����.

Since�� � �c and�k � �k����, we have�k � ����
k�� � �c��k��. It follows

that�k � � within at mostk � log c�� rounds, at which time all intervals are of size�
and the processors can halt.

With these results, we are done:

Theorem 7: The algorithmA solves the strong renaming problem, and terminates in
log�c� � � rounds, wherec is the number of participating processors.

Proof: First, by Lemma 6, all processors choose a name and terminate inlog�c� � �
rounds, wherec is the number of participating processors.

Second, the names chosen by processors are distinct. Suppose two processorsp
andp� chose the namea at the end of roundsk andk � � k, respectively. Processorsp
andp� must have sent the singleton setI � 	a� a
 to all processors in roundsk andk �,
and intervals containingI in all preceding rounds. Sincep could not have terminated
in roundk unless all intervals it received were singletons, both processors must have
sentI � 	a� a
 in roundk. It follows by Lemma 4 that� � jI j � �, which is impossi-
ble.

Finally, names chosen are in the interval	�� c
, wherec is the number of participat-
ing processors. Consider the processorp choosing the highest namea chosen by any
processor, and consider the last roundk in which p sends the singleton setI � 	a� a

and terminates, returninga. All intervalsp receives in roundk must therefore be sin-
gleton sets. This implies thatI is a maximal interval received byp in roundk. It
follows by Lemma 5 that at leasta� � processors hold intervals	a �� b�
 with b� � a in
roundk or have failed, and hence that there are at leasta participating processors. This
implies thatc � a and all names are chosen in the interval	�� c
, as required.

14 5 WAIT-FREE OBJECTS

5 Wait-free objects

We can use the lower bound on order equivalence to prove lower bounds on the com-
plexity of wait-free implementations of concurrent objects. We can also prove that
this bound is tight in the case of a simple object called an increment register. The im-
plementation that we describe is very similar to the strong renaming algorithm in the
previous section. We start with some formal definitions.

An object is a data structure that can be accessed concurrently by all processors.
It has atype, which defines the set of possiblevalues the object can assume, and a set
of operations that provide the only means to access or modify the object. A processor
invokes an operation by sending aninvoke message to the object, and the operation
returns with a matchingresponse message from the object. Ahistory is a sequence
of invoke/response messages. Asequential history is a history in which every invoke
message is followed immediately by a matching response message, meaning that the
operations are invoked sequentially one after another. In addition to a type, an object
has asequential specification which is a set of all possible sequential histories describ-
ing the sequential behavior of the object. For example, anincrement register is just a
register with anincrement operation. The value of the register is a nonnegative integer.
Theincrement operation atomically increments the value of the register and returns the
previous value. The sequential behaviors for an increment register are the sequential
histories ofincrement operations returning integer values in order, such as�� �� �� � � �.

We are interested in concurrent implementations of such objects. To us, given an
objectO intended to be used byn processorsP�� � � � � Pn, an implementation ofO
will be a collection ofn processorsF�� � � � � Fn called front ends [Her91a] that pro-
cess the invocations fromP�� � � � � Pn and return the responses fromO. Intuitively, the
front endFi is just the procedure that processorPi calls to invoke an operation onO.
The front endFi receives the invocations fromPi and sends the responses fromO.
In our model, since we are only concerned with the implementation of objects (and
not their use), we assume that the front endsF�� � � � � Fn are really the system proces-
sorsp�� � � � � pn. We assume that the invoking processorsP�� � � � � Pn are part of the
external environmente, and we ignore them completely. With this in mind, we define
a history of a system to be the historyh obtained by projecting an execution of the
system onto the subsequence of invoke/response messages appearing in the execution.

The specification of an object’s concurrent behavior is defined in terms of its se-
quential specification. An object islinearizable [HW90] if each operation appears to
take effect instantaneously at some point between the operation’s invocation and re-
sponse. Linearizability implies that operations on the object appear to be interleaved at
the granularity of complete operations, and that the order of nonoverlapping operations
is preserved. An implementation is said to bewait-free if no front end is blocked by
the failure of other front ends. The precise definition of wait-free linearizable objects
is well-known [HW90], so we will not repeat it here.

We assume that any wait-free, linearizable implementation of an object can be ini-
tialized to any value defined by the type of the object. Specifically, we assume that
for every valuev in the type of an object, there is an initial processor states v with the
following property: if every processor begins in states v — with the possible exception
of the processors failing immediately at time 0 — then every execution from this initial

5.1 Lower bounds 15

state is linearizable to a sequential history in which the operations in the history are in-
voked sequentially on a copy of the object initialized to the valuev. This assumption is
valid, for example, for all concurrent objects implemented using the technique of state
machine replication [Lam78, Lam89, Sch87], which is the technique most commonly
used in message-passing models like ours.

5.1 Lower bounds

Our lower bound on order-equivalence can be used to prove lower bounds for a number
of concurrent objects. For example, anordered set S is an object whose value is some
subset of a totally ordered setT , with aninsert�a� operation that addsa � T to S and
a remove operation that removes minimum elementa � S from S and returnsa. As
the next result shows, we can use theremove operation from any implementation of
an ordered set to solve the order-equivalence problem, so the logarithmic lower bound
on order-equivalence implies the same lower bound for theremove operation of an
ordered set. Many interesting concurrent objects are special cases of an ordered set.
For example, an ordered set’sremove operation is just a special case of a stack’spop, a
queue’sdequeue, and a heap’smin. Consequently, the next result implies a logarithmic
lower bound for each of these operations as well.

Proposition 8: Given any comparison-based, wait-free, linearizable implementation
of an ordered set, theremove operation requires��log� c� rounds of communication,
wherec is the number of concurrent invocations of theremove operation.

Proof: Consider any such implementation of the ordered set. Consider any valueS
of the ordered set containing at leastn distinct values, wheren is the number of pro-
cessors in the system, and letsS be the initial processor state with the property that if
all processors start in statesS , then the object is initialized toS. The environmentE
for an ordered set certainly includes the environmentF�fsSg� I� fremoveg� consist-
ing of environment graphs in which all active processors start with the same statesS
and all active processors start with an invocation of theremove operation from the en-
vironment. In such an environment, the invoking processors are precisely the active
processors.

Each processor terminates by removing a distinct value from the set and return-
ing it to the environment by sending a distinct message to the environment. Since the
message function of a comparison-based protocol — the function choosing the mes-
sages fromN that processors send to the environment — must be the same in order-
equivalent states, the processors must end the protocol in order-inequivalent states. By
Proposition 1, for everyc � n, there must be some execution ofP in P �E� in which
thec active (and hence invoking) processors are still order-equivalent (and hence can-
not terminate) after��log� c� rounds.

As another example, consider theincrement register defined earlier in this section.
The value of an increment register is just a nonnegative integer. The increment register
provides anincrement operation that atomically increments the value of the register
and returns this new value. Since we can use theincrement operation to solve the
order equivalence problem, we can prove a logarithmic lower bound for theincrement
operation:

16 5 WAIT-FREE OBJECTS

Proposition 9: Given any comparison-based, wait-free, linearizable implementation
of an increment register, theincrement operation requires��log� c� rounds of commu-
nication, wherec is the number of concurrent invocations of theincrement operation.

Proof: Consider any such implementationS of an increment register. Lets � be the
initial processor state with the property that if every processor begins in states �, then
the register is initialized to 0. The environmentE for an increment register includes
the environmentF�fs�g� I� fincrementg� consisting of environment graphs in which
all active processors start with the same states� and all active processors start with an
invocation of theincrement operation from the environment. In this environment, the
active processors are the incrementing processors.

Each processor terminates by returning a distinct value to the environment. Since
the message function of a comparison-based protocol must send the same message
to the environment in order-equivalent states, the processors must end the protocol
in order-inequivalent states. By Proposition 1, for everyc � n, there must be some
execution ofP in P �E� in which thec active (and hence incrementing) processors are
still order-equivalent (and hence cannot terminate) after��log � c� rounds.

5.2 Increment register algorithm

In this section, we give the last major result of our paper: an optimal wait-free imple-
mentation of an increment register. It closely resembles our optimal strong renaming
algorithm, and proves that the logarithmic lower bound is tight.

A processorp can invoke an increment operation multiple times in a single execu-
tion, and each invocation can take multiple rounds to complete. We refer to the set of
increment operations invoked during roundk asgeneration k increments, and we refer
to the processors invoking these increments asgeneration k processors. We refer to the
rounds of a generation asphases, and we number the phases of generationk starting
with � so that phase� of generationk occurs during roundk � �.

Since a processorp can invoke the increment operation more than once, it identifies
itself during generationk with an ordered pairhp� ki called itsincrement processor id.
We assume each processorp maintains a setIncSet of all the increment processor ids
that it knows about, and continues to maintain this set in the background even when
it is not actually performing an increment operation. Every round, it broadcasts this
set to other processors, and merges the sets it receives from other processors into its
own set. For notational simplicity, however, since the generationk will always be clear
from context, we will frequently writep in place ofhp� ki. This setIncSet can also be
used to initialize the increment register. For the sake of simplicity, the implementation
we give assumes the register is initialized to 0, but it can be initialized to any value
as follows: in the initial processor statesi in which the increment register has been
initialized to the valuei, the setIncSet is initialized to contain phantom increment
ids hp��ii� hp��i� �i� � � � hp���i for some processor idp to simulatep’s previously
incrementing the registeri times.

Understanding our implementation requires understanding the notions ofranges,
intervals, splitting, andchopping, so let us begin with these concepts.

5.2 Increment register algorithm 17

p’s old
range

p’s new
rangeother ranges

0
1
2

3
4

5
6

7

8
9

ub

lb

previous
generations

current
generation

(a) Initial range. (b) Extending the range.

Figure 2: The range.

Ranges Our implementation has the property that increments in one generation are
effectively isolated from increments in other generations, in the sense that increments
in one generation can choose return values by communicating among themselves, ig-
noring increments in other generations. This isolation is achieved by partitioning the
return values into ranges.

As illustrated in Figure 2, each processorp maintains arange R � 	R�lb� R�ub
 of
return values. Initially, using the setIncSet of increment processor ids known top,
processorp sets its lower boundlb to the number of increments invoked by previous
generations, and its upper boundub to the total number of increments invoked by pre-
vious and current generations. Every phase, processorp exchanges ranges with other
processors in its generation, and extends its range by dropping its lower bound to the
smallest lower bound received from any of these processors.

Intuitively, by setting its initial lower bound tolb, processorp is reserving lower val-
uesv � lb as return values for increments in previous generations recorded inIncSet.
Later, if p hears that another processorq in the same generation set its initial lower
bound tolb� � lb, thenp knows some of these earlier increments have failed, sop
ceases to reserve return values for them and drops its lower bound tolb �.

Our algorithm guarantees that if a nonfaulty processor sets its upper bound toub,
then all processors in all later generations set their initial lower bounds tolb � ub,
so their lower bounds remain aboveub forever. In this sense, the upper bounds of
the nonfaulty processors partition the return values. Nonfaulty processors in different
generations have disjoint ranges, allowing them to ignore each other once their initial
ranges have been chosen.

Intervals and Splitting Given a rangeR of acceptable return values, however,p still
has to choose one of them to return. To do so, we modify the fundamental idea in the
optimal algorithm for strong renaming described in Section 4. The basic idea is that if
the values inp’s rangeR areb bits long, thenp chooses ab-bit value fromR one bit
at a time, starting with the high-order bit and working down to the low-order bit. To

18 5 WAIT-FREE OBJECTS

a
b
c
p
z

p’s value

0

2^k - 1

(a) Initial interval contains initial range. (b) Interval splits to the half containing p’s value.

Figure 3: The interval.

implement this idea, processorp maintains aninterval I � 	I�lb� I�ub
 of return values
that contains its rangeR (see Figure 3). The size of the interval is always a power
of �. Processorp’s initial interval is the smallest interval of the form	�� �k � �
 that
containsp’s initial range. During an increment, processorp repeatedly splits its interval
in half until the interval contains a single value, and this is the value thatp returns. It is
easy to see that all of the intervals generated byp are of the form	a� k� a�k���k���
 for
someb� k bit valuea, and such intervals are calledwell-formed intervals. Intuitively,
this interval represents the fact thatp has chosena as the high-orderb � k bits of its
return value, but must still choose the low-orderk bits.

The procedure thatp uses to split its interval in half is important (see Figure 3).
Every round, processorp exchanges intervals with other processors, andp maintains
a setC of all processors sendingp an interval intersecting its current intervalI . The
processors inC arep’s competitors since they include the processors considering re-
turn values inp’s range. To avoid returning the same value as one of its competitors,
processorp attempts to predict what values its competitors will choose. To predict ac-
curately, however,p must wait untilI is maximal among the intervals received from its
competitors; this means thatp’s competitors are considering only values inI . OnceI
is maximal,p assigns return values from its range to its competitors, starting at the bot-
tom of its range and assigning values to competitors in order of increasing processor
id. Eventually,p assigns a valuev to itself. Processorp then replacesI with its top
half top�I� or its bottom halfbot�I�—whichever half containsv—and then replaces
its rangeR with the intersection ofR and I . Continuing in this way every round,
processorp’s interval eventually contains a single valuev, at which pointp choosesv
but continues exchanging its interval with other processors until all processors in its
generation have chosen a value.

Chopping It is easy to see that the split operation is what gives rise to the algorithm’s
logarithmic nature: in any given round, a maximal interval is guaranteed to split in
half, so the size of the maximal intervals decreases by a factor of 2 with every round.
Unfortunately, this is logarithmic in the size of the initial interval, which can be as

5.2 Increment register algorithm 19

split

split

chop

Figure 4: Chopping.

large as the total number of increments ever invoked, and we want the algorithm to run
in time logarithmic in the number of concurrently executing increments. Fortunately,
we can speed up the algorithm dramatically by introducing a new operation called a
chop, illustrated in Figure 4. For example, ifp’s rangeR is just the top few values in
its intervalI , then it is clear thatp is going to split up repeatedly for many rounds. We
accelerate this splitting by allowingp to chop in a single round fromI up to the smallest
well-formed intervalI � containingR. We say thatp chops up in this case, and chopping
down is similar. Since chopping is just an accelerated form of splitting, processorp
must wait untilI is maximal among the intervals received from its competitors before
chopping. On the other hand, it is important that we do not allowp to split and chop in
the same round: ifp splits down and then immediately chops up to a smaller interval
containing its new range, then it runs the risk of chopping away the bottom of its
interval before learning that it can extend this range by dropping the lower bound, so it
runs the risk of reaching a state in which its interval and range are too small to assign
distinct values from its range to all of its competitors.

Algorithm With this, we have introduced the notions of ranges, intervals, splitting,
and chopping, and we can turn our attention to the increment register implementationI
itself. The main loop of the algorithm is given in Figure 5, the definitions of splitting
and chopping are given in Figure 6, and the definitions of some initialization steps are
given in Figure 7.

During the initial phases of generationk, an incrementing processorp starts by
adding its increment processor idhp� ki to IncSet; it exchangesIncSet with other
processors and uses the result to choose its initial rangeR as described above; it ex-
changesR with other processors, extendsR by dropping its lower bound as described
above, and uses the result to choose its initial interval. In all later phases, processorp

20 5 WAIT-FREE OBJECTS

begin /* a generation k increment by processor p */
initialize(); /* add <p,k> to IncSet */
phase0(); /* bcast IncSet, choose initial range R */
phase1(); /* bcast R, extend R, and

choose initial interval I */

repeat
broadcast <p,R,I,lb>
receive <p’,R’,I’,lb’> from generation k

processors p’

/* collect names and intervals of competitors */
C <- {p’:<p’,R’,I’,lb’> received and I’ intersects I}
N <- {I’:<p’,R’,I’,lb’> received and I’ intersects I}

/* extend range by dropping the lower bound */
R.lb <- lb <- min{lb’ : <p’,R’,I’,lb’> received}
R <- E <- R intersect I

/* E is used only in the proof */

if I is maximal in N then
if R is contained in either top(I) or bot(I)

then chop()
else split()

until |I’| = 1 for all I’ in N

v <- I.lb /* I = [v,v] */
return(v);

end.

Figure 5: The increment registerI.

exchanges its interval and range with other processors, extends its range if possible,
and splits or chops its interval and range whenever it finds that its interval is maximal
among its competitors. When processorp’s interval contains a single value, it contin-
ues broadcasting its interval and range until all competing intervals contain a single
value, thenp chooses its value and halts.

5.2.1 Correctness

Proving the correctness of this algorithm consists of proving two properties.
The first property we must prove is that given two nonoverlapping increments, the

value returned by the first is less than the value returned by the second. This will imply

5.2 Increment register algorithm 21

chop()
begin

I <- smallest well-formed interval containing R
end.

split()
begin

rank <- rank of p in C /* 0 is the lowest rank */
value <- R.lb + rank
if value in top(I) then
I.lb <- R.lb <- I.lb + |I|/2

else
I.ub <- R.ub <- I.ub - |I|/2

fi
end.

Figure 6: Chopping and splitting an interval.

that the implementation is linearizable. In fact, this is very easy to prove using the
observation that the ranges effectively isolate distinct generations, a fact mentioned
earlier in the discussion of ranges:

Lemma 10: Supposep and q are generationi and j processors returning valuesv
andw, respectively. Ifi � j, thenv � w.

Proof: Notice thatv is no higher thanp’s upper bound. Notice also thatp set its upper
bound tojIncSetj � � at the end of phase� of generationi, and then broadcast this
set to all processors in phase� of generationi. Sincei � j, phase� of generationi is
no later than phase� of generationj. Consequently, all generationj processors have
receivedIncSet before they set their lower bound at the end of phase� of generationj.
This means that no generationj processor will ever lower its lower bound belowp’s
upper bound. Sincew is aboveq’s lower bound, we havev � w.

For the second property, remember thatC is the set of competitors, and notice
that E (a history variable used only in the proof) is the extended range (the result
of dropping the lower bound of the real rangeR) that is used by a processor to as-
sign values to its competitors (including itself). The second property we must prove
is that jCj � jEj for every processorp in every phase. This invariant says thatp
can always assign distinct values fromE to its competitors. This will imply that the
algorithm terminates: whenever a processor finds that its interval is maximal, it can
assign itself a value and split or chop to a smaller interval containing this value. This
will also imply that distinct processors choose distinct values: ifp andq return the
same valuev, then at some point they both have the same extended rangeE consist-
ing of the single valuev and they both have a set of competitorsC includingp andq,
but jCj � � 	� � � jEj.

22 5 WAIT-FREE OBJECTS

initialize()
begin
k <- current round number /* choose generation */
p <- <processor id, k> /* choose id */
IncSet <- IncSet union {p} /* set of incrementors */

end.

phase0()
begin
broadcast <p,IncSet>
receive <p’,IncSet’> from all processors p’

IncSet <- union of all IncSet’ received
GenSet <- set of all processors p’ in IncSet with

generation k’ < k
R.ub <- |IncSet| - 1
R.lb <- lb <- |GenSet|

end.

phase1()
begin
broadcast <p,R,lb>
receive all <p’,R’,lb’>

R.lb <- lb <- min gen k lower bound lb’ received
I <- smallest well-formed interval containing R

end.

Figure 7: The initialization phases.

Proving thatjCj � jEj requires reasoning about the interactions between the splits
and chops performed by different processors in different phases, and we prove two
claims (Claims 13 and 14 below) about these interactions. Let us fix a generationk for
the rest of this section. We denote the values ofI andR broadcast byp during phaser
of an executione by Ie�p�r andRe�p�r, and we denote the values ofE andC held byp
at the end of phaser of executione by Ee�p�r andCe�p�r. We often omit subscripts
like e andp when they are clear from context.

We say thatp splits to I in phase i if p sends�I in phasei�� andI in phasei, wherep
changes from�I to I by splitting. We say thatp splits up or splits down depending
on whetherI � top� �I� or I � bot��I�. We say thatp chops into I in phase i if p
sends�J 	� I in phasei � � andJ � I in phasei, wherep changes from�J to J by
chopping. We say thatp chops up or chops down depending on whetherJ � top� �J�
or J � bot� �J�. Two simple properties about splitting and chopping are often useful.

5.2 Increment register algorithm 23

Fact 11: If p splits fromIi�� to Ii, then the upper bounds ofRi, Ei andIi, where
Ri � Ei � Ii, are equal ifp splits down, and the lower bounds are equal ifp splits up.

Fact 12: If p chops fromIi�� to Ii, then the upper bounds ofEi��, Ei, Ri, Ii��
andIi, whereEi�� � Ri � Ei � Ii Ii��, are equal ifp chops up, and the lower
bounds are equal ifp chops down.

The first property follows from the fact that the range spans the midpoint of the interval
during a split (so the split truncates the range and interval at the same point). The
second property follows from the fact that the initial range always spans the midpoint
of the initial interval, so a split must occur before a chop (and again the split truncates
the range and interval at the same point).

Reasoning about one processorp’s splitting and chopping usually involves reason-
ing about another processorq’s behavior in earlier phases. The first claim below argues
that whenever a processorp with intervalI has to find room for its competitorsC in
its extended rangeE, each of these competitors themselves had to find room forC in
their extended ranges when they split or chopped into the intervalI .

Claim 13: If Iq�j � Ip�i for somej � i, thenCq�j � Cp�i.

Proof: Let r be a processor inCp�i. This means that the intervalIr�i, sent byr to p
in phasei, intersectsIp�i. Sincej � i, the intervalIr�j , sent byr to q in phasej,
containsIr�i. Now, sinceIq�j containsIp�i, andIr�j containsIr�i, the fact thatIr�i
intersectsIp�i implies thatIr�j intersectsIq�j . Hence,r � Cq�j . It follows thatCp�i �
Cq�j .

The second claim we prove concerns the fact that a processorp may split to an
intervalI in an orderly sequence of splits while another processorq may chop intoI
in a chaotic interleaving of splits and chops. The claim states that the moment this
happens,p’s extended rangeE spans its entire intervalI from that moment on. This
means that if chopping complicates our analysis in one way, it simplifies our analysis
in another since we no longer have to be careful to distinguish between intervals and
ranges.

Claim 14: Supposep splits toI in phasei, and supposeq chops intoI in phasej.
If i � � andj � �, thenIp�� � Ep�� at the end of phase�.

Proof: Supposep splits down from�I to I , and letE bep’s extended range at the end
of phasei. Sincep split down, we know thatI�ub � E�ub by Fact 11. Since the
upper bounds ofIp�� andEp�� are still equal at the end of phase�, all we have left
to show is that their lower bounds are equal. First, notice thatq must have chopped
down and not up: this follows from the fact thatp split down from �I to I and the fact
that q chopped from�J 	� I to J � I . Let R be the rangeq sent together withJ
in phasej. According to Fact 12, the fact thatq chopped down from�J to J implies
thatR�lb � J�lb. Furthermore, the fact thatq chopped down from�J 	� I to J � I
implies thatJ�lb � I�lb. It follows thatR�lb � J�lb � I�lb. On the other hand,
sinceR�lb � I�lb � Ip���lb and sincep drops its lower bound every round, it follows
thatIp���lb � Ep���lb by the end of phase� � j.

24 5 WAIT-FREE OBJECTS

Supposep split up from �I to I , and letE be p’s extended range at the end of
phasei. Sincep split up, we know thatI�lb � E�lb by Fact 11, and we will now show
thatI�ub � E�ub as well. It will follow that I � E at the end of phasei, and hence
thatIp�� � Ep�� at the end of phase� � i. Suppose on the contrary thatE�ub � I�ub.
This means that the upper boundRp���ub of p’s phase 2 range is also less thanI�ub. It
follows thatRp���lb � I�lb, since otherwiseRp�� � I andp would have chosenI as its
initial interval—the smallest well-formed interval containingRp��—and not an interval
as large as�I . On the other hand, sinceq’s initial interval Iq�� containsq’s interval �J ,
and since�J�lb is underI�lb, we know thatIq���lb � �J�lb � I�lb. Thus,Rp���lb � I�lb
andIq���lb � I�lb, so we know thatq will drop its lower bound belowI�lb at the end
of phase�, and thatq’s lower bound will remain belowI�lb until q splits up to an
interval with a lower bound at or aboveI�lb. However, since�J�lb � I�lb, we know
that q’s lower bound is still belowI�lb at the end of phasej � �, so it is impossible
for q to have chopped up from an interval�J containingI in phasej�� to an intervalJ
contained inI in phasej, a contradiction.

These two claims give us the tools we need to prove thatjCj � jEj is an invariant.
We prove this invariant by defining the condition

I�: jCe�p�r j � jEe�p�r j in all executionse for all processorsp and generationk
phasesr � �� � � � � �,

and then proceeding by induction on� � � to prove thatI � holds for all �. Fix
some executione and processorp, and letI , R, E, andC denoteI e�p��, Re�p��, Ee�p��,
andCe�p��.

As the basis of our induction, we show that the invariant is true initially. We actually
prove two results. The first concerns the simple case wherep’s range contains some
other process’s initial range, and the second concerns the more common case wherep’s
interval (which is bigger than the range) contains some other process’s initial interval.

Claim 15: If R contains some processorq’s initial rangeRq��, thenjCj � jEj.

Proof: Let r be a processor inC. This means thatr sent an interval intersectingI
to p in phase�, and therefore thatr sent a message toq in phase�. Since the size
of Rq�� is exactly the number of processors sending toq in phase�, it follows that
jCj � jRq��j � jRj. Finally, jRj � jEj sinceR � E.

Claim 16: If I contains some processorq’s initial intervalIq��, thenjCj � jEj.

Proof: We will prove that eitherRp�� � R or Rq�� � R, depending onRp��’s upper
bound, and in either case we will be done by Claim 15.

SupposeRp���ub � I�lb. This case can never arise, since the upper bound ofp’s
range never increases, and sincep never splits or chops to an interval above its upper
bound.

SupposeRp���ub � I . If we also haveRp���lb � I , thenRp�� � I which im-
pliesRp�� � R and we are done, so suppose thatRp���lb � I�lb. In this case, we know
thatRq���lb � Rp���lb � I�lb sinceq lowers its lower bound toRp���lb or lower at
the end of phase 1 before choosing its new range and interval for phase 2. This means

5.2 Increment register algorithm 25

thatRq�� 	� I , but this in turn leads to the contradictionIq�� 	� I sinceRq�� � Iq��, so
this case can never arise.

SupposeRp���ub � I�ub. Since the upper bound ofp’s initial range is aboveI , we
know thatp has split down at least once, and hence thatR�ub � I�ub by Fact 11. Fur-
thermore, sincep lowered its lower bound toRq���lb or lower at the end of phase 1 be-
fore choosing its new range and interval for phase 2, we know thatp’s lower bound will
remainRq���lb or lower untilp splits up to an interval with a lower bound aboveR q���lb.
However, sinceRq�� � Rq�� � Iq�� � I , we have

R�ub � I�ub � Rq���ub � Rq���lb � R�lb�

soRq�� � R.

As for the inductive step itself, ifI does not contain the initial interval of any
processor, then all ofp’s competitors have split or chopped intoI . The next result
concerns the chopping case. It says that ifI is p’s interval and if any processorq
has chopped intoI at any time in the past—regardless of whetherp andq are now
competitors—then the invariant is preserved. It is a strong statement that chopping
quickly brings distinct intervals and ranges into synch.

Claim 17: SupposeI��� is true. If any processor has chopped intoI by phase�,
thenjCj � jEj.

Proof: SupposeI is p’s initial interval, or contains any other process’s initial interval.
Then we are done by Claim 16.

Supposep itself chops from�I to I in phasei � �. Sincep chopped its interval
from �I to I in phasei, it follows thatC � Cp�i�� by Claim 13. Sincep does not
split its interval in phasesi through�, we know thatEp�i�� � E. Consequently,
sincei � � � � � �, it follows from I��� that jCj � jCp�i��j � jEp�i��j � jEj, as
desired.

Supposep splits from �I to I , and that some other processorq chops from �J 	� I
toJ � I in some phasej � �. Sinceq chopped from�J toJ , it follows thatC � Cq�j��

by Claim 13. In addition, sinceq chopped from�J toJ , we know thatEq�j�� � J � I .
Finally, we know thatI � E by Claim 14 sincej � � � � � �. It therefore follows
from I��� thatjCj � jCq�j��j � jEq�j��j � jEj, as desired.

The difficult cases, therefore, are the cases in whichp and all its competitors split
from �I to I . The case of splitting down is easy, but the case of splitting up is difficult. In
fact, understanding how to choose and manipulate ranges to make the case of splitting
up go through is the most important way in which the increment register algorithm
differs from the strong renaming algorithm it is based on.

Claim 18: SupposeI��� is true. If p and all its competitors have split down toI by
phase�, thenjCj � jEj.

Proof: Let q be the greatest competitor inC. This means thatq is the greatest pro-
cessor to send an interval contained inI to p in phase�. Consider the phasej in
which q split from �I to I , and notice thatC � Cq�j�� by Claim 13. Sinceq is the

26 5 WAIT-FREE OBJECTS

greatest processor inC and sinceq split down from �I to I , processorq found that
all processors inC � Cq�j�� could choose distinct values from the bottom half of its
extended rangeEq�j��, where the bottom half of its extended range just happens to
beRq�j � I � Eq�j��. Consequently,jCj � jRq�j j. We will now show thatRq�j � E,
and it will follow that jCj � jEj, as desired. First, notice thatRq�j � Iq�j � I . Next,
notice thatI�ub � E�ub by Fact 11 sincep split down, soRq�j �ub � I�ub � E�ub.
Finally, notice thatj � � and thatp lowers its lower bound as much as possible every
phase, soE�lb � Rq�j �lb by the end of phase�. It follows thatRq�j � E as desired.

Finally, let us consider the tricky case of splitting up.

Claim 19: SupposeI��� is true. If p and all its competitors have split up toI by
phase�, thenjCj � jEj.

Proof: Let q be the least competitor inC. This means thatq is the least processor to
send an interval contained inI to p in phase�. Consider the phasesi � � andj � �
in whichp andq split up from �I to I , respectively. Notice that sincep andq split their
intervals at the ends of phasesi � � andj � �, Claim 13 implies thatC � Cp�i��

andC � Cq�j��.
Suppose thati � j (the case withj � i is similar, and easier). Lete � be the

execution differing frome only in that in each phasek � i � � of e � the processorsp
andq receive messages from exactly the same set of processors thatp receives messages
from in the corresponding phase ofe. Notice that this does not change the set of
messagesp receives in phasei� �, and hence does not change the fact thatp splits up
to I in phasei, but it might change the messages and splitting ofq.

First, consider the lower bounds of the extended ranges thatp andq use when they
decide to split up at the end of phasesi� � andj � � in e. At the end of phasei� �,
processorp first computes the lower boundlbe�p�i�� and then uses this lower bound to
set the lower bound of its extended rangeEe�p�i�� to the maximum oflbe�p�i�� and the
lower bound of�I . It then broadcastslbe�p�i�� to q in phasei � j � �. Consequently,
at the end of phasej � �, processorq setslbe�q�j�� to lbe�p�i�� or lower, and uses this
lower bound to set the lower bound of its extended rangeE e�q�j�� to the maximum
of lbe�q�j�� and the lower bound of�I . In other words,Ee�p�i���lb � Ee�q�j���lb.
In fact, the construction ofe� from e guarantees thatEe��q�i���lb � Ee��p�i���lb �
Ee�p�i���lb � Ee�q�j���lb.

Next, consider the set of competitors forp andq in e. It follows from Claim 13
thatCe�q�j�� � Ce�p�i��. In fact, from the construction ofe � from e, it follows that
C � Ce�q�j�� � Ce�p�i�� � Ce��p�i�� � Ce��q�i��.

The conclusion of this little exercise is that at the end of phasei � � in e � proces-
sor q’s lower bound is as high and its set of competitors is as large as at the end of
phasej � � in e. Sinceq splits up at the end of phasej � � in e, it will split up at
the end of phasei � � in e�, assuming its interval�I is maximal among the intervals
it receives ine�. It must be maximal, however, becauseq receives precisely the same
intervals in phasei� � of e� asp does, andp splits up. In fact,p andq assign the same
values to the same processors at the end of phasei � � of e �. It follows from I���
that p andq can assign distinct values fromEe��p�i�� andEe��q�i�� to all processors
in Ce��p�i�� � Ce��q�i��, and we have already argued that they do so in precisely the

5.2 Increment register algorithm 27

same way. Sinceq is the smallest processor inC � Ce��q�i�� andq splits up, this
means that bothp andq can find values for all processors inC in the top halves of their
extended ranges. Since the top half ofp’s extended range isE—remember that upper
bounds never change—it follows thatjCj � jEj, as desired.

Putting all of this together, we have our invariant:

Lemma 20: jCj � jEj.

Proof: We proceed by induction on� � � to prove thatI � is true for all�.
First suppose� � �. SinceIp�� itself is an initial interval contained inIp��, it

follows by Claim 16 thatjCp��j � jEp��j.
Now suppose� � � andI��� is true. IfI contains some process’s initial interval,

then we are done by Claim 16. If some processor chops intoI , then we are done by
Claim 17. If all processors split from�I to I , then we are done by Claims 18 and 19.

Using this invariant and Lemma 10 we can prove that our implementation is correct:

Theorem 21: I is a linearizable, wait-free implementation of an increment register.

Proof: First, notice that all nonfaulty processors choose a value. This follows from the
fact that, given any phasei of any generationk, all generationk intervals of maximal
size in phasei will either split or chop at the end of phasei or i � �, meaning that
the size of the maximal generationk interval decreases by a factor of at least two with
every two rounds. Thus, eventually all generationk processors will have intervals of
size 1 and choose a value.

Second, notice that two processors always return distinct values. Ifp andq are of
distinct generations, then the result follows by Lemma 10. Ifp andq are of the same
generation and both return the same valuev, then they both have the same extended
rangeE consisting of the single valuev and they both have the same set of competi-
torsC consisting ofp andq, but jCj � � 	� � � jEj, violating the invariantjCj � jEj.

Third, we need to show that ifp chooses the valuev, then there are at leastv � �
other processors ofp’s generation or earlier, which, if they decide, decide on values
belowv. Consider the highest upper boundU chosen by any processorq in p’s gener-
ation. There are at leastU processors ofp’s generation or earlier which, if they decide,
decide on values less than or equal toU . Therefore there are at leastv � � of these
processors which decide on valuesw � v if they decide at all.

Finally, it follows from Lemma 10 that the algorithm is linearizable.

5.2.2 Time complexity

We now show that increment operations halt inO�log c� rounds, wherec is the number
of concurrent operations. Technically speaking, a failed operation is concurrent with
(or overlaps) every following operation, soc can grow artificially large. Fortunately,
we can prove a tighter bound, depending on a set of concurrent operations that is gen-
erally a much smaller set.1 Our algorithm has the nice property that the invocation

1This does not mean that our algorithm runs faster than the��log c� worst-case lower bound, because
these two sets are equal in that single worst-case execution.

28 5 WAIT-FREE OBJECTS

of an increment operation delays at most one generation. If the invoking processor is
nonfaulty, then the increment delays its own generation. If the invoking processor is
faulty, then it may delay a later generation, but it will delay at most one. In fact, we
can identify exactly which generation an operation delays.

For each generationk, we define theactive set of processors, namely those proces-
sors or invocations that contribute to the generation’s running time. We show that the
largest range chosen by any generationk processor is bounded in size by the size of
the active set, and we show that a generation halts in time logarithmic in the size of
the largest range. From this it follows that all generationk increment operations halt in
time log ck, whereck is the size of the active set for generationk.

Active Sets We begin by definingactivek, the active set of processors for genera-
tion k.

Loosely speaking, the active set for generationk consists of all processors that
the “good” processors learn about for the first time in roundk. Remember that all
processors choose their initial range at the end of phase 0, exchange their ranges, and
then choose their initial intervals at the end of phase 1 based on the ranges they receive.
The “good” processors for generationk are the generationk processors that survive
these initialization phases and begin broadcasting intervals.

Let genk be the set of generationk processors. Formally, we definegoodk to be
the set of generationk processors that are nonfaulty in phases� and� of generationk
(that is, they do not fail in roundsk andk � �). For any good processorp, the set
of processors thatp has learned about in the firstk rounds is exactly the value of its
setIncSet at the end of roundk, which we denote byIncSetp�k. The setknownk of all
processors the good processors know about at the end of roundk is given by

knownk �
�

p�good
k

IncSetp�k�

and the setactivek of all processors that the good processors learn about for the first
time in roundk is

activek � knownk � knownk��

(where “�” denotes set difference).
It is clear that the set of known processors is nondecreasing:

Claim 22: knownk�� � knownk for all k.

Proof: If q � knownk��, thenq � IncSetp�k�� for somep � goodk��. This means
thatp survived phase� of generationk�� and successfully broadcast its setIncSetp�k��
to all processors in that phase. Since phase� of generationk � � is phase� of gener-
ationk, this means thatIncSetp�k�� � IncSetr�k at the end of phase 0 of generationk
for all good processorsr � goodk in generationk. Thus,q � IncSetp�k�� � knownk,
and it follows thatknownk�� � knownk.

Using this observation, we can show that the setactivek has two desirable proper-
ties: every nonfaulty generationk processor belongs toactive k, and every processor
belongs to at most one setactivek.

5.2 Increment register algorithm 29

Claim 23: goodk � activek for all k, andactivej � activek �
 for all j 	� k.

Proof: First, notice that ifp � goodk thenp is a generationk processor that survives
phase� of generationk and addsp to its own setIncSetp�k. Notice also that a gener-
ationk processor cannot appear in any setIncSetq�j for any generationj processorq,
wherej � k. It follows thatp � goodk impliesp � knownk � knownk�� � activek.

Next, the remainder of the claim follows immediately from the fact thatknown j �
knownk�� for all j � k � �, which follows from Claim 22.

Maximal Range For each generationk, we can bound the size of the ranges sent
by good processors withactivek. Since we are trying to bound the execution time of
generationk increments, we need only consider the ranges of the good processors,
since all other processors fail by the end of phase 1.

Consider the largest range a good processorp can send. Every processorp chooses
upper and lower boundsup andlp at the end of phase�, and then never raises its lower
bound without splitting or chopping up to a smaller interval and range. At any given
time, a processorp’s lower bound is the minimum of the lower boundsl q chosen by
some subset of the generationk processors. In the worst case, a good processorp’s
largest rangeRp�i is contained inmax rangek � 	lbk� ubk
, where

ubk � maxfup � p � goodkg

lbk � minflp � p � genkg

In other words,

Claim 24: Rp�i � max rangek for every good processorp � goodk and every phasei.

The next result shows that the size ofmax rangek is bounded by the size ofactivek,
and hence so is the size of any range used by any good processor in generationk.

Claim 25: jmax rangekj � jactivekj.

Proof: We prove thatjknownkj � ubk � � and thatjknownk��j � lbk, and it follows
that

jmax rangekj � ubk � lbk � �

� jknownkj � jknownk��j � jknownk � knownk��j � jactivekj

sinceknownk�� � knownk by Claim 22.
To provejknownkj � ubk � �, consider the good processorp � goodk with the

maximum upper boundup � ubk at the end of phase 0. Processorp choseup to
bejIncSetp�kj � � andIncSetp�k � knownk, sojknownkj � up � �.

To provejknownk��j � lbk, consider the processorp � genk with the minimum
lower boundlp � lbk at the end of phase 0. Since all good processorsg � goodk��

survive phases 0 and 1 of generationk � �, they all send their setsIncSet g�k�� to p
during roundk (that is, during phase 1 of generationk � �), so p has heard of all
processors inknownk�� before it sets its lower boundlp at the end of roundk (that is,
during phase 0 of generationk). Consequently,jknown k��j � lbk.

30 5 WAIT-FREE OBJECTS

Running Time Analysis For each generationk, we can bound the size of intervals
sent by good processors withmax rangek. Consider any telescoping chain

I� � I� � � � � � Il

of intervals sent during phase 2, whereI i strictly containsIi��, and suppose the se-
quence is of maximal length. SinceI� is maximal, we know that it will split in half
immediately at the end of phase 2, leavingI� � � � � � Il as a maximal chain. We
now prove that the size ofI� is roughly the size ofmax rangek. Since the size of the
maximal interval reduces by half in each round, the running time is clearly logarithmic
in the size of the largest interval, and it will follow that the running time is roughly
logarithmic injmax rangekj � jactivekj.

Claim 26: Given any sequence of intervalsI� � I� � � � � � Il sent in phase 2 of
generationk, we havejI�j � �jmax rangekj.

Proof: Since the intervalsIi in the chain are sent in phase 2, they are sent by good
processors ingoodk (processors surviving phases 0 and 1), and their rangesR i are
contained inmax rangek by Claim 24. The upper and lower boundsR��ub andR��lb
of R� are clearly in the top half and bottom half ofI�, respectively. SinceI� is strictly
contained inI�, we know thatI� is either in the top or bottom half ofI�. We consider
the two cases separately.

SupposeI� is in the top half ofI�. Then since the lower boundR��lb of R� at the
end of phase 1 is in the bottom half ofI�, the lower boundR��lb of R� will drop to
the bottom ofI� at the end of phase 2. Since the upper boundR��ub of R� is in the
top half ofI�, the rangeR� will span the bottom half ofI� by the end of phase 2. This
means thatjI�j � �jR�j � �jmax rangekj.

SupposeI� is in the bottom half ofI�. This means that at the end of phase�, the
lower boundR��lb ofR� is in the bottom half ofI�. At the end of phase 2, therefore, the
lower boundR��lb of R� will be in the bottom half ofI�. Since the upper boundR��ub
of R� is in the top half ofI�, it follows thatR� will span the top half ofI�:

jI�j � �jR�j � �jmax rangekj�

Combining these results, we are done:

Theorem 27: Every generationk increment operation completes withinO�log jactive kj�
rounds.

Proof: By Claim 26, after phase 2 starts, for every telescoping chain of intervals, the
set of active processors is guaranteed to be at least half of the size of the second interval
in the chain, so as soon as the first interval splits and chops (which will happen imme-
diately since it is immediately maximal), the chain will disappear in time logarithmic
in the number of active processors.

31

6 Conclusion

This paper represents an additional step toward understanding the round complexity
of problems in synchronous message-passing systems. We observed that as long as
processors remain in order-equivalent states, they cannot solve any problem that re-
quires processors to take distinct actions. We then showed that any comparison-based
protocol has an execution in which order-equivalence is preserved forlog c rounds
with c participating processors, and that this bound is tight. This lower bound on order-
inequivalence yields the best-known lower bounds for a variety of concurrent objects,
including increment registers, ordered sets, and related data types, as well as for deci-
sion tasks such as strong renaming.

We have also seen that this logarithmic bound separates protocols that can and
cannot solve nontrivial problems: we have seen examples of two nontrivial problems,
the strong renaming task and increment register objects, that have solutions with com-
plexity lying at exactly this boundary. These implementations are substantially more
efficient than anO�n� general-purpose algorithm using consensus, especially since the
degree of concurrencyc itself is typically much less thann, the total number of pro-
cessors.

A second interesting aspect of our construction is that our optimal increment reg-
ister implementation is based on our optimal solution to strong renaming, although
these two problems might seem quite different at first glance. Concurrent object imple-
mentations are usually more difficult than solutions to decision tasks. Unlike decision
tasks, where processors start simultaneously, compute for a while, and halt with their
outputs, concurrent objects have unbounded lifetimes during which they must handle
an arbitrary number of operations, these operations can be invoked at any time, and the
order in which operations are invoked is often important.

We can now draw a more complete picture of the complexity hierarchy for this
model. We have shown here that a logarithmic number of rounds is the minimal nec-
essary to solve nontrivial problems. It is known that a linear number of rounds is the
most needed to solve such problems (by reduction to consensus). In between, it is
known that thek-set agreement task [CHLT93] requiresbn�kc�� rounds, well above
the logarithmic lower bound for strong renaming, but less than then � � bound for
consensus. Little is known about other sublinear problems in this model.

Finally, we observe our lower bound on order-equivalence in the synchronous
model translates into a similar bound in the semi-synchronous model as well. In this
model, processors take steps at a rate bounded from above and below by constants, and
message delivery times vary between� andd. Our lower bound for order-inequivalence
translates into an immediate��d log c� lower bound in the semi-synchronous model.
It would be interesting to see if that bound could be improved.

Acknowledgments

Early versions of these results were originally published in [HT90] and [CT94]. We
thank three anonymous referees for their helpful and numerous comments on earlier

32 REFERENCES

drafts of this paper. The first author was supported in part by NSF grant CCR-93-
08103.

References

[ABND�87] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-
leg, and Rudiger Reischuk. Achievable cases in an asynchronous envi-
ronment. InProceedings of the 28th IEEE Symposium on Foundations
of Computer Science, pages 337–346, October 1987.

[ABND�90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger
Reischuk. Renaming in an asynchronous environment.Journal of the
ACM, July 1990.

[CHLT93] Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle. A
tight lower bound fork-set agreement. InProceedings of the 34th IEEE
Symposium on Foundations of Computer Science, pages 206–215. IEEE,
November 1993.

[CT94] Soma Chaudhuri and Mark R. Tuttle. Fast increment registers. In Ger-
ard Tel and Paul Vit´anyi, editors,Proceedings of the 8th International
Workshop on Distributed Algorithms, volume 857 ofLecture Notes in
Computer Science, pages 74–88. Springer-Verlag, Berlin, October 1994.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the
time to assure interactive consistency.Information Processing Letters,
14(4):183–186, June 1982.

[FL87] G.N. Frederickson and N.A. Lynch. Electing a leader in a synchronous
ring. Journal of the ACM, 34(1):98–115, January 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty processor.Journal of the
ACM, 32(2):374–382, 1985.

[Her91a] Maurice Herlihy. Randomized wait-free concurrent objects. InProceed-
ings of the 10th Annual ACM Symposium on Principles of Distributed
Computing, pages 11–22. ACM, August 1991.

[Her91b] Maurice P. Herlihy. Wait-free synchronization.ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.

[HF89] Joesph Y. Halpern and Ronald Fagin. Modelling knowledge and action
in distributed systems.Distributed Computing, 3(4):159–179, 1989.

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowl-
edge in a distributed environment.Journal of the ACM, 37(3):549–587,
July 1990.

REFERENCES 33

[HS93] Maurice P. Herlihy and Nir Shavit. The asynchronous computability
theorem for t-resilient tasks. InProceedings of the 25th ACM Symposium
on Theory of Computing, pages 111–120. ACM, May 1993.

[HT90] Maurice P. Herlihy and Mark R. Tuttle. Wait-free computation in
message-passing systems: Preliminary report. InProceedings of the 9th
Annual ACM Symposium on Principles of Distributed Computing, pages
347–362. ACM, August 1990.

[HW90] Maurice P. Herilhy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects.ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, July 1990.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, 21(7):558–564, July 1978.

[Lam89] Leslie Lamport. The part-time parliament. Technical Report 49, DEC
Systems Research Center, September 1989.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem.ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[MT88] Yoram Moses and Mark R. Tuttle. Programming simultaneous actions
using common knowledge.Algorithmica, 3(1):121–169, 1988.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agree-
ment in the presence of faults.Journal of the ACM, 27(2):228–234,
1980.

[Sch87] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. Technical report, Cornell University,
Computer Science Department, November 1987.

[SP89] E. Styer and G.L. Peterson. Tight bounds for shared memory symetric
mutual exclusion problems. InProceedings of the 8th Annual ACM Sym-
posium on Principles of Distributed Computing, pages 177–192, August
1989.

34 REFERENCES

T
M

W
ait-F

ree
Im

p
lem

en
tatio

n
s

in
M

essag
e-P

assin
g

S
ystem

s
S

om
a

C
haudhuri

M
aurice

H
erlihy

M
ark

R
.Tuttle

C
R

L
98/5

M
ay

1998

