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Abstract

Commercial MIMD computers promise cost-effective parallel processing for com-
puter vision applications, but programming them is time-consuming and obtaining
good performance is often difficult. We describe a class of vision applications which
are well-suited to multi-threaded implementation on MIMD computers, using the ex-
ample of a Smart Kiosk.

We present a novel parallel programming abstraction called Space-Time Memory
(STM) which is designed to support the dynamic data and control flow requirements
of multithreaded computer vision applications. The STM model provides high-level
primitives for memory management and synchronization which simplify software de-
velopment on MIMD computers.

We demonstrate significant speed-ups for two vision applications, color-based track-
ing and image-based rendering, using an implementation of the STM on a four proces-
sor AlphaServer 4100. These experimental results confirm the potential of the STM to
provide convenient access to parallel computing resources.
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1 Introduction

Many computer vision applications exhibit coarse grain parallelism that makes them
well-suited to multi-threaded implementation on modern MIMD (Multiple Instruction
Multiple Data) parallel computers. For example, in advanced user-interfaces based on
vision and speech sensing [18, 26], streams of video and audio data are processed in an
independent or loosely-coupled fashion, resulting in significant task level parallelism.
Furthermore, for a single data stream such as video there are typically a variety of
low-level processing tasks that can be performed independently.

A multithreaded programming model provides an effective way to exploit task level
parallelism. In this approach, each task in the application is implemented as a thread,
a sequential flow of control analogous to a conventional sequential program. Multi-
ple threads execute concurrently, sharing the available CPU resources and exchanging
data and control signals at well-defined points in their execution. The multithreaded
programming model is supported by a wide variety of commercially-available MIMD
computers, such as the DIGITAL1 AlphaServer 4100 and Silicon Graphics Origin
2000. These systems provide hardware shared memory support for communication be-
tween threads and software support for scheduling thread execution on multiple CPU’s.

Unfortunately, implementing a vision application as a multithreaded program is
significantly more difficult than writing a conventional sequential program. The largest
source of difficulty arises from managing the communication of information between
threads and synchronizing their access to shared data. This is particularly true for
applications that are highly interactive and dynamic, and process time-varying streams
of data at multiple rates.

A vision-based user-interface, for example, might perform background subtraction
and low-level feature tracking at video rates, while performing face detection and ob-
ject recognition much less frequently. Furthermore, the desired performance and rate of
processing may change during run-time depending upon the users’ actions and the sys-
tem’s goals. For example, a task such as facial expression analysis could range from
being the performance bottleneck to not being performed at all. These factors com-
plicate low-level implementation issues such as the allocation and recycling of frame
buffers and the synchronization of processing tasks. As we will see in more detail in
Section 2, these issues have a significant impact on programming difficulty and serve
as a practical barrier to the widespread use of parallel computing in these applications.

This report describes a novel parallel programming abstraction calledSpace-Time
Memory (STM) which is designed to support the dynamic data and control flow re-
quirements of multithreaded computer vision applications. The STM model provides
high-level primitives for memory management and synchronization which simplify
software development on MIMD computers. Since the STM abstraction is architecture-
independent, programs that use it have increased portability. In addition, implemen-
tations of the STM can be tuned for a particular architecture, increasing application
performance without the need for a separate application tuning step.

This report provides an introduction to the STM model and its API. It is targeted

1The following are trademarks of Digital Equipment Corporation: Alpha, AlphaServer, Memory Chan-
nel, and the DIGITAL logo.
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towards potential users of the abstraction. It does not assume in-depth knowledge of
parallel programming on the part of the reader. The STM is a component of theStam-
pede system for computing on clusters of parallel machines which is being developed at
the Cambridge Research Laboratory (CRL) of Digital Equipment Corporation. More
information about Stampede and the implementation of the STM abstraction can be
found in [19].

In Section 2 we describe the Smart Kiosk application which motivates our work.
We explore some of the difficulties that arise in writing parallel vision code. We de-
scribe the design and core functionality of the STM in Section 3. Section 4 presents
the results from a series of experiments that demonstrate the performance of the STM
on two vision tasks, color tracking and image-based rendering.

2 The Smart Kiosk: A Dynamic Vision Application

The design of the Space-Time Memory abstraction is motivated by the computational
requirements of a class of dynamic, interactive computer vision applications. We in-
troduce this class through a specific example: a vision-based user-interface for a Smart
Kiosk [26]. A Smart Kiosk is a free-standing computerized device that is capable of
interacting with multiple people in a public environment, providing information and
entertainment.

We are exploring a social interface paradigm for

Figure 1: The Smart Kiosk

kiosks. In this paradigm, vision and speech sensing
provide user input while a graphical speaking agent
provides the kiosk’s output. A description of the
project, including results from a recent public instal-
lation, can be found in [4]. A related kiosk applica-
tion is described in [7].

Figure 1 shows a picture of our most recent Smart
Kiosk prototype. The camera at the top of the de-
vice acquires images of people standing in front of
the kiosk display. The kiosk employs vision tech-
niques to track and identify people based on their
motion and clothing color [21]. The estimated po-
sition of multiple users drives the behavior of an an-
imated graphical face, called DECface [25], which
occupies the upper left corner of the display.

Vision techniques support two kiosk behaviors
which are characteristic of public interactions between
humans. First, the kiosk greets each person as they
approach the display. Second, during an interaction
with multiple users DECface exhibits natural gaze
behavior, glancing in each person’s direction on a
regular basis. Future versions of the kiosk will in-
clude speech processing and face detection and recog-

nition.
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There is currently a great deal of interest in vision- and speech-based user-interfaces
(see the recent collections [5, 8]). We believe the Smart Kiosk to be representative of
a broad class of emerging applications in surveillance, autonomous agents, and intelli-
gent vehicles and rooms.

A key attribute of the Smart Kiosk application is the real-time processing and gener-
ation of multimedia data. Video and speech processing combined with computer graph-
ics rendering and speech synthesis are critical components of a human-centered style
of interaction. The number and bandwidth of these data streams results in dramatic
computational requirements for the kiosk application. However, there is significant
task-level parallelism as a result of the loose coupling between data streams. This can
be exploited to improve performance. Unfortunately the complex data sharing patterns
between tasks in the application make the development of a parallel implementation
challenging.

One source of complexity arises when tasks share streams of input data which they
sample at different rates. For example, a figure tracking task may need to sample every
frame in an image sequence in order to accurately estimate the motion of a particular
user. A face recognition task, in contrast, could be run much less frequently. Differ-
ences in these sampling rates complicate the recycling and management of the frame
buffers that hold the video input data.

The dynamics of the set of tasks that make up the kiosk application is a second
source of complexity. These dynamics are a direct result of the interactive nature of
the application. A task such as face recognition, for example, is only performed if a
user has been detected in the scene. Thus, whether a task in the application is active
or not can depend upon the state of the external world and the inputs the system has
received. This variability complicates frame buffer management. In particular, there
is a question of which image frames in an input video sequence a newly-activated task
should be allowed to see.

2.1 Color-Based Tracking Example

The Smart Kiosk application can be viewed as a dynamic collection of tasks that pro-
cess streams of input data at different sampling rates. To explore this point further,
we focus on a subpart of the Smart Kiosk application that tracks multiple people in an
image sequence based on the color of their shirts.

Figure 2 shows the task graph for a color-based person tracking algorithm taken
from [21]. It was used in our first Smart Kiosk prototype, which is described in [26].
It tracks multiple people in the vicinity of the kiosk by comparing each video frame
against a set of previously defined histogram models of the users’ shirt colors. There
are four distinct tasks:digitizer, change detection, histogram, and target detection,
which are shown as elliptical nodes in the diagram. The inputs and outputs for these
tasks are shown as rectangles. For example, thehistogram task reads video frames and
writes color histograms. Thetarget detection task is based on a modified version of
histogram intersection [24].

Figure 3 illustrates the flow of data in the color tracker by following a single image
through the task graph. Processing begins at thedigitizer task, which generates the
video frame shown in Figure 3(a). Thechange detection task subtracts a previously
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Figure 2: Task graph for the color-based tracker. Ellipses denotetasks, implemented
as threads. Rectangles denotechannels which hold streams of data flowing between
tasks.

acquired background image from this frame to produce a motion mask (b) showing the
foreground objects. Similarly, thehistogram task produces a histogram model (c) of
the video frame (a). Figure (c) shows the red-green projection of a normalized RGB
histogram. Thetarget detection task compares the image histogram to a previously
defined model histogram, resulting in a backprojection image. The sum of the two
backprojection images from the two targets is shown in (d). Peaks in the backprojection
image correspond to the detected positions of the two subjects (e).

Parallelism at both the task and the data level are visible in the diagram of Figure 2.
Task parallelism arises when distinct tasks can be executed simultaneously. It is most
obvious in thechange detection andhistogram tasks, which have no data dependencies
and can therefore be performed in parallel. It is also present in the form of pipelining,
where for example thehistogram andtarget detection tasks can be performed simulta-
neously on different frames of an image sequence.

Data parallelism occurs when a single task can be replicated over distributed data.
Thetarget detection task is data parallel, since it performs the same operation for each
color model in the application. The search for a set of models can be performed in par-
allel by multiple instances of thetarget detection task. For example, Figure 2 illustrates
a parallel search for two models. Similarly, data parallelism at the pixel level can be
exploited in many image processing tasks, such aschange detection or histogram, by
subdividing a single frame into regions and processing them in parallel. In designing
a parallel implementation of the color tracker we could focus on task parallelism, data
parallelism, or some combination of the two.

Applications such as the Smart Kiosk fit most naturally into a task parallel frame-
work because they are composed of a heterogeneous mixture of relatively independent
tasks such as computer graphics rendering, speech, and vision processing. In con-
trast, it would be difficult to find a single data parallel framework that embraced such
a broad range of data types and operations. The Space-Time Memory abstraction sup-
ports a task level programming model. We will study the color tracker application from
a task-oriented viewpoint in this section. The integration of data parallelism within the
task parallel STM framework is addressed in [20].

We will examine the color tracker application in Figure 2 through a series of pseu-
docode implementations. Our focus will be on the implementation of thechannels for
communication between tasks. Each of the rectangular icons in Figure 2 represents a
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(a) Video Frame

(b) Motion Mask (c) Histogram Model

(d) Backprojection Image (e) Model Locations

Figure 3: Data flow in the color tracker of Figure 2 is illustrated during a search for
two models, corresponding to the two figures in the input frame (a). Intermediate
results are shown in (b)–(d). The final output is the positions of the detected targets in
(e). The motion mask (b) identifies foreground pixels which differ significantly from
a background image. The histogram (c) of the input image is compared to the model
histograms during search. The backprojection image (d) shows the likelihood that each
image pixel belongs to one of the color models (here we show the sum of the two
backprojection images). Connected component analysis and peak detection results in
the final positions in (e).
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channel that supports communication between tasks. Channels can be viewed as sets
of buffers for storing sequences of intermediate results. We will examine the complex-
ity that arises in managing these buffers when different tasks access dynamic data at
different sampling rates. These examples illustrate some of the difficulties that arise in
programming vision applications on MIMD computer systems.

2.2 Sequential Implementation

The first program example we consider is a conventional sequential implementation of
the color tracker. For simplicity we will restrict the search to a single model. The four
tasksdigitizer, change detection, histogram, andtarget detection must exchange three
types of data: images, masks, and histograms. The following fragment of pseudocode
implements the communication using three global variables,frame buf , mask buf , and
hist buf :

frame_buf = allocate_frame_buffer()
mask_buf = allocate_frame_buffer()
hist_buf = allocate_histogram_buffer()
Begin loop

frame_buf � digitize_frame()
mask_buf � detect_change(frame_buf)
hist_buf � histogram(frame_buf)
(x,y) = detect_target(frame_buf, mask_buf, hist_buf)
...

End Loop
free(frame_buf)
free(mask_buf)
free(hist_buf)

The global variables point to allocated storage. The syntax roughly follows the C
language [11], as does the meaning of the assignment operator=. The redirection
operator� denotes a function placing its output into a previously allocated buffer.

Function calls inside the inner loop implement the four tasks. The final output of
the application is the(x,y) location of the detected target in the image (see Figure 3
(e)). This position is computed bydetect target() using the input image, motion
mask, and image histogram. This function also uses a histogram model of the target,
which is omitted for simplicity.

The performance of a particular implementation is constrained by the execution
times of its tasks and their data dependencies. Table 4 shows the execution times for
the four color tracker tasks in milliseconds. These times were obtained on a 400 MHz
AlphaServer 4100. Each task was given the full resources of a single CPU.

Thetime-line diagram in Figure 5 (a) illustrates the interaction between these tasks
over time. It is particularly simple in the sequential case. Each task is represented in
the diagram by an interval proportional to its execution time. Theapplication period
shown in the figure is the time interval between two consecutive sets of application
outputs. In this case it is simply the sum of the execution times of the individual tasks.
Another practical aspect of the sequential implementation is that we can allocate global
buffers for the channels at the start of the loop and reuse them in each iteration.
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Task Execution time

digitizer 33 ms
histogram 110 ms
change detection 160 ms
target detection 280 ms

Figure 4: Execution times for the four tasks in the color tracker.
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Figure 5: Time-line for sequential and parallel implementations of the color tracker.
The throughput and latency is improved in (b) through pipelining and task parallelism.

2.3 Simple Parallel Implementation

We now consider the situation where thedigitizer, histogram, change detection, and
target detection tasks are implemented as separate threads running on different proces-
sors in a parallel computer with shared memory. In this situation there is an opportunity
to improve performance by exploiting task parallelism. By overlapping the execution
of the tasks we can ensure that the slowest task,target detection, is never waiting for
input data.

The time-line for the simple parallel solution is illustrated in Figure 5 (b). The
application period now equals the execution time of the slowest task, as opposed to
the sum over all of the tasks. This represents an improvement in the throughput of the
application due to pipeline parallelism. Note that the latency2 is also improved as a

2The latency of a task or application is defined as the time it takes to produce an output once an input is
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result of performing thechange detection andhistogram tasks in parallel.
An implementation of the parallel solution depicted in Figure 5 (b) requires two

departures from the sequential approach. First, each task becomes a separate thread
which must perform mutual exclusion [3] when accessing shared variables to ensure
the correctness of the application. We assume the use of a standard thread model such
as POSIX [13].

The second departure is an increase in the complexity of buffer management. Dur-
ing pipelining a task has to buffer both the data item it is currently producing and any
older items which are being processed in parallel by other tasks. For example, the over-
lap between thedigitizer andtarget detection tasks in Figure (b) means that two con-
secutive video frames will need to be buffered at all times. The following pseudocode
implements the buffer management strategy for thedigitizer andtarget detection tasks:

digitizer task

...
Begin Loop i = 1..2

frame_buf = allocate_frame_buffer()
enq(reverse_q, frame_buf)

End Loop
Begin Loop

frame_buf = deq(reverse_q)
frame_buf � digitize_frame()
enq(forward_q, frame_buf)
wait()

End Loop

target detection task

Begin Loop
...
frame_buf = deq(forward_q)
(x,y) = detect_target(frame_buf, mask_buf, ...)
enq(reverse_q, frame_buf)
...

End Loop
Begin Loop i = 1..2

frame_buf = deq(reverse_q)
free(frame_buf)

End Loop
...

Here we are using a standard bounded queue abstraction to handle the recycling
of frame buffers between the two threads. The operationsenq() and deq() denote
enqueue and dequeue operations, respectively. These routines can be easily designed
to implement mutual exclusion (see [3]). Thewait() function delays thedigitizer task
by the amount shown in the diagram, to avoid performing unnecessary work. The
execution of other three tasks can be regulated solely by the availability of their inputs.

available.



2.4 Complex Parallel Implementation 9

In this case, we initialize thereverse q with two buffers that will hold the current
and previous digitized frames. When no buffers are available, the call todeq will
block. All of the synchronization is hidden in the standardenq() anddeq() routines.
This example is a two buffer version of the standard producer-consumer problem.

2.4 Complex Parallel Implementation

A realistic vision application will exhibit considerably more complex data sharing pat-
terns than the simple example above. In particular, there will be multiple producers
and consumers per channel and more complicated access patterns. The bounded queue
abstraction works well in the simple case where every data item is read by exactly one
of possibly many consumers. Its extension to an application scenario like the Smart
Kiosk is complicated by three factors:

� The number of tasks that will share the data items in a given channel can vary
during execution. For example, a video frame may be read by thechange detec-
tion task, thehistogram task, and zero or moretarget detection tasks, where the
exact number depends on the kiosk environment. The rate of execution of these
tasks, which determines the rate at which they sample their input data, can also
vary.

� Multiple consumers can request the same data item, making a simple queue in-
appropriate.

� Items may be read and written out of order (i.e., a task may request a specific
video frame which is different from the last one produced). Consumers may also
want to skip over certain data items in a sequence, and different consumers may
want to skip different items.

A secondary complicating issue is that in a cluster setting we cannot depend on
the availability of transparent shared memory. Part of the simplicity of the earlier
pseudocode implementations stemmed from the fact that shared variables were trans-
parently accessible to threads (i.e., without requiring any additional operations). This
is true for threads running on a single SMP with hardware shared memory. But com-
munications between SMP’s require a different communication mechanism, such as
message-passing, and involve communication delays of a different order of magnitude.
Addressing these issues at the application level will dramatically increase the complex-
ity of the code over our simple example and reduce its portability to other hardware
platforms.

2.5 Summary

Dynamic vision applications such as the Smart Kiosk have four defining characteristics:

� These applications processes streams of data using a loosely coupled hierarchy
of tasks. Tasks in the hierarchy are differentiated by the sampling rates at which
they process input data or generate output data.
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� The set of tasks is dynamic due to the interactive nature of the application. Tasks
can be created and suspended during program execution. The rate at which a
task processes input data or generates output data can also change as a function
of the system state.

� The set of tasks is heterogeneous. Speech, vision, and rendering algorithms all
contribute to the Smart Kiosk application. Even within a single data type such
as video the task set can still be quite diverse.

� The target hardware platform can also be heterogeneous, involving machines
from multiple vendors linked by a variety of interconnects. We are particularly
interested in networked clusters of SMP’s such as the DIGITAL AlphaServer
4100.

Implementing such dynamic vision applications on a cluster involves nontrivial
parallel programming issues. Addressing these issues at the application level will be
time-consuming and will result in complex nonportable code. A better solution is to
use a high-level programming model which provides the necessary infrastructure and
encapsulates it apart from the application. Unfortunately, commonly-available libraries
and run-time systems for parallel systems do not provide adequate primitives for the
complex data sharing needs of these dynamic applications. We have developed the
Space-Time Memory abstraction to address these needs.

3 Space-Time Memory Abstraction

Space-Time Memory provides a mechanism for sharing time-varying data between
threads in a parallel program. A basic element in the model is achannel, which holds
a single stream of data and supports read and write accesses by multiple threads. In
the color-based tracker (see Figure 2) there are five channels which provide storage for
digitized frames, motion masks, histogram models, and output records from the two
target detection threads. Note that each thread writes its results to a channel, and all
threads except fordigitizer read input data from one or more channels.

Each channel holds an ordered sequence of dataitems indexed byvirtual time,
an application-dependent measure of computational progress. Data items can be of
arbitrary size and structure. Each item has an associatedtime-stamp, which gives its
location within the channel. In the color tracker, progress is measured in video frames,
and so the virtual time for the application is frame numbers. In other applications,
virtual time might correspond to a sequence of mouse events, or indices in an iteration
space.

Time-stamps for a channel item can either be created by a thread or inherited. In our
example thedigitizer thread creates time-stamps, since it originates the flow of data.
All of the other threads produce time-stamps for output channel items by inheritance
from their input channels. Thechange detection thread, for example, reads a digitized
frame with a certain time stamp,Ti, performs pixel-wise background subtraction and
thresholding, and then writes the result in the mask channel with time-stampT i. Time-
stamped items can be read and written in any order, depending upon the needs of each
thread.
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Figure 6: Space-Time Memory array for the channels in the color-based tracker of
Figure 2. Cells in the array which contain data items are shaded.

A thread mustattach to a channel before it can read or write time-stamped data
items. When a thread no longer needs a particular channel it candetach from it. These
operations are analogous to opening and closing a file. Any thread in the application
can attach to or detach from any channel at any time. Support for dynamic attachment
and detachment is important since threads in the application may not always be active.
When the STM is used in a cluster setting, it provides location-independent access.
Threads can attach to channels regardless of which node they are currently running on.

The organization of channels within the STM can be viewed as a two dimensional
dynamic, concurrent data structure. This is illustrated in Figure 6, which shows a simu-
lation of the contents of the STM during the execution of the color tracker application.
The virtual time dimension runs across the top and the space dimension, correspond-
ing to the channels, runs down the side. Threads access shared data at a location in the
table by specifying a (channel, time-stamp) pair. The sparseness of the data items in
the figure reflects the different sampling rates at which the threads process their inputs.

Data dependencies between threads in the color tracker are easily visible in the
figure as a result of time-stamp inheritance. All of the time-stamps used in the color
tracker are produced by thedigitizer thread, which initiates the computation. All other
threads write output data items using time-stamps obtained from their inputs. This
results in a temporal alignment of occupied cells in the STM for input video frames
that pass completely through the application. There are four examples of this in the
figure, corresponding to frames 0, 4, 14, and 23.

The production of time-aligned data items is illustrated in more detail in Figure 7
for the case of frame 14 in the image sequence. The figure shows the time-lines for
each of the tasks, interspersed with the channels. The time-interval for each task in
which time-stamp 14 was processed is shaded. Here we are assuming that each task
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Figure 7: Effect of timing and data dependencies in determining which items are pro-
cessed is illustrated for time-stamp 14 in Figure 6. The cross-hatched periods are the
ones involved in processing item 14.

runs at its maximum rate, given by the timing data in Table 4. The exception is the
histogram thread which, for simplicity, is delayed so that its execution rate matches
change detection. Each task selects the most recent data item from its input channel
at the start of its computation. This selection process is illustrated in the figure. Each
channel is shown in its configuration prior to the start of the shaded interval in which
time-stamp 14 is read. The question of which cells in the STM will be occupied is
determined by the execution rates of the threads and their data dependencies.

All of the other tasks in the application are dependent upon thedigitizer task for
input data. As a result, the task period for the digitizer defines a natural “unit of real
time” for the application. Virtual time provides a powerful abstraction of this conven-
tional notion of a real-time period. For example, if the CPU clock rate doubled, the
task execution times in the application would all shrink by one half. The treatment
of time-stamps in an STM-based implementation, however, would be unaffected. The
application would execute at its new rate, and the run-time system would manage the
new pattern of data items in the STM transparently to the application.

The STM is a dynamic data structure. There are four aspects to this. First, new
data items are added to the channels continuously and old items are removed as the
application progresses. Second, the size of the items stored in a channel can vary
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during execution. Third, channels can be dynamically created and destroyed. Finally,
tasks can attach to and detach from channels as needed.

There are two properties of channels in the STM that distinguish them from con-
ventional dynamic data structures such as variable length arrays. First, channels com-
bine both data storage and synchronization functions in a single primitive, providing
a communication substrate for threads in the application. For example, threads that
wish to retrieve a time-stamped item from a channel can arrange to be blocked until
the item becomes available. This joint functionality is quite convenient. In this respect,
channels can be viewed as a generalization of the bounded queue abstraction used in
Section 2.3.

The second key property is the flexibility channels provide in reading and writing
data items. Threads can read and write data at any sampling rate, and this sampling rate
can vary over the course of their execution. Threads can also read and write items out
of order. As a result of this flexibility, threads are free to run at arbitrary rates while the
STM guarantees the correct buffering and recycling of data. This is especially impor-
tant in applications like the Smart Kiosk where the computational resources assigned
to a thread may change significantly as a function of the world state.

The design of an abstraction such as the STM involves a trade-off between the
flexibility and convenience that application programmers desire and the practical con-
siderations of its implementation. For example, some restrictions must necessarily be
placed on the application’s ability to read and write data items. If threads are allowed to
request data items that arrived arbitrarily far back in time, the available system memory
would rapidly be exhausted by the accumulation of video frames.

There are two restrictions on reading and writing channel items in the STM which
ensure that garbage collection can occur. The first is thewrite-once nature of data items:
Once an item with a particular time-stamp has been written, it cannot be modified. It
can be read an arbitrary number of times and will be garbage collected when it is
no longer needed. The write-once property ensures that a thread never has to read
a particular time-stamped item more than once. A second implication is that time-
stamps whose data has been garbage collected need not be supported by the STM. This
property is consistent with the dynamic nature of data in the STM. For example, a
given video frame will not change once it has been digitized, but a new frame will be
produced every 33 ms.

The second restriction is that threads cannot write channel items at arbitrary time-
stamps, but are restricted to a range of legal values. This range is defined by thevirtual
time lower bound (VTLB), which gives the smallest time-stamp to which a thread may
write an item. The abstraction ensures that the VTLB advances as threads process
data. This makes garbage collection feasible, since it ensures that any given time-
stamped item will eventually pass out of the representation. The VTLB and its relation
to garbage collection are discussed further in Section 3.2.

In addition to channels, the STM provides two other more traditional storage mech-
anisms. The first is a standard queue. The second is a register that holds a single data
item. Both can be accessed by multiple threads in a location-independent manner.
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3.1 Space-Time Memory API

We will introduce the application programming interface (API) for the STM through
pseudocode examples for thedigitizer andtarget detection threads. In these examples
we focus on the use of the STM API to communicate data between tasks. There are five
entities that make up the core of the STM abstraction: channels, connections, items,
time-stamps, and virtual time. The use of all these entities is illustrated in the following
pseudocode for thedigitizer thread.

digitizer task

...
stm_tg_init(TG_DIGITIZE, 280)
oconn = stm_attach_output_channel(video_frame)
frame_count = 0
while f1g f

frame_buf = allocate_frame_buffer()
frame_buf � digitize_frame()
stm_channel_put_item(oconn, frame_count, frame_buf)
frame_count++
stm_set_virtual_time(frame_count)
stm_tg_sync_to_deadline(TG_DIGITIZE)

g

All of the functions beginning withstm are calls to the STM run-time library. For
clarity we show only the major arguments required by each function call. Functions
that perform synchronization are shown in bold. We do not show any of the thread-
level initialization that would occur in a real implementation. The STM is designed to
use the Stampede thread model. More information about this model and its API can be
found in [19]. We also omit the initialization of STM-specific data structures such as
video frame , which describes the STM channel that holds the video frames produced
by digitizer.

It is instructive to compare the STM pseudocode with the pseudocode for the sim-
ple paralleldigitizer implementation in Section 2.3. The main difference is that the
bounded buffers have been replaced by thevideo frame channel and theenq() and
deq() functions by STM calls. We will explore these differences in more detail below.

The code before the while-loop performs two kinds of initialization. First, it sets up
the STMtime group mechanism which will be used to control the rate of execution of
thedigitizer thread. The call tostm tg init() creates a time group namedTG DIGITIZE

with a period of��� ms. Second, it prepares to write digitized images into the STM.
It creates an output connection (oconn ) by attaching to thevideo frame channel. This
connection will be used to write the digitized frames that the other threads will read.
Since thedigitizer thread does not read from any channels, it must generate its own
time-stamps. The initializedframe count variable provides time-stamps by counting
the number of frames that have been digitized since the thread was created.

There are three parts to the code inside thewhile() loop. The first part is the
standard allocation of an image buffer and the digitization of a frame of video. The
second part starts with the call tostm channel put item() , which writes the frame
buffer into the channel, making it accessible to other threads. The pair of arguments
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(oconn, frame count) specifies the channel and time-stamp at which to store the data
item frame buf . After the item has been written,frame count is advanced and is used
to advance the thread’s virtual time instm set virtual time . The third part consists of
thesync to deadline call, which regulates the execution of the thread to the specified
period of 280 ms.

There are several observations to make about theput item call. First, it is a syn-
chronizing operation. If there is no storage space in the channel available to hold the
item, the call will block until space becomes available.3 This is similar to the behavior
of theenq() function in the earlier implementation.

The second observation aboutput item is that the data item can be an arbitrary
pointer data structure in C. In this example,frame buf is a pointer to a memory buffer.
Support for communicating complex objects made up of multiple pointers is also avail-
able, and is described in [19].

The explicit call tostm set virtual time is required in most threads such asdigi-
tizer which create their own time-stamps. This call sets thethread virtual time. Through
this call, the thread keeps the STM informed about its progress through virtual time.
The STM uses the thread virtual time to update the thread’s virtual time lower bound
(VTLB) and regulate garbage collection. For threads that read time-stamped items,
the STM can update the VTLB implicitly and an explicit call is unnecessary. The
interaction between virtual time and garbage collection is explored in more detail in
Section 3.2.

In thedigitizer pseudocode from Section 2.3, the functionwait() was called to reg-
ulate the execution of thedigitizer thread. This serves two purposes. First, it prevents
digitizer from writing frames which none of the down-stream threads can process due
to their execution periods. In comparing Figure 5(b) and 7 it is clear thatdigitizer is
doing unnecessary work in the latter.

The second purpose ofwait() is to ensure thatdigitizer is invoked as “late” as
possible, so the most recently available image data is provided to downstream tasks.
An alternative, for example, would be to rely on the blocking property ofdeq() and the
limited number of buffers to regulate execution. This has the disadvantage of blocking
digitizer after it has acquired its most recent image rather than before.

The STM uses time groups to provide a general framework for loosely synchroniz-
ing the execution of a task to a pre-specified real-time period. Whenstm tg sync to-

deadline() is called, it checks the current execution time of the thread against its
desired period and suspends the thread if necessary. This mechanism is described in
more detail in Section 3.3.

We now examine the pseudocode for thetarget detection thread:

target detection task

...
iconn_frame = stm_attach_input_channel(video_frame)
iconn_mask = stm_attach_input_channel(motion_mask)
iconn_hist = stm_attach_input_channel(histogram_model)

3The function can also be called with the option of returning immediately with an error code in the event
of a lack of space. This would allow the application to try an alternate strategy.
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oconn = stm_attach_output_channel(model_location)
while f1g f

location_buf = allocate_location_buffer()
(hist_buf, Tk) = stm_channel_get_item(iconn_hist,

STM_LATEST_UNSEEN)
mask_buf = stm_channel_get_item(iconn_mask, Tk)
frame_buf = stm_channel_get_item(iconn_frame, Tk)
location_buf � detect_target(frame_buf, mask_buf, hist_buf)
stm_channel_put_item(oconn, Tk, location_buf)
stm_channel_consume_items_until(iconn_frame, Tk)
stm_channel_consume_items_until(iconn_mask, Tk)
stm_channel_consume_items_until(iconn_hist, Tk)

g

In this example there are both input and output channel connections. The first call
to get item uses the distinguished value STMLATEST UNSEEN, which selects the
most recent time-stamp the thread has not yet read and returns it asTk along with the
histogram. This calling convention ensures that the thread will always see the most
recent data.Tk is used in subsequent get item calls to ensure that a corresponding set
of data is retrieved from the STM. It is also used in writing the final output.

Theconsume item calls are required for garbage collection. They allow the thread
to identify data items it no longer wants to access on all of the ports for which it
has input connections. Theconsume item until function marks all items up to and
including the indicated time-stamp as “consumed”. This process is examined in more
detail in the next section.

3.2 Garbage Collection

Efficient garbage collection is a key attribute of the STM implementation. It allows the
programmer to view each channel as an infinite collection of time-stamped items and
it allows threads to sample a channel’s contents at arbitrary rates. Threads allow the
STM to perform garbage collection byconsuming items which are no longer needed.
Threads consume items which they have either read and processed or are no longer
interested in reading. An item in a channel can be garbage collected by the STM
implementation when every thread attached to that channel for reading has consumed
the item.

There are three practical issues that garbage collection in the STM must address.
First, garbage collection is most efficient when contiguous sets of time-stamps can be
freed. To the extent possible, we want to avoid examining channel data on an item by
item basis. Second, in order to provide flexibility to the application, threads should
be able to read all of the items that arrive on the channels they are attached to. One
difficulty is that items may arrive on a channel out of order, particularly in a distributed
implementation. Third, threads should be allowed to dynamically attach to and detach
from channels without halting garbage collection.

The STM abstraction includes a set of rules for reading and writing data items
to channels. These rules are designed to encourage programs to generate dense sets
of used channel items which can be garbage collected efficiently. The only rule for
reading is that threads must agree to consume every item on all of the channels they
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can read from. This rule alone is not sufficient, however, since we must also restrict
threads from writing new items arbitrarily far back in time. This is accomplished by the
introduction of a set of legal time-stamps for writing, called thevirtual time window.

The virtual time window specifies the interval of time-stamps that a thread is al-
lowed to write to. It is defined by thevirtual time lower bound (VTLB), denoted by
Tlb. Threads can write to any time stamp that is greater than or equal to their VTLB.
This definition allows threads to skip arbitrarily far into the future, but limits their abil-
ity to write arbitrarily far back in time.

For threads that use inheritance to generate time-stamps, there is a simple expres-
sion forTlb as the minimum time-stamp over the set of items that have not yet been
consumed. We refer to this specific time-stamp asTnc. Simply takingTlb � Tnc
would ensure that the VTLB continuously advances as threads consume items, making
garbage collection feasible. However, there are threads such as the digitizer which do
not read any items from channels. For these threads, and for increased flexibility, the
abstraction also allows a thread to control its VTLB indirectly. The complete definition
for the VTLB is given by:

Tlb � min�Tnc� T��

where a thread can set its virtual time marker,T� explicitly through the API. In the
pseudocode of Section 3.1, thedigitizer thread uses the STM callstm set virtual-

time to advance itsT�. By fixing T� to a specific value, a thread could also ensure
that garbage collection will not proceed beyond that point. This could be useful for
debugging or system monitoring.

Each thread has its own virtual time lower bound, and its own values forT nc andT�.
These values apply across all of the channels the thread is attached to. When threads are
created, they usually inherit the VTLB of their parent. Likewise, when threads attach to
a channel for reading, they are restricted to items which lie within their current VTLB.
Through these conventions the VTLB provides a solution to what would otherwise be a
difficult question: deciding which items on a channel a newly attached thread should be
allowed to see. A global comparison of the virtual time windows for all of the threads
in an application is the basis for STM garbage collection.

3.3 Synchronization with Real-Time

In addition to synchronization and communication between threads, the STM also pro-
vides support for loose synchronization between real and virtual time. Threads can
specify a desired real-time execution period which the STM will try to enforce. The
STM automatically suspends threads which complete before their execution period has
ended and generates warnings which can be handled by the application for threads that
exceed their period.

The abstraction allows a thread to define a real-time interval,R I , corresponding
to one unit of virtual time. This is done through the functionstm tg init() . In the
color tracker example of Section 3.1, thedigitizer thread setR I � ���ms, which
corresponds to the execution period of thetarget detection thread. This prevented the
digitizer thread from running more often than necessary to supply thetarget detection
thread with data.
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Given the current virtual time of a thread, as measured byT lb for example, the
STM can predict the expected real-time at the end of the current iteration as�R �
�Tlb � T �

lb� � RI � R�, whereR� andT �

lb give the real and virtual times, respectively,
at which the thread was created. The actual real-time can be measured and compared
to �R to determine whether the thread is ahead of or behind its desired schedule.

Warnings can be generated when threads exceed their�R, allowing the application
to take an appropriate action. In fact, the API allows a thread to register a handler
function which is called in the event that the thread misses its deadline. If a thread
finishes earlier than�R it can be suspended, avoiding unnecessary work. Note that
this mechanism simply provides a kind of loose synchronization among threads and is
distinct from the features that a real-time operating system could provide, for example.

4 Experimental Results

We implemented the STM on a DIGITAL AlphaServer 4100, a four processor SMP
with a 400 MHz clock running DIGITAL Unix 4.0. We ran experiments on two sets of
applications, color tracking and image-based rendering, to evaluate the effectiveness of
the STM. The first part of each experiment was to port an existing sequential program
onto the abstraction. This provided an informal test of its ease of use. In both cases we
obtained a working STM version of our sequential code within a half-day. While ease
of use is a difficult attribute to measure, we believe that more widespread experimenta-
tion with the STM will provide additional evidence of its utility. In the second part of
each experiment we analyzed the timing performance of the application to understand
how much of the available parallelism the STM could exploit.

4.1 Color-Based Tracker

The first set of experiments measured the STM’s effectiveness in performing a parallel
search over a set of models in the color-based tracking application. For these exper-
iments we modified the task graph of Figure 2 in two ways. First, we employed a
modified version of the histogram algorithm that uses the motion mask to avoid adding
background pixels to the model. This improves the quality of the estimate. More im-
portantly, this introduces a dependency between thechange detection andhistogram
tasks, which forces them to execute sequentially.

The second change was to add an additional STM register to the implementation to
prevent pipelining. The register provided a control path from a graphical user-interface
to the digitizer, making it possible to send one frame at a time through the implemen-
tation. These two changes eliminated task and pipeline parallelism from the original
task graph. The available parallelism was contained solely in thetarget detection task.
This was done to simplify the experimental analysis.

In this experiment we varied the number oftarget detection threads, each of which
searched the entire input frame for a single model. We measured the average execution
times as the number of models varied from one to eight and the number of processors
varied from one to four. The complete set of data is shown graphically in Figure 8.
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Figure 8: Bar graph of execution times from color-based tracking experiments.

The modified version of the application has a sequential component which includes
the digitizer, change detection, and modified histogram threads. Once they have been
completed a parallel search over models can occur. Excluding any communication
costs, the average time for the sequential task set was 335 ms, and which was approx-
imately equal to the average time for a singletarget detection thread to search for one
model. Thus the minimum possible execution time was�	� ms, and could be obtained
whenever the number of CPU’s is greater than or equal to the number of models. Let-
tingm be the number of models andn the number of CPU’s, we see that the bar graph
is quite flat in the regionm � n. The average execution time over that region is�
���
ms.

Given measurements of the sequential and parallel components of the application,
we can predict an ideal value for each measurement though the formula:Tmn �
mTp�n� Ts whereTs andTp are the sequential and parallel times, respectively. Pre-
dicted performance is plotted against the data as a family of curves in Figure 9. Plots
are given for�, �, �, and� models with the number of processors varying along the
curve. The predicted and measured curves are quite close, and the average error across
the points is��	 ms. In addition, the measured speed-up from one CPU to four with
eight models is���	.

The close correspondence between the measured and predicted performance num-
bers suggests that use of the STM did not introduce significant overhead in this exam-
ple. The low communication costs are due primarily to the fact that we are exploiting
hardware shared memory in the STM implementation and passing images by reference,
thereby avoiding unnecessary copying. These promising results suggest that the STM
can provide significant performance improvements at a relatively low implementation
cost.
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Figure 9: Execution times by number of cpus for 2, 4, 6, and 8 color models.

4.2 Image-Based Rendering

We implemented and tested a second application in the area of image-based rendering
(IBR) in order to explore a more traditional form of data parallelism in the STM con-
text. View transfer is the essential idea behind the IBR application: Given two images
that have been placed in pixel-wise correspondence and a desired virtual camera view-
point into the scene, a new image that depicts the scene from the desired viewpoint can
be synthesized directly from the input pair [2, 17]. This approach to rendering is inter-
esting because its complexity is a function of image size rather than scene complexity.
See Figure 10 for an example of a synthesized image.

There are two main steps in synthesizing a new view through IBR once the cor-
respondences have been obtained off-line: computing the initial transfer and filling in
holes through interpolation. We use an Elliptical Weighted Averaging (EWA) tech-
nique for interpolation [10], in which adaptively-sized interpolant kernels are applied
to image locations with missing texture. Both the view transfer and EWA steps are
good candidates for parallelization.

Data parallelism at the pixel-level is the main feature of the IBR application. Each
image location can be processed independently of the others, with no sharing of data
between neighbors. Our goal in this case was to demonstrate that the STM framework
can also be profitably applied to this problem, which is closer to traditional fine-grained
parallel vision applications. In this case we divided the image up into a parameterized
number of regions, where each region could be processed in parallel. We created a
separate thread for each region, and measured the average execution time as the number
of regions varied from one to eight and the number of processors varied from one to
four. The total set of measurements are plotted in Figure 11.

In addition to the STM implementations, we developed a baseline implementation
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(a) View One (b) View Two

(c) Synthesized view

Figure 10: Input pair (a) and (b) and synthesized third view (c) in an image-based
rendering application.

that did not use the STM infrastructure, but instead used lower-level synchronization
operations (mutexes) and the hardware shared memory of the AlphaServer. This im-
plementation used four processors and was tested on the same set of regions. These
numbers are labeled “HT” (for hand-tuned) in the figure. The same data is displayed
as superimposed 2-D plots in Figure 12.

There are several interesting observations we can make regarding the performance
numbers for the STM experiments. In the case where there is only a single CPU, total
execution time increases slightly with the number of regions. This reflects the addi-
tional system-level overhead from context switching as the number of threads grows.
Within each of the experiments plotted in Figure 12, the STM implementations show
significant speed-ups as the number of image regions is increased until they exceed the
number of CPU’s, at which point the speed-up tails off.

The comparison between the cases “4” and “HT” illustrates the additional ben-
efits that can be obtained when a parallel implementation is tightly matched to the
computational characteristics of an application. The additional performance in the HT
implementation is the result of two optimizations that were not naturally present in
the baseline STM implementation. The first optimization exploited the fact that when
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Figure 11: Bar graph of execution times from image-based rendering experiments. The
rows labeled 1–4 correspond to the STM implementation with 1–4 processors. The row
labeled HT shows the performance of a hand-tuned implementation on 4 processors.

there is no pipelining, the view transfer and EWA steps are sequential. In this case,
semaphores can be used to suspend the EWA threads while the view transfer threads
are active, and vice versa. This semaphore mechanism is more efficient than the thread
yield mechanism which is used in the STM implementation. It ensures that the unused
threads consume essentially no system resources.

The second optimization came from exploiting the nonuniformity of the computa-
tional requirements in the EWA step. In EWA, the amount of work done in a region
is a function of the number of “holes” in the image that must be filled in. Some re-
gions may have no holes, some regions may have many. When the number of threads
is equal to the number of regions, some threads do little work but still contribute to
the overhead. In the HT implementation there were only four threads, one per CPU,
and the regions were scheduled on these threads by the application using a round-robin
policy. This explains the additional speed-up in the case where the number of regions
increased from four to eight.

There are two lessons from this experiment. The first is the obvious point that code
which is hand-tailored to an application will almost always outperform code which
uses a more general infrastructure. However, in addition to raw performance we must
also consider the ease of development for each implementation. The development of
both versions took on the order of hours. However, the STM version was developed
by vision researchers who were not experts in programming SMP’s. In contrast, the
HT application was developed by an expert with a great deal of experience in porting
applications to this platform.

The second lesson is that the task parallel STM infrastructure alone cannot capture
the full gamut of parallelism which is present in vision applications. We have already
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Figure 12: Plots of execution times from image-based rendering experiments. This is
the same data as the IBR bar graph.

begun an investigation into more principled schemes for integrating data parallelism
into the STM framework. Some preliminary results are described in [20]. We plan to
repeat the IBR experiments using our new framework in future work.

Another metric for comparing these implementations is portability. Repeating the
STM experiment on a cluster setting would be trivial, as we recently completed an
implementation of the STM on a cluster of SMP’s in our lab (see [19]). We plan to
conduct this experiment in future work. In contrast, the prospects for porting the HT
implementation to a cluster are not nearly as promising. Shared memory support in a
cluster setting is not widely available, and so a cluster implementation would require
significant modifications to the code.

5 Previous Work

During the 1980’s and early 1990’s there was an explosion of effort in applying parallel
computing to computer vision tasks (see the conference series [27]). On the hardware
side, the vision community participated in the development of a broad variety of par-
allel architectures. Representative commercial systems include SIMD machines such
as CM-2 [12] and MasPar [15] and systolic/data-flow machines such as the Warp [1].
Experimental parallel computers included pyramid architectures such as the IUA [28]
and reconfigurable machines such as PASM [22].

Each of these parallel architectures represented a particular viewpoint on the di-
verse computational requirements of vision problems. SIMD and data-flow archi-
tectures, for example, targeted low-level vision tasks such as histogramming, image
smoothing, and convolution. Pyramid machines implemented a hierarchical decompo-
sition of vision problems in hardware. Reconfigurable machines explored the dynamic
configuration of processing resources between low and high level vision tasks. This
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period of research produced considerable insight into the computational requirements
of vision problems and the feasibility of high performance parallel solutions. Perhaps
the most important lesson was the critical role parallel computing plays inenabling the
application of computer vision to real-world tasks [6].

Today, commercial MIMD computers seem to be the most cost effective path to
wide-spread use of parallel computing. Surprisingly, there has been little investigation
into systematic methods for building vision applications on this type of architecture. Of
course, the more traditional approach of exploiting fine-grained pixel-level parallelism
with specialized architectures is still being pursued. Some examples are [16] and many
papers in [27]. While this type of problem is undeniably important, many real-world
vision applications will contain a mixture of different types of parallelism, suggesting
that an architecture with maximum flexibility could have wider applicability.

In developing STM one of our goals is to make the use of parallel computing by
the general vision research community more widespread by developing a software in-
frastructure that is convenient and easy to use, and which runs on commodity parallel
machines and operating systems. A system such as STM will not be able to achieve the
peak performance of custom hardware on certain applications, but it may well have a
much broader impact.

Portability is another key benefit of a software-only parallel solution such as Space-
Time Memory. Applications which use the STM can run on any multiprocessor ma-
chine that supports the abstraction, regardless of its underlying memory and communi-
cation architecture. The STM is implemented as a C library and does not rely on any
special features of a multiprocessor architecture. This simplifies the task of porting it
to a new MIMD architecture considerably. By focusing on the portability of our ab-
straction, we are trying to maximize the chance that it can migrate to new generations
of multiprocessor computers.

Within the scalable and parallel computing research community there is a great
deal of work that is relevant to STM. The STM abstraction may be viewed as astruc-
tured shared memory, in comparison to the transparent shared memory that many SMP
architectures support. Atomicity for reads and writes in the STM is at the level of
channel items. As a consequence, there is considerable opportunity for aggregating
and coalescing put operations based on the expected rates of execution of threads com-
municated to the abstraction. We therefore expect our abstraction to be valuable in
devising an efficient implementation for a cluster of SMP’s in which there is no hard-
ware support for shared memory. This seems like a promising approach to large scale
parallelism.

The most closely related work is the Beehive [23] system developed by the second
author and his colleagues at the Georgia Institute of Technology. Beehive is a software
distributed shared memory system that provides transparent access to a shared address
space across a cluster of Sun workstations. The API provided by Beehive is very
similar to standard shared memory programming with the difference that the memory
access and synchronization primitives have temporal correctness guarantees. The delta
consistency memory model of Beehive is particularly well-suited for applications that
have the ability to tolerate a certain amount of staleness in the global state information.
Beehive has been used for real-time computation of computer graphical simulations
of animated figures. The STM abstraction proposed in this paper is a higher level
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structured shared memory that can use the lower-level temporal synchronization and
consistency guarantees of Beehive.

The idea of space-time memory has also been used in optimistic distributed discrete-
event simulation [14, 9]. The purpose and hence the design of space-time memory in
those systems is very different from ours. In those systems, space-time memory is
used to allow a computation to roll-back to an earlier state when events are received
out of order. In this paper, we have proposed Space-Time Memory as the fundamental
building block around which the entire application is constructed.

6 Future Work

There are two compelling avenues for future work. The first is an experimental in-
vestigation of the STM on a cluster of SMP nodes. We recently completed a cluster
implementation of the STM. There are two avenues of experimental work we would
like to pursue. The first is a more precise characterization of the overhead of the STM.

The second avenue is a further investigation of the performance of the color track-
ing and image-based rendering applications. In a cluster setting questions about the
physical location of threads on distinct nodes have an impact in performance. There
is also the opportunity to exploit the structure the STM imposes on memory accesses
to optimize communication in a cluster setting. A basic question we plan to answer
is how overheads differ within and across nodes in the cluster. This will influence the
additional speed-ups that are available in a cluster setting.

The second important direction is the integration of task and data parallelism in the
STM context. Some preliminary work on this problem is described in [20]. There we
present a framework for incorporating data parallelism into a task-oriented description
of an application. An important observation about applications like the kiosk is that the
optimal division into task and data parallel components must be dynamic. For example,
the parallel strategy for the color tracker which delivers the best performance changes
with the number of targets being tracked.

Our ultimate goal is a wide-spread distribution of the STM to members of the vision
community, and others who may find it useful for their applications. In particular,
we would like to quantify the impact of the STM in enabling developers who are not
experts in parallel computing to exploit parallelism in their applications. One step
towards this goal is to partner with a small number of university research groups who
would be interested in adopting the STM as a development platform. A second step
is to port the STM implementation to the NT operating system. The STM currently
runs on a cluster of AlphaServers under DIGITAL UNIX. An NT port is currently in
progress.

7 Conclusions

We have presented a new temporal programming abstraction, called Space-Time Mem-
ory (STM). The STM abstraction is tailored to the computational requirements of an
emerging class of dynamic, interactive vision applications. We introduced this appli-



26 REFERENCES

cation class and described its computational properties, using the example of a Smart
Kiosk user-interface.

The STM abstraction provides a high level programming model which simplifies
the task of sharing time-varying data between threads in a parallel program. We have
demonstrated the application of the STM to two vision problems: color-based tracking
and image-based rendering. In both cases, the STM delivered significant speed-ups.
We believe that the STM can be useful across a broad range of interactive applications,
including computer graphics animation and multimedia indexing, retrieval, and editing.
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